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Background
RNA processing is critical for understanding eukaryotic biology and disease. Differen-
tial RNA processing (RNAP) of the same gene, including kinetic rates of intron splicing, 
alternative polyadenylation (APA) sites, and 3′ untranslated region (3′ UTR) use, can 
regulate gene function and control RNA localization, stability, protein production, and 
translation efficiency [1–4]. Differential RNAP is widespread in eukaryotic genomes: 
genome-wide studies have shown that over 70% of mammalian protein-coding genes 
undergo APA [5] and intron retention [6]. Studies using bulk RNA sequencing have 
shown that RNAP is tissue-specific [7, 8] and is regulated during cell differentiation and 
proliferation [9–11]. On the other hand, altered RNAP has been increasingly linked to 
diseases from cancer to neurodegeneration and hematological disorders [12–14]. Iden-
tifying cell type-specific modes of RNAP regulation would lead to a deeper understand-
ing of the mechanisms that determine the RNAP of particular genes, which would have 
major clinical implications.

Abstract 

RNA processing, including splicing and alternative polyadenylation, is crucial to gene 
function and regulation, but methods to detect RNA processing from single-cell RNA 
sequencing data are limited by reliance on pre-existing annotations, peak calling heu-
ristics, and collapsing measurements by cell type. We introduce ReadZS, an annotation-
free statistical approach to identify regulated RNA processing in single cells. ReadZS 
discovers cell type-specific RNA processing in human lung and conserved, develop-
mentally regulated RNA processing in mammalian spermatogenesis—including global 
3′ UTR shortening in human spermatogenesis. ReadZS also discovers global 3′ UTR 
lengthening in Arabidopsis development, highlighting the usefulness of this method 
in under-annotated transcriptomes.
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Despite massive single-cell studies and a plethora of single-cell RNA sequencing 
(scRNA-seq) datasets generated over the past few years, scRNA-seq is currently underu-
tilized in RNAP studies. Cell measurements are typically reduced to gene counts, limit-
ing our understanding of the regulation of RNAP at the cell type and single-cell level. 
Technical limitations of scRNA-seq, such as low capture efficiency and high dropout 
rates, have led to the prevailing view that RNA is too sparsely sampled to measure alter-
native RNAP at single-cell level without imputation (as in scDaPars [15]) or pseudob-
ulking (as in Sierra [16] and MAAPER [17]). Pseudobulking—aggregating reads from all 
cells within a cell type—increases power by amassing the sparse single-cell data together 
into bulk data. However, it also makes it impossible to measure heterogeneity within a 
pre-annotated cell type. Current computational methods employ various heuristics and 
lack statistical characterization, further limiting the possibility of targeted follow-up 
functional investigation of their discoveries. Moreover, current methods perform pair-
wise tests of differential RNAP, losing statistical power by requiring (n choose 2) tests for 
n cell types [15, 17] and limiting to analysis based on reads from the 3′ UTR alone.

The most common approach for detecting APA in bulk RNA-seq is peak calling 
[18], and this concept has been carried over to single-cell RNA-seq. “Peaks” are seen 
in poly(A)-primed RNA-seq data such as 10X due to preferred priming at a single 3′ 
end, which produces a distribution of insert lengths that is approximately normal after 
tagmentation [19] (Fig. S1). Peak calling-based methods—such as Sierra, MAAPER, and 
scDaPars (Table 1)—assign reads to one of several peaks, corresponding to 3′ UTR sites, 
and then measure the enrichment of peaks in different cell types or conditions. However, 
if two “peaks” originating from sites within one to two standard deviations of each other 
overlap, peak callers may not distinguish them. Further, biochemical error processes can 
cause failures of a strict parametric modeling of peaks.

Finally, most published algorithms for detecting APA rely on existing annotations, 
either a set of alternative transcripts or a list of polyadenylation sites previously docu-
mented for a given gene [20, 21]. While some poly(A) sites are annotated, a compre-
hensive annotation is still unavailable and very challenging from a computational 
perspective due to the difficulty of assigning reads from overlapping 3′UTRs, some of 
which may be lowly expressed [1–3, 22]. Even methods that rely solely on gene annota-
tions are subject to similar bias due to incomplete annotation, particularly in organisms 
with poorly annotated genomes, but even in human [23]. The incompleteness of anno-
tations limits the ability of annotation-reliant methods—such as Sierra, MAAPER, and 
scDaPars—to fully utilize single-cell resolved measurements and discover novel RNAP. 

Table 1  Comparison of existing APA methods and ReadZS

Method Sierra [16] MAAPER [17] scDaPars [15] ReadZS

Single-cell resolved (no pseudobulking) No No Yes Yes

Imputation-free Yes Yes No Yes

Does not require gene annotations No No No Yes

Does not require peak calling No No No Yes

Can be used with continuous metadata, 
e.g., pseudotime

No No No Yes
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To our knowledge, there is no annotation-free method to detect APA from either bulk or 
single-cell data.

Results
ReadZS enables statistical annotation‑free detection of RNA processing in scRNA‑seq

ReadZS is a computationally efficient, truly single-cell measure of RNAP. It does not use 
pseudobulking, imputation, or peak calling. As a true single-cell measure of differential 
RNAP, ReadZS can be integrated with continuous metadata such as pseudotime to iden-
tify developmentally regulated, continuous changes. It overcomes biases and the reduced 
statistical power inherent in annotation-dependent and peak calling approaches. It can 
detect differential RNAP at single-cell resolution that is regulated in any number of cell 
types and find regulated RNAP in developmental trajectories. ReadZS is applicable to 
10X and other 3′ capture scRNA-seq methods as well as Smart-Seq2 (SS2).

We note that the ReadZS is predicted to detect primarily APA when applied to 10X 
data because reads in 10X data are enriched near the 3′ end of transcripts. 10X is a par-
ticularly ideal technology for profiling RNAP as it provides a much higher throughput 
compared to plate-based techniques (but at the cost of lower coverage for each cell), ena-
bling profiling of RNAP across hundreds of cell types (even rare cell types). Moreover, 
10X is designed to prime on poly(A) stretches of RNA, which are prevalent in introns 
and at the 3′ end of most cytoplasmic RNAs [24]. Reads arising from internal priming 
can still be used to detect regulated RNAP, and indeed ReadZS incorporates those reads 
as well. Indeed, ReadZS can be applied to data which is not 3′ enriched at all, such as 
SS2, and can still detect regulated RNAP without poly(A)-primed reads.

The major innovations of ReadZS include the following: (1) no reliance on exon, iso-
form, or gene annotation; (2) a purely statistical approach to analyzing read distributions 
that bypasses “peak calling” and all associated limitations (e.g., ad hoc minimum inter-
peak distance, and only detecting cases with two peaks per gene [20]); (3) a truly single-
cell-resolved score that can be integrated with other single-cell measurements such as 
developmental pseudotime; (4) a way to prioritize windows on the basis of effect sizes 
and quantifiable false discovery rate (FDR) for each set of calls; and (5) a very efficient, 
convenient, and reproducible workflow implementation based on Nextflow [25], with all 
needed packages and libraries pre-installed.

ReadZS first partitions each chromosome into genomic windows (treating each strand 
separately) and then summarizes the distributions of reads across each genomic window 
by giving a lower score to cells with reads closer to the downstream end of a window, and 
a higher score to cells with reads closer to the upstream end. This is achieved by reduc-
ing each uniquely mapped read to a rank within a genomic window across all cells ignor-
ing metadata (“Methods,” Fig. 1A). Ranks within each window are normalized to obtain 
read residuals using the population mean and standard deviation. The ReadZS value per 
cell per genomic window is defined by summing and scaling read residuals (“Methods”). 
Large negative (respectively, positive) ReadZS values mean that a cell’s reads within a 
window are skewed upstream (resp. downstream) compared to the population average 
(Fig. 1A). In this paper, we analyze 5-kb windows in human and mouse and 1-kb win-
dows in Arabidopsis. These lengths were chosen to capture variation in 3′ untranslated 
region (3′UTR) length, but this parameter is user-defined and flexible.
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The ReadZS values for a given genomic window follow a normal distribution centered 
at zero under the null hypothesis that each cell has a statistically exchangeable [26] read 
distribution per window (“Methods”). Moreover, ReadZS is scaled such that if two or 
more subpopulations of cells exist within a sample, the expected value of the ReadZS 
will converge to a value that is a function of the cell population, independent of sequenc-
ing depth (“Methods”).

The interpretable single-cell-resolved scalar value of the ReadZS means that its multi-
variate relationships with other covariates, such as pseudotime, can be evaluated with-
out using cell type classification. Thus, ReadZS can detect regulated RNAP events that 
vary continuously with any measured covariate, such as space or time.

While the ReadZS method does not rely on annotation to detect windows with signifi-
cantly regulated RNAP, after significant windows are called by ReadZS, their positions 
are intersected with annotation files to allow assignment of regulated RNAP events to 
a 3′ UTR, gene body, or unannotated region in order to enhance interpretability and 
downstream analysis.

When categorical cell type metadata is available, the cell type-level distributions of 
ReadZS values can be used to test whether median ReadZS scores per cell type and win-
dow are exchangeable (Fig. 1A). After multiple hypothesis testing correction, the pipe-
line calls genomic windows that are differentially processed across any number of cell 
types, with no need to pre-specify pairs of cell types to compare, a unique characteristic 
of ReadZS missing in all previous methods. This single test to detect differences among 
n cell types increases power compared to pairwise differential testing as O(n2) fewer 
tests are required. The range in median ReadZS by cell type defines an “effect size” which 
can be used to systematically prioritize genomic windows with larger variation in RNAP 
for subsequent analysis.

We now present a technical study of ReadZS based on real scRNA-seq data sets: (1) 
ReadZS rediscovers and extends known cell type-specific regulation of RNA processing 

(See figure on next page.)
Fig. 1  Overview of the ReadZS. A Read positions are ranked in equal-sized genomic bins, separated by 
read strand. Within each genomic window, the read distribution for each cell is summarized by a weighted, 
normalized function of read positions (“Methods”). With metadata, cell type-specific RNAP can be detected 
by finding windows with significantly different median ReadZS by cell type. Continuous metadata such as 
pseudotime enables discovery of multivariate relationships between ReadZS and metadata. GMM-based 
peak detection is used to compare read distributions with annotated 3′ UTRs. B Read distributions in 
the genomic window with largest effect size in HLCA P3 when requiring minimum 10 counts in 20 cells, 
which overlaps the genes CORO1B and PTPRCAP. Peaks in significant windows called by the GMM (see text) 
are starred. C CALM1 is called in both P3 and P2 as having cell type-specific differences in RNAP. Peaks in 
significant windows called by the GMM are starred; peaks are called across all cell types. In CALM1, the peaks 
are 254 and 285 bp from the closest downstream 3’ UTR. D KLF6 is called in both P3 and P2 as having cell 
type-specific differences in RNAP. The relative rank of each cell type (ranked by highest to lowest median 
ReadZS) is shown for each participant. Peaks in significant windows called by the GMM are starred; peaks 
are called across all cell types. E The ReadZS is technically reproducible across cell types in the 3 HLCA 
participants; p-values, computed via simulation (see “Methods”), show strong ReadZS concordance in all 
pairs. F Histogram and CDFs of the distribution of distances from GMM-called peaks to closest downstream 
annotated 3′ UTR in HLCA P3; lines denote the 25th, 50th, and 75th quantile, respectively. Distance 
distributions are compatible with expectation from 10x library construction. G Above: read distributions in 
the genomic window with largest effect size in HLCA P3 when requiring minimum 5 counts in 10 cells, which 
overlaps the genes CATIP1, respectively. Below: ReadZS distribution for the genomic window overlapping 
CATIP in four cell types from HLCA P3



Page 5 of 28Meyer et al. Genome Biology          (2022) 23:226 	

in human lung; (2) ReadZS provides significantly concordant calls of RNAP across dif-
ferent biological replicates; (3) a post-facto peak calling on genomic windows with sig-
nificant ReadZS variation between cell types shows the inferred poly(A) priming sites 
are enriched with known 3′ UTR ends, while discovering a significant number of sites 
that cannot be explained by priming from annotated 3′ UTRs, highlighting the need for 
annotation-free methods; (4) ReadZS rediscovers and extends known regulation of 3′ 
UTR length in human and mouse spermatogenesis; (5) ReadZS discovers developmen-
tally regulated RNAP in Arabidopsis root, including global 3′ UTR lengthening; and (6) 
ReadZS results are consistent with the recently published algorithms Sierra [16] and 
MAAPER [17].

