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Abstract 

Most single-cell RNA sequencing (scRNA-seq) analyses begin with cell clustering; thus, 
the clustering accuracy considerably impacts the validity of downstream analyses. In 
contrast with the abundance of clustering methods, the tools to assess the clustering 
accuracy are limited. We propose a new Clustering Deviation Index (CDI) that measures 
the deviation of any clustering label set from the observed single-cell data. We conduct 
in silico and experimental scRNA-seq studies to show that CDI can select the optimal 
clustering label set. As a result, CDI also informs the optimal tuning parameters for any 
given clustering method and the correct number of cluster components.
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Background
Single-cell RNA-sequencing (scRNA-seq) quantifies the transcriptome of individual 
cells, allowing us to explore the biological heterogeneity among cells [1]. Thus, scRNA-
seq analysis usually begins with cell type clustering. Over the past 5 years, many meth-
ods have been developed or re-purposed for scRNA-seq clusterings, such as K-means 
[2, 3], hierarchical clustering [3], RaceID [4], CIDR [5], SIMLR [6], SCANPY (Louvain 
algorithm) [7], and Seurat (Louvain algorithm) [8].

The outputs of these clustering methods are cell label sets that assign each cell to a 
cluster. Different methods usually yield different label sets. Even if we use a given clus-
tering method, we still obtain different label sets by setting different tuning parameters. 
These different label sets introduce the challenge of choosing the “optimal” label set. One 
approach to address the challenge is applying a consensus method to these label sets to 
derive an ensemble label set. However, the ensemble label set is not guaranteed to reflect 
the underlying cell type structure better than any input label set. Furthermore, different 
consensus methods often generate different ensemble label sets; thus, the challenge of 
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choosing the optimal label set remains. Therefore, we need a robust and accurate index 
to score each label set’s deviation (or “goodness-of-fit”); based on the scores, we can 
select the optimal label set [9, 10].

In general, the evaluating indices can be divided into two categories. The first cate-
gory consists of external indices, which measure the agreement between candidate and 
benchmark label sets. The second category consists of internal indices, whose calcula-
tion does not depend on a benchmark label set.

External indices include, but are not limited to, the Adjusted Rand Index (ARI) [11], 
the Fowlkes-Mallows (FM) index [12], and the Normalized Mutual Information (NMI) 
[13]. External indices utilize the benchmark label set to evaluate the quality of the candi-
date label set. If a high-quality benchmark label set is available, external indices are more 
accurate than internal indices, which do not utilize the high-quality benchmark label set. 
However, external indices cannot be applied when the benchmark label set is unavail-
able. Moreover, external indices may perform unsatisfyingly when the benchmark label 
set is of low quality. These practical issues could occur during scRNA-seq clustering.

Internal indices usually use topological or statistical properties to evaluate the qual-
ity of a label set. Examples of internal indices include, but are not limited to, Calinski-
Harabasz index (CH) [14], Connectivity [15], Davies-Bouldin index (DB) [16], Dunn 
index [17], Baker-Hubert Gamma index [18], SD index (SD) [19], and Xie-Beni index 
(XB) [20]. These indices can measure the goodness-of-fit of the candidate label sets for 
a scRNA-seq dataset. However, when we applied these indices to scRNA-seq clustering, 
different indices selected different label sets as optimal. Moreover, these internal indices 
require a long computation time; thus, they are not computationally feasible for large-
scale scRNA-seq data.

In addition to internal and external indices, some stability indices evaluate clustering 
methods based on the clustering stability when the original data are perturbed (resa-
mpled, split, subsampled). See [21] for a recent review of these indices. The key idea is 
to produce perturbed datasets whose distribution is close to the original and apply the 
clustering methods. The clusters from the original and perturbed data will be similar if 
the clustering is stable. We do not consider stability indices in our paper for three rea-
sons. First, we aim to find the optimal candidate label set that fits the scRNA-seq dataset. 
The clustering stability does not necessarily reflect its fitting quality. Second, scRNA-seq 
data are high-dimensional and sparse. It is challenging to create a perturbed dataset with 
similar distributions. Especially when the data contain rare cell types, resampling, split-
ting, or subsampling could change the proportion of rare cell types in the data or even 
miss rare cell types. Third, the stability indices are usually more computationally inten-
sive to calculate. For large-scale scRNA-seq datasets, applying all clustering methods 
with a wide range of tuning parameters for the original dataset is already computation-
ally challenging; applying them under various perturbations is impractical.

In this study, we developed a new clustering evaluation index, Clustering Deviation 
Index (CDI), to quantify the deviation of distributions based on the given label set from 
the observed single-cell data. CDI is an internal index whose calculation does not rely 
on the knowledge of the benchmark label set. While other internal indices are designed 
to evaluate clustering under general situations, CDI is customized for scRNA-seq clus-
tering: it utilizes the UMI distribution properties of scRNA-seq data to calculate the 
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index. As a result, compared with other internal indices, CDI has superior performance 
in evaluating scRNA-seq clustering and achieves the highest level of agreement with 
external indices (ARI, FM, and NMI) using the high-quality benchmark label sets. It is 
also more efficient than other internal indices and works well on large-scale datasets. We 
applied CDI to multiple simulated and experimental scRNA-seq datasets and success-
fully selected biologically meaningful clustering labels for all datasets.

Results
UMI count distributions

We started by checking the distributions of UMI counts generated by droplet-based pro-
tocols for both monoclonal and polyclonal cell populations (Table 1). In many scRNA-
seq protocols, UMI is barcoded for each transcript before amplification, leading to more 
accurate quantification of the transcript counts [22, 23].

UMI counts of monoclonal cells follow gene‑specific negative binomial (NB) distributions

The monoclonal cell population, CT26.WT, is a murine colon carcinoma cell line 
derived through monoclonal expansion (5:  5.4). We evaluated the “goodness-of-fit” of 
the following four families of distributions on this dataset. They are all families of NB 
and zero-inflated NB (ZINB) distributions. Their mean parameter modeling is similar; 
the difference lies in their dispersion and zero-inflation parameter modeling. See Addi-
tional file 1: Note 1 for their mathematical forms. These models also adjust for the cell 
library size via a size factor sc (Additional file 1: Note 1).

•	 Gene-common NB: NB with gene-common dispersion parameters;
•	 Gene-common ZINB: ZINB with gene-common dispersion parameters;
•	 Gene-specific NB: NB with gene-specific dispersion parameters;
•	 Gene-specific ZINB: ZINB with gene-specific dispersion parameters.

Table 1  Dataset summary. See 5: 5.4 for the details of these datasets. For each simulated dataset, 
the actual cell type label set is known. For each experimental dataset, the benchmark label set 
was obtained by the experimental and bioinformatics analysis process. This process includes 
fluorescence-activated cell sorting (FACS), known feature gene checking, cell screening, and 
clustering. Thus, although these benchmark label sets are not the actual label sets, they reflect our 
best knowledge of the cell types

Dataset #Cells #Genes #Benchmark main-
types (subtypes)

Protocols Reference

Experimental CT26.WT 9621 11,710 1(-) 10X v3 -

datasets T-CELL 2989 7893 5(-) 10X [24]

CORTEX 7390 12,887 8(33) inDrop [25]

RETINA 26,830 13,118 6(18) Drop-seq [26]

IPF 114,396 20,354 5(31) 10X [27]

COVID 1,251,200 23,491 31(57) 10X [28–30]

Simulated SD1 4000 10,000 10(-) - -

datasets SD2 4200 10,000 4(-) - -

SD3 2800 10,000 2(4) - -

SD4 3000 4887 5(-) - -
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We used Pearson’s chi-squared test [31] to evaluate the “goodness-of-fit” of the four dis-
tribution families to the actual UMI count distributions in CT26.WT (Additional file 1: 
Fig. S1A). With the type I error of 5% , the test rejected 34.3% poorly fitted genes for the 
gene-common NB family and 34.5% of for the gene-common ZINB family. The rejec-
tion rates are high, indicating that these distribution families do not fit the UMI count 
distributions. In contrast, when applied to the gene-specific NB and ZINB families, the 
“goodness-of-fit” tests only rejected 9.7% and 6.1% of poorly fitted genes, respectively. 
The rejection rates are not far from the preset type I error rate of 5% , suggesting an over-
all good fit of these models. The test results suggest that the well-fitted distribution fam-
ily should include the gene-specific dispersion parameters.

