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Abstract 

Background:  Despite having been extensively studied, it remains largely unclear why 
humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis 
predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the 
molecular atavism hypothesis predicts that PSGs involved in tumors may represent 
recently derived duplicates of unicellular genes. However, these predictions have not 
been tested.

Results:  By taking advantage of pan-cancer genomic data, we find the upregulation 
of PSGs across 13 cancer types, which is facilitated by copy-number gain and pro‑
moter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend 
to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related 
uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 
15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate 
involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experi‑
ments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, 
non-neutral amino acid substitution patterns and increased expression indicate that 
DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs 
are also preferentially upregulated in the highly proliferative embryonic cerebrum.

Conclusions:  Consistent with the predictions of the atavism and antagonistic pleiot‑
ropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-
related genes that emerged in unicellular ancestors, contribute to the early prolifera‑
tion of the human cerebrum at the cost of hitchhiking by similarly highly proliferative 
cancer cells.
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Background
Darwinian medicine has long been believed to provide insights into cancer diagnosis 
or treatment [1–4]. Specifically, concepts and strategies related to microevolution have 
been extensively used to model tumorigenesis, where inference of clonal history and 
identification of driver mutations are routinely performed within evolutionary frame-
works [5–9]. In addition, macroevolutionary studies have also indicated that social 
changes between us and our ancestors could increase tumor risk and the genetic speci-
ficity of long-lived animals may offer clues for human cancer therapies [1, 10–13].

Micro- and macroevolutionary practices could be combined to better understand 
cancer as in studies of molecular atavism and antagonistic pleiotropy. On the one hand, 
it was hypothesized decades ago that cancer cells are reminiscent of unicellular ances-
tors and oncogenesis emerges by reversing phylogeny [14, 15]. Nonetheless, this atavis-
tic view was formally formulated more recently [16–18]. Phylostratigraphic or gene age 
analyses provide abundant supporting evidence: (1) cancer-related genes often emerge in 
unicellular (UC) ancestors or early metazoan (EM) ancestors [19–22]; (2) UC genes tend 
to be upregulated in tumors, while EM genes are often downregulated [23, 24]. There-
fore, atavism is increasingly accepted as a theoretical framework to understand cancer 
[4, 25–27] and adaptive mutability enabled by the ancient memory is even proposed as a 
target in tumor therapy [22, 28]. On the other hand, natural selection may maximize the 
fitness in youth at the cost of promoting diseases of aging [3, 29, 30]. Antagonism could 
be most intense for recent genetic changes due to lack of time resolving the negative 
pleiotropy [31, 32]. This hypothesis has rarely been tested at the genome-wide level with 
few exceptions, e.g., one study has shown that human-specific enhancers underlie the 
cost of aging diseases including cancer [33].

Antagonistic pleiotropy predicts that recently originated new genes (novel gene loci 
emerging in recent evolution) [34, 35] should often contribute to tumor. Considering 
atavism and the fact that the majority of new genes are generated by DNA- or RNA-level 
duplication [36, 37], the link between tumors and new genes could be more pronounced 
for new genes as derived duplicates of UC genes. That is, primate-specific genes (PSGs, 
including human-specific genes) harbored by the human genome should fit these pat-
terns. Studies including our own have already indicated tumor-promoting roles for a 
handful of PSGs, in addition to their normal function in fetal brain development or sper-
matogenesis [38–43].

Therefore, we analyzed whether PSGs, especially UC gene-derived PSGs, promote 
tumors and what normal functions of PSGs are hitchhiked by tumors, especially consid-
ering that most PSGs are poorly characterized [44, 45]. Specifically, by taking advantage 
of data generated by The Cancer Genome Atlas (TCGA) project [46], we demonstrated 
a pan-cancer global upregulation of PSGs, which was contributed by copy number 
gains and promoter hypomethylation. By integrating clinical data and cell line screening 
data, we showed that upregulated PSGs tend to facilitate tumors possibly due to their 
roles in the cell cycle. Furthermore, the majority of these cell cycle-related PSGs are 
derived duplicates of UC genes. For one particularly strong case, DDX11, we corrobo-
rated its essentiality in cancer cells via knockdown assays and revealed its fast evolution 
shaped by natural selection. We finally showed that upregulated PSGs associated with 
the cell cycle, including DDX11, are also biasedly expressed during embryonic cerebral 
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development, which involves extensive cell proliferation, suggesting that similarly highly 
proliferative tumor recapitulated part of the cell cycle program that normally acts during 
this critical stage.

Results
Compilation of the gene age dataset and cancer omics datasets

To analyze the roles of PSGs in tumors, we first compiled a genome-wide gene age data-
set spanning the most ancient UC genes to the youngest PSGs. Specifically, two strat-
egies for dating gene origination have been developed: protein-family-based methods, 
also known as phylostratigraphy [22, 23, 47–49], and synteny-based methods [36, 37, 40, 
50–53]. The former assigns the age of the founder gene to all homologous genes of the 
same gene family and thus does not differentiate between the child duplicates and the 
parental copy (Fig.  1a). In contrast, the latter distinguishes different duplicates on the 
basis of synteny (gene order) and parsimoniously infers the corresponding age. Thus, for 
genes harbored by the human genome, PSGs identified by the former strategy indicate 
that these genes form primate-specific protein families (absent in non-primate species), 
while those genes identified with the latter strategy represent primate-specific loci.

We compiled a single gene age dataset by merging these two dating strategies given 
their complementary nature (“Methods”). Since synteny degenerates faster than protein 
sequence during evolution, the synteny-based pipeline has been applied to date human 
genes within vertebrate evolution [40], while protein-level homology is detectable over 
a much longer period, thus, phylostratigraphy has been implemented to date ancient 
genes [22, 23]. We thus used the age data of groups 9–14 after vertebrate split (Fig. 1b; 
“Methods”) generated via our previous synteny-based pipeline [40]. Genes predating the 
vertebrate split were classified into eight groups in a relatively new phylostratigraphy 
dataset [23]. We further divided all groups into 5236 UC genes, 7767 EM genes, 2704 
mammal-specific (MM) genes, and 423 PSGs (Fig. 1b, Additional file 1: Fig. S1a; Addi-
tional file 2: Table S1) and considered that UC and EM genes could serve as two controls 
in subsequent analyses given their respective roles in tumor promotion or repression 
[19–24].

Notably, the dataset of PSGs shows the well-known transcriptional and evolution-
ary features of young genes, i.e., narrow expression [35, 54, 55] and fast evolution [56, 
57]. First, almost half (190/423) of the PSGs showed tissue-biased expression (e.g., testis 
bias, Additional file 1: Fig. S1b; Methods), while this proportion declined in the three 
older age groups (43%-9%, Fig. 1b; Additional file 2: Table S1). Actually, due to pervasive 
incomplete duplication or relocation [58, 59], duplicate PSGs generally show narrower 
expression than their corresponding parental copies (Additional file 1: Fig. S1c). Second, 
duplicate PSGs tend to evolve faster than their older counterparts (Additional file 1: Fig. 
S1d) driven by positive selection or relaxation of functional constraint [56, 57, 60].

We subsequently retrieved cancer omics data. Among the 33 cancer types covered by 
TCGA, we focused on 13 cancer types with at least 15 normal control samples (Fig. 1c).

PSGs are generally upregulated in tumors

We identified the pan-cancer upregulation patterns of PSGs by analyzing RNA-
sequencing (RNA-seq) data with paralogous similarity taken into account 
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Fig. 1  Data compilation. a Schema of two strategies for dating gene ages. A phylogenetic tree covering 
four species is shown and the age inferences are marked along the tree. The purple and blue boxes mark the 
parental and child copies, respectively. The gray boxes indicate the genes around the focal gene while the 
white boxes indicate the absence of the child gene. The shaded region represents the syntenic alignment. 
b Age assignment with pie charts showing the proportions of broadly transcribed and tissue-biased genes. 
c Count of the pan-cancer TCGA datasets used in this study. Only RNA-sequencing transcriptome datasets 
(marked with “*”) were reprocessed, while all other datasets were directly retrieved from previous publications 
or dedicated websites (“Methods”). Numbers refer to the counts of tumor samples, while numbers in 
parentheses refer to the counts of normal controls. SCNA refers to somatic copy number alteration



Page 5 of 29Ma et al. Genome Biology          (2022) 23:251 	

(“Methods”). We found that the median log2 transformed  fold changes of PSGs 
between tumor and normal samples were significantly higher than 0 in 10 of 13 tumor 
types (Fig.  2a, Additional file  2: Table  S1). Moreover, we implemented the single 
sample gene set enrichment analysis framework (ssGSEA, “Methods”), which could 
detect gene sets with moderate but robust signals of expression change [61, 62]. We 
found that the ssGSEA enrichment scores of PSGs in tumor samples were again sig-
nificantly higher than the normal ones for 11 out of 13 tumors (Fig.  2b, Additional 
file 2: Table S2).