Fig. 1  (See legend on previous page.)
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ReadZS rediscovers and extends known regulation of RNA processing

We applied ReadZS to 10X data of non-tumor samples from three participants in the 
Human Lung Cell Atlas (HLCA), together encompassing 57 cell types in the lung and 
blood [27, 28]. We chose this dataset because it is deeply curated and thought to define 
all existing subtypes of cells in the lung. Consistent with [27], in this manuscript, we 
used participant 3 (P3)—the most deeply sequenced individual—as the primary partici-
pant and P1 and P2 individuals to validate our discoveries on P3. We ran the ReadZS 
pipeline on data from each participant separately. We required at least 10 counts in 20 
cells in at least two cell types to calculate the ReadZS. ReadZS was calculable in 454 
genomic windows (across 432 genes) in P3, from which 94 windows (20.7%, in 94 genes) 
were called as having significant cell type-specific RNAP (FDR < 0.05, “Methods,” Addi-
tional file 2: Table S1). Similar proportions of significant windows were found in the two 
other participants (Additional file 1: Fig. S2).

To illustrate ReadZS discoveries in the lung, we examined the cell type-specific win-
dows with the highest effect sizes (defined as the range of medians of ReadZS across 
cell types within an individual) in HLCA P3. The highest effect size reflects two 3′ UTRs 
in overlapping genes within a single 5-kb genomic window, a rare event in the human 
genome: PTPRCAP, a transmembrane phosphoprotein, and CORO1B, an actin-binding 
protein that controls cell motility (Fig. 1B). For this genomic window, we illustrate dif-
ferential ReadZS values using the two cell types with sufficient reads to calculate median 
ReadZS values (≥10 counts in ≥20 cells). CD4+ memory/effector T cells dominantly 
express PTPRCAP whereas lung macrophages dominantly express CORO1B. This dif-
ference creates a dramatic shift in read distributions, demonstrating that ReadZS indeed 
detects genomic windows with large cell type-specific differences in read distribution.

Windows overlapping the genes RPLP1, NEAT1, and SRSF7 were among the top 10 
significant windows as ranked by effect size. In RPLP1, a component of the 60s subu-
nit of the ribosome, intronic reads are significantly enriched in CD8+ memory/effector 
T cells relative to proliferating basal cells (Additional file  1: Fig. S3). NEAT1 is a long 
noncoding RNA involved in nuclear paraspeckle assembly and undergoes extensive 
splicing and APA, but its isoforms have unknown functions [29]. Differential RNAP of 
NEAT1 has important biological consequences, as higher expression of a longer iso-
form of NEAT1 has been associated with poor prognosis in breast cancer, though the 
mechanism remains unknown [30]. For each significant window called by ReadZS, we 
performed peak calling to identify potential (known or unannotated) polyadenylation 
sites, by fitting a Gaussian mixture model (GMM) to the distribution of the reads from 
the entire dataset across that window (“Methods”). One peak detected by GMM post-
processing in NEAT1 coincides with an annotated end and one not annotated—this 
could reflect either unannotated APA or internal priming resulting from alternative 
splicing (Additional file 1: Fig. S3). A similar phenomenon is observed in SRSF7, a mas-
ter splicing regulator implicated in tumor progression [31]. For this gene, CD4+ T cells 
exhibit an unannotated GMM-called peak that could be evidence of unannotated alter-
native splice variants or unannotated APA (Additional file 1: Fig. S3).

In CALM1, the window with the next-highest effect size after the four windows listed 
above, two mixture components called by the GMM each correspond to an annotated 3′ 
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UTR, which are differentially represented in proximal ciliated epithelial cells and mac-
rophages (Fig. 1C). CALM1 regulates calcium signaling and is known to undergo APA; in 
mouse, its long isoform is primarily expressed in neural tissue, and its 3′ UTR has been 
shown to control localization and be functionally essential [32]. ReadZS extends this 
finding and reveals significant cell type-specific regulation of 3′ UTR length of CALM1, 
specifically that proximal ciliated cells have highest use of the longest 3′ UTR, consistent 
with the idea that the long isoform of CALM1 is related to excitatory cell function [32].

Differential RNAP in KLF6, a tumor suppressor regulating transcription [33] involves 
alternative regulation of the 3′ UTR of KLF6 in ciliated cells and macrophages com-
pared to other cell types such as alveolar fibroblasts (Fig.  1D). According to the gene 
annotation of KLF6, these reads support the use of unannotated 3′ UTRs which are pre-
dicted to change the protein coding potential of KLF6, albeit at lower frequency than the 
dominant priming site. Because these variants modify the 3′ UTR, they have unknown 
impacts on translation and thus protein abundance. Together, these examples illustrate 
the unique power of ReadZS to identify regulation including at unannotated 3′ UTR 
sites.

ReadZS calls are consistent across biological replicates

To assess the ability of bioinformatics to distinguish multifactorial biochemical errors 
introduced during library preparations, benchmarking analysis based on real data is pre-
ferred to simulated data [34]. As the HLCA dataset encompassed three individuals, we 
first measured the concordance of the ReadZS calls by assessing the overlap of results 
between HLCA individual pairs. Because different sampling depths across cell types 
could impact concordance analysis for called windows, we restricted to windows with 
calculable ReadZS in both participants for each pairwise comparison. Restricting to the 
245 windows that have calculable ReadZS in P3 and P2, 29 were significant in both indi-
viduals (hypergeometric p-value < 5E−08). Similarly, the P3-P1 and P2-P1 comparisons 
showed significant overlaps (p-value < 0.002).

We further assessed the concordance in the directionality of ReadZS by comparing the 
ordering of median ReadZS values for the same genomic window in different data sets. 
For example, if the median ReadZS value of a genomic window is higher for a certain 
cell type than for other cell types in one dataset, we expect this relative ordering to be 
consistent in other datasets (Fig. 1E). We calculated the consistency of median ReadZS 
order using a multivariate metric based on the Spearman footrule (“Methods”). The con-
cordance of directionality of the ReadZS value per cell type was highly significant com-
pared to random ordering of cells (p-value < 0.005 for P1-P2 and P2-P3; p-value < 0.01 
for P1-P3).

Statistically identified read peaks in windows with cell type‑specific RNAP are enriched 

for known poly(A) sites and predict new APA sites

We further evaluated the biological relevance of ReadZS calls by calculating the fraction 
of windows called by ReadZS as having cell type-specific RNAP that can be explained by 
poly(A) priming at annotated 3′ UTRs. Given the 3′ bias of 10X sequencing, the detected 
differential RNAPs in 10X data are expected to be enriched at annotated 3′ UTRs. 
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Indeed, 81 of 94 (86.2%) ReadZS-significant windows in P3 overlap with at least one 3′ 
UTR annotation (Additional file 2: Table S1).

To further assess the biological properties of cell type-specific windows, we performed 
a statistical postprocessing step with Gaussian Mixture modeling (GMM) to define 
regions of high read density in the cell type-specific windows (Fig. 1A). The GMM sum-
marizes elevated read density within a window by modeling it as a mixture of Gaussians 
and the means of the components can be defined as the peak locations (“Methods”).

We quantified the distance between the means of the fitted GMM and the nearest 
annotated downstream 3′ UTR end, conditioning on this distance being less than 2kb 
because of known intronic priming. In HLCA P3 data, the median distance from the 
GMM means to the nearest annotated 3′ UTR is 286 bp, consistent with the average 
insert length of ~350bp in 10X libraries (Fig.  1F; Additional file  1: Fig. S4) [35]. This 
supports the idea that ReadZS-significant windows and the GMM approach to identify 
peaks primarily recover annotated 3′ UTRs even though no annotation was used in pick-
ing the significant windows. One of the novel 3′ UTRs was identified in CATIP in lung 
macrophages (Fig.  1G). The genomic window intersecting this gene was called as sig-
nificant in HLCA P3 data when we reduced the minimum required number of counts 
per cell and cells per cell type to 5 and 10, respectively. Indeed, the window overlapping 
CATIP has the largest ReadZS effect size out of all genomic windows, suggesting there is 
strong cell type-specific regulation of this 3′UTR. CATIP plays a role in actin polymeri-
zation and organization of cilia, but the role of its different isoforms is not known [36].

We note that for genomic windows containing two peaks within an insert-size-dis-
tance of each other, the ReadZS cannot distinguish between variation in 3′UTR length 
versus variation in the length of the poly(A) tail. In other words, it is possible that a 
downstream peak could be caused by priming at the end of a longer poly(A) tail, while 
the 3′UTR length remains the same. However, if peaks are separated by more than the 
insert length (~350bp), the different peaks cannot be explained by differential poly(A) 
tails as the insert is smaller than the interpeak distance.

Single‑cell resolution of ReadZS reveals evolutionarily conserved, developmental 

post‑transcriptional regulation in mammals

Global 3′ UTR shortening during mouse spermatogenesis is a well-documented 
but incompletely understood post-transcriptional regulatory program [37, 38]. We 
tested if ReadZS could detect global changes in 3′ UTR length from scRNA-seq data 
of mouse and human spermatogenesis [39, 40]. In this study, the authors used 10X 
sequencing to identify gene expression patterns in over 62,000 human and mouse 
spermatogenic cells, and thereby assigned each cell a pseudotime reflecting its stage 
of differentiation from stem cell to spermatid. For each genomic window, we calcu-
lated the correlation between estimated pseudotime and ReadZS value (Fig. 2A). We 
should note that this type of analysis is impossible to do with other methods that use 
pseudobulking (e.g., Sierra, MAAPER) or are limited to comparisons between clus-
ters (e.g., scDaPars). In human, restricting to the 563 windows overlapping anno-
tated 3′ UTRs (“Methods”), 93 windows had significant correlation to pseudotime 
(|Spearman’s correlation| > 0.3, Bonferroni-corrected p-value < 0.05; Additional file 3: 
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Table  S2). Fourteen out of 93 (15%) windows were positively correlated, consistent 
with 3′ UTR lengthening, and 79 (85%) were negative, consistent with global shorten-
ing (hypergeometric p-value < 1E−20 for enrichment of negatively correlated win-
dows). In mouse, restricting to the 310 windows overlapping annotated 3′ UTRs, 3 
(1%) significant windows had signs consistent with 3′ UTR lengthening and 307 (99%) 
had signs consistent with shortening (hypergeometric p-value < 0.017). This finding is 
consistent with work showing that 3′ UTRs globally shorten during mouse spermato-
genesis [20, 28, 37]; we are not aware of studies that have reported this phenomenon, 
or the genes we identify as regulated during spermatogenesis, in humans.

To test if there is evolutionary conservation of mammalian genes undergoing regu-
lated changes in 3′ UTR length, we matched and found 374 genomic windows (in 314 
genes) annotated with the same gene in both mouse and human (“Methods”). Fifty-
six of 374 (15%) of window pairs were significantly correlated with pseudotime in 
both human and mouse, significantly more overlap than expected by chance (hyper-
geometric p-value = 0.006). Forty-two out of 56 pairs had the same sign of correla-
tion, corrected for gene direction (hypergeometric p-value = 1.27E−6). For example, 
ZFAND6, a zinc finger protein implicated in the pathophysiology of diabetes but not 
studied in spermatogenesis [41], shows high conservation across vertebrates in the 3′ 
UTR. Indeed both human and mouse exhibit similar patterns of 3′ UTR shortening in 
spermatogenesis (Fig. 2B). Mouse read distributions further support an unannotated 
3′ UTR (indicated by the right-most dotted red line in Fig. 2B). The significant over-
lap in magnitude and direction of significant correlations between human and mouse 
supports the finding that ReadZS detects unreported, evolutionarily conserved regu-
lation of RNAP during spermatogenesis.
ARPP19, a gene known to be a mitotic regulator but with unreported 3′ APA regu-

lation [42, 43], has the largest negative correlation with pseudotime in human, reflect-
ing 3′ UTR shortening. The second highest magnitude correlation is in S100A10, a 
gene studied in the immune system but with unknown function in sperm [44]. ReadZS 
detects a shift in RNAP over time, but peaks in the detected window are overlapping 

Fig. 2  ReadZS detects developmentally regulated RNAP in human and mouse spermatogenesis. A The 
ReadZS detects a global trend of 3′ UTR shortening in both human (left) and mouse (right) spermatogenesis 
datasets, indicated by significant negative correlation between ReadZS and pseudotime. Significance is 
defined as |Spearman’s correlation| > 0.3 and Bonferroni-corrected p-value < 0.05. Histogram bin width = 
0.02. B The ReadZS reveals evolutionarily conserved 3′ UTR regulation in human and mouse. Left: windows 
containing the 3′ end of ZFAND6 were significantly correlated with pseudotime in both human (Spearman’s 
correlation = −0.341, Bonferroni-corrected p-value < 1E−39) and mouse (Spearman’s correlation = −0.757, 
Bonferroni-corrected p-value < 1E−84). Vertical red lines indicate peak positions. Right: the 3′ UTR region 
of ZFAND6 in human shows high conservation with other vertebrates (UCSC Genome Browser). Red lines 
correspond to peak positions from the left plot. C The ReadZS discovers fine-scale developmental regulation 
of RNAP in human spermatogenesis, including in regions where neighboring APA sites create highly 
overlapping peaks. Note that the scatterplots show ReadZS before sign correction based on gene direction. 
Left, top to bottom: windows with significant correlation between ReadZS and pseudotime within the 
first 0 to 25% of pseudotime: OAZ1, which is both significantly correlated over all pseudotime (Spearman’s 
correlation = 0.131, Bonferroni-corrected p-value = 1.5E−06) and within the first 0 to 25% of pseudotime 
(Spearman’s correlation = 0.59, Bonferroni-corrected p-value < 1E−55), and MED21, which is only 
significantly correlated when restricting the first 0 to 25% of pseudotime (Spearman’s correlation = −0.535, 
Bonferroni-corrected p-value < 1E−23), not across all of pseudotime. Right, top to bottom: the windows 
with the two highest correlation values when calculated over all of pseudotime: ARPP19 (Spearman’s 
correlation = 0.74, Bonferroni-corrected p-value < 1E−223) and S100A10 (Spearman’s correlation = 0.666, 
Bonferroni-corrected p-value < 1E−88). Red lines highlight peak positions

(See figure on next page.)
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and thus would likely be missed by a peak caller (Fig. 2C). Other examples of pseu-
dotime-correlated RNAP include windows with overlapping or multiple peaks, e.g., 
windows covering the 3′ UTRs of TSSK1B and SLC25A37 (Additional file 1: Fig. S5).