On the other hand, including the zero-inflation parameters is unnecessary because the 
UMI counts do not contain excessive zeros compared with the negative binomial distri-
butions. This still allows the UMI counts to have many zero observations. Many previous 
studies supported the conclusion. These studies checked the UMI distributions in multiple 
monoclonal datasets from multiple tissue types and different sequencing depths, and all 
found that the UMI counts were not zero-inflated [32–35]. Specifically, Svensson [33] used 
eight public datasets and concluded that high-throughput droplet-based methods that 
make use of UMI counts are not zero-inflated; Cao et al.  [35] further clarified that UMI 
counts are not zero-inflated even for low-throughput plate-based methods. However, for 
those sequencing protocols with no UMI counts but only raw read counts with PCR repli-
cates, the read counts are more zero-inflated than the negative binomial distribution. The 
PCR replicates elevated the non-zero read counts and distorted the distributions. Thus, 
our model and method do not apply to the raw read counts with the PCR replicates.

We split the CT26.WT into two datasets—half for training and the other half for test-
ing. We derived the maximum likelihood estimators (MLEs) in each distribution family 
based on the training datasets and used the fitted distributions to estimate the zero pro-
portions in the test dataset. When we compared the estimated and the actual UMI count 
zero proportions (Fig.  1A), we found that the gene-common NB and ZINB families 

Fig. 1  The fitting of six distribution families on the UMI count zero proportions. Six scatter plots show the 
difference between the observed and estimated UMI count zero proportions versus the fitted UMI count zero 
proportions. A Results for the monoclonal dataset, CT26.WT. Each dot represents a gene. The gene-common 
NB and ZINB families under-estimated the UMI zero proportions; the gene-specific NB and ZINB estimated 
zero proportions well. B Results for the polyclonal dataset, T-CELL. Each dot represents a gene in a benchmark 
cell type. The cell-type-specific NB family estimated the UMI count zero proportions better than cell-type 
common NB family
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underestimated the zero UMI count proportions in CT26.WT; in contrast, the gene-
specific NB and ZINB families yielded reasonable and similar estimates of the zero UMI 
count proportions. Thus, adding zero-inflation parameters does not further improve fit-
ting. Our results are consistent with the previous studies.

The difference between our results and the previous results is in choosing the proper 
NB family. Kim, Zhou, and Chen claimed that Poisson distributions are sufficient to 
model the UMI counts for most of the genes with only a few exceptions [34]. Townes 
et al. modeled the distributions of cellular gene UMI counts as an over-dispersed Dir-
ichlet-multinomial distribution, which can be approximated by the independent NB 
family with gene-common dispersion parameters [32]. Svensson proposed to use the NB 
family with gene-common and cell-type-common dispersion parameters [33]. We evalu-
ated the NB family with gene-specific mean and dispersion parameters and verified that 
it fits the monoclonal cell population better than the gene-common NB family. We also 
used the training and test split testing method to ensure this better fitting is not due to 
overfitting.

The gene-specific NB family is only designed to fit the raw UMI counts of the mono-
clonal cells; it fits poorly on the distribution of the normalized counts (FPKM in Addi-
tional file 1: Fig. S1B, TPM in Additional file 1: Fig. S1C). When the test type I error is 
5% , the gene-common NB, gene-common ZINB, and gene-specific NB families do not fit 
the normalized count distributions for almost all genes; the gene-specific ZINB family 
does not fit the normalized count distributions for more than 30% of the genes.

UMI count of polyclonal cells follow gene‑specific cell‑type‑specific NB distributions

Polyclonal cell populations consist of cells from multiple cell types. It is possible that the 
UMI count distributions differ across cell types. Thus, we consider two NB distribution 
families: cell-type-common and cell-type-specific NB models. Here, the cell types refer 
to the actual cell types of the cell population. The difference between these two models 
is whether the mean and dispersion parameters are the same across cell types. See Addi-
tional file 1: Note 1 for their mathematical forms. Notably, these models have adjusted 
for the cell library size.

•	 Cell-type-common NB: NB with the cell-type-common but gene-specific mean and 
dispersion parameters;

•	 Cell-type-specific NB: NB with the cell-type-specific and gene-specific mean and dis-
persion parameters.

First, we explored which family fits the observed UMI counts in T-CELL better. T-CELL 
has a high-quality benchmark label set. Thus, we treated the benchmark cell types as the 
surrogates of the actual cell types. By using the cell-type-specific “goodness-of-fit” tests 
(5: 5.3), we found that the cell-type-specific NB family is better (Additional file 1: Fig. S2): 
with the type I error of 5% , the tests rejected 34.27% of the genes for the cell-type-com-
mon NB family and 2.27% for the cell-type-specific NB family. Thus, adding cell-type-
specific parameters substantially improved the fitting to the UMI count distributions.

The cell-type-specific NB family has more degrees of freedom. To show that the 
improved fit does not stem from overfitting, we split the T-CELL dataset with half 
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training and half testing samples. In the training samples, we fitted MLE to find param-
eters of each gene and each benchmarked cell type and then estimated the zero UMI 
count proportions on the test samples. When we compared the estimated and observed 
zero UMI count proportions in the test samples, we found that the cell-type-specific NB 
family provides much better estimates of the zero UMI count proportions (Fig. 1B). We 
performed similar analyses on the CORTEX and RETINA datasets and observed similar 
results (Additional file 1: Fig. S3–S6). These results show that the cell-type-specific NB 
family fits the UMI count distribution well.

CDI overview

We developed CDI, an internal index, to evaluate the deviation between the observed 
and fitted UMI count distribution based on the candidate label set. For a given scRNA-
seq dataset, first, we performed (a) feature gene selection procedure to derive low-
dimensional feature genes and (b) various clustering methods with a wide range of 
tuning parameters to get candidate label sets. Second, we estimated the MLEs of the 
single-batch or multi-batch UMI count distributions based on each candidate label set 
and feature gene UMI counts. Third, we applied the AIC or BIC criterion to get the CDI 
index score for each candidate label set. The candidate label set with the lowest CDI 
index score is optimal. Because BIC puts a higher penalty on model complexity, CDI 
with BIC (CDI-BIC) favors label sets with fewer clusters. Thus, we recommend using 
CDI-BIC to select the optimal label set on main cell types. Conversely, we recommend 
using CDI with AIC (CDI-AIC) to select the optimal subtype label set to depict the het-
erogeneity with a higher resolution. See Fig.  2 for an illustration. See 5:  5.2 for more 
details.

Fig. 2  CDI flowchart. A graphical illustration for CDI
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CDI calculations are based on feature genes. Feature genes are those differentially 
expressed across cell types. Therefore, many scRNA-seq clustering methods rely on 
feature genes to cluster cells: selecting feature genes could substantially reduce data 
dimensions and possibly boost the signal in clustering. We also selected feature genes 
before calculating CDIs because of similar reasons. Many existing feature gene selec-
tion methods are available [8, 32, 36]. We developed a new approach using a working 
dispersion score (WDS). The working dispersion is the overall sample dispersion as 
if the UMI counts among all cells follow a common NB distribution. See 5: 5.1. WDS 
can capture the fold change of mean parameters across cell types (Additional file 1: 
Note 2). WDS selects the feature genes in the following way. For single-batch data-
sets, it selects the genes with the highest average WDS scores. For multi-batch data-
sets, it ranks the genes in each batch by their average WDS scores, takes the genes’ 
minimum rankings across batches, and selects the genes with the smallest minimum 
rankings. In 2:  2.3, we showed that CDI following WDS can select feature genes to 
distinguish different cell types under most circumstances.

Performance evaluation

We evaluated the performance of WDS and CDI on four simulated datasets (SD1–
SD4) and five experimental datasets (T-CELL, CORTEX, RETINA, IPF, and COVID).

