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Background
Human endogenous retroviruses (HERVs), derived from ancient retroviral integration 
into the germline, are a class of transposable elements that constitute approximately 8% 
of the human genome [1, 2]. Due to cumulative mutations throughout evolution and epi-
genetic inhibition by the host, most HERVs have lost their transcriptional ability under 
physiological conditions [3]. However, accumulating evidence highlights the novel and 
indispensable functionalities of HERV-derived elements in human development [4]. For 
example, syncytin-1 (encoded by ERVW-1) and syncytin-2 (encoded by ERVFRD-1) play 
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critical roles in syncytialization during placental morphogenesis [5, 6]; transcriptionally 
active HERV-H elements are able to affect gene regulatory programs and even create 
novel topologically associating domains (TADs) [7, 8]. In addition, a few multi-tissue 
studies based on microarray analysis suggest that HERVs are abundantly expressed in 
normal tissues [9, 10]. Thus, systemic characterization of expressed HERVs in normal 
tissues will extend our understanding of transcriptional diversity and complexity during 
human development.

Given their repetitive nature, expressed HERVs are usually detected at the family 
level, i.e., by clustering multiple HERV elements with consensus sequences into a unit 
to simplify identification. However, such family-level approaches are unable to analyze 
locus-specific regulatory mechanisms and explain whether the observations represent 
the general characteristics of all HERV elements within a family or not [11]. To detect 
locus-specific HERVs, a straightforward approach is to discard multiple mapping reads 
by setting stringent criteria, which also reduces the number of expressed HERVs identi-
fied [12, 13]. Alternatively, approaches such as TEtranscripts and Telescope implement 
heuristic or statistical models to estimate the assignment of multiple mapping reads, 
but these approaches count signals at hundred thousands of individual HERV elements 
rather than actual transcripts, and thus may aggregate noise with large numbers of false-
positive candidates [14–16]. On the contrary, an assembly-based strategy provides an 
opportunity to achieve actual transcripts from HERV elements, which may lead to novel 
insights into physiologically expressed HERVs [17–19].

Here, we applied a genome-guided de novo assembly strategy in the locus-specific 
identification of expressed HERVs. By analyzing 9466 RNA-seq samples from the Gen-
otype-Tissue Expression (GTEx) Project, we identified 13,889 expressed HERVs across 
42 human body sites and revealed body site-specific expression patterns as well as biol-
ogy (sex, ethnicity, and age)-associated patterns. By cis-ERV-related quantitative trait 
loci (cis-ervQTLs) analysis, we elucidated that the expression of HERV is regulated by 
genetic variants. Combining with genome-wide association study (GWAS) variants, we 
revealed that the dysregulation of expressed HERVs might be associated with various 
complex diseases. With ENTEx data generated by the Encyclopedia of DNA Elements 
(ENCODE) Project [20, 21] and the GTEx Project, we implemented the potential epige-
netic regulation of HERV expression under physiological conditions. Together, our find-
ings will further our understanding of the roles of physiological expressed HERVs in the 
genetic architectures of complex traits and diseases.

Results
Detection of expressed HERVs

Based on an assembly-based strategy, we improved a pipeline with strict criteria 
to de novo identified high-quality expressed HERV elements from RNA-seq data 
(Fig.  1a, see details in the “Methods” section). We first applied our pipeline to the 
1000 Genomes Project (1KGP) [22, 23] and identified 473 expressed HERVs, 93% of 
which were also detected in data for EBV-transformed lymphocytes from the GTEx 
Project. For these commonly expressed HERVs, the expression levels were sig-
nificantly consistent (Fig.  1b). Then, we identified 1110 expressed HERVs in human 
skin fibroblasts (HSFs) from the GTEx Project and randomly selected five expressed 
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HERVs for experimental validation. Within in-house cultured HSF cell lines, full-
length sequences of all target HERVs were verified by reverse transcription PCR 
(RT-PCR) and Sanger sequencing (Fig. 1c, Additional file 1: Fig. S1, Additional file 2: 
Table  S1). We also randomly selected another five HSF-expressed HERVs for quan-
titative reverse transcription PCR (RT-qPCR), which exhibited high consistency 
with the detection by our pipeline (Fig. 1d, Additional file 2: Table S1). Together, the 
results support that our pipeline is sufficient for the identification and quantification 
of expressed HERVs.

By analyzing 9466 RNA-seq datasets from 686 individuals included in the GTEx 
Project, we systemically identified a total of 13,889 locus-specific expressed HERVs 