Manual curation of spermatogenic transitions can categorize sperm into develop-
mental categories: spermatocytes, spermatids, and mature sperm. These stages have 
been pseudobulked to enable differential APA analysis [45]. However, because the 
ReadZS value is computed at a single-cell level, it potentiates discovery of fine-scale 
developmental transitions such as pseudo-temporal trends within immature sperm. 
To illustrate this capability, we used ReadZS to study differential RNAP within narrow 
windows of pseudotime. We correlated the ReadZS values to pseudotime, restricted 
to the earliest 25% of time in human (Fig. 2C). Out of 1433 windows with calculable 

Fig. 2  (See legend on previous page.)
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correlation in that pseudotime interval, 38 windows had significant correlation to 
pseudotime (|Spearman’s correlation| > 0.3, Bonferroni-corrected p-value < 0.05). 
These windows include OAZ1, a gene implicated in ovarian function but with unre-
ported regulation in sperm, which shows 3′UTR lengthening (Fig.  2C) [46]. Thirty-
two windows had significant correlation within the first 25% of pseudotime but not 
over the entire range of pseudotime. These windows include MED21, a component 
of the mediator complex involved in transcriptional regulation which shows general 
shortening. Like OAZ1, MED21 contains overlapping peaks and peaks at unanno-
tated 3′ UTR sites, which may hinder a peak calling algorithm (Fig. 2C). Such discov-
eries highlight the power of a single-cell measure of RNAP that can discern RNAP 
within a “cell type,” including events early in spermatogenesis.

ReadZS discovers developmentally regulated RNAP in Arabidopsis root development

In mammals, 3′ UTR length has been shown to play a pivotal role in development, with 
cells producing longer transcripts over the course of embryonic development [10], and 
proliferating cells producing shorter UTRs that bypass miRNA-potentiated growth 
inhibition [9, 47]. APA in plants is also highly prevalent, with over 75% of transcripts 
undergoing APA [48], and highly regulated, including in the developmental process of 
flowering [49, 50]. Furthermore, the growth hormone auxin has been shown to affect 
APA, though the precise mechanisms remain unknown [51]. To determine whether APA 
is also regulated during root development, we applied the ReadZS to four 10X libraries 
of Arabidopsis root [52] (library names sc_1, sc_9_at, sc_10_at, and sc_11 from [53]). 
We calculated the correlation between ReadZS and pseudotime within each cell type. 
We then selected genomic windows that overlapped with annotated 3′UTR regions and 
counted how many significantly regulated windows (|Spearman’s correlation| > 0.1, Bon-
ferroni-corrected p-value < 0.05) had signs of correlation consistent with 3′UTR length-
ening or shortening. Across the four libraries analyzed, 1047 window-cell type pairs had 
signs of correlation consistent with lengthening, while only 133 had signs consistent 
with shortening (Fig. 3A; Additional file 4: Table S3). To test if this result was affected by 
the incompleteness of 3′ UTR annotations, we recalculated the ReadZS for these librar-
ies using gene positions instead of 1-kb windows, so that a ReadZS value was calculated 
for each cell and gene pair, instead of for each cell and genomic window pair as in the 
standard ReadZS workflow (“Methods”). After calculating correlation between ReadZS 
and pseudotime, we again found a general trend of lengthening, with 1763 gene-cell type 
pairs having correlation signs consistent with lengthening and only 302 consistent with 
shortening. These congruous results support the finding that the ReadZS detects tran-
script lengthening in Arabidopsis root development and differentiation, analogously to 
the 3′UTR lengthening observed in mammal development.

To identify individual genomic windows undergoing changes in RNA processing over 
the course of differentiation, we ranked window-cell type pairs by the magnitude of the 
Spearman’s correlation between ReadZS and pseudotime, as done in the spermatogen-
esis analysis. In the most highly correlated window from one of the libraries, read dis-
tribution shifts occur over the 3′ end of gene At5g10430 in atrichoblasts, suggesting that 
the changes in read distribution could be caused by APA in this gene (Fig. 3, Additional 
file 1: Fig. S6). This window is also significantly correlated with pseudotime in the cortex, 
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trichoblast, procambium, and endodermis cell types in the same library. At5g10430 is an 
arabinogalactan-protein known to be involved in reproduction, but the role of alterna-
tive UTRs is unknown. Furthermore, we observe reads downstream of the annotated 3′ 
end of the transcript, indicating that the existing annotation is incomplete.

The second most highly correlated window in library sc_11 occurs in trichoblasts and 
overlaps with the 3′UTR of gene At5g44020, for which only one isoform is known (Fig. 3, 
Additional file 1: Fig. S6). The differences in read distribution over the course of pseu-
dotime are mostly in the second exon of the gene (31% of reads in the first 25% of pseu-
dotime are from this exon, versus 7% of reads in the last 25% of pseudotime), suggesting 
developmentally regulated changes in splicing kinetics or intron retention. The ReadZS 
discovers both examples of regulated RNAP changes as it does not rely on peak calling 
or annotation.

Fig. 3  ReadZS detects regulated RNAP in Arabidopsis root cell differentiation. A The ReadZS detects a global 
trend of 3′ UTR lengthening in the pseudotime trajectory by cell type of Arabidopsis root cells, as indicated 
by significant positive correlations between ReadZS and pseudotime. The trend is consistent whether 
the ReadZS was calculated for each 1kb genomic window (left) or for each gene (right). This analysis was 
performed for each cell type in libraries sc_1, sc_9_at, sc_10_at, and sc_11, and all the correlation values are 
aggregated in the histogram. B Binned histogram of read positions from genomic windows in Arabidopsis 
root with significant correlation between ReadZS and pseudotime: in atrichoblasts, genomic window 
overlapping the gene At5g10430 (Spearman’s correlation = 0.658, Bonferroni-corrected p-value < 0.0001), 
from library sc_9_at. C Binned histogram of read positions from genomic windows in Arabidopsis root with 
significant correlation between ReadZS and pseudotime: in trichoblasts, genomic window overlapping the 
gene At5g44020 (Spearman’s correlation = 0.620 Bonferroni-corrected p-value < 0.0001), from library sc_11



Page 13 of 28Meyer et al. Genome Biology          (2022) 23:226 	

ReadZS has complementary power compared to other algorithms

To the best of our knowledge, no published method is comparable to ReadZS, which can 
predict novel APA sites and detect alternative RNAP using only 10X data, completely 
agnostic to annotation. We still view it as important to illustrate how ReadZS compares 
to other methods.

First, we compared ReadZS to Sierra [16], which uses pseudobulk analysis to detect 
differential transcript usage (DTU) including from fibroblasts in injured and unin-
jured mouse hearts [54, 55]. Sierra was used to measure 3′ UTR length changes 
between actively cycling fibroblasts (F-Cyc, F-Act, or F-CI) and resting fibroblasts 
(F-SL and F-SH) and found 631 genes exhibiting DTU (though with unknown FDR). 
We performed ReadZS analysis on this data and found 308 significant windows, 
across 272 genes (FDR < 0.05; Additional file  5: Table  S4; “Methods”). Surprisingly, 
over 90% of these genes were not called or reported by Sierra. Restricting to 631 genes 
with DTU reported by Sierra, 126 had sufficient per-cell read coverage to calculate 
the single-cell-resolved ReadZS and 23 (18%) of these genes were called by ReadZS. 
Out of the 7 genes the authors investigated via RT-qPCR, only windows intersect-
ing CD47 and COL1A2 had sufficient read depth (≥ 5 counts in ≥ 10 cells) in at least 
two fibroblast populations to calculate median ReadZS values, and both were called 
significant by ReadZS. Despite the limitation of shallow read depth, ReadZS discovers 
many cases of regulated 3′ UTR changes missed by Sierra. Examples of new discover-
ies by ReadZS include Rpl13a, missed by Sierra despite having two cleanly separated 
APA peaks, and Rab2a, where multiple APA sites in the final exon create overlap-
ping peaks which we expect to be missed by peak calling-based methods (Fig.  4A). 
This analysis illustrates that ReadZS is a complementary approach that recovers genes 
found by other algorithms and reveals biology they miss.

Next, we compared ReadZS to MAAPER, a model-based probabilistic approach for 
predicting polyadenylation sites in data and identifying APA [17]. The main limitation 
of MAAPER is that it requires an existing database of polyadenylation sites; therefore, 
it cannot detect novel APAs and cannot even be applied to emerging model organ-
isms without any or at most partial annotations such as Arabidopsis. When applied 
to single-cell RNA-seq data, MAAPER uses pseudobulking to perform pairwise com-
parison between cell types, so we performed pairwise comparisons with ReadZS as 
well, even though this is not the normal use case of ReadZS. We note that the statisti-
cal framework and workflow of MAAPER are not designed for running on separate 
single cells, so we did not use SS2 data to compare ReadZS and MAAPER. To set 
up the pairwise comparisons, we selected five cell types shared between HLCA P2 
and P3. Then, we ran each algorithm on every possible pair of cell types from P2 and 
P3. As there is no ground truth for regulated RNAP differences in HLCA, we defined 
three proxy measures to evaluate the performance of the algorithm: one proxy for 
true positive rate (TPR), and two proxies of false positive rate (FPR1 and FPR2; see 
“Methods”). We should note that our proxies for estimating true positive rate and 
false positive rate rely on the assumption that there are no true biological differences 
between the two HLCA individuals, which is of course impossible. As such, we expect 
to always detect some non-zero level of “false positive” as defined by our measures, 
reflecting actual differences between the individuals. In these comparisons, ReadZS 
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Fig. 4  Comparison of ReadZS with pseudobulk-based approaches for APA detection. A The ReadZS has 
unique power to discover regulation missed by peak callers. In both of these examples called by ReadZS as 
significant, the change in relative peak height suggests the different groups of fibroblasts use alternate PA 
sites at different rates, yet these genes were not called by Sierra as undergoing DTU. Top: Rpl13a has cleanly 
separated peaks but was not called by Sierra. Bottom: the jagged peaks of reads in the 3′UTR of Rab2a might 
hinder peak calling-based methods. B Proxy measurements for true and false positive rates of MAAPER and 
ReadZS, from comparisons of different pairs of cell types from HLCA P2 and P3, evaluated at different alpha 
values (corrected p-value cutoffs for significance): “true positive rate” proxy (TPR)—red squares; “false positive 
rate” proxy 1 (FPR1)—blue circles, and “false positive rate” proxy 2 (FPR2)—green triangles (see “Methods” 
for calculation of these metrics). Missing points indicate that there were not sufficient significant genes or 
windows to calculate the proxy measurement. Full set of plots is in Additional file 1: Fig. S5. C Comparison of 
the total memory and run time (measured in GB•hours) for running ReadZS or running MAAPER on the same 
data. Each row represents a set of data, specifically a comparison between two cell types subsetted from the 
combined HLCA P2 and P3 datasets. ReadZS GB•hours were calculated automatically for each Nextflow run 
in the Nextflow Tower interface. MAAPER GB•hours were calculated by multiplying the memory allocated to 
each job with the number of hours required to run the data. D SCGB3A1 is one of many genes not called by 
MAAPER but identified by ReadZS as undergoing cell type-specific RNAP. The window overlapping SCGB3A1 
was called as significant by ReadZS in the comparison between macrophages (from HLCA P2 and P3) and 
alveolar epithelial type 2 cells (from HLCA P2 and P3)
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was able to achieve similar TPR, FPR1, and FPR2 as MAAPER, despite not relying on 
pseudobulking as done in MAAPER (Fig. 4B, Additional file 1: Fig. S7). Furthermore, 
examining the read distribution of several windows called by ReadZS as significant 
but considered “false positives” in this analysis, we observe differences in read distri-
bution at 3′UTR sites, suggesting that the two individuals may have true differences in 
polyadenylation for certain genes. For example, a window overlapping the 3′UTR of 
the gene TNFSF10 was called as significant by ReadZS when comparing P2 capillary 
cells and P3 capillary cells (Additional file 1: Fig. S8). Although this would count as a 
“false positive” by our FPR1 definition, the read distribution indicates a real difference 
in isoform usage between the two individuals (Additional file  1: Fig. S8), indicating 
that this is in fact computationally a true positive. Furthermore, this same genomic 
window was called as significantly differentially regulated between epithelial type II 
pneumocytes and capillary endothelial cells in lung data from Tabula Sapiens (unpub-
lished data), confirming that TNFSF10 undergoes regulated RNAP in lung.