Fig. 2  Upregulation of PSGs in tumors. a Distribution of the median log2(Fold change) of 423 PSGs across 
tumors. Tumor types are sorted by decreasing values. b Distribution of the ssGSEA enrichment scores of PSGs 
across tumor types. For each violin plot, the bar, the line, and the curve indicate the interquartile range, the 
median, and the probability density of the data, respectively. The median score of PSGs in normal samples 
was set as 0, i.e., the normal median was subtracted from its counterpart in tumor samples. Tumors are sorted 
by decreasing scores. c Violin plots showing distributions of enrichment scores (median across tumors) 
of genes within 14 age groups. For each group (defined as in Fig. 1b), the median enrichment score was 
calculated separately for normal and tumor samples within each tumor type. Similar to Panel b, the median 
values in normal samples were set as 0. d Enrichment score-based expression patterns of broadly transcribed 
PSGs and tissue-biased PSGs across tumors. e Proportion comparison between pan-cancer upregulated 
and downregulated genes. A one-sided Wilcoxon signed-rank test was used for panels a–d and a one-sided 
binomial test was used for panel e. Multiple testing correction was performed via false discovery rate (FDR)
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The robustness of the upregulation pattern is supported by the following observations: 
(1) the overall pattern is reproducible across two methods where the fold changes are 
correlated with the enrichment scores (Spearman ρ = 0.61, P = 0.03); (2) our analyses 
recapitulated the previous studies on atavism [20–23], in that UC genes (especially those 
in groups 1 and 2) are upregulated, EM genes are downregulated and MM genes do not 
show significant patterns across tumors (Fig.  2c); (3) despite their distinct regulatory 
contexts, both broadly transcribed PSGs (B-PSGs) and tissue-biased PSGs (T-PSGs) are 
upregulated across tumors (Fig. 2d); and (4) the pattern is robust with only high-purity 
(no contamination of neighboring immune or stromal cells) tumor samples (Additional 
file 1: Figs S2a-c, Methods).

Given the overall higher expression of PSGs across tumors, we expect that PSGs 
should be enriched with pan-cancer upregulated genes. To test this hypothesis, we 
defined such genes as those that were upregulated in at least three times more cancer 
types than they were downregulated in. Analogously, we defined the pan-cancer down-
regulated genes. Consistent with our expectation, 138 out of 423 (32.6%) PSGs and 
79 (18.7%) PSGs showed a pan-cancer up- and downregulation pattern, respectively 
(Fig. 2e). UC genes showed a similar trend (32.1% vs. 22.7%), while EM genes showed 
the opposite trend (20.3% vs. 33.9%). Similar results were observed with a more stringent 
cutoff (Additional file 1: Fig. S2d, Methods).

Collectively, PSGs tended to show higher expression in most tumor types compared to 
normal samples.

Amplification and promoter hypomethylation contribute to the upregulation of PSGs

PSGs’ higher tumor expression might reflect their lower expression in normal samples, 
and thus they could therefore be more easily upregulated in tumors. Indeed, both B- and 
T-PSGs upregulated in tumors tended to have lower expression in normal controls com-
pared to those downregulated in tumors (Additional file 1: Fig. S3a). However, UC and 
EM genes showed an analogous pattern. Moreover, although B-PSGs are more highly 
expressed than T-PSGs in normal samples, both showed a similar extent of upregulation 
in tumors (Additional file 1: Figs. S3a-b). Therefore, the upregulation of PSGs in tumors 
cannot be solely attributed to their lower expression level in normal samples.

Since gene expression in tumors is shaped by a myriad of factors including somatic 
copy number alterations (SCNAs), DNA methylation, or histone modifications [24, 63, 
64], we wondered which factors underlie the pan-cancer upregulation of PSGs. Consid-
ering that SCNA and promoter methylation are among the most often studied factors 
in gene deregulation in tumors [65, 66] and that these two types of data are available for 
the majority of TCGA samples (Fig. 1c), we analyzed their contribution by calculating 
how strong gene expression is correlated with copy number and promoter methylation, 
respectively.

We detected varying correlation intensity across gene age groups (Fig. 3): (1) consist-
ent with [24], SCNA (and more specifically, amplification) is one major factor underlying 
the upregulation of UC genes with a median of 47.9% genes showing a strong corre-
lation (Spearman ρ > 0.3, “Methods”) between expression level and copy number; (2) 
the extent of correlation between expression and SCNA is relatively moderate for EM 
genes, T-PSGs and B-PSGs with the proportions ranging between 2.9% and 20.0% and 
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the pattern for methylation is similar (13.8%-21.5%); (3) amplification contributes much 
more toward upregulation of B-PSGs than to that of T-PSGs (20.0% vs. 2.9%); and (4) 
compared to amplification, the decrease of methylation or hypomethylation is a stronger 
factor for the upregulation of T-PSGs (2.9% vs. 13.8%, respectively), which echoes the 
significance of methylation in regulating tissue-biased oncogenes [66]. We obtained sim-
ilar results with a more stringent cutoff (ρ > 0.4, Additional file 1: Fig. S3c).

Taken together, the correlation analyses indicate that the upregulation of PSGs is con-
tributed by amplification and promoter hypomethylation.

Pan‑cancer upregulated PSGs (uPSGs) tend to promote tumors and to play cell 

cycle‑related roles

We next analyzed whether and how tumors benefit from upregulated PSGs by integrat-
ing survival data, pathway enrichment data, and gene essentiality data in cancer cell lines 
(“Methods”). To identify more important genes, we focused only on the pan-cancer up- 
or downregulated genes (Fig. 2e) including upregulated UC genes (uUC genes), down-
regulated EM genes (dEM genes), and uPSGs.

First, similar to uUC genes, uPSGs tend to promote tumors as revealed by survival 
data analyses (Additional file  2: Table  S3; Additional file  3; Methods). Specifically, we 
identified genes with their expression levels significantly (false discovery rate or FDR 
< 0.05) correlated with the progression-free interval (PFI) of patients. We then divided 
genes into a favorable group, unfavorable group, intermediate group, and non-prognos-
tic group on the basis of the number of cancer types for which their higher expression 
was correlated with longer or shorter PFI. The results corroborated the tumor-promot-
ing effect of uUC genes and the tumor-inhibiting effects of dEM genes [20, 22, 23]. That 
is, the stronger expression of 31.7% and 1.9% of uUC genes was associated with unfa-
vorable and favorable clinical outcomes, respectively (Fig.  4a). In contrast, the corre-
sponding proportion becomes 11.3% and 11.7% for dEM genes, respectively. We further 
found that uPSGs were more similar to uUC genes in that higher expression levels of 
uPSGs were associated with shorter (26.8%) and longer (0.7%) PFIs, respectively. One 
such example is TBC1D29 (FDR = 0.016, Additional file 1: Fig. S4a). In addition to this 
FDR-based analysis, we obtained similar patterns with the top 1500 genes showing the 

Fig. 3  Pan-cancer proportion distribution of genes whose expression levels are strongly correlated with 
SCNA or promoter methylation. The Wilcoxon signed-rank test was used to measure the significance



Page 8 of 29Ma et al. Genome Biology          (2022) 23:251 

highest correlation with PFI (Additional file 1: Fig. S4b). DDX11 serves as an example 
where its rank percentile reaches 0.6% (the 98th gene out of 16283 genes) despite its 
FDR of 0.18 (Additional file 1: Fig. S4c).