Fig. 1  Detection of expressed HERVs. a Pipeline designed to identify and quantify expressed HERVs from 
RNA-seq data. b Pearson correlation of the expression levels of HERVs between GTEx and 1KGP. The shaded 
area around the regression line represents the 95% confidence interval. c Gel electrophoresis image of the 
target RT-PCR HERV product bands. G21278: Fibroblasts_HERV_G21278; G10376: Fibroblasts_HERV_G10376; 
G17240: Fibroblasts_HERV_G17240; G19704: Fibroblasts_HERV_G19704; and G17649: Fibroblasts_HERV_G17649. 
d Comparison of the expression levels of HERVs between RT-qPCR and RNA-seq results, shown as the mean 
± standard deviation (SD). e Classification of expressed HERVs based on the HERVd database
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(hervRNAs or human ervRNAs) across 42 human body sites (Additional file  2: 
Table S2). Based on location, these hervRNAs were categorized into 6681 antisense 
hervRNAs, 4471 intergenic hervRNAs, and 2737 inserted hervRNAs. With annotation 
from HERVd database, the origin of these hervRNAs were classified into four groups, 
including solo-LTRs (n = 8,139), truncated HERVs (n = 3,194), chimeric HERVs (con-
catenating neighboring HERV elements, n = 1,838), and full-length HERVs (n = 718; 
Fig. 1e and Additional file 2: Table S2). Specially, coding potential was detected in 110 
hervRNAs, deriving from 28 truncated HERVs, 39 chimeric HERVs, and 43 full-length 
HERVs (Additional file 2: Table S2). Following the categories in a recent work [24], the 
full-length HERVs were further classified into 303 unit-length hervRNAs with intact 
structure, 294 of hervRNAs transcribed from upstream [transcription start site (TSS) 
is located at the upstream of HERV element], 95 of 3′ readthrough hervRNAs, and 26 
of chimeric hervRNAs inserted in the transcripts from host genes (Fig. 1e and Addi-
tional file 2: Table S2).

Global atlas of hervRNAs across human body sites

Across different body sites, the counts of hervRNAs ranged from 640 in the mus-
cle skeletal to 5035 in the testis (Fig. 2a, Additional file 2: Table S3). Strikingly, nearly 
four thousand hervRNAs were detected in the cerebellum (brain-cerebellum: n = 3848; 
brain-cerebellar hemisphere: n = 3,881), which was higher than the numbers at other 
body sites (amount: 640–2699) except for the testis (n = 5035). Across body sites, hervR-
NAs account for 0.19–1.91% of poly(A)-tailed transcripts, which was lower than the per-
centages of lncRNAs (0.91–5.97%) and protein-coding genes (45.89–95.98%). However, 
the median expression levels of hervRNAs varied from 1.56 to 3.16 TPM across body 
sites, which were obviously higher values than those of lncRNAs (median: 0.72–1.93 
TPM; Fig. 2b). The expression profiles of hervRNAs accurately recapitulated both dif-
ferent body site types and tissue types, especially for brain subregions, which were dif-
ferentiated more clearly than on the basis of lncRNAs and/or protein-coding genes [25] 
(Fig. 2c).

More than half of the hervRNAs (7566/13,889) were expressed in a body site-specific 
manner, especially in the testis (n = 2867) and cerebellum (n = 1503) (Fig. 2a and Addi-
tional file 2: Table S3). Interestingly, 31.9% of the liver hervRNAs were liver-specifically 
expressed, although only 1178 hervRNAs were identified in the liver. Compared with 
other body sites, testis-specific hervRNAs were significantly enriched in the LTR12C 
family, which was highly expressed during early spermatogenic stages [26] (P < 2.2 × 
10−16). Among the hervRNAs expressed in multiple body sites, 66.2% (4106/6196) were 
differentially expressed between at least two body sites (Additional file 1: Fig. S2). Nota-
bly, among the 4302 cerebellum hervRNAs, 1503 were cerebellum specific, and 1308 
were expressed at higher levels than at least another body site. In particular, 351 hervR-
NAs were preferentially expressed (i.e., expressed at significantly higher levels than at 
any other body site) in the cerebellum.

Potential function of generally ubiquitously expressed hervRNAs

We detected 127 generally ubiquitously expressed hervRNAs (in ≥ 40 body sites). As 
expected, the expression level of these hervRNAs was significantly higher than that of 
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the other hervRNAs (Wilcoxon rank-sum test, false discovery rate (FDR) < 0.05, Fig. 3a). 
To explore the potential function of these generally ubiquitously expressed hervR-
NAs, we constructed weighted gene correlation network in HSFs and knocked down 
HERV_00001917, the most highly expressed in the largest module (Additional file  2: 

Fig. 2  hervRNAs across body sites in GTEx. a Distribution of hervRNAs across 42 body sites. Blue stacked bars 
indicate the number of hervRNAs (left y-axis), and red dots indicate the ratio of body site-specific hervRNAs 
at each body site (right y-axis). The colors assigned to each body site are indicated on the x-axis. b Frequency 
polygons of the expression levels of hervRNAs (left), lncRNAs (middle), and protein-coding genes (right) 
across body sites. See a for the legend of body site-related colors. c Sample similarity based on hervRNA 
profiles by multidimensional scaling. Tissues in the upper left corner are as follows: 1: adipose tissue; 2: 
adrenal gland; 3: blood vessel; 4: breast; 5: colon; 6: esophagus; 7: lung; 8: nerve; 9: ovary; 10: pancreas; 11: 
prostate; 12: skin; 13: small intestine; 14: spleen; 15: stomach; 16: thyroid; 17: uterus; 18: vagina
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Table S4). Strikingly, 2808 differentially expressed genes were detected by RNA sequenc-
ing between HERV_00001917-knockdown and siRNA-control HSFs. The differentially 
expressed genes were significantly enriched in the HERV_00001917-relative module, 
supporting the causal roles of HERV_00001917 in the gene regulatory network (P < 2.2 
× 10−16; Fig. 3 b, c, Additional file 2: Table S5). By Gene Ontology enrichment analysis, 
the differentially expressed genes in the HERV_00001917-relative module were enriched 
in virus response, IFN-γ response, and NF-κB signaling, suggesting the biological func-
tion of HERV_00001917 in regulating host immunity (Fig. 3d).