Because the ReadZS score is calculated at the single-cell level, in a pairwise com-
parison ReadZS will detect fewer differential RNAP events compared to a pseudob-
ulking-based such as MAAPER, which aggregates all the reads across individual 
cells within a cell type. Accordingly, ReadZS called fewer genes as having significant 
differences in RNAP: across all the comparisons run, 1358 calls (unique celltype1 - 
celltype2 - gene) were found by ReadZS only, 163,085 calls were found by MAAPER 
only, and 588 calls found by both (43% of the genes found by ReadZS), indicating that 
many of the ReadZS calls are potential true positives. ReadZS was also able to detect 
clear cases of APA missed by MAAPER, such as in the gene SCGB3A1 (Fig. 4D). We 
note that MAAPER also required much more memory and time than ReadZS to run 
the same comparisons (Fig.  4C). Overall, this analysis demonstrates that ReadZS—
despite not using pseudobulking—can achieve similar levels of sensitivity and speci-
ficity when compared to a state-of-the-art algorithm designed to detect APA.

Finally, we compared ReadZS to scDaPars, an algorithm for quantifying APA at single-
cell resolution [15]. We used the same five cell types from the HLCA data sets as used 
in the MAAPER comparison, and similarly ran scDaPars on every possible pair of data 
set 1/cell type A vs. data set 2/cell type B. scDaPars requires several preprocessing steps, 
namely splitting 10X data into separate files for each cell, converting BAMs to wig files, 
and running DaPars2, before running scDaPars (“Methods”). Though we were able to 
run DaPars2 on each cell type pair, there were not sufficient APA events to run scDaPars 
successfully for any pair. We note that ReadZS is able to detect APA events at a true 
single-cell level and is thus not constrained by smaller data sets.

A pseudobulking-based method (such as Sierra and MAAPER) will tend to have 
greater power in pairwise comparisons than a true single-cell-resolved method such as 
ReadZS. However, ReadZS has power against alternatives where similar methods lack it: 
(1) what ReadZS can detect is not restricted to the 3′ UTR; (2) multiple APA sites within 
the same exon of a gene can create overlapping peaks in the read coverage, which cannot 
be quantified by a peak calling method (e.g., Fig. 4A); and (3) because ReadZS is a true 
single-cell measure of differential RNAP, it can automatically discover RNAP regulated 
as a function of pseudotime, which no other method is capable of. Importantly, discov-
eries by ReadZS include shifts in read distributions that would be missed by published 
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methods [15, 16, 45] for APA detection based on peak calling. Finally, ReadZS does not 
depend on any gene or polyadenylation annotation for detecting regions with significant 
RNAP, so ReadZS can be applied to genomes with incomplete or missing annotations.

Discussion
In summary, ReadZS is a new statistical approach that does not involve pseudobulk-
ing, imputation, or peak calling. ReadZS does not use any annotations, such as gene 
boundaries or polyadenylation sites, to identify regions of the genome with regu-
lated RNAP. As a true single-cell measure of differential RNAP, ReadZS can be inte-
grated with continuous metadata such as pseudotime to identify developmentally 
regulated, continuous changes in RNAP—which cannot be done with any existing 
methods to detect RNAP. Unlike other methods, ReadZS can be directly applied to 
droplet-based scRNA-seq such as 10X Chromium (10X) without needing separate 
sequencing files for each single cell (as in scDaPars [15]) or for each cell type being 
compared (as in Sierra [16] and MAAPER [17]). To the best of our knowledge, there 
is no other computational method that is both pseudobulking- and annotation-free, 
does not rely on peak calling, and can provide true single-cell quantification for 
RNAP and provide a well-defined statistical criterion for identifying regulated cell 
type-specific RNAP events at a controlled false discovery rate (Table 1).

ReadZS quickly discovers novel regulated RNAP in a variety of contexts. Apply-
ing the ReadZS to 10X data from the HLCA, we discovered novel RNAP regulated 
at the cell type level, including the use of previously unannotated 3′ UTRs. ReadZS 
showed highly consistent results between the three individuals in the HLCA data-
set. To demonstrate the utility of ReadZS in conjunction with continuous metadata, 
we applied ReadZS to paired datasets of human and mouse spermatogenesis. We 
observed global 3′ UTR shortening in mouse, which has been previously docu-
mented [37, 38], but we also found the first evidence of global 3′ UTR shortening in 
human spermatogenesis. Furthermore, by comparing the genes called as significant 
by ReadZS in the two different organisms, we found significant evolutionary conser-
vation of genes undergoing regulated 3′ UTR changes. We also applied ReadZS to a 
highly studied but relatively less well annotated model organism, Arabidopsis. In a 
dataset of root development, we observed global 3′ UTR lengthening over the course 
of development. Global 3′ UTR lengthening is known to occur over mammalian 
development, with shorter 3′ UTRs in proliferating cells thought to evade miRNA-
based inhibition [9, 47], but such a phenomenon is completely novel in plants.

The computational pipeline is efficient and lightweight and can be easily inte-
grated into any existing single-cell pipeline. The window sizes used in this manu-
script and the use of poly(A) primed data are not necessary for the methodology 
developed here. For example, windows could be chosen adaptively or based on a 
subset of features of interest. In addition, 5′ capture technology, SS2 data, or even 
scATAC-seq [56] could all be used as inputs to ReadZS because the algorithm oper-
ates on read distributions that need not form peaks. For example, we would expect 
the ReadZS could detect differential 5′ UTR use, intron retention, or exon inclu-
sion when windows include these features along with neighboring features that are 
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not differentially processed (e.g., a constitutive exon or UTR). We anticipate that 
ReadZS should also be a powerful analytic tool for data such as that generated by 
single-nucleus sequencing or derived from split-pool tagging [57]. A final area of 
future work will be to test whether more cell types and states can be defined when 
the ReadZS value is used—by itself or in conjunction with gene expression—to per-
form clustering analysis or trajectory inference.

Conclusion
ReadZS is a novel, reproducible, robust, and annotation-free statistical algorithm to 
detect regulated RNAP in high-throughput single-cell RNA sequencing data. Apply-
ing it to primary cells reveals new biology of RNAP, including in regions outside and 
within the 3′ UTR and encompassing regulation missed by peak calling algorithms. 
We anticipate that further analysis of the ReadZS will facilitate deeper functional 
inference for regulated RNAP in single cells, including 3′ UTR use. As more single-
cell RNA-seq data becomes available for poorly annotated or non-model organisms, 
annotation-free approaches are increasingly critical for discovering regulated RNAP.

Methods
Creating counts tables from 10X BAM

The ReadZS summarizes the transcription state of a genomic window in a single cell. 
It is calculated using only reads that fully align to the genome with no gapping, so it 
excludes spliced reads. 10X reads were aligned using STAR (v 2.7.5.a) [58] with default 
parameters except for chimSegmentMin = 10 and chimJunctionOverhangMin = 10. 
UMI demultiplexing and cellular barcode identification and correction for 10X data 
was performed using UMI-tools [59]. BAM files were opened with Samtools and reads 
were filtered based on the CIGAR string “<length(SEQ)>M” and MAPQ score 255 to 
only allow uniquely mapping exact and full-length matches. The reads were then split by 
chromosome and strand. The reads were deduplicated, by removing cells with any dupli-
cated UMIs or UMIs aligning to more than one unique position. The reads were then 
collapsed using the identifier column and counted at each position.

Each chromosome is split up into equal-sized windows with size inputted by the 
user—5-kb windows were used in human and mouse analysis and 1-kb windows were 
used in Arabidopsis analysis. Each read is assigned a stranded window based on the 
read’s position and strand. The tables of reads and counts are then separated by chromo-
some. If there are multiple samples or files within the experiment, the counts tables from 
the same chromosome from different samples are concatenated together, e.g., all reads 
from chromosome 1 from any file are in the same counts file. For HLCA data, the data 
was divided by participant for ReadZS calculation in order to avoid any batch effects 
between individuals. For the Sierra, human spermatogenesis, and mouse spermatogen-
esis datasets, all data was analyzed together. For Arabidopsis data, each BAM file was 
analyzed separately.
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ReadZS calculation for each window and cell type

To calculate the ReadZS value for a window in a particular cell i, the genomic positions 
falling within the window across all cells are assigned an increasing rank, with the most 
5′ and 3′ positions (with at least one aligned read) assigned rank 1 and the highest rank, 
respectively. Only positions appearing in the data (i.e., positions with at least one read 
mapped there) are assigned a rank value and there is no gap in ranks between one posi-
tion and the next, even if the positions are far apart on the genome.

For each given window, let mir be the number of aligned genomic reads at the position 
with rank r along the window in cell i. The weighted ranks in each cell are found by mul-
tiplying each rank r by the number of reads at that rank, mir, in cell i. If the total number 
of reads within the window across all cells is N, we can compute μ, the mean rank for 
this window across all cells, as:

and the standard deviation σ of the weighted ranks by:

The ranks within the window are renormalized by subtracting the mean μ, and dividing 
by the standard deviation of the ranks, σ:

Finally, the ReadZS value zi for the window in cell i is computed as the weighted average 
of the normalized ranks:

where Ni is the total number of reads from the window in cell i. It can be seen that the 
expectation of zi is zero and its variance is approximately 1

Ni
 , knowing that the variance 

of the sum of independent random variables equals the sum of their variances. This is 
an approximation as we assume that the ranks of the aligned reads across a window are 
independent.

Identification of windows with regulated RNA processing: median ReadZS and its p‑value 

for each window/cell type pair

When cell type metadata is available, cells can be assigned a cell-specific annotation (e.g., 
lung macrophage). For each window, a median ReadZS is then calculated within each cell 
type. To calculate the median ReadZS for a pair of a window and cell type, we required a 
minimum of 20 cells with at least 10 counts in that window-cell type combination. In the 
HLCA data, lowering thresholds for calculating ReadZS to 5 counts in 10 cells results in 
2578 windows (across 2160 genes) with calculable ReadZS and 374 windows (14.5%) called 
as significant likely due to decreased statistical power resulting from fewer reads and cells. 
In P1 and P2, respectively, at lower count thresholds, 112 (resp. 403) windows, 10.3%, (resp., 
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15.1%) were significant out of 1084 (resp. 2672) calculable. For the mouse fibroblast data, 
we reduced these minimum requirements to 10 cells with at least 5 counts to account for 
the lower read depth. To systematically prioritize windows for further follow-up studies, 
windows were ranked according to the range of median ReadZS values across all cell types. 
To find which genes and 3′ UTRs intersect these windows, we intersected the window posi-
tions with annotation BED files of genes and 3′ UTRs requiring an overlap of at least 25% to 
annotate a window with that gene or 3′ UTR.