Second, functional analyses indicate that uUC genes and uPSGs tend to be involved 
in cell cycle. Since PSGs are generally uncharacterized [44, 45], we could not perform 

Fig. 4  Pan-cancer upregulated PSGs (uPSGs) tend to promote tumors. a Higher expression of uPSGs 
or uUC genes more often leads to unfavorable survival compared to that of dEM genes. b Proportion 
of genes covered by the 666-gene list. c Proportion of PSGs dated as UC genes under the framework of 
phylostratigraphy. d A heatmap of 15 uPSGs essential for at least one cancer type. The evidence level codes 
the significance of one PSG for one cancer type where the small, intermediate and large circles indicate cases 
without upregulation and essentiality, cases with either upregulation or essentiality and cases with both 
signals, respectively. Expression bias is labeled. e Violin plots of the numbers of cell lines. For each gene, we 
counted how many cell lines depended on this gene and generated the plot. f Density distribution of gene 
common dependency ranks. The X-axis shows a relative rank value summarized across all cell lines, which 
indicates the overall essentiality of a gene relative to other genes. Genes with smaller values tend to be 
broadly essential and the common dependency cutoff was marked as a red line. Statistical tests match the 
context: for panel a, we used chi-square test; for panels b and c, binomial test was implemented; for panel e, 
we performed Wilcoxon rank-sum test
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the conventional functional enrichment analyses. Therefore, we mapped each gene to 
MSigDB annotated biological processes [67] on the basis of the fact that the expres-
sions of genes involved in similar processes tend to be correlated [68]. As predicted 
by the atavism hypothesis [16–18], cell proliferation or metabolic hallmarks are often 
enriched in uUC genes while development or signaling hallmarks are overrepre-
sented in dEM genes (Additional file 1: Fig. S4d-e; Methods). As for uPSGs, they were 
overrepresented in cell proliferation hallmarks, especially in three cell cycle-related 
processes: mitotic spindle, G2/M checkpoint, and E2F targets (Additional file 1: Fig. 
S4d-e). That is, 46 uPSGs may be involved in cell cycle (Additional file 2: Table S4). In 
addition to the cancer-oriented annotation system, i.e, MSigDB, we additionally used 
the general annotation system of DAVID [69] and confirmed the excess of cell cycle-
related uPSGs (Additional file 1: Fig. S4f; Additional file 2: Table S5; Methods).

Since correlation-based inference causes false positives or false negatives, we 
directly tested the enrichment of cell cycle functionality with a curated cell cycle 
gene list [70], which includes 666 genes involved in cell cycle progression, DNA rep-
lication or repair (“Methods”). We again found the overrepresentation of cell cycle 
genes in uPSGs or uUC genes and depletion of these genes in dEM genes, respec-
tively (Fig. 4b). For example, 11 uPSGs play cell cycle-related roles (Additional file 2: 
Table S4), which is overrepresented compared to the genomic proportion (binomial 
test P = 0.019).

Given the atavism hypothesis, the shared excess of cell cycle-related genes in both 
uUC genes and uPSGs indicates the reactivation of dormant ancient memory. Thus, 
we expect that uPSGs potentially involved in the cell cycle should mainly represent 
derived duplicates of UC genes. Consistently, 67.6–81.8% of cell cycle-related uPSGs 
have been dated as UC genes in the protein-family-level age inference of phylostratig-
raphy, which is significantly higher than the overall background of PSGs (37.1%, P ≤ 
0.003, Fig. 4c; Additional file 2: Table S4, Methods).

Third, by reprocessing CRISPR/Cas9 screening data [71] with consideration of 
sequence similarity (“Methods”), we prioritized 15 uPSGs that are essential for the 
proliferation of cancer cell lines. Specifically, given the heterogeneity within each can-
cer type, we focused on 9 out of 13 cancer types for which at least 5 different cell 
lines were screened (Additional file  1: Fig. S4g). Among the 55 uPSGs with unique 
single guide RNAs (sgRNAs), 10 B-PSGs and 5 T-PSGs showed dependency for at 
least three cell lines in one cancer type (Fig. 4d, Additional file 1: Fig. S4h; Methods). 
The importance of these 15 PSGs was demonstrated by the median number (23) of 
cell lines that were dependent on these genes. This number was analogous to that of 
uUC genes (20), which is subsequently higher than the number of downregulated EM 
genes (1, Fig. 4e). Certainly, the breadth of essentiality was uneven; some genes, such 
as the top two genes including DDX11 (also named ChlR1) and ZNF273, showed a 
common dependency [72], whereas other genes, such as TBC1D29, showed relatively 
narrower essentiality (Fig. 4f ). Notably, both DDX11 and ZNF273 were identified by 
the MSigDB based correlation method and the 666-gene list to play cell cycle-related 
roles, again suggesting the importance of the cell cycle program in tumors.

Altogether, UC genes-derived uPSGs potentially related with the cell cycle are more 
likely to be recruited into tumors.
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DDX11 plays pan‑cancer cell cycle‑related roles and evolves under positive selection

We subsequently focused on DDX11, which promotes tumors across all cancer types 
(Fig. 4d). DDX11 has been known to be implicated in several tumors and proposed as a 
candidate oncogene [73–75]. We corroborated its pan-cancer role with two lines of data. 
First, the upregulation of DDX11 across cancer types reached a median fold of 240%, 
which was higher than that of 97.4% of genes (Additional file 1: Fig. S5a). The expres-
sion of DDX11 was correlated with copy number changes and promoter methylation 
changes (Additional file 1: Fig. S5b), which is in line with the general mode of B-PSGs 
(Fig. 3). Second, we knocked down DDX11’s expression in lung cancer (A549) and colon 
cancer (HCT116) cell lines, respectively (Additional file 1: Fig. S5c). Consistent with the 
genome-wide screening data (Fig. 4d), DDX11 knockdown led to a significant decrease 
in proliferation in both cell lines (Fig. 5a, Additional file 1: Fig. S5d).

We inferred how DDX11 exerts its pan-cancer role given the previous studies based 
on individual cell lines or individual cancer types: (1) DDX11 is involved in DNA repli-
cation or repair, sister chromatid cohesion, and spindle assembly [75–77]; (2) it is regu-
lated by the aforementioned E2F family [74, 78]; and (3) it interacts with the replication 
fork complex protection factor, i.e., Timeless [79, 80], which is also regulated by E2F [81]. 
We thus predicted that the interaction between DDX11 and E2F or Timeless could be 
generalized across cancers and found two consistent patterns. First, among all eight E2F 
members, five showed a positive correlation (Spearman ρ > 0.4) with DDX11, which was 
higher than 90% of genes (Fig. 5b). Compared to E2F, Timeless showed an even higher 
correlation with DDX11 (ρ = 0.526). Second, functional genomic data showed that the 
promoters of DDX11 and Timeless were constantly bound by E2F across all eight sam-
ples covering three cancer cell lines (Additional file 1: Fig. S5e), while only 3.5% of genes 
showed the same pattern (Additional file 1: Fig. S5f ). Thus, under the coordination of 
E2F, DDX11 interact with Timeless to support the tumor cell cycle.

Similar to the majority of cell cycle-related uPSGs (Fig. 4c, Additional file 2: Table S4), 
DDX11 represents a UC gene-derived duplicate that emerged in recent evolution. Spe-
cifically, synteny data across phylogenetically representative primates reveal a dynamic 
picture (Fig. 5c): (1) human 12p13 encodes two paralogs (LOC642846, DDX12P) sepa-
rated by LINC02367, while the counterpart loci in other primates encodes only one 
copy; (2) human 12p11 harbors the currently annotated DDX11 locus, which is only 
shared by chimpanzee/bonobo lineage (Additional file  1: Fig. S6a) and gorilla; and (3) 
the orthologs of human 12p13 has been subjected to deletions or inversions causing the 
loss of most sequences in gorilla and an antisense transcript (homologous to annotated 
DDX11-AS1) linked with LOC642846 in human, as well as changes in gene orders in 
the chimpanzee/bonobo lineage (Additional file 1: Fig. S6b). Thus, the most parsimoni-
ous scenario is that LOC642846 represents the ancestral copy, which has been subjected 
to two duplications, one in the common ancestor of humans/chimpanzees/gorillas, and 
one in recent human evolution, respectively (Fig. 5c).