All datasets have benchmark label sets. All simulated datasets use their true label 
sets as the benchmark label sets. For three moderate-scale datasets, T-CELL (2989 
cells), CORTEX (7390 cells), and RETINA (26,830 cells), the benchmark label sets 
were obtained by the experimental and bioinformatics analysis process, including flu-
orescence-activated cell sorting (FACS), known feature gene checking, cell screening, 
and clustering (5: 5.4). These benchmark label sets are of high quality: although they 
are not the actual label sets, they reflect our best knowledge. For the two large-scale 
datasets, IPF (114,696 cells) and COVID (1,251,200 cells), annotating cells is very 
challenging. The large-scale cell population is often highly heterogeneous with hierar-
chical cell structures; thus, generating reliable clustering results is difficult. Also, tra-
ditional verification approaches like manually checking gene markers is too laborious 
for large-scale datasets. Thus, the benchmark label sets might not be as reliable. See 
more details in 2: 2.3.

To generate candidate label sets, we used multiple clustering methods for most 
datasets, each with a wide range of tuning parameters. These methods include hier-
archical clustering, K-means clustering, spectral clustering, CIDR [5], Seurat v3 [8], 
and an ensemble clustering method called SC3 [10] (5: 5.5). For the large-scale data-
sets (IPF and COVID), we used Seurat v3 only because it is the most computationally 
efficient clustering method. For example, for IPF, Seurat v3 generated one clustering 
label set in around 30 mins; other methods cannot complete computing one candi-
date label set in 5 hours. Although we only applied Seurat v3 on IPF and COVID, we 
still applied a wide range of tuning parameters to generate 20 and 17 candidate label 
sets for IPF and COVID, respectively.
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Performance of WDS

We compared WDS against another feature selection method, VST, the default for 
Seurat v3 [37] and v4 [38]. First, we selected the top 500 feature genes using WDS 
and VST, respectively. Second, we normalized the UMI counts of the selected fea-
ture genes by the log(max(count, 0.1)) transformation. Third, we calculated the top 
50 principal components (PCs) of the normalized UMI counts. Finally, we plotted 
the two-dimensional uniform manifold approximation and projection (UMAP) [39] 
based on the top 50 PCs (Fig. 3).

Fig. 3  Comparisons between WDS and VST. A–D UMAPs of the simulated datasets (SD1–SD4). E–G UMAPs of 
the experimental datasets (T-CELL, CORTEX, and RETINA). In all plots, cells from different cell types are marked 
with different colors. Each panel contains two figures. Feature genes were selected by WDS in the first figure 
and by VST in the second figure
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•	 For all datasets except for SD3 and SD4, the UMAPs based on both the WDS-
selected feature genes and the VST-selected feature genes separate different cell clus-
ters well.

•	 For SD3, WDS selected 74/75 of the actual feature genes while VST only selected 
48/75. Most of the feature genes missed by VST and found by WDS have high 
expression in three similar subtypes but low expression in the less similar main types. 
Consequently, the UMAP based on the WDS-selected feature genes reflects the cell 
type structure better than the VST-selected feature genes.

•	 For SD4, VST performed better than WDS. SD4 was generated from Splatter [40], 
a scRNA-seq data simulator that imposes strong mean-dispersion trends on gene 
expressions—that is, highly expressed genes are forced to have a lower dispersion. 
Such trends are commonly seen in bulk RNA-seq data, but we did not observe them 
in the UMI counts of the scRNA-seq datasets (Additional file  1: Fig.  S7A, B). For 
datasets with such trends, WDS will select the genes with the lower average UMI 
counts. These genes contain little information on cell types; thus, the resulting 
UMAP cannot separate the cells from different cell types. Because splatter is a com-
monly used scRNA-seq data simulator, we included SD4 to check the robustness of 
the subsequent procedure of CDI. In practice, when such mean-dispersion trends 
exist for the UMI counts, we should not use WDS to select feature genes; however, 
when such mean-dispersion trends do not exist (as in all of our experimental data-
sets), WDS works well.

When WDS and VST select different feature gene sets, even if their resulting UMAPs 
separate cell types similarly well, CDI based on the two gene sets could select differ-
ent label sets. For example, for T-CELL, both UMAPs look similar (Fig. 3E). However, 
CDI following VST selected the sixteen-cluster label set generated by the spectral clus-
tering with ARI 0.39; CDI following WDS selected the five-cluster label set generated 
by Seurat with ARI 0.87 (Additional file 1: Fig. S8). For reference, T-CELL’s benchmark 
label set has five clusters, similar to the five-cluster label selected by CDI following WDS 
(T-CELL panel in Fig. 4A, B). Thus, CDI following WDS is more robust and accurate.

When WDS selects different numbers of feature genes, CDI based on these different 
feature gene sets has robust performance. For example, for T-CELL, based on the 200 
WDS-selected feature genes, CDI selected a six-cluster label set generated by Seurat; 
the second-best was the five-cluster label set generated by Seurat. Based on the 300 
WDS-selected feature genes, CDI selected the five-cluster label set generated by Seurat. 
Finally, based on the 400 or 500 WDS-selected feature genes, CDI selected the five-clus-
ter label set generated by SC3. (Additional file 1: Fig. S9). These label sets were similar 
to the benchmark label set (ARIs between 0.80 and 0.87). Thus, CDI’s performance is 
robust to the number of WDS-selected feature genes.

Performance of CDI

A. Data containing no rare cell types. We define a cell type as rare if its proportion is 
below 3% . We evaluated the performance of CDI on the datasets where none of the 
cell types are rare. These datasets include SD1, SD4, and T-CELL. SD1 contains ten 
equally proportional cell types simulated from the verified NB model; SD4 contains five 
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unequally proportional cell types simulated from Splatter; T-CELL contains a mixture of 
five types of T cells. We selected their feature genes with either WDS (SD1, T-CELL) or 
VST (SD4) and then applied CDI-BIC to select the optimal label set marking their main 
cell types. The result shows CDI-BIC selected the label sets with the correct numbers of 

Fig. 4  CDI’s performance. CDI was applied to four simulated datasets (SD1-SD4) and three experimental 
datasets (T-CELL, CORTEX, RETINA); all have high-quality benchmark label sets. CDI-AIC was applied to the 
panels with (AIC) in the subtitles; CDI-BIC was applied to the rest of the panels. A CDIs of the candidate 
label sets. The x-axis labels the cluster numbers, and the y-axis labels the CDI scores. For the datasets with 
hierarchical structures (SD3, CORTEX, and RETINA), both CDI-BIC and CDI-AIC were applied. The line color 
represents the clustering method. The red triangle marks the CDI-selected label set; the purple star marks 
the benchmark main type label set; the brown star marks the benchmark subtype label set. B The heatmaps 
show the cell proportions from the benchmark label sets for each cluster in the selected label sets. The x-axis 
labels the CDI-selected label set clusters, and the y-axis labels the benchmark cell types. The color of each 
rectangle represents the benchmark cell-type proportions in each selected label set cluster. Each column 
adds up to 1. PR: photoreceptor
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clusters for SD1, SD4, and T-CELL (SD1, SD4, T-CELL panels in Fig. 4A); moreover, the 
selected label sets are similar to the benchmark label sets (SD1, SD4, T-CELL panels in 
Fig. 4B). For SD4, CDI selected the label set identical to the benchmark label set; for SD1 
and T-CELL, CDI selected the label set with 98% and 95% of the cells correctly allocating 
to their benchmark clusters. Notably, some candidate label sets have the correct num-
bers of clusters, but their cell labels are very different from the benchmarks. For exam-
ple, for T-CELL, the two label sets with the lowest CDI are the five-cluster label sets 
generated by Seurat and SC3. These two label sets have similarly low CDIs ( 1.2744 × 106 
for Seurat and 1.2743× 106 for SC3) and similarly high ARIs (0.875 for Seurat and 0.870 
for SC3). However, the five-cluster label sets generated by other methods have much 
higher CDIs (1.3356×106 , 1.3095×106 , 1.2918×106 , 1.2812×106 ) and much lower ARIs 
(0.002, 0.116, 0.132, and 0.388). Thus, the label sets with lower CDIs have higher ARIs. 
The heatmaps also verified that the label sets with lower CDIs are more similar to the 
benchmark label set (Additional file  1: Fig.  S10). These results suggest that CDI has a 
similar performance to ARI in selecting the optimal label set when the data contain no 
rare cell types. Moreover, CDI has a significant advantage over ARI because its calcula-
tion does not rely on the benchmark label set.