To evaluate whether there is a significant difference that is more extreme than expected 
by chance between the median ReadZS values for a window across different cell types, 
we compute a p-value by adopting an approach from [60] that was also used for the SpliZ 
method [61]. For each window being present in I cell types, let nibe the number of cells in 
cell type i, θn, i be the median of the ReadZS values across cell type i, and σ2

n, i be the sample 
variance of the ReadZS values for the window from cell type i. We can compute the follow-
ing test statistic on the ReadZS medians for the window:

To obtain a null distribution for this test statistic, we permute the cell type assign-
ments a number of times (we have used 100 permutations) and then compute the test 
statistic T(j)

n, 1 for each permutation. According to [60], this permutation distribution 
converges to the chi-squared distribution with k − 1 degrees of freedom. So, before start-
ing with permutations, we first calculate the p-value for each window (pχ) by comparing 
it to the chi-squared distribution. This approach saves compute time by allowing us to 
quickly filter out most windows that are not significant. Then, only if the window has 
pχ < 0.05  , a p-value based on permutations (pperm) is computed by permuting cell type 
labels. To determine whether the observed test statistic Tn, 1 is extreme in either direc-
tion, we first compute the cumulative distribution function (CDF) of the permutation 
distribution as:

and using this CDF, we can calculate a two-sided p-value as

To correct for multiple hypothesis testing across windows, we apply Benjamini-Hoch-
berg procedure to the pperm values and use a significance level of 0.05 to obtain the list of 
significant windows with cell type-specific RNA processing.

Identification of windows with regulated RNA processing: correlation between ReadZS 

and pseudotime

In the human and mouse spermatogenesis datasets, as well as the Arabidopsis root 
dataset, we calculated the correlation between ReadZS and pseudotime for all windows 
with at least five reads from that window in at least 300 cells. We called a window as 
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significant if it had |Spearman’s correlation| > 0.3 (for spermatogenesis) or |Spearman’s 
correlation| > 0.1 (for Arabidopsis), and Bonferroni-corrected p-value < 0.05.

3′ UTR shortening in human and mouse spermatogenesis

To examine changes in the 3′ UTR length, we intersected all the significantly corre-
lated genomic windows in the human and mouse spermatogenesis datasets with RefSeq 
3′UTR annotations obtained from the UCSC Table Browser, requiring an overlap of at 
least 25% to annotate a window with that 3′ UTR. We then determined the “sign-cor-
rected correlation value” by multiplying the Spearman’s correlation coefficient by −1 if 
the genomic window was on the minus strand. That way, a window with a negative cor-
relation to pseudotime always indicates a skew towards more upstream reads for that 
gene, i.e., 3′ UTR shortening if the window covers a 3′ UTR region. We first considered 
genomic windows with any 3′ UTR annotations: in human, we found 79 windows (85%) 
out of 93 with negative sign-corrected correlations, consistent with 3′ UTR shortening; 
in mouse, we found 307 (99%) out of 310 windows with negative sign-corrected correla-
tions. Since a genomic window may contain several exons or even several genes, we also 
considered genomic windows with 3′ UTR annotations but without any 5′ UTR or exon 
annotations. Among those windows, we found 6 (86%) out of 7 in human and 66 (96%) 
out of 69 in mouse had negative sign-corrected correlations, consistent with overall 3′ 
UTR shortening.

Overlap between human and mouse windows with significant correlation

To test whether there were genes exhibiting similar changes in RNA processing over 
spermatogenesis in both mouse and human, we selected the windows from both data 
sets with calculable correlation to pseudotime (requiring a minimum of 5 counts per 
window per cell in at least 300 cells) and intersected the two data sets to find win-
dows with matching RefSeq gene names in mouse and human. Among window pairs 
with the same gene name in human and mouse (374 in total), we found 56 window 
pairs where both windows were significantly correlated with pseudotime, and 40 of 
those had negative correlation values for both windows (after correcting for gene 
direction). We used a hypergeometric test to calculate whether these overlaps of sig-
nificance and correlation sign were more extreme than expected by chance, using the 
R function phyper.

3′ UTR lengthening in Arabidopsis root

We applied the ReadZS to libraries sc_1, sc_9_at, sc_10_at, and sc_11 from [53] and 
calculated correlation with pseudotime for each window and cell type with at least five 
reads from that window in 300 cells of that cell type. To examine changes in the 3′ UTR 
length, we intersected the genomic windows with 3′UTR annotations obtained from the 
Araport11 genome release GFF file from arabi​dopsis.​org, requiring an overlap of at least 
25% to annotate a window with that 3′ UTR. We then determined the “sign-corrected 
correlation value” by multiplying the Spearman’s correlation coefficient by −1 if the 
genomic window was on the minus strand. That way, a window with a negative correla-
tion to pseudotime always indicates a skew towards more upstream reads for that gene, 
i.e., 3′ UTR shortening if the window covers a 3′ UTR region. Out of 1180 window-cell 

http://arabidopsis.org
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type pairs with |Spearman’s correlation| > 0.1 and Bonferroni-corrected p-value < 0.05, 
there were 1047 (88.8%) windows with positive sign-corrected correlations, consistent 
with 3′UTR lengthening.

We also created a version of the ReadZS that uses gene regions instead of genomic 
windows as the base unit for ReadZS calculation. Specifically, instead of assigning reads 
to equally sized genomic windows and calculating a ReadZS value for each cell and win-
dow, we assigned reads to genes and calculated a ReadZS value for each cell and gene. 
We ran this version of the ReadZS on the same four Arabidopsis libraries and then cal-
culated correlation with pseudotime in the same way. Then, without further filtering 
the list of genes, we determined the sign-corrected correlation values and counted how 
many gene-cell type pairs had positive or negative sign-corrected correlations. Out of 
2065 gene-cell type pairs with Spearman’s correlation| > 0.1 and Bonferroni-corrected 
p-value < 0.05, there were 1763 (85%) with positive sign-corrected correlations, consist-
ent with 3′UTR lengthening.

Concordance of ReadZS between pairs of data sets

In order to assess whether the windows called as significant by ReadZS have consist-
ent cell type-specific regulation of RNA processing between data sets, we created a 
test statistic that measures concordance in ReadZS values for a window between data 
sets. Assume that for a genomic window called as significant, cell type “A” has a higher 
median ReadZS value compared to cell type “B,” i.e., the read distribution in cell type A 
is more skewed upstream relative to cell type B. If these differences in read distributions 
between cell types reflect real biological signals, we expect cell type A to consistently 
have a higher median ReadZS than cell type B in different biological replicates. There-
fore, for each genomic window called as significant, we expect the cell types to follow 
the same ranking as determined by their median ReadZS values. Accordingly, we created 
the following test statistic to measure the concordance between two data sets for each 
significant window:

where Rij is the rank of the ith cell type out of mj cell types for genomic window j, Rij
′ is the 

rank of the same cell type and window but in the second data set, and N is the total number 
of significant genomic windows. If most windows have similar rankings of cell types in the 
two data sets, the differences in ranks between the data sets will tend to be small, resulting in 
a smaller value for χ. We simulated a null distribution for χ for each pair of data sets by cal-
culating χ 5000 times using permuted ranks. For each iteration, we first randomly permuted 
the ranks of cell types in the second data set, and then we used the intact first data set and the 
permuted second data set to compute χ. For each pairwise comparison of data sets, we were 
then able to calculate a p-value by comparing the real value of χ against the simulated null 
distribution.

Comparison with MAAPER

We ran MAAPER on every possible cell type pair (P2 or P3 cell type A compared against 
P2 or P3 cell type B) from the below cell types in HLCA data:
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•	 Lung (immune) macrophage
•	 Lung (endothelial) capillary
•	 Lung (endothelial) capillary aerocyte
•	 Lung (immune) natural killer
•	 Lung (epithelial) alveolar epithelial type 2

We defined the following measures to evaluate the performance of each algorithm:

(A)	“True positive rate” proxy (TPR) was defined as the proportion, out of all windows 
(for ReadZS) or genes (for MAAPER) tested, of windows/genes that were found 
to undergo significant APA in both P2 cell type A vs. P3 cell type B, and in P2 cell 
type B vs. P3 cell type A, with the same effect direction in both comparisons. These 
windows/genes demonstrated differences between cell types from different biologi-
cal samples, and these differences are replicated when the replicates are switched, 
suggesting that there are consistent cell type-specific differences in APA.

(B)	 “False positive rate” proxy 1 (FPR1) was defined as the proportion, out of all win-
dows/genes tested, of windows/genes that were found to undergo significant APA 
in either the P2 cell type A vs. P3 cell type A comparison or the P2 cell type B vs. P3 
cell type B comparison. These windows/genes were called as significant on the basis 
of differences detected between biological replicates, within the same cell type, sug-
gesting that there is no cell type-specific APA occurring in these cases, so these are 
counted as false positives.

(C)	“False positive rate” proxy 2 (FPR2) was defined as the proportion, out of all win-
dows/genes tested, of windows/genes that were found to undergo significant APA 
in both P2 cell type A vs. P3 cell type B, and in P2 cell type B vs. P3 cell type A, 
but with a different direction of effect in the two runs. These windows/genes were 
called as significant on the basis of differences detected between cell types from dif-
ferent biological samples, that are not replicated when the replicates are switched, 
suggesting that these effects could be false positives.

Comparison with scDaPars

We used the same (as in the MAAPER comparison) set of all possible cell type pairs (P2 
or P3 cell type A compared against P2 or P3 cell type B) from the below cell types in 
HLCA data:

•	 Lung (immune) macrophage
•	 Lung (endothelial) capillary
•	 Lung (endothelial) capillary aerocyte
•	 Lung (immune) natural killer
•	 Lung (epithelial) alveolar epithelial type 2

For each set of data, we did the following preprocessing steps in preparation for run-
ning scDaPars:

(1)	 Split the BAM files by cell ID, using awk
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(2)	 Converted the BAM files to wiggle files, using samtools
(3)	 Created a table of wig file paths and corresponding numbers of mapped reads, for 

input into DaPars2, using samtools
(4)	 Ran DaPars2 on the data, with each cell in a separate file (as indicated in the scDa-

Pars GitHub page)
(5)	 For each run, combined the separate output files for each chromosome into a single file
(6)	 Ran scDaPars on each combined output file, which failed in every case due to insuf-

ficient points

Peak calling using Gaussian mixture model

For each significant window called by ReadZS, we performed peak calling by fitting a 
Gaussian mixture model (GMM) to the distribution of the reads from the entire data-
set across that window. We obtain the optimal number of components in the GMM, 
which corresponds to the number of peaks in the read distribution, as the knee point 
in the integrated complete-data likelihood (ICL) curve across different numbers of 
components. We apply the ICL criterion to the read distribution of each window 
that was called as significant, and the peaks are found via fitting a Gaussian mixture 
model. We further compute the Bhattacharya distance between the components. If 
the distance is <0.5, we reduce the number of peaks by one and again fit a GMM. We 
stop if there is only one component remaining or the distance between components 
is at least 0.5.

Pipeline implementation using Nextflow

To allow for reproducible and parallelizable results, the ReadZS pipeline is written in 
Nextflow [25]. Nextflow is an open-source workflow management system that integrates 
command-line and scripting tools to analyze large-scale datasets. The ReadZS workflow 
takes in BAM alignment files from 10X or SS2, and it performs processing and calcula-
tion steps on all of the files in parallel. The workflow then outputs tables with cell type 
medians and their associated p-values (Additional file  1: Fig. S9). The workflow also 
allows users to input dataset-specific parameters, such as cell annotation files, genome 
window files, and the columns used to define ontology (cell type or other grouping). To 
further enhance portability, the entire workflow can be run on a high-performance com-
puting platform or on a cloud computing platform.

Calculating distance to 3′ UTR annotations

For human samples, the Gencode GFF3 files were used for distance calculations and 
plotting. For mouse samples, RefSeq GFF3 files were used. To extract 3′UTR regions in 
bed format, the GFF3 file was filtered for `feature type = ‘three_prime_UTR’`, with the 
`ID` field used as the 3′UTR identifier. To extract gene regions in bed format, the GFF3 
file was filtered for `feature type = ‘gene’`, with the `gene_name` field used as the gene 
identifier.

To determine the `num_3UTR_300bp_downstream` column, a bed file was created for 
each window’s start and end positions, shifted 300bp downstream relative to the strand 
of the window. To determine 3′ UTR ends, the 3′ UTR bed file was filtered for regions on 
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the same strand as the window, and the start position or end position was used to cre-
ate a separate bed file for minus and plus strands, respectively. The command `bedtools 
intersect -c -s` was used to find the number of overlapping 3′ UTR ends in each of the 
shifted windows.

To determine the `window_has_gene` column, a bed file was created for each window. 
The command `bedtools intersect -c` was used to determine if there were any annotated 
genes intersecting the window. To determine the `peak_has_600bp_downstream_gene` 
column, a bed file was created for the region of each peak and 600bp downstream from 
the peak, relative to the strand of the window. If the peak was at position less than 600 
and the window strand was “minus,” then the bed file was created for the region from 0 
to the peak. To determine if each shifted window intersects with any annotated genes, 
the command `bedtools intersect -c -s` was used for the shifted window and the anno-
tated genes bed file.