Effects of biological factors on hervRNAs

To characterize hervRNAs under physiological conditions, we first evaluated the body 
site-specific and global effects of biological factors including sex, ethnicity, and age. 
Excluding sex-specific body sites (ovary, prostate, testis, uterus, and vagina), we detected 
1095 sex-biased hervRNAs at 37 body sites, most of which were enriched in the breast 
(n = 818; Additional file 2: Table S6). Then, we applied a linear mixed model to these 
sex-biased hervRNAs to evaluate the global body site effect (more than five body sites). 

Fig. 3  Generally ubiquitously expressed hervRNAs. a The number and expression levels of expressed 
hervRNAs in < 10 body sites, 10–20 body sites, 20–30 body sites, 30–40 body sites, and ≥ 40 body sites. The 
center line indicates the median, the limits are the interquartile range (IQR), and the whiskers represent 1.5× 
the IQR. b Differentially expressed genes in the HERV_00001917-relative module. KD, knockdown. c Relative 
expression of differentially expressed genes and HERVs measured by RT-qPCR in control and HERV_00001917 
siRNA-treated HSFs. Values were normalized to GAPDH and shown as the mean ± SD. G16445: Fibroblasts_
HERV_G16445; G16560: Fibroblasts_HERV_G16560; G8080: Fibroblasts_HERV_G8080. ***P < 0.001. d Gene 
Ontology enrichment of differentially expressed genes in the HERV_00001917-relative module
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Except for hervRNAs located on the sex chromosome, the most sex-biased hervRNA 
was HERV_00007673, which was brain-specific and was significantly highly expressed in 
males across 6 brain subregions (Fig. 4a and Additional file 2: Table S7). By contrast, the 

Fig. 4  Effects of biological factors on hervRNA expression. a Sex differentially expressed hervRNAs. The 
barplot shows the differentially expressed hervRNAs (FDR < 0.05) ordered by the expression differences 
between males and females. The boxplot shows HERV_00007673 gene expression in males (left) and females 
(right) across 7 body sites. Except for BRNCTXB, the difference between males and females at each body site 
was significant (P < 0.01, Wilcoxon rank-sum test). The center line indicates the median, the limits are the IQR, 
the whiskers represent 1.5× the IQR, and individual black dots represent outliers. b HERV_00003665 gene 
expression in African Americans (left) and European Americans (right). Except for BRNCTXB, the difference 
between males and females at each body site was significant (P < 0.01, Wilcoxon rank-sum test). The center 
line indicates the median, the limits are the IQR, the whiskers represent 1.5× the IQR, and individual black 
dots represent outliers. c The number of age-associated increasing (red) and decreasing (blue) hervRNAs in 
each body site. The body sites in red indicate enrichment of hervRNA increasing with age while body sites 
in blue indicate enrichment of hervRNA decreasing with age. d HERV_00001450 gene expression in the brain 
subregions as a function of age. The shaded area around the regression line represents the 95% confidence 
interval
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most sex-biased hervRNA on the autosomes in females is HERV_00001037, which was 
also most biased in breast across body sites.

We also identified 1604 hervRNAs with differential expression between European 
Americans and African Americans. Interestingly, over 50% of the ethnicity-biased 
hervRNAs were found in skin tissue (skin-not sun exposed: n = 813, skin-sun exposed: n 
= 339; Additional file 2: Table S6), among which 51 belonged to the HERV-K family that 
has been implicated in melanoma progression [27]. However, all three global ethnicity-
biased hervRNAs were preferentially expressed in the brain (Additional file 2: Table S7). 
Notably, the hervRNA with the most biased expression, HERV_00003665, was brain-
specific and predominantly expressed in African Americans in almost all brain subre-
gions (Fig. 4b).

We detected 3496 age-associated hervRNAs, which were distributed at almost all 
body sites except for the coronary artery, brain caudate, heart atrial appendage, and 
small intestine (Fig. 4c and Additional file 2: Table S6). Interestingly, among the 13 body 
sites with significant enrichment of age-associated decreasing hervRNAs, six of the sites 
were within brain tissue, with the brain hippocampus showing especially high enrich-
ment (113/119). A total of 1084 hervRNAs were globally associated with age (Additional 
file 2: Table S7). Seven of the top 10 age-associated hervRNAs were brain-specific. The 
hervRNA associated with age showing the greatest decrease was HERV_00001450, 
which resides at an antisense location relative to the PHYHIPL gene, a protective effector 
in glioblastoma multiforme (GBM) with an age-dependent survival rate [28] (Fig.  4d). 
Interestingly, with RNA-seq data from The Cancer Genome Atlas Glioblastoma Multi-
forme (TCGA-GBM; GBM: n = 165 vs. normal: n = 5), we found that HERV_00001450 
significantly reduced in GBM compared with normal samples from both GTEx and 
TCGA [29] (P < 2.2 × 10−16, Additional file 1: Fig. S3).