The deletion in gorilla indicates that the ancestral copy is nonfunctional. Consistently, 
mutations disrupting splicing sites or premature termination codon were accumulated 
in orthologous copies of both humans and chimpanzees (Fig. 5d). The pseudogenic sta-
tuses of LOC642846 and DDX12P were further supported by expression data, regula-
tion data and previous literature: (1) both copies show significantly lower expression 
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Fig. 5  Functional and evolutionary analyses of DDX11. a Time course cell viability assay in A549 cells by 
Incucyte S3 live-cell analysis. Error bars indicate the standard error of the mean (SEM) calculated based on six 
biological replicates. The P-value was determined by Wilcoxon signed-rank test. b Genome-wide Spearman 
correlation coefficient distribution of DDX11. Eight E2F members and Timeless are marked with blue and 
pink dots, respectively. The dashed line denotes the 90% quantile. c Syntenic view across five primates. 
Duplicated genes are color-coded. The sizes of blocks are roughly proportional to the lengths of genes. d 
Loss-of-function (LoF) mutations accumulated in pseudogenic DDX11 homologs. Coding exons are shown 
as thicker black boxes while untranslated regions are shown as thinner gray boxes. Introns are shown as 
connecting lines while LoF mutations are marked as red lines with the codon positions labeled. The bottom 
alignment shows the specific sequences flanking each LoF mutation. e Ka/Ks distribution across five types of 
functional regions. Black stars indicate significantly different rates relative to the outgroup sequences (**: P 
< 0.01; *: P < 0.05). Small motifs are merged and labeled as helicase (Hel) motifs. Fe-S refers to an iron–sulfur 
cluster involved in catalysis. f Expression profile of DDX11 across species. To make the expression intensity 
comparable across species, we normalized the raw expression values (“Methods”)
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than DDX11 across four normal human tissues (median 1.04 or 0.28 vs. 1.44, Additional 
file 1: Fig. S6c; Methods); (2) their promoters are less frequently bound by E2Fs relative 
to that of DDX11 (Additional file 1: Fig. S6d); and (3) although LOC642846 has not been 
reported, knockout of DDX12P does not impair cellular proliferation [82, 83].

As shown in Additional file 1: Fig. S1d, the derived copies often evolve faster, and we 
found that DDX11 rapidly evolved and thus fit this general picture (“Methods”). Spe-
cifically, we quantified the protein evolution rate as the ratio between non-synonymous 
substitution rate and synonymous substitution rate (Ka/Ks) across all five functional 
regions of DDX11 (Additional file 1: Fig. S6e). The higher values suggest the relaxation 
of functional constraint or positive selection [60, 84]. Consistent with relaxation, the 
two presumably pseudogenic copies showed a higher Ka/Ks than the single copy DDX11 
homologs in outgroups for all five regions with three (Arch, Hel, and linker) reaching 
statistical significance (Fig.  5e). In contrast, the protein evolution pattern of the dis-
persed DDX11 was more compatible with positive selection since (1) it was constrained 
across three regions by showing similar or slightly lower Ka/Ks relative to that in the 
outgroups and (2) significantly faster evolution was only detected in the remaining T 
and Arch regions, where T harbors the key motif that mediates the interaction between 
DDX11 and Timeless and Arch may interact with DNA [76, 79]. Consistent with posi-
tive selection rather than relaxation, DDX11 in humans and chimpanzees showed much 
higher expression than its counterpart in outgroups including rhesus monkeys and mice 
(a median of 3-fold, Fig. 5f ).

Therefore, positive selection may drive the enhanced function of DDX11 by modifying 
the critical protein domains and increasing its expression, which could be hitchhiked by 
the highly proliferative cell cycles of cancer.

Cell cycle‑related uPSGs tend to be involved in embryonic cerebral development and are 

subjected to positive selection

Since tumor hitchhiking of UC genes derived cell cycle-related uPSGs (including 
DDX11) may represent antagonistic pleiotropy, we wondered which normal biological 
processes recruit these cell cycle-related new genes under the force of positive selection. 
Considering that increased proliferation of neural progenitor or stem cells drives human 
cerebral expansion [85–88] and that cancer cells have been proposed to be similar to 
neural stem cells [e.g., fast cell cycle or proliferation [89]], we hypothesized that these 
cell cycle-related uPSGs emerge due to the selection in driving brain expansion. To this 
end, we analyzed whether a rapid proliferation stage of brain development recruits an 
excess of PSGs and whether this stage is a hot target of selection.

We reanalyzed a transcriptome dataset profiling embryonic development through the 
adult stages of seven organs [90]. To generate a global picture of gene expression in cere-
brum (forebrain) development, we assigned genes toward one particular stage according 
to their biased expression (Additional file 1: Fig. S7a, Additional file 2: Table S7; Meth-
ods). We first reproduced previous observations [40, 57] (Fig. 6): (1) PSGs are dispro-
portionately upregulated in the mid-fetal stages; (2) they are depleted in some postnatal 
samples in which genes involved in neuron ensheathment or synaptic transmission are 
disproportionately expressed. We then found that similar to the genome background 
the highest proportion of PSGs showed maximum expression in the embryonic stage 
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(27.2%, Fig.  6). For this earliest stage, genes involved in the cell cycle are highly over-
represented with corresponding Gene Ontology (GO) terms (DNA replication/repair, 
cell division) contributing three out of the top four enriched terms (Additional file  2: 
Table S8). Consistently, we found the cell cycle-related uPSGs (e.g., DDX11) tended to 
be expressed in this stage regardless of whether the MSigDB correlation-based dataset 
(39.0%, one-sided binomial test P = 0.067) or the 666-gene list (80.0%, P = 0.0008) was 
used (Additional file 2: Table S4). Notably, the heightened activity of cell cycle genes was 
most pronounced in the cerebrum while the activity is significantly lower in other organs 
including cerebellum (Additional file 1: Fig. S7b).

Consistent with the positive selection signal of DDX11 (Fig.  5e), we found that the 
embryonic stage was the only outlier with overrepresentation of genes with positive 
selection of their coding sequence or promoter regions (47 or 42.3%, 122 or 36.3%, Fig. 6; 
Additional file  2: Table  S9; “Methods”). Consistent with the overall functional bias of 
embryonic genes, these 47 or 122 genes are also disproportionately related to the cell 
cycle (Additional file 2: Table S8).

Altogether, the cell cycle program of embryonic cerebral development seems to be 
rewired by recruiting PSGs and modifying preexisting genes.

Discussion
By integrating evolutionary and functional genomic data, we found that PSGs upregu-
lated in tumors tend to play cell cycle-related roles and that these genes mainly represent 
derived duplicates of UC genes. That is, we detected patterns compatible with the joint 
prediction of atavism and antagonistic pleiotropy. These results not only substantiate 
how evolutionary heritage underlies tumor risk in humans but also illuminate how our 
brain becomes more humanized.