To determine the closest upstream and downstream 3′UTR ends, a bed file was cre-
ated for each peak, and `bedtools closest` was used to determine the 3′ UTR ends that 
were the least distant from each peak. For peaks located in a “plus” stranded window, the 
closest upstream 3′ UTR end and its distance were determined from the output of `bed-
tools closest -c` of the peak bed file and the strand-respective 3′ UTR ends bed file, with 
the `ignore downstream` flag to only capture upstream regions. The closest downstream 
3′ UTR end was determined with the same command, but with the `ignore upstream` 
flag to only capture downstream regions. For peaks located in a “minus” stranded 
window, the same commands were used, but with the `ignore upstream` flag used for 
upstream regions and the `ignore downstream` flag used for downstream regions, in 
order to account for reverse strandedness.

Plot generation for cell type annotated data

To investigate windows that showed a large range in median ReadZS values, histograms 
were plotted showing the number of counts at each genomic position. To plot each win-
dow, every ontology (i.e., cell type or other grouping) for that window was sorted by its 
median ReadZS value. The top 2 and bottom 2 ontologies were then chosen to be plotted 
for each window. For each ontology, pass-filter reads were extracted if they came from 
that window and from the cell barcodes associated with that ontology. These reads were 
then deduplicated, with positions rounded to a bin size of 10. Each position was then 
counted, by summing the number of reads at each position per ontology in that window. 
The count was then normalized by the total number of counts per ontology in that win-
dow, to produce a percent score.

To plot this percent score, the counts were read into Gviz [62], and positions without 
count values were imputed with 0. Each ontology was used to create a data track, with an 
x-axis range of the window start and window end. A respective genome GFF file was used 
to plot the gene region track, with the GFF “transcript” feature excluded, for visual clarity.

CDF and histogram generation for peak distances to 3′UTRs

The GMM-annotated peak tables were used to create the overlaid CDF and his-
togram of peak distances closest to a downstream 3′UTR end. For each dataset, 
the table was filtered for `peak_has_600bp_downstream_gene == True` and `df.
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downstream_3UTR_dist < VALUE`, where VALUE is some bound on the x-axis. 
Unless otherwise stated, all plots are made with `bins = 100` and VALUE=[200, 
800000]. The histograms and CDF plots were made with the matplotlib `hist()` func-
tion with `density=True`. The CDF plots were also plotted with `cumulative=True` and 
`histtype=’step’`. The quantiles were calculated with the pandas `quantile()` function, to 
determine the 25th, 50th, and 75th quantiles. The quantile cutoffs are visualized by the 
red-dotted lines.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02795-8.

Additional file 1: Supplementary figures. This file contains all supplementary figures, as well as in-depth descriptions 
of the supplementary tables (Additional files 2, 3, 4 and 5).

Additional file 2: Table S1. This table contains the cell type-specific RNA processing events detected in the HLCA 
dataset.

Additional file 3: Table S2. This table contains the cell type-specific RNA processing events detected in the mouse 
fibroblast dataset.

Additional file 4: Table S3. This table contains the cases of regulated RNA processing detected in human and mouse 
spermatogenesis.

Additional file 5: Table S4. This table contains the cases of regulated RNA processing detected in Arabidopsis root 
development.

Additional file 6. Review history.

Acknowledgements
We thank the Salzman Lab for useful discussion, especially Julia Oliveri and Robert Bierman for comments that enhanced 
the clarity of the document. We thank Sarthak Satpathy for early prototypes of processed BAM files that were used in 
early versions of ReadZS. We also thank Dr. Benjamin Cole for his assistance in obtaining the Arabidopsis 10X data and 
associated metadata.

Review history
The review history is available as Additional file 6.

Peer review information
Stephanie McClelland was the primary editor of this article and managed its editorial process and peer review in col-
laboration with the rest of the editorial team.

Authors’ contributions
EM contributed to development of the ReadZS statistic, wrote code for the ReadZS and significance calculations, ana-
lyzed data using the pipeline, and contributed to writing the manuscript. KC wrote code for the ReadZS and significance 
calculations, implemented the algorithm as a Nextflow pipeline, and analyzed data using the pipeline. RD contributed to 
development of the ReadZS statistic, wrote code for the peak calling steps, and contributed to writing the manuscript. 
JS designed the ReadZS statistic, oversaw the project, and was a major contributor in writing the manuscript. All authors 
read and approved the final manuscript.

Funding
E.M. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518 
and a Stanford Graduate Fellowship. J.S. is supported by the National Institute of General Medical Sciences Grants R01 
GM116847 and R35 GM139517 and NSF Faculty Early Career Development Program Award MCB1552196.

Availability of data and materials
The ReadZS Nextflow pipeline along with detailed instructions and test data are available through a GitHub repository, 
under an MIT license [63]. The version of the code used to generate these findings is available through Zenodo [64].
The human lung scRNA-seq data used here was generated through the Human Lung Cell Atlas project [27] and is 
accessible through European Genome-phenome Archive (accession number: EGAS00001004344) [28]. Human and 
mouse unselected spermatogenesis data [39] was downloaded from the SRA database with accession IDs SRR6459190 
(AdultHuman_17-3), SRR6459191 (AdultHuman_17-4), and SRR6459192 (AdultHuman_17-5) for human, and accession 
IDs SRR6459155 (AdultMouse-Rep1), SRR6459156 (AdultMouse-Rep2), and SRR6459157 (AdultMouse-Rep3) for mouse 
[40]. Arabidopsis root data [52] was downloaded from the SRA database with accession numbers SRR12046049 and 
SRR12046050 for library sc_1, SRR12046051 and SRR12046052 for library sc_9_at, SRR12046053 and SRR12046054 for 
library sc_10_at, and SRR12046055 and SRR12046056 for library sc_11 [53]. Mouse fibroblast data [54] was downloaded 
from ArrayExpress under identifier E-MTAB-7376 [55]. RefSeq annotations (used to annotate significant windows with 
intersecting genes and 3′ UTRs) were downloaded from UCSC Table Browser at genome.ucsc.edu; for GENCODE annota-
tions (used when computing distances between peaks and 3′ UTRs), we used v37 for human and vM26 for mouse, 
downloaded from genco​degen​es.​org.

https://doi.org/10.1186/s13059-022-02795-8
http://gencodegenes.org


Page 26 of 28Meyer et al. Genome Biology          (2022) 23:226 

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 April 2022   Accepted: 13 October 2022

References
	1.	 Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 

2011;43(6):853–66. https://​doi.​org/​10.​1016/j.​molcel.​2011.​08.​017 Available from: https://​www.​scien​cedir​ect.​com/​
scien​ce/​artic​le/​pii/​S1097​27651​10063​56.

	2.	 Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. Elife. 2016;5:e10921. https://​
doi.​org/​10.​7554/​eLife.​10921 Available from: https://​elife​scien​ces.​org/​artic​les/​10921.

	3.	 Tushev G, Glock C, Heumüller M, Biever A, Jovanovic M, Schuman EM. Alternative 3’ UTRs modify the localization, 
regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron. 2018;98(3):495–511.e6. 
https://​doi.​org/​10.​1016/j.​neuron.​2018.​03.​030 Available from: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0896​62731​83023​68.

	4.	 Wilusz CJ, Wormington M, Peltz SW. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001;2(4):237–46. 
https://​doi.​org/​10.​1038/​35067​025 Available from: https://​www.​nature.​com/​artic​les/​35067​025.

	5.	 Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18(1):18–30. https://​
doi.​org/​10.​1038/​nrm.​2016.​116 Available from: https://​www.​nature.​com/​artic​les/​nrm.​2016.​116.

	6.	 Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, et al. Widespread 
intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;24(11):1774–86. https://​doi.​org/​
10.​1101/​gr.​177790.​114 Available from: https://​genome.​cshlp.​org/​conte​nt/​24/​11/​1774.

	7.	 Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. Ubiquitously transcribed genes use alternative polyadenylation to 
achieve tissue-specific expression. Genes Dev. 2013;27(21):2380–96. https://​doi.​org/​10.​1101/​gad.​229328.​113 Avail-
able from: http://​genes​dev.​cshlp.​org/​conte​nt/​27/​21/​2380.

	8.	 Hong W, Ruan H, Zhang Z, Ye Y, Liu Y, Li S, et al. APAatlas: decoding alternative polyadenylation across human tissues. 
Nucleic Acids Res. 2020;48(D1):D34–9. https://​doi.​org/​10.​1093/​nar/​gkz876 Available from: https://​acade​mic.​oup.​
com/​nar/​artic​le/​48/​D1/​D34/​55817​30?​login=​true.

	9.	 Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untrans-
lated regions and fewer microRNA target sites. Science. 2008;320(5883):1643–7. https://​doi.​org/​10.​1126/​scien​ce.​
11553​90 Available from: https://​www.​scien​ce.​org/​doi/​10.​1126/​scien​ce.​11553​90.

	10.	 Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3’ untranslated regions of mRNAs by alternative poly-
adenylation during mouse embryonic development. Proc Natl Acad Sci U S A. 2009;106(17):7028–33. https://​doi.​
org/​10.​1073/​pnas.​09000​28106 Available from: https://​www.​pnas.​org/​doi/​full/​10.​1073/​pnas.​09000​28106.

	11.	 Cheng LC, Zheng D, Baljinnyam E, Sun F, Ogami K, Yeung PL, et al. Widespread transcript shortening through 
alternative polyadenylation in secretory cell differentiation. Nat Commun. 2020;11(1):3182. https://​doi.​org/​10.​1038/​
s41467-​020-​16959-2 Available from: https://​www.​nature.​com/​artic​les/​s41467-​020-​16959-2.

	12.	 Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 
2019;20(10):599–614. https://​doi.​org/​10.​1038/​s41576-​019-​0145-z Available from: https://​www.​nature.​com/​artic​les/​
s41576-​019-​0145-z.

	13.	 Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, et al. Dynamic analyses of alternative polyade-
nylation from RNA-seq reveal a 3’-UTR landscape across seven tumour types. Nat Commun. 2014;5:5274. https://​doi.​
org/​10.​1038/​ncomm​s6274 Available from: https://​www.​nature.​com/​artic​les/​ncomm​s6274.

	14.	 Xiang Y, Ye Y, Lou Y, Yang Y, Cai C, Zhang Z, et al. Comprehensive characterization of alternative polyadenylation in 
human cancer. J Natl Cancer Inst. 2018;110(4):379–89. https://​doi.​org/​10.​1093/​jnci/​djx223 Available from: https://​
acade​mic.​oup.​com/​jnci/​artic​le/​110/4/​379/​45879​33?​login=​true.

	15.	 Gao Y, Li L, Amos CI, Li W. Analysis of alternative polyadenylation from single-cell RNA-seq using scDaPars reveals cell 
subpopulations invisible to gene expression. Genome Res. 2021;31(10):1856–66. https://​doi.​org/​10.​1101/​gr.​271346.​
120 Available from: https://​genome.​cshlp.​org/​conte​nt/​31/​10/​1856.

	16.	 Patrick R, Humphreys DT, Janbandhu V, Oshlack A, Ho JWK, Harvey RP, et al. Sierra: discovery of differential transcript 
usage from polyA-captured single-cell RNA-seq data. Genome Biol. 2020;21(1):167. https://​doi.​org/​10.​1186/​s13059-​
020-​02071-7 Available from: https://​genom​ebiol​ogy.​biome​dcent​ral.​com/​artic​les/​10.​1186/​s13059-​020-​02071-7.

	17.	 Li WV, Zheng D, Wang R, Tian B. MAAPER: model-based analysis of alternative polyadenylation using 3′ end-linked 
reads. Genome Biol. 2021;22(1):222. https://​doi.​org/​10.​1186/​s13059-​021-​02429-5 Available from: https://​genom​
ebiol​ogy.​biome​dcent​ral.​com/​artic​les/​10.​1186/​s13059-​021-​02429-5.

	18.	 Chen M, Ji G, Fu H, Lin Q, Ye C, Ye W, et al. A survey on identification and quantification of alternative polyadenyla-
tion sites from RNA-seq data. Brief Bioinform. 2020;21(4):1261–76. https://​doi.​org/​10.​1093/​bib/​bbz068 Available 
from: https://​acade​mic.​oup.​com/​bib/​artic​le/​21/4/​1261/​55220​19?​login=​true.