Genetic regulation of physiological hervRNAs

We then examined the effects of genetic variations on hervRNAs by cis-ervQTL analy-
sis separately for each body site. Across all body sites, we identified a total of 451,096 
cis-ervQTLs for 5435 unique eHERVs (HERVs with at least one significantly associated 
cis-ervQTL after permutation and q-value correction), which were significantly enriched 
in full-length HERVs (P = 0.011). The numbers of eHERVs varied from 263 in the whole 
blood to 1359 in the testis (Additional file 2: Table S8). Consistent with previous eQTL 
studies [30], the eHERV discovery power was found to be positively correlated with 
sample size (Fig. 5a). To better understand the potential mechanism of genetic regula-
tory effects, we annotated cis-ervQTLs with regulatory annotations of the genome and 
chromatin state predictions from the Roadmap Epigenomics Project [31] (Additional 
file 2: Table S9). In contrast to cis-eQTLs enriched at canonical splice sites [30], few cis-
ervQTLs were located at splicing sites (proportion < 0.1%). Instead, cis-ervQTLs asso-
ciated with hervRNA expression levels were most significantly enriched in non-coding 
RNA-associated regions, suggesting interactions between non-coding RNAs and HERVs 
[32] (Fig. 5b).

Dysregulation of HERV expression has been implicated in multiple sclerosis, amyo-
trophic lateral sclerosis, and other complex diseases [34–37]. With GWAS association 
summary statistics across 22 complex diseases [30, 33] (Additional file  2: Table  S10), 
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we identified 19 hervRNA-associated diseases through enrichment analysis (Additional 
file 1: Fig. S4 and Additional file 2: Table S11). Notably, Parkinson’s disease, schizophre-
nia, and systemic lupus erythematosus were enriched in almost all solid tissues. Body 
sites relevant to five diseases, including bipolar disorder, coronary artery disease, depres-
sion, multiple sclerosis, and type 1 diabetes, were among the most enriched body sites 

Fig. 5  Genetic regulatory effect on hervRNAs. a Proportion of eHERVs (y-axis) as a function of the sample 
size for each body site (x-axis). See Fig. 2a for the legend of body site-related colors. b Functional annotation 
of cis-ervQTLs. Left: cis-ervQTL enrichment in functional annotations, shown as the mean ± SD across body 
sites. Right: proportion of variants across body sites, shown as the mean ± SD. UTR, untranslated region. c 
Top-ranked body sites on the basis of odds ratios of complex disease associations among cis-ervQTLs (FDR < 
0.05). d GWAS colocalization between depression GWAS SNPs and cis-ervQTLs of HERV_00003253 (left: brain 
caudate, right: brain putamen), generated by LocusCompareR [33]. rs7339288 is the common lead variant 
with high LD. The boxplots indicate the expression of HERV_00003253 in different genotypes (from left to 
right: TT, TG, GG). The center line indicates the median, the limits are the IQR, the whiskers represent 1.5× the 
IQR, and individual black dots represent outliers
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(Fig. 5c). Through a colocalization analysis including all hervRNA-associated diseases, 
we detected 102 hervRNAs associated with 15 diseases (Additional file  2: Table  S12). 
After excluding 68 disease-associated hervRNAs for seven autoimmune diseases, we 
identified 12 hervRNAs from the most biologically relevant body sites for 6 diseases 
[schizophrenia (n = 4), bipolar disorder (n = 2), depression (n = 1), amyotrophic lateral 
sclerosis (n = 1), atrial fibrillation (n = 3), and coronary artery disease (n = 2)]. Among 
these hervRNAs, one is inserted in the disease-associated host gene and half reside 
at the antisense region of genes with relative biological phenotypes. For example, the 
depression-related hervRNA HERV_00003253, antisense to B3GLCT that is involved in 
synaptogenesis, was only expressed in the brain caudate and brain putamen, which are 
considered important nuclei for depression [38–40] (Fig. 5d).

Epigenetic regulation of physiological hervRNAs

Both DNA methylation and histone modification are involved in regulating HERV activ-
ity [41, 42]. Thus, we explored the potential epigenetic regulatory mechanism of hervR-
NAs under physiological conditions by integrating transcriptomic and epigenomic 
data from 4 individuals included in the ENTEx Project (Additional file  2: Table  S13). 
Although DNA demethylation has been found to contribute to the expressional activa-
tion of HERVs, the median DNA methylation level of physiologically expressed HERVs 
(TPM ≥ 0.1) was over 80%, which was even significantly higher than that of silent 
HERVs (TPM = 0) in all body sites except the testis, suggesting that DNA demethylation 
may not be the dominant mechanism for the physiological expression of HERVs (Wil-
coxon rank-sum test, FDR < 0.05; Fig.  6a). Then, we performed an enrichment analy-
sis of hervRNAs among six histone modification markers, including H3K27 acetylation 
(H3K27ac), H3K27 trimethylation (H3K27me3), H3K36 trimethylation (H3K36me3), 
H3K4 monomethylation (H3K4me1), H3K4 trimethylation (H3K4me3), and H3K9 
trimethylation (H3K9me3). At almost all body sites, HERVs located in H3K27ac or 
H3K36me3 peak regions were significantly more highly expressed (Wilcoxon rank-sum 
test, FDR < 0.05; Fig. 6b).