B. Data containing rare cell types. We evaluated the ability of CDI-AIC and CDI-BIC 
to detect rare cell types. For example, SD2 simulated a cell population with two abundant 
( 47.62% of all cells each) and two rare ( 2.38% of all cells each) cell types. Two abundant 
cell types and one rare cell types have different but similar feature gene UMI count dis-
tributions. This rare cell type is called RC1; the other rare cell type is called RC2 (Fig. 3A 
SD2 panel). For SD2, CDI-BIC selected a label set similar to the benchmark, suggesting 
that it can differentiate both rare cell types. Next, we reduced the cell proportion of RC1 
further to challenge CDI with more complex tasks. When the cell proportion of RC1 
reduced to 2.03% (85/4185), CDI-BIC selected the three-cluster label set generated by 
spectral clustering; however, CDI-AIC still selected the four-cluster label set, including 
RC1 (Additional file 1: Fig. S11B, S11D). When the cell proportion of RC1 reduced to 
0.49%(20/4120) , neither CDI-AIC nor CDI-BIC distinguished RC1; instead, they both 
selected the three-cluster label set generated by Seurat. Although this label set misses 
RC1, it has a very high ARI (0.98) (Additional file 1: Fig. S11G, S11I). Also, if we put the 
benchmark label set in the candidate pool, CDI-BIC would rank it as the fourth among 
all label sets, and CDI-AIC would select it as the optimal (Additional file 1: Fig. S11I). 
These results suggest that both CDI-BIC and CDI-AIC were able to detect rare cell 
types; compared with CDI-BIC, CDI-AIC is more sensitive in detecting rare cell types.

C. Data with hierarchical cell type structures. In scRNA-seq data, some main cell types 
can be further divided into subtypes. For example, SD3 simulated a cell population with 
two main cell types; one main cell type contains three subtypes, and the other is homo-
geneous. We used CDI-BIC to select the main type label set and CDI-AIC to select the 
subtype label set. As a result, CDI-BIC selected the two-cluster label set similar to the 
benchmark main type label set; CDI-AIC selected the four-cluster label set similar to 
the benchmark subtype label set (Fig.  4A SD3 panel, 4B SD3 panel). Another dataset, 
CORTEX, has eight main types and 33 subtypes. CDI-BIC selected a 20-cluster label set 
(Fig. 4A CORTEX panel). These 20 clusters correspond to the partitions of eight main 
types in the benchmark label set: clusters 4-10 correspond to excitatory neurons, clusters 



Page 12 of 28Fang et al. Genome Biology          (2022) 23:269 

11 and 12 correspond to microglia cells, and clusters 15–20 correspond to oligodendro-
cytes (Fig. 4B CORTEX panel). CDI-AIC selected a label set with 36 clusters (Fig. 4A 
CORTEX (AIC) panel). Some of these 36 clusters were partitions of the benchmark sub-
types: they further partitioned endothelial cells subtype 1, astrocytes, excitatory cells 
subtype 23, excitatory neuron 5_1, excitatory neuron 6, oligodendrocytes subtype 5, and 
microglia subtype 2 into 21 clusters. Other clusters in the 36-cluster label set were mix-
tures of rare cell types, including a cluster mixing all interneuron subtypes (taking up 
1.8% of all cells), a cluster mixing two endothelial subtypes, and a cluster mixing two 
microglia subtypes (Fig. 4B CORTEX (AIC) panel). None of the candidate label sets can 
separate these rare cell types. These results suggest that when the data have hierarchical 
structures, applying CDI-BIC in combination with CDI-AIC is an excellent strategy to 
reveal its hierarchical structure. When the subtypes contain too few cells, CDI-AIC may 
fail to identify the rare subtype but can still cluster them with other similar subtypes.

D. Data from multiple batches. RETINA had two batches with six main types. Among 
them, photoreceptors were further divided into rod photoreceptors ( 0.34% ) and core 
photoreceptors ( 0.18% . The ON cone bipolar cells (BCs) had seven subtypes; the OFF 
cone BCs had six. CDI-BIC selected an 18-cluster label set that classified the main types 
well. It partitioned the rob BCs, ON cone BCs, and OFF BCs into several subtypes. On 
the other hand, CDI-AIC selected a label set with 33 clusters. This label set separated 
all the subtypes well. Besides, it provided a more exemplary partition on the bench-
mark Müller glia cells and the rod bipolar cells (RBCs). Some subtypes of ON cone BCs 
(BC5A, BC5C, BC6, BC7) and OFF cone BCs (BC1A, BC2) were also further partitioned 
into sub-clusters. Cluster 11 spanned many cell types; however, they are mainly BCs. 
These results suggest that CDI works well on the multi-batch scRNA-seq dataset.

E. Large-scale datasets. IPF (114,696 cells) and COVID (1,251,200 cells) are two large-
scale datasets. For IPF, the benchmark label set contains 31 clusters. This is a low-resolu-
tion label set. For example, the benchmark microphage group contains 38,928 cells; they 
were not further divided. We applied Seurat v3 to generate 20 candidate label sets with 
cluster numbers ranging from 5 to 100. Then, we applied CDI-BIC to select the optimal 
label set, which contains 80 clusters (Additional file 1: Fig. S12). The selected label set 
has many more clusters than the benchmark label set. In particular, it further divided 
the benchmark AT2, ciliated, endothelial, macrophage, T, and MUC5B+ cells into mul-
tiple subpopulations (Additional file 1: Fig. S13). All the benchmark cell types contain a 
few outliers far from most other cells of the same cell type (Additional file 1: Fig. S14). 
Also, macrophages, endothelial, and MUC5B+ cells exhibit apparent heterogeneity. This 
implies that the benchmark label set might not be accurate enough. In general, annotat-
ing large-scale scRNA-seq datasets is challenging. CDI provides an effective way to assist 
this task. The benchmark label set for another large-scale dataset, COVID, has three lay-
ers of hierarchical annotations. The quality of the benchmark label set is also limited 
(Additional file 1: Fig. S15). For example, layer 2 CD4 TCM and TEM cells contain the 
cells marked as CD8 T cells based on layer 3 annotations; layer 2 B memory and naive 
cells also contain the cells marked as CD4 and CD8 T cells based on layer 3 annotations. 
Also, even on the layer 3 annotations with the highest resolution, the CD14 monocytes 
still contain 312,430 cells. They are unlikely to be homogeneous. Due to the low qual-
ity of its benchmark annotations, we did not compare the selected label set (Additional 
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file 1: Fig. S16) with the benchmark annotation. However, these datasets were still useful 
for evaluating the computation time evaluation of various indices. See 2: 2.3.

Comparison of CDI with other internal indices

For general clustering problems, many other internal indices have been developed, 
including the Calinski-Harabasz index [14], Connectivity [15], Davies-Bouldin index 
[16], Dunn index [17], Baker-Hubert Gamma index [18], SD index [19], Silhouette index 
[41], and Xie-Beni index [20]. Details of these eight internal indices are listed in Table 2. 
Although these indices are not customized for scRNA-seq data clustering, they have 
been used to select scRNA-seq clustering label sets [42–44]. We compared the perfor-
mance of CDI with these internal indices based on their performance on the four sim-
ulated datasets (SD1–SD4) and three experimental datasets (T-CELL, CORTEX, and 
RETINA). We did not include IPF and COVID in the comparison because they do not 
have high-quality benchmark label sets. More important, CDI is the only computation-
ally feasible method for COVID; other internal indices failed on such large-scale data-
sets. See 2: 2.3.

We checked the cluster numbers in the optimal label sets selected by the nine inter-
nal indices (Fig.  5A). For all simulated datasets (SD1–SD4) and T-CELL, the CDI-
selected label set has the same number of clusters as the benchmark label set. Other 
internal indices did not select the same number of cell types as the benchmark label set: 
CH, Connectivity, DB, Silhouette, and XB often select the label set with fewer clusters; 
Gamma usually selects the label set with more clusters; Dunn and SD-Scat sometimes 
select more clusters and sometimes select fewer clusters. For CORTEX and RETINA, 
the CDI-selected label sets have more clusters than the benchmark label set: the selected 
label set is similar to a finer partition of the benchmark label set. CDI-AIC selected the 
label set with a similar cluster number to the CORTEX subtype benchmark label set. All 
other internal indices only select one optimal label set. For CH, Connectivity, DB, Dunn, 
and XB, the selected label sets have similar cluster numbers as the main type benchmark 
label sets; for Gamma, SD-Scat, and Silhouette, the selected label sets have similar clus-
ter numbers as the subtype benchmark label sets.