	19.	 Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M. Quantitative single-cell RNA-seq with unique molecular 
identifiers. Nat Methods. 2014;11(2):163–6. https://​doi.​org/​10.​1038/​nmeth.​2772 Available from: https://​www.​nature.​
com/​artic​les/​nmeth.​2772.

https://doi.org/10.1016/j.molcel.2011.08.017
https://www.sciencedirect.com/science/article/pii/S1097276511006356
https://www.sciencedirect.com/science/article/pii/S1097276511006356
https://doi.org/10.7554/eLife.10921
https://doi.org/10.7554/eLife.10921
https://elifesciences.org/articles/10921
https://doi.org/10.1016/j.neuron.2018.03.030
https://www.sciencedirect.com/science/article/pii/S0896627318302368
https://www.sciencedirect.com/science/article/pii/S0896627318302368
https://doi.org/10.1038/35067025
https://www.nature.com/articles/35067025
https://doi.org/10.1038/nrm.2016.116
https://doi.org/10.1038/nrm.2016.116
https://www.nature.com/articles/nrm.2016.116
https://doi.org/10.1101/gr.177790.114
https://doi.org/10.1101/gr.177790.114
https://genome.cshlp.org/content/24/11/1774
https://doi.org/10.1101/gad.229328.113
http://genesdev.cshlp.org/content/27/21/2380
https://doi.org/10.1093/nar/gkz876
https://academic.oup.com/nar/article/48/D1/D34/5581730?login=true
https://academic.oup.com/nar/article/48/D1/D34/5581730?login=true
https://doi.org/10.1126/science.1155390
https://doi.org/10.1126/science.1155390
https://www.science.org/doi/10.1126/science.1155390
https://doi.org/10.1073/pnas.0900028106
https://doi.org/10.1073/pnas.0900028106
https://www.pnas.org/doi/full/10.1073/pnas.0900028106
https://doi.org/10.1038/s41467-020-16959-2
https://doi.org/10.1038/s41467-020-16959-2
https://www.nature.com/articles/s41467-020-16959-2
https://doi.org/10.1038/s41576-019-0145-z
https://www.nature.com/articles/s41576-019-0145-z
https://www.nature.com/articles/s41576-019-0145-z
https://doi.org/10.1038/ncomms6274
https://doi.org/10.1038/ncomms6274
https://www.nature.com/articles/ncomms6274
https://doi.org/10.1093/jnci/djx223
https://academic.oup.com/jnci/article/110/4/379/4587933?login=true
https://academic.oup.com/jnci/article/110/4/379/4587933?login=true
https://doi.org/10.1101/gr.271346.120
https://doi.org/10.1101/gr.271346.120
https://genome.cshlp.org/content/31/10/1856
https://doi.org/10.1186/s13059-020-02071-7
https://doi.org/10.1186/s13059-020-02071-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02071-7
https://doi.org/10.1186/s13059-021-02429-5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02429-5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02429-5
https://doi.org/10.1093/bib/bbz068
https://academic.oup.com/bib/article/21/4/1261/5522019?login=true
https://doi.org/10.1038/nmeth.2772
https://www.nature.com/articles/nmeth.2772
https://www.nature.com/articles/nmeth.2772


Page 27 of 28Meyer et al. Genome Biology          (2022) 23:226 	

	20.	 Shulman ED, Elkon R. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. 
Nucleic Acids Res. 2019;47(19):10027–39. https://​doi.​org/​10.​1093/​nar/​gkz781 Available from: https://​acade​mic.​oup.​
com/​nar/​artic​le/​47/​19/​10027/​55665​87?​login=​true.

	21.	 Ye C, Zhou Q, Wu X, Yu C, Ji G, Saban DR, et al. scDAPA: detection and visualization of dynamic alternative polyade-
nylation from single cell RNA-seq data. Bioinformatics. 2020;36(4):1262–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btz701 Available from: https://​acade​mic.​oup.​com/​bioin​forma​tics/​artic​le/​36/4/​1262/​55641​18?​login=​true.

	22.	 Shenker S, Miura P, Sanfilippo P, Lai EC. IsoSCM: improved and alternative 3’ UTR annotation using multiple change-
point inference. RNA. 2015;21(1):14–27. https://​doi.​org/​10.​1261/​rna.​046037.​114 Available from: https://rnajournal.
cshlp.org/content/21/1/14.

	23.	 Zhang D, Guelfi S, Garcia-Ruiz S, Costa B, Reynolds RH, D’Sa K, et al. Incomplete annotation has a disproportionate 
impact on our understanding of Mendelian and complex neurogenetic disorders. Sci Adv. 2020;6(24):eaay8299. 
https://​doi.​org/​10.​1126/​sciadv.​aay82​99 Available from: https://​www.​scien​ce.​org/​doi/​10.​1126/​sciadv.​aay82​99.

	24.	 Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell 
RNA-Seq systems. Mol Cell. 2019;73(1):130–142.e5. https://​doi.​org/​10.​1016/j.​molcel.​2018.​10.​020 Available from: 
https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S1097​27651​83088​03.

	25.	 Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa-
tional workflows. Nat Biotechnol. 2017;35(4):316–9. https://​doi.​org/​10.​1038/​nbt.​3820 Available from: https://​www.​
nature.​com/​artic​les/​nbt.​3820.

	26.	 Durrett R. Probability: theory and examples. 5th ed. Cambridge: Cambridge University Press; 2019.
	27.	 Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from 

single-cell RNA sequencing. Nature. 2020;587(7835):619–25. https://​doi.​org/​10.​1038/​s41586-​020-​2922-4 Available 
from: https://​www.​nature.​com/​artic​les/​s41586-​020-​2922-4.

	28.	 Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from 
single cell RNA sequencing. Study ID EGAS00001004344: European Genome-Phenome Archive; 2020. Available 
from: https://​ega-​archi​ve.​org/​studi​es/​EGAS0​00010​04344

	29.	 Dong P, Xiong Y, Yue J, Hanley SJB, Kobayashi N, Todo Y, et al. Long non-coding RNA NEAT1: a novel target for diag-
nosis and therapy in human tumors. Front Genet. 2018;9:471. https://​doi.​org/​10.​3389/​fgene.​2018.​00471 Available 
from: https://​www.​front​iersin.​org/​artic​les/​10.​3389/​fgene.​2018.​00471/​full.

	30.	 Knutsen E, Harris AL, Perander M. Expression and functions of long non-coding RNA NEAT1 and isoforms in breast 
cancer. Br J Cancer. 2022;126(4):551–61. https://​doi.​org/​10.​1038/​s41416-​021-​01588-3 Available from: https://​www.​
nature.​com/​artic​les/​s41416-​021-​01588-3.

	31.	 Königs V, de Oliveira Freitas Machado C, Arnold B, Blümel N, Solovyeva A, Löbbert S, et al. SRSF7 maintains its home-
ostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol. 2020;27(3):260–73. 
https://​doi.​org/​10.​1038/​s41594-​020-​0385-9 Available from: https://​www.​nature.​com/​artic​les/​s41594-​020-​0385-9.

	32.	 Bae B, Gruner HN, Lynch M, Feng T, So K, Oliver D, et al. Elimination of Calm1 long 3’-UTR mRNA isoform by CRISPR-
Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. RNA. 
2020;26(10):1414–30. https://​doi.​org/​10.​1261/​rna.​076430.​120 Available from: https://​rnajo​urnal.​cshlp.​org/​conte​nt/​
26/​10/​1414.

	33.	 Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, et al. KLF6, a candidate tumor suppressor gene 
mutated in prostate cancer. Science. 2001;294(5551):2563–6. https://​doi.​org/​10.​1126/​scien​ce.​10663​26 Available 
from: https://​www.​scien​ce.​org/​doi/​10.​1126/​scien​ce.​10663​26.

	34.	 Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, et al. Systematic evaluation of spliced alignment 
programs for RNA-seq data. Nat Methods. 2013;10:1185–91. https://​doi.​org/​10.​1038/​nmeth.​2722 Available from: 
https://​www.​nature.​com/​artic​les/​nmeth.​2722.

	35.	 Huntsman Cancer Institute. 10X Genomics 3’ Gene Expression - University of Utah. Salt Lake City: University of Utah; 
2021. Available from: https://​uofuh​ealth.​utah.​edu/​hunts​man/​shared-​resou​rces/​gba/​htg/​single-​cell/​genom​ics-​10x.​
php

	36.	 Arafat M, Harlev A, Har-Vardi I, Levitas E, Priel T, Gershoni M, et al. Mutation in CATIP (C2orf62) causes oligoteratoas-
thenozoospermia by affecting actin dynamics. J Med Genet. 2021;58:106–15. https://​doi.​org/​10.​1136/​jmedg​enet-​
2019-​106825 Available from: https://​jmg.​bmj.​com/​conte​nt/​58/2/​106.

	37.	 Bao J, Vitting-Seerup K, Waage J, Tang C, Ge Y, Porse BT, et al. UPF2-dependent nonsense-mediated mRNA 
decay pathway is essential for spermatogenesis by selectively eliminating longer 3’UTR transcripts. PLoS Genet. 
2016;12(5):e1005863. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10058​63 Available from: https://​journ​als.​plos.​org/​plosg​
eneti​cs/​artic​le?​id=​10.​1371/​journ​al.​pgen.​10058​63.

	38.	 Li W, Park JY, Zheng D, Hoque M, Yehia G, Tian B. Alternative cleavage and polyadenylation in spermatogenesis con-
nects chromatin regulation with post-transcriptional control. BMC Biol. 2016;14:6. https://​doi.​org/​10.​1186/​s12915-​
016-​0229-6 Available from: https://​bmcbi​ol.​biome​dcent​ral.​com/​artic​les/​10.​1186/​s12915-​016-​0229-6.

	39.	 Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. The mammalian spermatogenesis single-
cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 2018;25(6):1650–1667.e8. https://​doi.​
org/​10.​1016/j.​celrep.​2018.​10.​026 Available from: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S2211​12471​
83160​24.

	40.	 Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. 10x Genomics Drop-seq single-cell 
RNA-seq of isolated adult human spermatogonia, spermatocytes, spermatids & steady-state spermatogenic cells. 
BioProject accession number PRJNA429472. Sequence Read Archive. (2018). Available from: https://​www.​ncbi.​nlm.​
nih.​gov/​biopr​oject/​PRJNA​429472.

	41.	 Ndiaye FK, Ortalli A, Canouil M, Huyvaert M, Salazar-Cardozo C, Lecoeur C, et al. Expression and functional assess-
ment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin 
secretion. Mol Metab. 2017;6(6):459–70. https://​doi.​org/​10.​1016/j.​molmet.​2017.​03.​011 Available from: https://​www.​
clini​calkey.​com/#​!/​conte​nt/​playC​ontent/​1-​s2.0-​S2212​87781​73011​99.

https://doi.org/10.1093/nar/gkz781
https://academic.oup.com/nar/article/47/19/10027/5566587?login=true
https://academic.oup.com/nar/article/47/19/10027/5566587?login=true
https://doi.org/10.1093/bioinformatics/btz701
https://doi.org/10.1093/bioinformatics/btz701
https://academic.oup.com/bioinformatics/article/36/4/1262/5564118?login=true
https://doi.org/10.1261/rna.046037.114
https://doi.org/10.1126/sciadv.aay8299
https://www.science.org/doi/10.1126/sciadv.aay8299
https://doi.org/10.1016/j.molcel.2018.10.020
https://www.sciencedirect.com/science/article/pii/S1097276518308803
https://doi.org/10.1038/nbt.3820
https://www.nature.com/articles/nbt.3820
https://www.nature.com/articles/nbt.3820
https://doi.org/10.1038/s41586-020-2922-4
https://www.nature.com/articles/s41586-020-2922-4
https://ega-archive.org/studies/EGAS00001004344
https://doi.org/10.3389/fgene.2018.00471
https://www.frontiersin.org/articles/10.3389/fgene.2018.00471/full
https://doi.org/10.1038/s41416-021-01588-3
https://www.nature.com/articles/s41416-021-01588-3
https://www.nature.com/articles/s41416-021-01588-3
https://doi.org/10.1038/s41594-020-0385-9
https://www.nature.com/articles/s41594-020-0385-9
https://doi.org/10.1261/rna.076430.120
https://rnajournal.cshlp.org/content/26/10/1414
https://rnajournal.cshlp.org/content/26/10/1414
https://doi.org/10.1126/science.1066326
https://www.science.org/doi/10.1126/science.1066326
https://doi.org/10.1038/nmeth.2722
https://www.nature.com/articles/nmeth.2722
https://uofuhealth.utah.edu/huntsman/shared-resources/gba/htg/single-cell/genomics-10x.php
https://uofuhealth.utah.edu/huntsman/shared-resources/gba/htg/single-cell/genomics-10x.php
https://doi.org/10.1136/jmedgenet-2019-106825
https://doi.org/10.1136/jmedgenet-2019-106825
https://jmg.bmj.com/content/58/2/106
https://doi.org/10.1371/journal.pgen.1005863
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005863
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005863
https://doi.org/10.1186/s12915-016-0229-6
https://doi.org/10.1186/s12915-016-0229-6
https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0229-6
https://doi.org/10.1016/j.celrep.2018.10.026
https://doi.org/10.1016/j.celrep.2018.10.026
https://www.sciencedirect.com/science/article/pii/S2211124718316024
https://www.sciencedirect.com/science/article/pii/S2211124718316024
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA429472
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA429472
https://doi.org/10.1016/j.molmet.2017.03.011
https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S2212877817301199
https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S2212877817301199


Page 28 of 28Meyer et al. Genome Biology          (2022) 23:226 

	42.	 Gharbi-Ayachi A, Labbé J, Burgess A, Vigneron S, Strub J, Brioudes E, et al. The substrate of Greatwall kinase, Arpp19, 
controls mitosis by inhibiting protein phosphatase 2A. Science. 2010;330(6011):1673–7. https://​doi.​org/​10.​1126/​
scien​ce.​11970​48 Available from: https://​www.​scien​ce.​org/​doi/​10.​1126/​scien​ce.​11970​48.