For HERV loci analysis, we found that no expressed HERVs were associated with 
DNA methylation (Additional file 2: Table S14). By contrast, we identified 334 expressed 
HERVs under the regulation of histone modification (H3K27ac-associated HERVs: n 
= 162; H3K36me3-associated HERVs: n = 78; H3K4me1-associated HERVs: n = 54; 
H3K4me3-associated HERVs: n = 160; Additional file  2: Table  S15). Notably, these 
expressed HERVs are significantly enriched in chimeric HERVs that concatenate mul-
tiple HERV elements (P = 4.2 × 10−5; Fig. 6c). For example, HERV_00002430, a trans-
verse colon-specific expressed HERV that is enriched by H3K27ac signals, concatenate 
ERV_645668_LTR12 and ERV_645667_ERVL-B4-int,MLT2B4, the families of which 
were verified to be up-regulated by increased H3K27ac deposition [43].

Discussion
As one main class of transposable elements from ancient retroviral infections, HERVs 
are long considered as genomic threats and thus in transcriptional silence regulated by 
the host [42]. Once aberrantly activated, HERVs may trigger multiple sclerosis, amyo-
trophic lateral sclerosis, and other complex diseases [4, 34, 35]. However, increasing 
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evidence implied that there may be plenty of expressed HERVs in normal tissues [9, 10, 
44, 45]. In our study, we identified more than ten thousand expressed HERV loci across 
human body sites, especially in the testis and brain. These abundant hervRNAs exhibit 
body site-specific and biology (sex, ethnicity, and age)-associated expression patterns, 

Fig. 6  Epigenetic regulation of hervRNAs. a The boxplot shows the distribution of the DNA methylation 
levels of expressed HERVs (TPM ≥ 0.1) and silent HERVs (TPM = 0) at each body site. The difference between 
the expressed HERVs and silent HERVs at each body site except for the testis was significant (P < 0.01, 
Wilcoxon rank-sum test). The center line indicates the median, the limits are the IQR, whiskers represent 
1.5× the IQR, and individual black dots represent outliers. b Association between hervRNA expression and 
histone modification within each body site in each individual (from left to right: GTEX-1LVAN, GTEX-1LGRB, 
GTEX-1JKYN, and GTEX-1K2DA). c Association between the expression of each HERV locus and histone 
modification across all body sites
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which suggest that HERVs are physiologically important rather than constitute “junk 
DNA.” Although the roles of these hervRNAs, either non-coding hervRNAs or hervR-
NAs with open reading frames, are largely unknown, our study provides a special RNA 
“catalog,” which calls for future study on the function of hervRNAs and even potential 
HERV peptides in physiological or pathological conditions.

Cumulative studies have revealed the activating mechanism of HERVs in complex 
diseases [34, 35], yet the regulation of HERV expression under physiological conditions 
remains largely unknown. Our study indicated that physiologically activation of HERVs 
is under both genetic and epigenetic regulation. By introducing ervQTLs, we identified 
thousands of hervRNAs regulated by genetic variants, a subset of which were associ-
ated with the pathogenesis of multiple complex diseases. In addition, strong enrichment 
of ervQTLs at non-coding RNA regions suggested the interaction between HERVs and 
non-coding RNAs. On the other hand, although DNA methylation has been acknowl-
edged to repress HERV activity to maintain genome stability in early developmental 
stages [46], our study revealed that the expression of HERVs at adult body sites is more 
likely to be driven by histone modifications, such as H3K27ac and H3K36me3, instead of 
DNA demethylation. Furthermore, expressed HERVs exhibited even higher DNA meth-
ylation, implying negative feedback-regulated DNA methylation under physiological 
conditions.

Besides broad HERV activity that has been detected in reproductive tissues [47], our 
study highlights the involvement of hervRNAs in brain development. We found that 
hervRNAs are abundantly expressed in the brain, at levels second only to those in the 
testis. On the other hand, our cis-ervQTL analysis revealed a strong association between 
hervRNAs and brain diseases including neurodegenerative and psychiatric diseases. In 
addition, hervRNAs that show decreased levels with age are also significantly enriched 
in the brain, especially the hippocampus. As chronic activation of mouse ERV is associ-
ated with hippocampus-based memory impairment [48], hervRNAs may also exert func-
tions in human memory and cognition. We also found that hervRNAs are preferentially 
expressed in the cerebellum, and hervRNAs in the cerebellum are associated with amyo-
trophic lateral sclerosis, implying that hervRNAs may be involved in cerebellum func-
tion. Together, our study suggests that hervRNAs may be involved in brain development 
as well as cognition. Additionally, the identification of sex-biased and ethnicity-biased 
hervRNAs in the brain might further our understanding of sex and ethnicity differences 
in brain structure and function [49, 50].