Fig. 6  Distribution of proportions of genes highly expressed in one stage of cerebral development. Four 
series of proportions are shown: all genes and PSGs with biased expression in one stage, genes positively 
selected on coding and promoter regions. PCW, M, and Y refer to postconceptional weeks, months, and years, 
respectively. For each stage, we implemented binomial tests and examined whether PSGs and positively 
selected genes showed significant excess or depletion relative to the genomic background. Only four stages 
showed at least one significant (FDR < 0.1) test result and the top four GO terms for these stages are shown. 
For 19–24 PCW, no significant terms were identified
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On the one hand, Darwinian medicine has championed the idea that disease suscep-
tibility is predisposed by macroevolutionary history [1, 3, 4, 91]. Accordingly, studies 
of atavism and antagonistic pleiotropy provide clues for understanding tumor biology 
[22, 28, 33]. Herein, by building upon previous efforts [19–24], our meta-analyses across 
13 cancer types demonstrated that the pan-cancer upregulation of UC genes involved 
in basic cellular machinery tends to promote tumor (Figs. 2c and 4a, Additional file 1: 
Fig. S4d) and thus corroborated the atavistic hypothesis. We identified a novel pattern 
in which PSGs especially those UC genes derived duplicates involved in cell cycle (e.g., 
DDX11) show an analogous upregulation in tumors (Figs. 2c and 4b, c). We further pri-
oritized 15 upregulated PSGs potentially implicated in tumor, among which, DDX11 
has already been proposed to be a target for therapeutic interventions [75]. The pres-
ence of these PSGs warns the suitability of mouse models, which echoes the limitations 
of mouse models of cancer due to rodent specificity [92, 93]. Note that our conclusion 
regarding the significance of PSGs is conservative since (1) the novel genes most likely 
subject to antagonism, i.e., the youngest or human-specific genes including dozens of 
tumor-promoting cancer-testis genes [64, 94] and genes driving brain expansion but also 
benefiting tumor [e.g., NOTCH2NL [43]] were often excluded from our analyses due to 
read mapping issues; (2) we used only primary tumor samples from TCGA while mul-
tiple PSGs, e.g., POM121 [95, 96], are known to contribute to metastasis; (3) since we 
focused on UC genes derived uPSGs involved in cell proliferation across multiple can-
cer types, PSGs recruited into other hallmarks (e.g., immune invasion) or functional in 
specific cancer types warrant further investigation, especially considering PSGs’ biased 
expression in immune-related organs [Additional file  1: Fig. S1b, [40, 97]]; and (4) we 
herein focused on PSGs upregulated in tumors, but it is possible that the down-regula-
tion of some PSGs might also contribute to tumor.

On the other hand, our analyses indicate that both embryonic and fetal developments 
of the cerebrum have been rewired during primate evolution. The classical radial unit 
hypothesis states that cortex size is determined by the number of earliest neural stem 
cells (neuroepithelial cells, NECs) in the embryonic stage since extra cell divisions would 
lead to an exponential increase in the final size and thus a few regulatory changes gov-
erning the cell cycle could drive cerebral expansion [98, 99]. Such a process has been 
phrased as “a small step for the cell, a giant leap for mankind” [98]. A few case stud-
ies have shown consistent results, reporting that regulatory evolution contributed to 
a longer and faster proliferation phase of human NECs [100–104]. A modified version 
of the radial unit hypothesis emphasizes the increase in a derived stem cell population 
called outer or basal radial glial cells (oRGs or bRGs) in the fetal stage [105–109], when 
an excess of PSGs are expressed (Fig. 6). Interestingly, our analyses reassert the impor-
tance of the embryonic stage but showed a picture different from a few evolutionary 
changes proposed in the original hypothesis: the evolution of hundreds of genes appears 
to occur where multiple aspects of the cell cycle (e.g., DNA replication/repair) are 
involved and coding changes or the origination of new genes occurs in addition to reg-
ulatory changes (Fig. 6). These results expanded upon the previous case studies where 
positive selection acts on genes related to DNA repair or spindle functions [BRCA1 or 
ASPM, [110, 111]]. System-level rewiring occurs in the embryonic stage because the 
brain develops with the highest proliferation rate [112–114]. Dramatic proliferation 
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induces cell cycle dysfunctions such as DNA damage and replication stress in the brain 
[111, 115] and the majority of congenital abnormalities occur in this stage [85]. Thus, 
a specialized cell cycle program gets molded under positive selection where DDX11, 
BRCA1, or ASPM could support accelerated proliferation more efficiently than their 
ancestral forms did. In parallel, tumors also face cell cycle dysfunction due to their simi-
larly proliferative nature [78, 116], which necessitates the co-option of cell cycle-related 
genes expressed in the embryonic cerebrum.

Notably, although the atavism and antagonistic pleiotropy hypotheses jointly predict 
that cell cycle-related PSGs derived from UC genes are necessary to be hitchhiked by 
tumors, whether hitchhiking occurs depends on chance. That is, different tumors have 
different landscapes of genetic variation and epigenetic plasticity, which causes variable 
chances for PSGs to be upregulated. For example, PSGs seem to be strongly upregu-
lated in KIRC and downregulated in THCA (Fig. 2a, b). Both SCNA and promoter hypo-
methylation rarely occur in THCA [117, 118], possibly resulting in the lack of global 
upregulation of PSGs. In contrast, since KIRC is subjected to a low level of SCNA and 
a moderate level of hypomethylation [117–119], the strong upregulation of PSGs could 
also be contributed by other layers of regulation (e.g., histone modification).

Conclusions
Overall, as atavism and antagonistic pleiotropy jointly predict, PSGs, especially those 
UC genes derived cell cycle-related PSGs, contribute to the embryonic cerebral devel-
opment at the cost of elevated tumor risk. Thus, our meta-analyses hint on both the 
upsides and downsides of human evolutionary heritage.

Methods
Compilation of a unified gene age dataset

The gene age dataset was extracted from the synteny-based GenTree database [based on 
Ensembl v73, [40]] and further complemented with phylostratigraphy data generated in 
[23]. Although multiple phylostratigraphy datasets were generated in human [19–23], 
we chose [23] considering the relatively recent release time and data availability, and 
so as to reproduce the patterns (upregulation of UC genes and downregulation of EM 
genes) in [23].

As introduced in the Results, GenTree takes advantage of genome-wide synteny and 
performs gene-level dating parsimoniously along the vertebrate phylogenetic tree, while 
phylostratigraphy performs family-level dating and can be used to infer the age of ancient 
genes when synteny become degenerated [40]. We excluded genes for which GenTree 
and phylostratigraphy produced conflicting age data. Genes from the phylostratigraphy 
dataset that could not be mapped to Ensembl v73 due to database version differences 
and genes that lacked age information in GenTree due to difficulty in inferring synteny 
[e.g., genes situated in transposon-rich regions or assembly gaps in the outgroup species, 
[40]] were also discarded. We further divided the remaining genes postdating the ver-
tebrate split in GenTree into 6 clades with at least 200 genes for each group (age group 
9–14, Fig. 1b). For genes assigned to vertebrate common ancestors (the oldest age group 
in GenTree), we divided them into group 1–8 based on the phylostratigraphy analysis 
(Additional file  1: Fig. S1a). In addition, for synteny-defined PSGs, we also analyzed 



Page 16 of 29Ma et al. Genome Biology          (2022) 23:251 

their age distribution in the phylostratigraphy dataset [23] in order to test whether PSGs 
potentially involved in the cell cycle represent duplicates derived from gene families with 
UC genes as the founding members.

Note that our synteny-based dating strategy is conservative in terms of identification 
of young genes. That is, we previously performed extensive manual curation and found 
that we tend to assign genes to older ages and generated smaller young gene dataset 
compared to other synteny-based work in humans or flies [40, 53].

For each PSG, we downloaded our previously generated origination mechanism 
information [40]. In brief, we classified them as duplicate (with a paralog available) and 
potential de novo genes (without a paralog). The parental copy is defined as the most 
similar paralog with an age older than the focal PSG. The Ka/Ks values were also from the 
previous work [40].

TCGA multi‑omics data retrieval

We downloaded multiple datasets generated by the TCGA project with standard pipe-
lines [46]. Specifically, we retrieved paired-end RNA-seq data from the Genomic Data 
Commons (GDC) data portal [120] to increase the chance of unique mapping and thus 
the accuracy of paralog quantification. We focused on primary tumor sample from 13 
solid cancer types [marked by TCGA barcodes “01”, https://​docs.​gdc.​cancer.​gov/​Encyc​
loped​ia/​pages/​TCGA_​Barco​de] and required tumor sample number not lower than 150 
and normal sample number not lower than 15. We downloaded DNA methylation and 
SCNA data from the Broad Firehose data browser (https://​gdac.​broad​insti​tute.​org/). We 
retrieved progression-free interval (PFI) information from [121], which was presumably 
more updated than those originally generated by TCGA. We finally estimated tumor 
purity based on expression data by following [122] and set 0.7 as the cutoff for high 
purity tumor samples [123].