	43.	 Virshup DM, Kaldis P. Enforcing the Greatwall in mitosis. Science. 2010;330(6011):1638–9. https://​doi.​org/​10.​1126/​
scien​ce.​11998​98 Available from: https://​www.​scien​ce.​org/​doi/​10.​1126/​scien​ce.​11998​98.

	44.	 Miles LA, Parmer RJ. S100A10: a complex inflammatory role. Blood. 2010;116(7):1022–4. https://​doi.​org/​10.​1182/​
blood-​2010-​05-​284083 Available from: https://​ashpu​blica​tions.​org/​blood/​artic​le/​116/7/​1022/​27665/​S100A​10-a-​
compl​ex-​infla​mmato​ry-​role.

	45.	 Wu X, Liu T, Ye C, Ye W, Ji G. scAPAtrap: identification and quantification of alternative polyadenylation sites from 
single-cell RNA-seq data. Brief Bioinform. 2021;22(4):bbaa273. https://​doi.​org/​10.​1093/​bib/​bbaa2​73 Available from: 
https://​acade​mic.​oup.​com/​bib/​artic​le/​22/4/​bbaa2​73/​59523​04?​login=​true.

	46.	 Kang B, Jiang D, Ma R, He H, Yi Z, Chen Z. OAZ1 knockdown enhances viability and inhibits ER and LHR transcrip-
tions of granulosa cells in geese. PLoS One. 2017;12(3):e0175016. https://​doi.​org/​10.​1371/​journ​al.​pone.​01750​16 
Available from: https://​journ​als.​plos.​org/​ploso​ne/​artic​le?​id=​10.​1371/​journ​al.​pone.​01750​16.

	47.	 Hoffman Y, Bublik DR, Ugalde AP, Elkon R, Biniashvili T, Agami R, et al. 3’UTR shortening potentiates microRNA-based 
repression of pro-differentiation genes in proliferating human cells. PLoS Genet. 2016;12(2):e1005879. https://​doi.​
org/​10.​1371/​journ​al.​pgen.​10058​79 Available from: https://​journ​als.​plos.​org/​plosg​eneti​cs/​artic​le?​id=​10.​1371/​journ​
al.​pgen.​10058​79.

	48.	 Guo C, Spinelli M, Liu M, Li QQ, Liang C. A genome-wide study of “non-3UTR” polyadenylation sites in Arabidopsis 
thaliana. Sci Rep. 2016;6:28060. https://​doi.​org/​10.​1038/​srep2​8060 Available from: https://​www.​nature.​com/​artic​les/​
srep2​8060.

	49.	 Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. FY is an RNA 3′ end-processing factor that interacts with 
FCA to control the Arabidopsis floral transition. Cell. 2003;113(6):777–87. https://​doi.​org/​10.​1016/​s0092-​8674(03)​
00425-2 Available from: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0092​86740​30042​52.

	50.	 Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidop-
sis FLC chromatin silencing. Science. 2010;327(5961):94–7. https://​doi.​org/​10.​1126/​scien​ce.​118027 Available from: 
https://​www.​scien​ce.​org/​doi/​10.​1126/​scien​ce.​11802​78.

	51.	 Hong H, Ye C, Lin J, Fu H, Wu X, Li QQ. Alternative polyadenylation is involved in auxin-based plant growth and 
development. Plant J. 2018;93(2):246–58. https://​doi.​org/​10.​1111/​tpj.​13771 Available from: https://​onlin​elibr​ary.​
wiley.​com/​doi/​10.​1111/​tpj.​13771.

	52.	 Shahan R, Hsu C, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, et al. A single-cell Arabidopsis root atlas reveals devel-
opmental trajectories in wild-type and cell identity mutants. Dev Cell. 2022;57(4):543–560.e9. https://​doi.​org/​10.​
1016/j.​devcel.​2022.​01.​008 Available from: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S1534​58072​20003​38.

	53.	 Shahan R, Hsu C, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, et al. Single-cell RNA-seq data of Arabidopsis root (thale 
cress). BioProject accession number PRJNA640389. Sequence Read Archive. (2022). Available from: https://​www.​
ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​640389.

	54.	 Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling 
reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. https://​
doi.​org/​10.​7554/​eLife.​43882 Available from: https://​elife​scien​ces.​org/​artic​les/​43882.

	55.	 Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell RNA-seq of mouse 
cardiac interstitial cells 3 & 7 days after sham or myocardial infarction injury. Accession ID E-MTAB-7376. BioStudies 
ArrayExpress. (2019). Available from: https://​www.​ebi.​ac.​uk/​biost​udies/​array​expre​ss/​studi​es/E-​MTAB-​7376.

	56.	 Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility 
reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. https://​doi.​org/​10.​1038/​natur​e14590 Avail-
able from: https://​www.​nature.​com/​artic​les/​natur​e14590.

	57.	 Agarwal V, Lopez-Darwin S, Kelley DR, Shendure J. The landscape of alternative polyadenylation in single cells of the 
developing mouse embryo. Nat Commun. 2021;12(5101). https://​doi.​org/​10.​1038/​s41467-​021-​25388-8 Available 
from: https://​www.​nature.​com/​artic​les/​s41467-​021-​25388-8.

	58.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics. 2013;29(1):15–21. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts635 Available from: https://​acade​mic.​oup.​com/​
bioin​forma​tics/​artic​le/​29/1/​15/​272537?​login=​true.

	59.	 Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve 
quantification accuracy. Genome Res. 2017;27(3):491–9. https://​doi.​org/​10.​1101/​gr.​209601.​116 Available from: 
https://​genome.​cshlp.​org/​conte​nt/​27/3/​491.

	60.	 Chung E, Romano JP. Exact and asymptotically robust permutation tests. Ann Statist. 2013;41(2):484–507. https://​
doi.​org/​10.​1214/​13-​AOS10​90 Available from: https://​proje​cteuc​lid.​org/​journ​als/​annals-​of-​stati​stics/​volume-​41/​
issue-2/​Exact-​and-​asymp​totic​ally-​robust-​permu​tation-​tests/​10.​1214/​13-​AOS10​90.​full.

	61.	 Olivieri JE, Dehghannasiri R, Salzman J. The SpliZ generalizes ‘percent spliced in’ to reveal regulated splicing at 
single-cell resolution. Nat Methods. 2022;19(3):307–10. https://​doi.​org/​10.​1038/​s41592-​022-​01400-x Available from: 
https://​www.​nature.​com/​artic​les/​s41592-​022-​01400-x.

	62.	 Hahne F, Ivanek R. Visualizing genomic data using gviz and bioconductor. Methods Mol Biol. 2016;1418:335–51. 
https://​doi.​org/​10.​1007/​978-1-​4939-​3578-9_​16 Available from: https://​link.​sprin​ger.​com/​proto​col/​10.​1007/​978-1-​
4939-​3578-9_​16.

	63.	 Meyer E, Chaung K, Dehghannasiri R, Salzman J. ReadZS: GitHub; 2022. Available from: https://​github.​com/​salzm​
anlab/​ReadZS

	64.	 Meyer E, Chaung K, Dehghannasiri R, Salzman J. ReadZS: Zenodo; 2022. https://​doi.​org/​10.​5281/​zenodo.​71302​64.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1126/science.1197048
https://doi.org/10.1126/science.1197048
https://www.science.org/doi/10.1126/science.1197048
https://doi.org/10.1126/science.1199898
https://doi.org/10.1126/science.1199898
https://www.science.org/doi/10.1126/science.1199898
https://doi.org/10.1182/blood-2010-05-284083
https://doi.org/10.1182/blood-2010-05-284083
https://ashpublications.org/blood/article/116/7/1022/27665/S100A10-a-complex-inflammatory-role
https://ashpublications.org/blood/article/116/7/1022/27665/S100A10-a-complex-inflammatory-role
https://doi.org/10.1093/bib/bbaa273
https://academic.oup.com/bib/article/22/4/bbaa273/5952304?login=true
https://doi.org/10.1371/journal.pone.0175016
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175016
https://doi.org/10.1371/journal.pgen.1005879
https://doi.org/10.1371/journal.pgen.1005879
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005879
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005879
https://doi.org/10.1038/srep28060
https://www.nature.com/articles/srep28060
https://www.nature.com/articles/srep28060
https://doi.org/10.1016/s0092-8674(03)00425-2
https://doi.org/10.1016/s0092-8674(03)00425-2
https://www.sciencedirect.com/science/article/pii/S0092867403004252
https://doi.org/10.1126/science.118027
https://www.science.org/doi/10.1126/science.1180278
https://doi.org/10.1111/tpj.13771
https://onlinelibrary.wiley.com/doi/10.1111/tpj.13771
https://onlinelibrary.wiley.com/doi/10.1111/tpj.13771
https://doi.org/10.1016/j.devcel.2022.01.008
https://doi.org/10.1016/j.devcel.2022.01.008
https://www.sciencedirect.com/science/article/pii/S1534580722000338
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA640389
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA640389
https://doi.org/10.7554/eLife.43882
https://doi.org/10.7554/eLife.43882
https://elifesciences.org/articles/43882
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-7376
https://doi.org/10.1038/nature14590
https://www.nature.com/articles/nature14590
https://doi.org/10.1038/s41467-021-25388-8
https://www.nature.com/articles/s41467-021-25388-8
https://doi.org/10.1093/bioinformatics/bts635
https://academic.oup.com/bioinformatics/article/29/1/15/272537?login=true
https://academic.oup.com/bioinformatics/article/29/1/15/272537?login=true
https://doi.org/10.1101/gr.209601.116
https://genome.cshlp.org/content/27/3/491
https://doi.org/10.1214/13-AOS1090
https://doi.org/10.1214/13-AOS1090
https://projecteuclid.org/journals/annals-of-statistics/volume-41/issue-2/Exact-and-asymptotically-robust-permutation-tests/10.1214/13-AOS1090.full
https://projecteuclid.org/journals/annals-of-statistics/volume-41/issue-2/Exact-and-asymptotically-robust-permutation-tests/10.1214/13-AOS1090.full
https://doi.org/10.1038/s41592-022-01400-x
https://www.nature.com/articles/s41592-022-01400-x
https://doi.org/10.1007/978-1-4939-3578-9_16
https://link.springer.com/protocol/10.1007/978-1-4939-3578-9_16
https://link.springer.com/protocol/10.1007/978-1-4939-3578-9_16
https://github.com/salzmanlab/ReadZS
https://github.com/salzmanlab/ReadZS
https://doi.org/10.5281/zenodo.7130264

	ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq
	Abstract 
	Background
	Results
	ReadZS enables statistical annotation-free detection of RNA processing in scRNA-seq
	ReadZS rediscovers and extends known regulation of RNA processing
	ReadZS calls are consistent across biological replicates
	Statistically identified read peaks in windows with cell type-specific RNAP are enriched for known poly(A) sites and predict new APA sites
	Single-cell resolution of ReadZS reveals evolutionarily conserved, developmental post-transcriptional regulation in mammals
	ReadZS discovers developmentally regulated RNAP in Arabidopsis root development
	ReadZS has complementary power compared to other algorithms

	Discussion
	Conclusion
	Methods
	Creating counts tables from 10X BAM
	ReadZS calculation for each window and cell type
	Identification of windows with regulated RNA processing: median ReadZS and its p-value for each windowcell type pair
	Identification of windows with regulated RNA processing: correlation between ReadZS and pseudotime
	3′ UTR shortening in human and mouse spermatogenesis
	Overlap between human and mouse windows with significant correlation
	3′ UTR lengthening in Arabidopsis root
	Concordance of ReadZS between pairs of data sets
	Comparison with MAAPER
	Comparison with scDaPars
	Peak calling using Gaussian mixture model
	Pipeline implementation using Nextflow
	Calculating distance to 3′ UTR annotations
	Plot generation for cell type annotated data
	CDF and histogram generation for peak distances to 3′UTRs

	Acknowledgements
	References