Although past studies have illustrated the involvement of expressed HERVs in vari-
ous biological processes and complex diseases [4], most results were based on the fam-
ily level due to the repetitive nature of HERVs. However, such family-based approaches 
are unable to decide whether elements within certain HERV families function as general 
byproducts (such as microRNAs) or in a locus-specific manner [11]. To overcome this 
difficulty, recent studies have attempted TE-dedicated computational approaches based 
on RNA sequencing [12, 14, 15, 24, 51]. In the current study, we improved an assembly-
based pipeline for locus-specific identification and quantification of expressed HERVs 
from RNA-seq data. Benefiting from transcript assembly, we are able to decipher the 
actual transcription of HERV loci and potential regulatory mechanisms. However, 
due to the individual difference in HERV insertion, mapping these transcripts to the 
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reference genome may not be able to localize their real positions in the genome. In addi-
tion, multiple-mapping transcripts of hervRNAs were difficult to be assigned to a spe-
cific locus and thus dismissed in the current study. The landscape of hervRNAs would be 
further locus-specifically drawn with long-read sequencing technologies. Nevertheless, 
by applying our pipeline to the huge RNA-seq data of the current database, the roles 
of HERVs will be more comprehensively elucidated in human development and mainte-
nance as well as complex diseases.

Conclusions
In summary, our work identified and quantified more than ten thousand hervRNAs 
across normal body sites and focused on the biological insights of hervRNAs in a 
locus-specific manner. With the resolution of the loci, we revealed that physiologically 
expressed hervRNAs not only exhibited body site-specific and biology (sex, ethnicity, 
and age)-associated expression patterns, but also were regulated by genetic variations 
and histone modifications, suggesting a hidden layer of genetic architecture in human 
development as well as diseases. The identified hervRNA loci, which may be associated 
with brain development, cognition, and complex diseases especially neurodegenerative 
and psychiatric diseases, will lead to novel mechanisms for human development and 
pathogenesis.

Methods
Public dataset description

In total, we collected 9466 samples across 42 body sites from 686 individuals in the 
GTEx Project [52], including RNA-seq data (FASTQ files), imputation genotyping 
data (VCF file), and whole-genome sequencing (WGS) data (FASTQ files). The details 
regarding the samples and sequencing methods are available by dbGaP (study accession: 
phs000424.v8.p2). From the 1000 Genomes Project [22, 23], we obtained RNA-seq data 
(FASTQ files) from 372 lymphoblastoid cell line samples through Geuvadis (details in 
https://​www.​inter​natio​nalge​nome.​org/​data-​portal/​sample). We also downloaded RNA-
seq data (FASTQ files) from 165 GBM samples and 5 normal samples from the TCGA-
GBM project [29] by dbGaP (study accession: phs000178.v11.p8). In addition, RNA-seq 
data (FASTQ files) and epigenomic processed data [whole-genome bisulfite sequenc-
ing (WGBS) and histone ChIP-seq (H3K27ac, H3K27me3, H3K36me3, H3K4me1, 
H3K4me3, and H3K9me3)] from four individuals in ENTEx were collected from the 
ENCODE project [20, 21] (details in https://​www.​encod​eproj​ect.​org/​entex-​matri​x/?​
type=​Exper​iment​&​status=​relea​sed&​inter​nal_​tags=​ENTEx).

Pipeline for the detection of expressed HERVs

First, RNA-seq data were aligned to the reference human genome (GRCh38) using STAR 
v2.7.5c [53] with Gencode v31 [54] for gene annotation. Reads that mapped to the HERV 
regions annotated by the HERVd database [55, 56] but did not overlap with transcripts in 
Gencode were extracted with sambamba v0.6.6 [57] and de novo assembled with Trin-
ity v2.1.1 [58, 59]. The assembled transcripts were quantified using align_and_estimate_
abundance.pl in Trinity and remapped to the reference human genome using GMAP 
version 2020-06-30 [60]. The assembled transcripts with a count > 5 and identity ≥ 96% 

https://www.internationalgenome.org/data-portal/sample
https://www.encodeproject.org/entex-matrix/?type=Experiment&status=released&internal_tags=ENTEx
https://www.encodeproject.org/entex-matrix/?type=Experiment&status=released&internal_tags=ENTEx


Page 14 of 21She et al. Genome Biology          (2022) 23:231 

relative to the reference genome were retained for meta-assembly performed by TACO 
v0.7.3 [61]. Then, merged HERV candidates identified in ≥ 50% of samples and with 
a length of ≥ 200 bp were remapped to the reference genome with GMAP. The genes 
that were uniquely mapped to the HERV loci were retained as candidate HERV genes. 
Finally, RNA-seq data were realigned to the reference human genome using STAR with 
the combination of Gencode GTF and the candidate HERV annotations for downstream 
HERV quantification. HERV expression was calculated at the gene level using RSEM 
v1.2.28 [62], which is adapted for repeat element quantification. HERVs with a raw count 
> 5 and TPM ≥ 0.1 [52] among ≥ 50% of samples were considered to be expressed.

Cell culture and RNA isolation

The HSF cell line (CTCC-003-0165) derived from human normal skin tissue was pur-
chased from the Chinese Tissue Culture Collection (www.​ctcc.​org). HSF cell line is not 
listed in the database of commonly misidentified cell lines maintained by ICLAC. It was 
authenticated not a match for any profile in the DSMZ STR database and tested nega-
tive for mycoplasma contamination. HSF was cultured under 37 °C/5% CO2 conditions 
in complete medium (DMEM + 15% FBS). RNA was isolated from cell pellets contain-
ing 5 × 106 cells using the FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme).