TCGA and normal adult tissue RNA‑seq transcriptome data analysis

We quantified gene expression via the mapping-free software kallisto version (v) 0.43.1 
which shows rapid speeds and decent performance on highly similar paralogs [97, 124, 
125]. Note that almost all (>99%) TCGA RNA-seq samples were from different patients 
with one sample from one individual. For the remaining cases, more than one sample 
could be from one patient and we randomly selected one sample for downstream analy-
ses to keep consistency with other samples. Since our analyses depended on Ensembl 
v73 [126] based gene age data compiled in the GenTree database [40], we herein used 
GENCODE gene annotation v18, which corresponds to Ensembl v73. We summed the 
estimated counts and transcripts per million mapped (TPM) values across transcripts of 
the same gene.

To estimate the expressional change of PSGs in tumors relative to normal samples, we 
performed two complementary analyses. First, we implemented the widely used limma 
package v3.34.9 to calculate the log2-based fold change (log2FC) in each cancer type 
after performing routinely used upper-quantile normalization and voom transformation 
[127]. Second, we carried out single sample gene set enrichment analysis (ssGSEA) with 
the commonly used gsva package v.1.26.0 in R [61, 62]. In this framework, the TPM val-
ues were rank normalized in each sample, and the enrichment scores were calculated 

https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode
https://gdac.broadinstitute.org/
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by summarizing the difference in rank distribution within the gene set of interest. For 
Fig. 2b and c, we rescaled the raw enrichment scores within each age group as follows: 
(1) divide each raw score by the range between the maximum and minimum scores to 
make the distribution similar across age groups; (2) calculate medians for tumor and 
normal samples; and (3) subtract the median value of normal samples. We repeated the 
analyses with only the high purity samples (Additional file 1: Fig. S2a-c).

Note that we used upregulation to enrich PSGs more likely involved in tumors since 
genes beneficial for tumors (e.g., UC genes) tend to be upregulated in tumors. In con-
trast, other PSGs especially those downregulated PSGs may repress tumors as did by 
genes emerging in early metazoan evolution (EM genes).

In addition, we downloaded RNA-seq data from Human Protein Atlas (HPA), which 
spanned 26 adult tissues with at least three replicates for each tissue. Based on HPA 
transcriptome data across 26 tissues, we adopted the τ index to measure tissue bias of 
gene expression profiles [128] and took 0.8 as the cutoff to define tissue-biased genes, 
since 0.8 represents a border value in the distribution of τ values. Tissue-biased genes 
were classified according to their corresponding top tissue and Additional file 1: Fig. S1b 
was plotted accordingly.

Filtering protein‑coding gene models

To further increase the quality of the GENCODE v18 or Ensembl v73 coding gene anno-
tation, we implemented multiple filters: (1) we retained gene models with the biotype 
tag “protein coding” and excluded transcripts shorter than 150 bp; (2) we removed genes 
sharing a sequence identity higher than 97.5% with the closely related paralog, since 
such a cutoff ensures an average of two or more unique nucleotides for each gene in 
TCGA paired-end RNA-seq data (length of ~50 bp); (3) based on HPA data, we removed 
genes with low expression [TPM < 0.2 [129]] across 26 adult tissues; and (4) we further 
discarded unexpressed genes [those with no reads mapped in more than 20% of samples 
within a cancer type [130]] across all 13 cancer types. With these filters, 18195 genes 
were retained for subsequent analyses. Note that majority (16,130 or 88.7%) of these 
genes were covered by our unified gene age dataset.

SCNA and methylation analyses

We downloaded gene-level SCNA data identified by the GISTIC2 package [131].
To quantify the methylation level, we processed the value of each probe. Specifically, 

we excluded probes with more than 5% of samples harboring missing data (NA value) 
within a cancer type due to technical issues (e.g., multiple mapping probes). We focused 
on promoter methylation and analyzed probes that mapped to the 2000 bp assumed 
promoter region (1500 bp upstream and 500 bp downstream of the transcription start 
site, TSS) [132]. Herein, we defined the TSS of each gene based on the functionally 
most important transcripts or principal transcripts annotated by the APPRIS database 
[133]. In the absence of a principal transcript, we used the longest transcript. For a gene 
with multiple probes, we retained only the one with the strongest negative correlation 
between the methylation level and gene expression [134].
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We implemented the Spearman correlation-based analysis to evaluate how strongly 
gene expression is affected by SCNA or promoter methylation. For each gene, we cal-
culated the correlation between gene expression and SCNA/methylation within each 
cancer type. According to the genome-wide distribution of the correlation coefficient, 
0.3/-0.3 was selected as the cutoff to define significantly correlated genes for SCNA/pro-
moter methylation (Fig.  3). We also tested a more stringent threshold of 0.4/-0.4 and 
largely reproduced the patterns generated with the 0.3/-0.3 cutoff (Additional file 1: Fig. 
S3c).

In addition, we examined whether genes upregulated in tumor compared to normal 
samples show lower normal expression compared to those downregulated in tumor. We 
recorded the mean expression values of normal samples within each cancer type and 
then pooled all data across the 13 cancer types.

Functional analyses of upregulated PSGs

We first identified pan-cancer upregulated genes. Specifically, within each cancer type, 
we used the limma package v3.34.9 [127] to identify genes that were differentially 
expressed between tumor and normal samples with a false discovery rate (FDR) lower 
than 0.05. We further filtered this list to select genes with absolute log2FC or |log2FC| ≥ 
0.4. To define pan-cancer upregulated genes, we required that genes were upregulated 
in at least three cancer types and the number of cancers with upregulation was 3 times 
higher than that of downregulated cancer types. Pan-cancer downregulated genes were 
defined analogously. We also tested a more stringent |log2FC| cutoff of 0.6 and the pat-
terns shown in Fig. 2e were largely unchanged as in Fig. S2d.

Since correlation-based analyses including survival and coexpression analyses depend 
on expressional variance, they are not appropriate for genes unexpressed in too many 
samples within a cancer type. Therefore, we followed [130] and excluded genes without 
any reads mapped across at least 20% of samples in a cancer type of interest.

We implemented the Cox proportional hazards model with the survival package 
v2.43.3 in R to define prognostic genes as those whose expression levels were signifi-
cantly associated with the survival time of patients after controlling for clinical variables 
(age/stage/gender) if applicable (Additional file  2: Table  S3). Among multiple clinical 
endpoints, overall survival (OS) and PFI have been recommended for high-quality sur-
vival analyses [121]. Note that PFI data is recommended for all 13 cancer types covered 
in this study, and OS data is problematic for three cancer types, where the endpoint 
needs a longer follow-up or the number of events is not sufficient. We thus used the 
PFI in subsequent analyses. We defined prognostic genes as those whose expression was 
significantly correlated with PFI (FDR < 0.05). The favorable or unfavorable prognostic 
genes were classified according to the sign of the hazard ratio, where a positive ratio 
indicated that the gene was associated with an increased risk of tumor progression, or 
vice versa. To define the overall trend of each gene, we subtracted the number of cancer 
types with favorable signals from the number of those with unfavorable signals. Genes 
were then divided into four subgroups: unfavorable (positive net number), favorable 
(negative), intermediate (with net value being zero), and non-prognostic (lacking prog-
nostic signal across 13 cancer types). Since it is known that the number of prognostic 
genes identified by Cox analyses showed magnitude-level differences across tumor types 
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[135], we also followed [136] and extracted the top 1500 genes most correlated with the 
PFI as prognostic genes within each cancer type. The pattern (Fig. 4a) remained robust 
(Additional file 1: Fig. S4b).

Notably, in Additional file 3 and Additional file 1: Fig. S4a/c, we also showed the haz-
ard ratio together with the 95% confidence interval. The hazard ratio is similar to the 
odds ratio and both of these values are often perceived as relative risk [137]. The major 
difference is that the hazard ratio is not constant while the odds ratio is. Therefore, the 
hazard ratio is more suitable for survival data analyses [137].