However, the number of clusters the selected label sets do not fully reflect the quality 
of the selected label set. To evaluate the quality of the optimal label set selected by vari-
ous internal indices, we compared these label sets with the benchmark label sets using 
external indices: ARI, FM, and NMI (Table 2). If the selected label set is more similar 
to the benchmark label set, it will have higher ARI, FM, and NMI. In Fig. 5B, each dot 
shows the external index score between each selected label set and the main type bench-
mark label set; each triangle shows the external index score between each selected label 
set and the subtype benchmark label set. For most datasets, the CDI-selected label sets 
have higher ARI, FM, and NMI and thus are more similar to the benchmark label sets. 
The median scores of the CDI-selected label sets are also the highest for all ARI, FM, and 
NMI. This suggests CDI selected label sets closest to benchmark label sets in terms of 
external metrics.

In addition to checking the selected label set, we evaluated the performance of the 
internal indices on all candidate label sets. An internal index is better if it ranks all 
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candidate label sets more similarly than the external indices. Thus, we quantified the 
Spearman correlation [45] between the internal and external indices. See 5:  5.6 for 
details. Since five internal metrics (CDI, Connectivity, Davies-Bouldin index, SD index, 
and Xie-Beni index) mark better label sets with smaller scores, we reversed their rank-
ings when calculating their Spearman correlations with external indices. Then, the best 
internal index should have the highest Spearman correlation. Figure  5C marked the 
Spearman correlation for the main type benchmark label sets as dots and the subtype 
benchmark label sets as triangles. CDI consistently has a higher median Spearman cor-
relation with all three external indices, ARI, FM, and NMI. For example, the median 
Spearman correlation of CDI and ARI is 0.74, greater than the second-best performer, 
CH, whose Spearman correlation with ARI is 0.53. This suggests that CDI has the high-
est agreement in ranking candidate label sets with the external indices and thus out-
performs all other indices in scoring label sets. Moreover, we found that the Spearman 
correlations have the smallest interquartile range between CDI and ARI/NMI and the 
third smallest interquartile between CDI and FM. This suggests that CDI is robust across 
datasets.

Computation time

We compared the computation time for nine internal indices, including CDI (Fig.  6).   
CDI was computed by our R package CDI[46], Connectivity was computed by the R 
package clValid [47], and all other internal indices were computed by the R package 
clusterCrit [48].

The computation time was evaluated on the benchmark label set of the five experi-
mental datasets (Table  1). For T-CELL (2,989 cells), all internal indices took less than 
one minute. For CORTEX, Connectivity took 2.13 min; all other indices took less than 
1 min. For RETINA with 26,830 cells, CDI took only 3.81 min, five internal indices (CH, 
DB, Dunn, SD-Scat, Silhouette, XB) took about 12 min, Gamma took 13.96 min, and 
Connectivity took 52.77 min. CDI was at least three times faster than all other indices. 
For IPF with 114,396 cells, CDI has a more obvious advantage in computation time: 

Table 2  Summary of three external indices and eight internal indices

Index name (abbreviation) Method Optimal value Reference

External Adjusted Rand Index (ARI) Rand index adjusted for chance Max ( = 1) [11]

indices Fowlkes-Mallows index (FM) Sensitivity and precision Max ( = 1) [12]

Normalized Mutual Information 
(NMI)

Information theory Max ( = 1) [13]

Internal Calinski-Harabasz index (CH) Within/between-cluster variance Max [14]

indices Connectivity index (Connectivity) Clustering consensus of nearest 
neighbors

Min [15]

Davies-Bouldin index (DB) Within/between-cluster distance Min [16]

Dunn index (Dunn) Within/between-cluster distance Max [17]

Baker-Hubert Gamma index 
(Gamma)

Within/between-cluster distance Max [18]

SD index with average scattering 
(SD-Scat)

Within/between-cluster variance Min [19]

Silhouette index (Silhouette) Within/between-cluster distance Max [41]

Xie-Beni index (XB) Within/between-cluster distance Min [20]
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CDI took only 9.15 min; in contrast, five indices (CH, DB, Dunn, Silhouette, XB) took 
206 ∼ 210 min, SD-Scat took 250.56 min, and Connectivity took 853.01 min. Another 
internal index, Gamma, failed to output the index score for IPF because its function 
in the clValid package cannot handle such large cell numbers. For COVID with 
1,251,200 cells, CDI took 197.47 min. It was the only internal index that was computa-
tionally feasible for such a large-scale dataset. Some internal indices (CH, Connectiv-
ity, Gamma, Silhouette, XB) cannot handle such large cell numbers because of memory 
issues. These indices are based on the pairwise distance matrices among cells. For a large 
dataset like COVID, computing and storing a 1.2 million times 1.2 million matrix takes 
too much memory. Other indices (DB, Dunn, SD-Scat) cannot finish within 24 h, so we 
stopped the computation. Noteworthily, the above computation time is only for comput-
ing one label set. We recommend computing the index scores on at least ten label sets to 
select the optimal label set; thus, the overall time is even longer.

Moreover, CDI’s computation time was measured in a single-core machine on all 
datasets for a fair comparison with other internal indices. However, CDI also allows 

Fig. 5  Comparison between CDI and other internal indices. A The barplot shows the cluster number of 
the benchmark label set and the label sets selected by different internal indices. Each panel compares the 
cluster number of a benchmark label set with all other selected label sets for one dataset. For the dataset 
with both main type and subtype benchmark label sets (SD3, CORTEX, and RETINA), the panel with the 
subtype benchmark label set is listed with “(subtype)”. B The boxplot shows the external indices of the label 
sets selected by different internal indices. The external indices are calculated by comparing the selected label 
sets and the benchmark label sets. C The boxplot shows the Spearman correlation between the internal 
and external indices while ranking all candidate label sets. The dots in B and C mark the external indices 
or Spearman correlations for main type benchmark label sets. The triangles mark the external indices or 
Spearman correlations for subtype benchmark label sets
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for parallel computing across genes; thus, the computation time could be reduced 
tremendously.

Finally, CDI’s computation time does not depend on the number of clusters. When 
we evaluated CDI’s computation times on 20 IPF candidate label sets whose cluster 
numbers range from 5 to 100, CDI’s average computation time was 10.26 min with a 
standard deviation of 0.29 min. For single-batch datasets, CDI’s computational cost is 
mainly from estimating the maximum likelihood, and its time complexity is O(GN), 
where G denotes the number of feature genes, and N denotes the number of cells. 
For multi-bath datasets, the additional batch-effect testing procedure has complexity 
O(BGN), where B is the number of batches.

Discussion
We developed a new index, CDI, to calculate the deviation between the candidate label 
set and the observed UMI counts. CDI calculates the negative penalized maximum log-
likelihood of the feature gene UMI counts for each candidate label set. The likelihood 
function is based on the gene-specific cell-type-specific NB distribution family verified 

Fig. 6  Computation time of nine internal indices. The computation time of all internal indices was evaluated 
on the five experimental datasets (Table 1) based on 500 selected genes and benchmark cell type labels. The 
x-axis labels the cell numbers in thousands of these datasets. CDI allows considering batch effect. The triangle 
corresponds to CDI calculation considering the batch effect, and the dot corresponds to calculating CDI 
without batch effect. The y-axis labels the computation time in the log10 scale. Algorithms of indices were 
tested on one Intel(R) Xeon(R) Gold 6252 CPU



Page 17 of 28Fang et al. Genome Biology          (2022) 23:269 	

in the monoclonal and polyclonal scRNA-seq datasets. We recommend using WDS to 
select the feature genes for CDI because CDI following WDS is more robust than VST 
for this purpose.