Experimental validation of full‑length expressed HERVs

The isolated total RNA was subsequently reverse transcribed into cDNA by using a 
HiScript® III 1st Strand cDNA Synthesis Kit (+ gDNA wiper) (Vazyme). We designed 
primers at both ends of the HERV genes (Additional file 2: Table S1) and amplified the 
cDNAs for 30 cycles with Green Taq Mix (Vazyme). The final PCR products were ana-
lyzed by 2% agarose gel electrophoresis and sequenced by Sanger sequencing.

Quantitative PCR

Transcribed cDNA was quantified using quantitative PCR with ChamQ Universal SYBR 
qPCR Master Mix (Vazyme). The threshold cycle (Ct) values of the selected HERV genes 
were normalized to the housekeeping gene GAPDH. Relative expression was calculated 
by adopting the 2−ΔCt method (ΔCt = CtHERV − CtGAPDH). The primer sequences are 
shown in Additional file 2: Table S1.

HERV expression analysis

To remove the redundant HERV genes from different body sites, we clustered them 
with gffread v0.11.6 [63] (https://​github.​com/​gpert​ea/​gffre​ad) and renamed them with 
unified gene IDs. Expressed HERVs were annotated with the HERVd database by using 
BEDTools v2.27.1 [64]. The coding potential of hervRNAs was calculated by CPC2 [65], 
CPAT v3.0.4 [66], and Pfamscan v1.6 [67] with default parameters. The overlapped 
outputs from CPC2, CPAT, and Pfamscan were considered as hervRNAs with coding 
potential.

The similarity of HERV gene expression across samples and between body sites was 
evaluated using multidimensional scaling with the cmdscale function of R v3.6.2. The 
expression levels were normalized according to a log2-transformed scale [log2(TPM + 
1)]. The distance between samples was defined as distance = 1 − correlation (Spearman). 

http://www.ctcc.org
https://github.com/gpertea/gffread
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Pairwise differential gene expression analysis was performed using DESeq2 [68] with 
raw read counts as the input. The differentially expressed HERVs were filtered according 
to an FDR < 0.05.

Weighted gene correlation network analysis

We performed a weighted gene correlation network analysis with the WGCNA package 
[69]. The expression levels were normalized using a log2-transformed scale [log2(TPM 
+ 1)]. Adjacency matric was calculated using soft thresholding power 6 and turned into 
a topological overlap matrix (TOM). Then, we did hierarchical clustering with the con-
sensus TOM and identified modules using the Dynamic Tree Cut algorithm. To merge 
modules with similar expression profiles, we calculated their eigengenes (MEs) and clus-
tered them on their consensus correlation.

HERV knockdown

The day before transfection, we seeded HSF cell lines in a 6-cm dish to obtain 40–50% 
confluency at the time of transfection. Cells were transfected with a 10-nM concentra-
tion of HERV_00001917-target siRNA (5′-GAU​GUA​AUG​AUC​AAU​GUC​CUA​UGU​
C-3′) or non-targeting control siRNA that had been formulated with INTERFERin® 
transfection reagent (Polyplus) for three biological replicates. As both HERV_00001917 
and target siRNA are unique sequence when aligning to the human genome and tran-
scriptome by BLAST [70], we considered the siRNA as specific to the target hervRNA. 
Two days post-incubation, RNA was isolated using the FastPure® Cell/Tissue Total RNA 
Isolation Kit V2 (Vazyme) and sent for RNA sequencing (Paired-end 150 bp) on Illumina 
NovaSeq 6000.

RNA sequencing reads were aligned to the reference human genome (GRCh38) 
using STAR with the combination of Gencode GTF and the HERV annotations of HSF 
in GTEx Project. Gene expression levels were estimated by RSEM and differentially 
expressed genes were identified by DESeq2. The Gene Ontology enrichment analysis 
was conducted by the clusterProfiler package [71].

Evaluation of the effect of sex, ethnicity, and age on hervRNA variation

We performed differential expression analyses related to sex and ethnicity among each 
body site with DESeq2. Pearson correlations between age and HERV gene expression 
were calculated for each body site. For differentially expressed HERVs, we analyzed the 
contribution of sex, ethnicity, or age to hervRNA variation by using a linear mixed model 
(LMM) implemented in the R package lme4 [72]. We applied the model as reported in a 
previous study [25]:

where Bi denotes the fixed effect of the ith body site, Ij denotes the random effect of 
the jth individual, Ck denotes the biological factor effect of the kth level, Eijk represents 
the random error, and Hijk represents the ijkth HERV expression value at the ith body 
site of the jth individual and kth level of the factor. Sex and ethnicity were fixed factors, 
and age was a covariate. Multiple testing was corrected using the Benjamini-Hochberg 
(BH) method (FDR < 0.05).