To infer the functions of PSGs, we performed expression correlation-based enrich-
ment analyses. For a given gene, we used the “ppcor” function in the R package psych 
v1.8.12 to calculate the Spearman correlation coefficient between its expression and 
that of other protein-coding genes while controlling for tumor purity within each can-
cer type. We took the median Spearman correlation coefficients across cancer types as a 
summary value for each gene pair (query and partner). To define the correlated partners, 
we retained genes with an absolute correlation coefficient above 0.4. With more strin-
gent cutoffs such as 0.5 or beyond, the number of coexpressed partner genes decreases 
dramatically (from a median of 249 to 24 or even lower) and makes the subsequent 
enrichment analyses unfeasible. We further removed those partners that were located 
on the same chromosome as the given gene since genes located in chromosomal prox-
imity may tend to be coexpressed regardless of their functions. We then downloaded 
50 hallmark (biological processes) gene sets curated by MSigDB [67]. For each gene, we 
calculated the enrichment of its correlated genes across 50 hallmarks. We defined highly 
enriched hallmarks as those with statistical significance (odds ratio > 1, binomial test P 
< 0.05). With these steps, we assigned each query gene to zero or multiple significant 
hallmarks and tested whether the proportion of uPSGs assigned to one hallmark differed 
from that of the genomic background. For uUC and dEM genes, we performed a similar 
enrichment analysis (Additional file 1: Fig. S4d). Since E2Fs are master regulators of the 
cell cycle and may regulate thousands of target genes [78, 81], we removed genes poten-
tially regulated by E2Fs, i.e., those with E2F binding sites in the promoter region anno-
tated by MSigDB. A similar pattern was reproduced (Additional file 1: Fig. S4e).

In addition to MSigDB, we analogously mapped partner genes to DAVID functional 
terms [69] and reproduced similar patterns. Specifically, although DAVID is not a can-
cer-oriented annotation system like MSigDB, it could perform enrichment analysis 
across multiple ontologies simultaneously and cluster the results. Since DAVID supports 
numerous ontologies, we chose all five default biological process or pathway-oriented 
ontologies including “UP_KW_BIOLOGICAL_PROCESS,” “GOTERM_BP_DIRECT,” 
“BBID,” “BIOCARTA,” and “KEGG_PATHWAY.” In complement, we chose another two 
popular ontologies including “UP_KW_MOLECULAR_FUNCTION” and “GOTERM_
MF_DIRECT.” Clusters with enrichment scores not lower than 3 were considered and 
the most significant term within the cluster was retained. Different from MSigDB, which 
has three specific terms related to the cell cycle (mitotic spindle, G2/M checkpoint, 
and E2F targets), we need to extract cell cycle-related terms across seven ontologies in 
DAVID. To simplify this process, we searched the G2/M checkpoint gene set of MSigDB 
in DAVID and identified 21 significant cell cycle-related terms (e.g., KW−0131~Cell 
cycle or GO:0005819~spindle, Additional file 2: Table S5). We also tested mitotic spindle 
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or E2F target gene sets of MSigDB and retrieved a smaller subset of terms, which are 
largely covered by the previous 21 terms. We thus examined whether the coexpressed 
partner genes of a query gene were enriched in the 21 terms. Different from MSigDB-
based analyses, which were performed locally, we had to access the web server of DAVID 
to enable the enrichment analyses by uploading a list of partner genes for each individ-
ual query gene. Considering the limitation of website visit, we thus selected one positive 
control gene set (MSigDB mitotic spindle, G2/M checkpoint, and E2F targets) includ-
ing 552 genes, and one negative control gene set including 804 genes. To represent 
the general scenario, the later list includes eight randomly sampled MSigDB gene sets, 
which covers all major categories of biological processes except cell proliferation and 
DNA damage (these two categories being related with cell cycle, Additional file 1: Fig. 
S4d): metabolic (bile acid metabolism), cellular component (apical junction), immune 
(complement, coagulation), pathway (protein secretion), signaling (androgen response, 
mTORC1 signaling) and development (epithelial-mesenchymal transition). We then 
used the RDAVIDWebService package v1.28.0 [138] to enable enrichment analyses for 
1356 (552+804) times.

To validate the excess of cell cycle-related PSGs based on MSigDB or DAVID, we fur-
ther analyzed an independent cell cycle gene list, which is curated via a literature survey 
and experimental analyses in normal cells [70]. This list includes 701 genes involved in 
a dozen distinct processes, such as cell cycle progression, DNA damage/replication, or 
spindle assembly [70]. Despite of database version changes, the majority (666 or 95.0%) 
of these genes were covered in our analyses.

For CRISPR/Cas9 screening data analyses, we downloaded the single guide RNA 
(sgRNA) abundance fold changes file (2019_Q4 version) from the DepMap data por-
tal [71]. To determine the correspondence between TCGA cancer types and Dep-
Map cell lines, we downloaded the cell line annotation file from the Cancer Cell Line 
Encyclopedia (CCLE) project [139] and retained cell lines that corresponded to the 
13 cancer types covered in this study. Considering within-tumor heterogeneity [140], 
we required at least five cell lines to represent a cancer type. Thus, 138 cell lines cov-
ering 9 cancer types were considered in the downstream analyses. To control for the 
multiple mapping of sgRNAs, we reprocessed the screening data. We mapped the 
sgRNA sequences to human reference genome (GRCh38) with bowtie v1.2.2 [141] 
and retained 16424 genes with unique sgRNAs mapped without any mismatch. 
Here, “uniqueness” was defined as at least two mismatches to other protein-coding 
genes and at least one mismatch to noncoding regions. To normalize the sgRNA fold 
changes across cell lines, we scaled the median fold changes of predefined essential 
genes as -1 and the median fold changes of predefined nonessential genes as 0 [142]. 
We calculated the gene-level dependency scores as the medians of sgRNA abundance 
fold changes between replicates. Since DepMap identified a median of 11.7% genes 
as essential genes across hundreds of cell lines (Additional file 1: Fig. S4h), we chose 
a fold change cutoff in each cell line to extract the top 11.7% of genes as essential. 
To define common dependencies, we followed the methodology described in [72]. 
In brief, for each gene, we calculated its rank in terms of scores within each cell line 
and recorded the rank value corresponding to the 90th percentile. In other words, we 
recorded the relative lowest rank for each gene in terms of its dependency. We then 
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plotted the density distribution of the transformed rank values across genes (Fig. 4f ). 
Since 6.2% of genes were classified as common dependencies in [72], we chose a cutoff 
to extract the top 6.2% (1018) of genes.

Knockdown experiments in cancer cell lines

We cultured two commonly used cell lines and transfected siRNAs targeting DDX11. 
Specifically, we purchased A549 and HCT116 cell lines from the American Type Cul-
ture Collection (ATCC) and confirmed their identity with short tandem repeat (STR) 
analysis. We carried out mycoplasma testing with One-step Quickclolor Mycoplasma 
Detection Kit (Shanghai Yise Medical Technology Co., Ltd.) to rule out mycoplasma 
contamination. A549 and HCT116 cells were then cultured in RPMI-1640 medium with 
10% fetal bovine serum (Thermo Fisher Scientific) at 37 °C and 5% CO2. We purchased 
the siRNA targeting DDX11 and the scrambled oligonucleotide (negative control siRNA) 
from GenePharma by following the siRNA sequences reported in [143], i.e., CCT​GTG​
TCT​GTC​TTC​TTC​CTG​CGA​A. Note that this published siRNA sequence is perfectly 
mapped to DDX11 while harboring one mismatch against LOC642846 and DDX12P 
and at least three mismatches against other locations in the genome. The control siRNA 
sequence is “CAG​TCG​CGT​TTG​CGA​CTG​GC,” which cannot be mapped to any site in 
the human genome. We seeded 2 × 105 cells or 3 × 103 cells into each well of 6-well 
(for qRT-PCR) or 96-well (for cell proliferation assay) plates, respectively. We conducted 
siRNA transfection with Lipofectamine RNAi MAX (Thermo Fisher Scientific) one day 
after cell seeding with the final concentration of 20 nM. We carried out three independ-
ent transfection experiments.