Because calculating CDI relies on the gene-specific cell-type-specific NB distribution 
family, we would like to elaborate on two major innovations of our approach to ensure 
the distribution family is reliable.

First, monoclonal single-cell datasets are essential to characterize the UMI count 
distributions in scRNA-seq data. With the well-characterized distributions, we can 
use the model validation tools such as AIC or BIC to evaluate the deviation from the 
data to the model given the candidate label set. To generate a monoclonal dataset, 
we cloned a single mother cell to derive a cell line whose components can be consid-
ered identical. Previously, such monoclonal datasets were generated by either spik-
ing in the ERCC RNA or purifying cells by FACS. The ERCC RNA samples contain 
the synthesized RNAs differing from the endogenous transcripts in many aspects 
[23, 49] (such as length, guanine-cytosine content, 5′ cap, polyA length, and ribo-
some binding). These structural disparities lead to different conversion efficiencies of 
mRNA into cDNA. Thus, while ERCC eliminates the cell type variations, they also 
eliminate or distort the variations in library construction, sequencing depths, and cell 
cycles. Another choice, FACS, can keep these variations; however, it only purifies cells 
based on a limited number of protein markers and therefore can only reduce but not 
eliminate the cell type heterogeneity in a cell population. Unlike these two existing 
strategies, we used the single-cell expansion strategy to ensure an ideal monoclonal 
population: it keeps the variations in library construction, sequencing depths, and cell 
cycles; on the other hand, it also eliminates cell type heterogeneity.

Second, although others have suggested that the UMI count distributions are not 
necessarily zero-inflated, we use a new gene-specific and cell-type-specific models to 
characterize the UMI count distributions. Previous studies [32–34] used either Pos-
sion or gene-common dispersion NB distributions to model the scRNA-seq data. To 
derive a reliable NB distribution family, we used monoclonal and polyclonal datasets 
to evaluate multiple families of NB distributions. Finally, we found that the cell-type-
specific and gene-specific NB distribution family fits the best.

Next, we would like to elaborate on CDI’s key features and limitations.
First, calculating CDI relies on the likelihood of the raw UMI counts. If only the 

normalized UMI counts are available, CDI cannot be applied.
Second, CDI is not a clustering method; instead, it is an index to evaluate the qual-

ity of the candidate label set: the label set with the lowest CDI will be selected. Thus, 
the quality of the selected label set highly depends on the quality of the candidate 
label sets. If none of the candidate labels fits the data well, the CDI-selected label 
set will not improve the fitting. Thus, providing a large pool of candidate label sets is 
crucial. We suggest applying CDI to at least ten candidate label sets to select a reliable 
label set.

Third, CDI-AIC puts fewer penalties on cluster numbers and usually selects the label 
with more clusters than CDI-BIC. These clusters often correspond to cell subtypes. Some 
of these cell subtypes could mark the cell transition stages. In many cases, the collected 
cells have different developmental stages so that the scRNA-seq data exhibit trajectory 
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patterns. We can consider the cell types in those datasets as “continuous.” When discrete 
clustering methods are applied to these datasets, the resulting clusters often represent a 
local stage on the trajectory. Although CDI is not designed to select the optimal trajec-
tory, we can use it to select the label sets corresponding to the optimal local stages. For 
example, in RETINA, the subtypes of ON cone BCs and OFF cone BCs represent differ-
ent development stages of those BCs. The CDI-AIC successfully selected a satisfying dis-
crete label set that approximates the continuous trajectories of ON cone BCs and OFF 
cone BCs (Fig. 4B. RETINA (AIC)).

In summary, finding an optimal clustering label set for scRNA-seq data is critical 
because clustering impacts all downstream analyses; CDI provides a robust and accurate 
internal method to select cluster label sets and leads to reliable downstream analysis.

Conclusions
In this study, we developed a new internal index, CDI, to select the clustering label set 
that best fits the single-cell RNA-seq data among several candidates. The computation 
of CDI is easy and efficient. In both in silico and experimental studies, CDI successfully 
selected the biological meaningful clustering label set. The results of CDI are also stable 
and robust when we choose different numbers of feature genes or the data contain rare 
cell types or complex cell population structures. Unlike other general internal indices 
not designed for scRNA-seq data, CDI has a much better performance with respect to 
the benchmark labels and concordance with external indices. Although CDI does not 
require the knowledge of the benchmark label set, its performance is comparable with 
external indices such as ARI.

Methods
WDS

Before we apply CDI, we use WDS to select a set of feature genes containing cell type 
information. This is mainly for reducing dimensions for CDI calculation.

WDS is a score to measure the average sample (cell) dispersion of each gene.

where µ̂g and σ̂ 2
g  are the sample mean and variance of gene g’s UMI counts in the pooled 

data. It can be viewed as the estimator of ξg = (σ 2
g − µg )/µ

2
g , where µg and σ 2

g  are the 
mean and variance of gene g’ UMI counts. The rationale of WDS is provided in the Addi-
tional file 1: Note 2.

Before selecting the feature genes, we filtered the genes with more than 95% zero 
counts. We computed WDS for each gene and selected the top G1 (default G1 = 500 ) 
genes with the highest WDS. For datasets with multiple batches, we calculated and 
ranked WDS for genes in each batch: the minimum rank across the batches is set as the 
overall rank for each gene. In the end, we selected the top G1 (default G1 = 500 ) genes 
with the highest overall rank as the feature genes.

In the R package CDI, feature genes can also be added manually. For example, the 
users can use the feature genes provided by other approaches or domain knowledge.

(1)ξ̂g =
σ̂ 2
g − µ̂g

µ̂2
g

,
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CDI

Suppose after we apply a clustering method to the scRNA-seq data, the resulting label 
set is L = (L1, . . . , LN )

′ with Lc ∈ [K ] , indicating the cell types of K clusters. This label 
set is not necessarily a good label set. We need to use CDI to evaluate the goodness-of-
fit of this label set to the scRNA-seq data.

The key idea of CDI is that for any given label set, we pretend that it is the true label 
set and partition cells into subpopulations according to this label set. Within each parti-
tion and each gene, the cells share the same parameters. Then, we calculate the penal-
ized negative log-likelihood based on this label set, called the CDI score. If the label set 
is close to the true label set, the CDI score is small; otherwise, it is large.

We used the cell-type-specific and gene-specific NB distribution to characterize the 
UMI counts of the selected feature genes. Specifically, for multi-batch scRNA-seq data-
sets, we also allow the existence of batch effects.

•	 For single-batch scRNA-seq dataset, the likelihood function is 

 Here, F is the NB probability mass function (pmf) of Xgc , the UMI counts of fea-
ture gene g in cell type k. Specifically, Xgc | (L0,c = k) ∼ NB(scµgk,φgk) , where sc is 
a scale factor to adjust for cellular library size (Additional file 1: Note 1), and µgk and 
φgk are the mean and dispersion parameters of gene g in cell type k. The mathemati-
cal form of the pmf is shown in Additional file 1: Note 1.

•	 For multi-batch scRNA-seq dataset, the likelihood function is 

 Here, F is the pmf of X (b)
gc  , the UMI counts of feature gene g in cell type k and batch 

b. Specifically, X (b)
gc | (L

(b)
0,c = k) ∼ NB(s

(b)
c µ

(b)
gk ,φ

(b)
gk ) . It is likely that some gene g in 

cell type k does not have obvious batch effects so that its corresponding mean and 
dispersion parameters µ(b)

gLc
 and φ(b)

gLc
 are the same across batches. Thus, to better char-

acterize the multi-batch data, we test if the batch effect is significant. For each gene g 
in each cell type k, we set the hypothesis 

 We used the likelihood ratio test to test this hypothesis. If the hypothesis is rejected, 
it indicates that the batch effect is significant for the gene in this cell type; thus we 
will introduce the batch-specific parameters. Otherwise, we will force same µ(b)

gLc
 and 

φ
(b)
gLc

 across batches, i.e., µ(b)
gLc

= µgLc and φ(b)
gLc

= φgLc.
Next, we obtain the MLE of the mean and dispersion parameters of the likelihood func-
tions. Denote the corresponding maximum likelihood by ℓ̂ . To adjust for the model 
complexity, we use the penalized negative log-likelihood function as CDI

(2)ℓ(µgk ,φgk : g ∈ [G], k ∈ [K ]) =

g∈[G] c∈Sb

log{F(Xgc | scµgLc ,φgLc )}.