Hijk = Bi + Ij + Ck + Eijk
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HERV expression of GBM

With the combination of Gencode GTF and the HERV annotations of the brain cor-
tex in the GTEx Project, RNA sequencing reads were aligned to the reference human 
genome (GRCh38) using STAR. HERV expression levels were estimated by RSEM and 
normalized by TPM. The comparison of HERV_00001450 expression levels between 
GBMs and normal samples from TCGA and GTEx was performed with a two-sided 
Wilcoxon rank-sum test.

cis‑ervQTL analysis

According to the protocol of the GTEx consortium [52], cis-ervQTL mapping was 
performed for all body sites with QTLtools v1.3.1 [73].

As HERV genes exhibit great individual variation, a zero count of a HERV in the 
quantification analysis might be due to the absence of that HERV gene sequence in an 
individual genome. Thus, we detected the presence of these HERVs using WGS data. 
First, we aligned WGS reads to the reference human genome (GRCh38) using BWA 
v0.7.17 [74]. Target HERV reads were extracted using sambamba and were de novo 
assembled with ABySS v2.2.3 [75]. Then, we remapped the assembled contigs to the 
reference genome with BWA. HERVs without unique mapping contigs were consid-
ered missing genes, and the expression levels were replaced by missing values (NA) 
for cis-ervQTL analysis. HERV expression levels were normalized using TMM [76] 
and subjected to inverse normal transformation across samples.

To detect hidden batch effects in the HERV expression data, we applied the proba-
bilistic estimation of expression residuals (PEER) method for each body site [77]. The 
number of PEER factors was in accordance with that in the GTEx study [52]: 15 fac-
tors for body sites with fewer than 150 samples, 30 factors for body sites with ≥ 150 
and < 250 samples, 45 factors for body sites with ≥ 250 and < 350 samples, and 60 
factors for body sites with ≥ 350 samples.

The phased array VCF was filtered according to the following thresholds: miss-
ing rate < 5%, minor allele frequency (MAF) < 1%, and Hardy-Weinberg equilibrium 
(HWE) P < 10−6. We generated linkage disequilibrium (LD)-pruned variants using 
PLINK v1.90 [78] with the parameter “--indep-pairwise 200 100 0.2” and calculated 
the principal components (PCs) of the genotyped variants with EIGENSTRAT [79]. 
The first three PCs were used as covariates in the cis-ervQTL analysis.

We performed cis-ervQTL mapping using the nominal and permutation modes (n 
= 10,000) in QTLtools. The cis window was defined as ± 1 Mb from the TSS. For each 
body site, variants in the VCF were further filtered based on minor alleles present in 
≥ 10 samples and an MAF ≥ 1%. The expression levels were corrected according to 
the covariates including genotype PCs, PEER factors, and sex. We calculated q-val-
ues after permutation and identified eHERVs with at least one significant cis-ervQTL 
(FDR < 0.05). cis-ervQTLs with a nominal P-value below the threshold calculated by 
QTLtools were considered significant variants (eVariants) associated with eHERVs.
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Functional enrichment of cis‑ervQTLs

eVariants were annotated with regulatory annotations for the human genome using 
ANNOVAR version 2016-02-01 [80] and with 15-state chromatin state predictions 
from the Roadmap Epigenomics Project with BEDTools. Background variant sets 
were constructed by matching eVariants to randomly selected variants based on the 
MAF, chromosome, and distance to the nearest TSS. Due to low counts, the cate-
gories ncRNA_splicing, splicing, stopgain, and stoploss were removed. Enrichment 
analysis was performed with a two-tailed Fisher’s exact test, and all P-values were 
corrected using the BH method.

GWAS enrichment and colocalization

We collected GWAS association summary statistics across 22 complex diseases, includ-
ing metabolic diseases, cardiovascular diseases, autoimmune diseases, neurodegenera-
tive diseases, and psychiatric diseases (Additional file 2: Table S10). GWAS SNPs with 
a P-value < 5 × 10−8 were extracted. For each GWAS SNP, linked SNPs (r2 > 0.8) cal-
culated by PLINK were also extracted. Background variant sets were constructed by 
matching eVariants to randomly selected variants based on the MAF, chromosome, and 
distance to the nearest TSS. Enrichment analysis was performed with a two-tailed Fish-
er’s exact test, and all P-values were corrected using the BH method.

We applied the coloc R package [81] to examine the colocalization between ervQTLs 
and GWAS results. For each GWAS, we extracted the significant SNPs (P < 5 × 10−8) 
with the highest statistical significance among all variants within 1 Mb regions. Then, we 
extracted eHERVs within 1 Mb from these GWAS SNPs. A gene-based posterior prob-
ability of colocalization PP4 > 0.9 was applied to extract causal SNPs.

Epigenetic regulation analysis

For epigenomic data from the ENTEx Project, we extracted histone peaks within ± 5 
kb of the TSSs of expressed HERVs at all body sites identified by SERVE. HERVs with-
out histone peaks at all body sites were removed. The comparison of expression levels 
between HERVs with and without histone peaks was performed with a two-sided Wil-
coxon rank-sum test. For each HERV, the DNA methylation level was calculated for the 
region ± 5 kb from the TSS. The comparison of DNA methylation between expressed 
HERVs (TPM ≥ 0.1) and silent HERVs (TPM = 0) was performed with a two-sided Wil-
coxon rank-sum test. Pearson correlations between DNA methylation and HERV gene 
expression were calculated for each HERV locus. All P-values were corrected using the 
BH method.
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