We then quantified the knockdown efficiency with qRT-PCR. We first extracted 
total RNA with RNeasy Plus Mini Kit (Qiagen) 2 days after siRNA transfection. For 
each sample, we reverse-transcribed 1 μg of total RNA into cDNA with the High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) by following 
the manufacturer’s protocol. We performed qRT-PCR experiments with PowerUp 
SYBR Green Master Mix (Thermo Fisher Scientific) in triplicate in 20 μl reactions 
on a Stratagene Mx3005P system (Agilent Technologies). The primers synthesized 
by Biomed were as follows (5′-3′): HPRT1 (a housekeeping gene used as the internal 
control as in [143]) (forward: TGA​CAC​TGG​CAA​AAC​AAT​GCA; reverse: GGT​CCT​
TTT​CAC​CAG​CAA​GCT) and DDX11 (forward: CAC​AAC​CTG​ATC​GAC​ACC​AT; 
reverse: CTT​CCC​GTA​TCG​CTC​CAC​). Note that the primers mapped perfectly to 
DDX11 but harbored one to two mismatches for LOC642846 and DDX12P. We cal-
culated the relative expression via the 2–ΔΔCt method and normalized the expression 
levels against that of HPRT1 [143].

To measure the consequence of DDX11 knockdown, we performed Incucyte S3 (Essen 
BioScience) live-cell analysis as follows: (1) for each siRNA, we performed replications 
with six wells; (2) after transfection, cell proliferation was monitored by analyzing the 
occupied area (% confluence) of cell images over time; and (3) during cell proliferation, 
the graphs from the phase of cell confluence area were recorded over a 6-hour interval 
for 72 hours after transfection according to the manufacturer’s instructions.
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Evolutionary analysis of DDX11

To dissect the evolutionary history of DDX11, we examined the syntenic alignment 
at both loci (LOC642846/DDX12P, DDX11) provided by the UCSC genome browser 
[144]. We chose five primates, namely, humans, chimpanzees, gorillas, orangutans, 
and rhesus monkeys, considering both phylogenetic relationships and the quality of 
genome assemblies. Given the presence and absence of orthologous loci across these 
species, we reconstructed the evolutionary history of this gene family by following 
the parsimony rule.

To infer the selection force acting on DDX11 homologs, we extracted the homolo-
gous sequences of 10 phylogenetically representative mammals from the Ensembl 
database [126]. LOC642846/DDX12P in humans and DDX12P in chimpanzees were 
conceptually translated with the DDX11 protein of humans as the template. We 
implemented PRANK v170427 to perform protein-level alignment since this soft-
ware generates fewer alignment errors [145]. Protein alignment was transformed 
to codon level alignment with PAL2NAL v14 [146]. As described in previous stud-
ies [79, 147], the DDX11 protein sequence was divided into five functional regions 
(T, Arch, Fe-S, Hel, and Linker), in which Hel denotes all known small motifs. We 
extracted the alignment for each region and then conducted a branch test with the 
codeml program in the PAML v4.9h package to detect the signal of natural selection 
[84]. For each domain, the significance test was performed by comparing two-ratio 
and three-ratio branch models, where ω0, ω1, and ω2 denote the rates (Ka/Ks) of the 
outgroups, pseudogenic copies and derived functional copies, respectively (Addi-
tional file 1: Fig. S6e). Then, we ran codeml based on the following hypotheses: H1, 
(ω0 = ω2) ≠ ω1; H2, (ω0 = ω1) ≠ ω2; and H3, ω0 ≠ ω1 ≠ ω2. A likelihood ratio test was 
performed between H1 and H3 or H2 and H3 to evaluate the statistical significance 
of differences between the outgroup and the newly derived copies/pseudogenic cop-
ies, respectively.

We also analyzed how DDX11 evolved at the expression level. To this end, we took 
advantage of a previous study, which profiled four major organs (brain, testis, liver, 
and heart) across four phylogenetically representative mammals (human, chim-
panzee, rhesus monkey, and mouse) with high-depth strand-specific RNA-seq data 
[148]. We removed low-quality reads with Trimmomatic v0.39 [149], mapped the 
remaining reads to the reference genome with STAR v2.6.1d [150], and performed 
the quantification with RSEM v1.3.1 [151]. Fragments per kilobase million (FPKM) 
values were log2 transformed after adding one. We used the STAR/RSEM pipeline 
here rather than kallisto because this dataset is small and the STAR/RSEM pipeline 
has a slightly better performance despite slower running speed [97].

To account for between-species heterogeneity in gene annotations and sequencing 
libraries, we implemented the following procedures. On the one hand, since both the 
N-terminal and C-terminal domains of DDX11 protein are required for its function 
[76, 152], we used only annotated protein-coding transcripts with protein products 
of at least 800 amino acids across species (Additional file 2: Table S6). On the other 
hand, we downloaded orthologous information from Ensembl BioMart v98 [153] and 
retained one-to-one orthologous genes across species. After removing genes show-
ing tissue-biased expression in humans (Fig.  1b), we used the median expression 
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level of the remaining 9308 presumably housekeeping genes as the internal control. 
For each tissue and each species, DDX11 expression was normalized by dividing the 
corresponding median value (Fig. 5f ).

Developmental transcriptome data analyses

To examine the expression dynamics of the developing brain, we took advantage of a 
strand-specific RNA-seq dataset [90]. We reprocessed the raw sequencing data by fol-
lowing the aforementioned TCGA gene quantification pipeline except that the “strand-
specific” mode in kallisto v0.43.1 was enabled. We divided 52 samples of cerebrum 
(forebrain) into 12 stages of development according to [113] with the requirement 
of at least two replicates for each stage (Table S7). Medians of gene expression values 
within each stage were subsequently used. We removed weakly expressed genes (median 
expression level lower than 0.2 across all 12 stages). Here, weeks after conception con-
ventionally refers to completed weeks [154]; thus, the end of the embryonic stage, i.e., 7 
postconceptional weeks (PCWs), corresponds to 56 days postconception [85]. To deter-
mine the stage at which a given gene is preferentially upregulated, we transformed the 
expression values as Z-scores by subtracting the mean expression level and dividing by 
the standard deviation. For each gene, we defined the upregulated stage according to the 
following two criteria: (1) the gene of interest showed the highest expression level in this 
stage; and (2) the Z-score > 1.2 (1.2 representing the 90% quantile of Z-score distribu-
tion, Additional file 1: Fig. S7a). We used the other six organs including the cerebellum 
(hindbrain), heart, kidney, liver, ovary, and testis as the controls. Note that these somatic 
or reproductive tissues represent all three germ layers and thus serve as a comprehensive 
control to establish relevance to uniquely enhanced cell cycle activity in embryonic cer-
ebral (forebrain) development.

Meta‑analysis of genes with biased expression in the embryonic brain

For 4553 genes upregulated in the embryonic stage, we performed enrichment analysis 
with Metascape v3.5. Since the size limit of the input gene list was 3000, we thus ran-
domly sampled 3000 genes 5 times and retained four GO terms that occurred at least 4 
times, ranking in the top 5 in each sampling process (Additional file 2: Table S8). This is 
also why we chose the top 4 instead of the often used top 5 terms.

We downloaded the latest list of human protein-coding genes with signal of positive 
selection in the coding region of human lineage, which was based on the modified Ka/Ks 
test after correcting for GC content in primates [155]. Genes with promoter regions sub-
jected to positive selection in human lineage were also compiled from [156] and only 
genes with P-values less than 0.05 were selected. Notably, numerous lists of noncod-
ing regions under positive selection or human/primate-specific regulatory sequences 
have been published [108, 157–161]. However, these lists were derived from functional 
genomics data of fetal or postnatal brains and thus could not be directly transferred to 
the embryonic brain. This is why we ultimately used the list generated in [156], which 
was computed based on the human genome directly and thus not anchored to a specific 
developmental stage.

For all these meta-analyses, we used the Ensembl ID or gene symbol to cross-reference 
different datasets.
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Figures and statistical tests

We used violin plots to show the data distributions. The bar indicates the interquartile 
range (IQR) and the point indicates the median.

We estimated significance with Wilcoxon signed-rank tests, t-tests, chi-square tests, 
and binomial tests depending on the specific contexts. Unless otherwise specified, we 
implemented two-sided tests. Multiple test correction was performed via the FDR strat-
egy as implemented in the p.adjust function in R v3.4.4. All relevant R-based packages 
are summarized in Additional file 2: Table S10.
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