(3)

ℓ(µ
(b)
gk ,φ

(b)
gk : g ∈ [G], k ∈ [K ], b ∈ [B]) =

∑

b∈[B]

∑

g∈[G]

∑

c∈Sb

log{F(Xgc | scµ
(b)
gLc

,φ
(b)
gLc

)}.

H0,gk : µ
(1)
gk = . . . = µ

(B)
gk , φ

(1)
gk = . . . = φ

(B)
gk .
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Here, d =
∑

g∈G

∑

k∈K dgk is the overall degree of freedom of the model. For a single-
batch dataset or a multi-batch dataset with H0,gk accepted, dgk = 2 ; for a multi-batch 
dataset with H0,gk rejected, dgk = 2B . cpen is the scale of penalty: cpen = 2 for AIC and 
cpen = log(N ) for BIC. Because BIC adds more penalty on the model degree of freedom, 
it prefers the models with fewer numbers of clusters. Thus, we use CDI-BIC to select the 
optimal main type label set and CDI-AIC to select the optimal subtype label set.

Cell‑type‑specific “goodness‑of‑fit” tests

The cell-type-specific “goodness-of-fit” tests were performed on T-CELL, CORTEX, and 
RETINA. All three datasets have high-quality benchmark label sets. The testing process 
is as follows for each dataset.

•	 We filtered the genes and the cells as described in 5.4. Then, we performed the test 
on each gene after filtering.

•	 First, based on the benchmark label set, we assigned the cells into 5K0 bins, where 
5 is the number of UMI count categories and K0 is the number of the benchmark 
cell type. Based on the values of (Xgc, Lc) , we assigned cell c into one of the following 
bins: 

 where × is the Cartesian product of two sets.
•	 Second, we computed the test statistic as 

 Here, nU ,k =
∑

c I(Xgc ∈ U , Lc = k) , and πU ,k = P(Xgc ∈ U , Lc = k) , which are the 
parameters of the multinomial distributions on (nU ,k : U ∈ U , k ∈ K) . Because πU ,k 
is unknown, we estimated πU ,k by first expressing it as a function of (µgk ,φgk) in the 
corresponding NB distribution family and then derived the maximum likelihood 
estimator (MLE) in the multinomial likelihood [31].

•	 Third, if Tg is larger than the 95% quantile of the chi-square distribution with the 
degree of freedom 5K0 − p− 1 , we rejected the “goodness-of-fit” hypothesis for gene 
g. Here, p is the number of parameters in the corresponding NB distributions: for 
cell-type-common NB distributions, p = 2 ; for cell-type-specific NB distributions, 
p = 2K0 . We used the chi-square quantile as the threshold because when the UMI 
count of gene g follows the corresponding NB model and Lc all match the true cell 
types, Tg asymptotically follows χ2(5K0 − p− 1) [31].

•	 Finally, we performed the test for all the genes and calculated the rejection propor-
tion. We used the proportion as the criterion to assess the overall fitting of the cor-
responding NB distribution family and the UMI count distribution.

ℓ̃ = −2ℓ̂+ cpen · d.

U ×K, U = {{0}, {1}, {2}, {3}, [4,∞)}, K = {1, . . . ,K },

Tg =
∑

(U ,k)∈U×K

(

nU ,k − N π̂U ,k

)2

N π̂U ,k
.
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Datasets

Simulated datasets

We simulated three sets of single-cell data (SD1-SD3) from the negative binomial distri-
bution with gene-specific and cell-type-specific parameters. More specifically for SD1-
SD3, the gene expression level for cells in cell type k and gene g were randomly sampled 
from NB(µgk ,φgk) , where µgk represented the mean parameter and φgk represented the 
dispersion parameter. Each dataset contained 10,000 genes, and the number of cells 
ranged from 2800 to 4200. To test the robustness of CDI, we generated SD4, which con-
tained many outliers, and the UMI count distributions no longer followed the verified 
NB distribution. 

	SD1.	We generated ten equal-sized cell groups. Each group contained 400 cells; thus, in 
total there are 4000 cells. One cell type was treated as the baseline type with µgk gen-
erated from the truncated normal distribution with mean 0.2 and standard deviation 
0.1, and φgk generated from the truncated normal distribution with mean 0.5 and 
standard deviation 0.1. For each of the other nine groups, 25 genes had mean param-
eters shifted from the baseline group with log2 fold change 2.4. The feature gene dis-
persion parameters were shifted by a Gaussian-distributed factor with mean 0 and 
standard deviation 0.05.

	SD2.	We generated two abundant cell types with 2000 cells each and two rare cell types 
with 100 cells each. One abundant cell type was treated as the baseline group with 
µgk generated from the truncated normal distribution with mean 0.2 and standard 
deviation 0.1. The other abundant cell type contained 40 feature genes with log2 fold 
change of mean 1.5. One rare cell type, RC1, contained 50 feature genes with log2 
fold change of mean 2.8; the other rare cell type, RC2, contained 50 feature genes 
with log2 fold change of mean 3.2. Because the log2 fold change of RC1 is smaller 
than RC2, RC1 is considered to be more similar to the two abundant cell types. The 
dispersion parameters φgk were set in the same way as in SD1.

	SD3.	We generated two main-types: C1 contains 1000 cells from a homogeneous cell type, 
and C2 contains 1800 cells from 3 subtypes. C1 is the baseline group with µgk gen-
erated from the truncated normal distribution with mean 0.4 and standard devia-
tion 0.1 and φgk generated from the truncated normal distribution with mean 1 and 
standard deviation 0.1. Each subtype of C2 contains 600 cells and 40 feature genes. 
Among these 40 feature genes, 30 were shared by all subtypes, and the rest 10 were 
exclusive for each subtype. The log2 fold change in the means was 4 for the main 
type and 1.8 for the subtype. The dispersion parameters φgk were set in the same way 
as in SD1.

	SD4.	We generated five common cell types using the R package Splatter [40] with 3000 
cells and 5000 genes. The probabilities that a cell belongs to any cell group were 
0.2 for all groups. The proportion of differentially expressed genes were 1% per cell 
group. The location and scale parameters of the log-normal distribution for these 
feature genes were (0.4, 0.1). In addition, we followed the default option to add 5% of 
outliers. After we filtered the cells with less than 1% non-zero counts and the genes 
with less than 1% of non-zero cells, the dataset had 4887 remaining genes. See Addi-
tional file 1: Fig. S17 for all the parameters used in this setting.
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Experimental datasets

	CT26.WT. 	 The dataset was generated in Dr.  Qi-Jing Li’s lab. Dr. Li is one of the 
co-authors of this paper. The wild-type CT26 cells from the murine colorectal car-
cinoma cell line were single-cell-diluted, and one clone was picked and cultured 
for 220 days. For the single-cell RNA-seq library preparation, 10, 000 cells of each 
clone were processed with the protocol of Chromium Single Cell 3′ Reagent kits v3 
from 10X Genomics to make the single-cell RNA sequence library. Cells with more 
than 10% mitochondrially derived transcripts were removed. Among these cells, 
we selected those with a non-zero gene proportion greater than 3% or the number 
of non-zero genes greater than 300 (at least one of the two conditions needed to 
hold). We further selected genes with non-zero count proportions greater than 1% 
or the number of non-zero cells greater than 50. This dataset was of high quality, 
with 24,208 median UMI counts per cell and 4376 median genes per cell. Since this 
dataset was highly homogenous, we used CT26.WT to evaluate the Pearson’s chi-
squared “goodness-of-fit” of different models to the UMI counts in the monoclonal 
scRNA-seq data.

	T-CELL.	The T-CELL dataset was generated in our previous study [24]. The benchmark 
clustering labels of the T-CELL population were generated as a combination of pro-
tein-marker-based flow sorting labels and bioinformatics labels from Seurat v2. For 
evaluation purpose, we selected 5 distinct cell types: regulatory Trm cells, classical 
CD4 Tem cells, CD8 Trm cells, CD8 Tcm cells, and active EM-like Treg cells. In 
this study, tumors were firstly collected from the female mice after 3 weeks since the 
mice were injected by 4T1 tumors. Tissues were then disassociated into single cells 
and homogenized. T cells were separated out by flow sorting with a stringent gat-
ing threshold and sequenced on the 10X platform. For preprocessing, we filtered out 
genes with less than 2% non-zero cells and removed cells with less than 2% non-zero 
genes. Eventually, 2989 cells from five cell types with 7893 genes were retained.

	CORTEX.	 The visual cortex dataset was generated by Hrvatin et  al. [25] using 
inDrop to study the diversity of activity-dependent responses across cortical cell 
types. We obtained the labeled scRNA-seq dataset from [50], which contained 
10,000 cells with 19,155 genes. Among these 10,000 cells, 7390 cells were identified 
to 33 cell types as an intersection of Seurat v1 and a density-based method [51]. In 
addition, eight main cell types (excitatory neurons, oligodendrocytes, astrocytes, 
interneurons, etc.) were annotated with known feature genes. We selected cells with 
at least 300 or 3% of non-zero genes and genes with at least 50 or 1% non-zero cells. 
After preprocessing, 7376 cells with 12,887 genes were included in clustering.

	RETINA.	 The mouse retina dataset was generated using Drop-seq to classify 
retinal bipolar neurons [26]. This dataset contained 27,499 cells with 13,166 genes. 
Among these 27,499 cells, 26,830 cells were labeled with 18 cell types by the assem-
bled pipeline: they first used Louvain-Jaccard [52] method to cluster the cells and 
then annotated the clusters with known feature genes. This 18-cluster label set was 
treated as the benchmark subtype label set. We further grouped the cell types into 
6 main types based on the original paper. These cells came from two experimental 
batches of FAC sorted Vsx2-GFP positive cells on different days. These cells came 
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from two experimental batches of FAC sorted Vsx2-GFP positive cells on different 
days. We selected the cells with at least 300 or 3% of non-zero genes, and the genes 
with at least 100 or 2% non-zero cells. After preprocessing, all 26,  830 cells with 
13,118 genes were selected. The preprocessing step removed very few genes and cells 
because the dataset obtained from the original paper was filtered before cell-type 
annotation.

	IPF	 The IPF dataset was obtained from human lung tissues to study the mechanisms 
and mediators driving fibrotic remodeling in lungs with pulmonary fibrosis [27]. 
The dataset contains 20 PF lungs and ten nonfibrotic controls. The preprocessing 
step excluded cells containing less than 1000 expressed genes and more than 25% 
mitochondrial genes. After preprocessing, 20,354 genes and 220,213 cells remained. 
Among all cells, 113,396 were clustered by Seurat v3 and annotated with canonical 
lineage-defining markers to 31 types. The authors reported no severe batch effects 
driven by the processing site or the sequencing batch, and thus no batch effect cor-
rection was applied in the annotation procedure.

	COVID	 The COVID dataset was obtained from the Fred Hutch Single-Cell Immunology 
Of SARS-CoV-2 Infection data atlas [30]. We combined the top two largest datasets, 
SU [28] and STEPHENSON [29], to test CDI’s capability in handling a million-scale 
dataset. Both datasets were obtained from human peripheral blood mononuclear 
cells and preprocessed by excluding low-quality cells in the previous study [30]. SU 
contains 559,17 cells from 145 patients. STEPHENSON contains 691,683 cells from 
120 patients. Both datasets were mapped to a reference PBMC dataset using Seurat 
v4 and annotated with SingleR [53]. The combined dataset COVID has five major 
populations: CD8 T, CD4 T, Mono, NK, B, other T, and others. Two layers of bench-
mark cell type labels further divide these cell populations into 31 and 57 cell types.

Clustering methods

We applied six clustering methods to generate candidate label sets as the inputs of CDI. 
Three of them are specially designed for scRNA-seq clustering tasks (Seurat v3, CIDR, 
and SC3). The others are general clustering approaches. More details are in Table 3.

For all datasets, UMI count matrices were first filtered as described in 5.4 before gen-
erating candidate label sets. We generated labels of the same range of cluster numbers 
for all methods for comparison. Generic clustering methods (hierarchical clustering, 
K-means, and spectral clustering) are not designed for large datasets like scRNA-seq. To 

Table 3  Clustering method summary

Clustering method Description Reference

Hierarchical clustering Bottom-up procedure to merge closest cells; complete linkage [3]

K-means Identify k-centers minimizing the within-cluster sum of squares [2, 3]

Spectral clustering Graph-based algorithm: eigenvectors of affinity matrix [54]

CIDR Dropout identification+PCA+hierarchical clustering [5]

SC3 Consensus clustering (distance and correlations++PCA and 
Laplacian++K-means)

[10]

Seurat v3 PCA+Graph-based algorithm [8]
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make the clustering task feasible and efficient for these three generic methods, we input 
200 PCs of scaled UMI counts rather than the raw UMI counts to these algorithms.

Hierarchical clustering  Function hclust() in R package stats [55] was applied with the 
complete agglomeration method.

KMeans  Function kmeans() in R package stats was applied with nstart = 3.

Spectral clustering  Function specc() in R package kernlab [56] was applied.

CIDR  We used default procedures of R pakcage cidr [57] for determining dropout 
candidates and calculating dissimilarity matrix. The nPC parameter in function scClus-
ter() was set to be 200.

SC3  We used default procedures of R package SC3. For sc3() function, we set kmeans_
nstart = 3, and svm_num_cells = 5000.
Seurat  We used default procedures of R package Seurat. UMI count matrix was first 
normalized with NormalizeData(). Method “vst” was applied to select 20% (SD1-SD4, 
T-CELL, and CORTEX) or 2,000 (RETINA and IPF) feature genes. Then after scal-
ing the data, 20 principal components were used to feed the FindNeighbors function. 
Unlike other clustering methods we used, Seurat requires the resolution rather than the 
number of clusters as the tuning parameter. To compare with other methods under the 
same number of clusters, we searched a range of resolution values for Seurat to find one 
value corresponding to the desired number of clusters. For example, when we generated 
10-cluster candidate label sets for SD1, we tried resolutions ranging from 0.1 to 6 and 
found that “resolution = 3” generated a 10-cluster label set. For each number of clusters, 
such resolution values are not unique, and we stopped at the first possible resolution 
during the search.

The RETINA dataset was generated from two experimental batches. We first applied 
Seurat Integration with the default setting to correct the batch effect. Then, the batch 
effect corrected dataset was used as the input to generate candidate label sets. Other 
procedures are the same as described above. The COVID dataset provided sparse PCA 
cell embeddings after batch effect correction under the “ref.spca” slot. We directly 
applied those cell embeddings as the input to generate candidate label sets from Seurat.

Spearman correlation calculation

The Spearman correlation is the rank-based correlation between two vectors of the same 
length. It ranges from − 1 to 1, and a value of 1 occurs when two vectors have a perfect 
agreement in ranking.

We used the Spearman correlation to measure the ranking agreement between inter-
nal and external index scores for all datasets. Specifically, we applied different clustering 
methods with a wide range of tuning parameters to generate L candidate clustering label 
sets. Then, we calculated the external index scores between all the candidate label sets 
and the benchmark label set b, denoted by αEx,b . Each element of αEx,b represents the 
external index score of a specific candidate label set compared with the benchmark label 
set b. On the other hand, we calculated the internal index scores of all the candidate 
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label sets, denoted by αIn,b . Each element of αIn,b represents the internal index score of a 
specific candidate label set. Since CDI, Connectivity, DB, SD-Scat, and XB mark better 
label sets with smaller values, we will replace αIn,b by its negative.

The length αEx,b and αIn,b are the same, both equal to L. We then calculate the Spear-
man correlation between αEx,b and αIn,b,

Here, R transfers a vector into its ranking vector. Thus, the Spearman correlation can be 
viewed as the Pearson correlation between to ranking vectors.

To calculate the Spearman correlation for each pair of internal and external indices 
for all datasets with benchmark label set b, b ∈ [B] . Some datasets have two bench-
mark label sets (main-type and subtype), and thus two Spearman correlations were 
calculated.
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