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Background
Maturation of chromosome conformation capture (3C)-based technologies for profiling 
3D genome organization [1–5] and technological advancements in single-cell sequenc-
ing [6] led to the development of single-cell Hi-C (scHi-C) assays [7–12]. Data from 
these assays enhance our ability to study the impact of spatial genome interactions on 
cell regulation at an unprecedented resolution. While some of the characteristics of 
scHi-C data, such as systematic genomic distance bias (referred to as band bias, Fig. 1a), 
are similar to its bulk version, scHi-C data harbors significantly distinct features. In gen-
eral, data from single-cell technologies such as scRNA-seq and scATAC-seq are noisy 
and sparse, leading to underestimated biological signals within and across cells. How-
ever, these issues are compounded in 3C-based technologies because the natural anal-
ysis unit is locus pairs depicting potentially interacting genomic loci; as a result, their 
sheer number exacerbates the sparsity. In contrast to bulk Hi-C data, which is available 
in small numbers of replicates owing to high sequencing cost, scHi-C is generated across 
thousands of cells simultaneously, therefore significantly increasing the resolution to 
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capture biological variation. However, this resolution gain comes at the cost of increased 
technical noise and decreased sequencing depth per cell, further contributing to the 
extreme sparseness of scHi-C chromosomal contact matrices.

Initial approaches for unsupervised analysis of scHi-C data repurposed bulk data 
quantification methods of similarity between contact matrices, such as HiCRep [13], 
and applied multi-dimensional scaling [14]. Vectorization of scHi-C contact matri-
ces to form a cell by locus pair matrix followed by dimension reduction approaches 
such as UMAP and t-SNE [10] or topic modeling [15] have been utilized successfully. 
Most recent approaches for normalization and de-noising of scHi-C data rely on linear 
smoothing and random walk imputation [16] of cell-specific contact matrices or hyper-
graph representation learning [17]. While these are highly innovative approaches, they 
lack a generative model that acknowledges the key properties of the scHi-C data. Deep 
generative modeling and, more specifically, variational autoencoders have seen a sig-
nificant uptake in the analysis of single-cell transcriptomics [18, 19], epigenomics [20], 
proteomics [21], and bulk 3D genomics  [22] due to their ability to provide efficient and 
scalable solutions to normalize, de-noise, and impute single-cell data. At the individual 

Fig. 1 Benchmarking of scHi-C normalization and de-noising methods for cell-type clustering. a Band 
transformation separates scHi-C contact matrices into band-specific cell × locus pair matrices before 
conducting BandNorm normalization on each band matrix per chromosome per cell. BandNorm normalizes 
the raw interaction counts Ycvr  for locus pair r in band v and cell c into normalized count Ccv

r  . b Deep 
generative model, scVI-3D, for a single band matrix v with entries in the form of locus pairs r ( r ∈ A(v) ) by 
cells c ( c = 1, ...,N ). The raw interaction counts Ycvr  are modeled as a function of low-dimensional latent 
variables zcv . Refer to the Section 5 for a detailed mathematical introduction and practical settings of the 
scVI-3D model. c Evaluation of the eight scHi-C normalization and de-noising methods, namely CellScale, 
BandScale, BandNorm, scHiCluster, scHiC Topics, Higashi, CellScale+CNN, and scVI-3D, for cell type separation 
across four benchmark datasets. The performances are evaluated by Adjusted Rand Index (ARI) after K-means 
clustering and Louvain graph clustering and by Silhouette coefficient on UMAP and t-SNE visualizations 
with the true cell labels. d Median ranks of the performance of the scHi-C methods across the six evaluation 
metrics and four data sets
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cell resolution, heterogeneity, driven by the stochastic nature of chromatin fiber and a 
multitude of nuclear processes, and unwanted variation due to sequencing depths and 
batch effects pose major analytical challenges for inferring single cell-level 3D genome 
organizations. Therefore, we first describe a computationally fast scaling normalization 
approach, named BandNorm (Fig. 1a), that operates on the stratified off-diagonals (i.e., 
bands) of the contact matrix and its variants as fast baseline alternatives, namely CellS-
cale and BandScale, which have been utilized for bulk Hi-C and have seen some uptake 
for scHi-C [10, 23, 24] (Section  5). Next, we develop a deep generative model named 
scVI-3D, which systematically takes into account the structural properties and accounts 
for genomic distance bias, sequencing depth effect, zero inflation, sparsity impact, and 
batch effects of scHi-C data (Fig. 1b). Finally, we explore a single-cell gene associating 
domains (scGAD) score analysis to biologically interpret refined 3D genome clustering 
results at the gene level.

Results
Benchmark datasets

We leveraged four scHi-C datasets with known cell-type labels and varying characteris-
tics to evaluate the performances of the newly proposed scHi-C normalization methods, 
BandNorm and scVI-3D, in comparison with the existing state-of-the-art approaches 
(Section 5). These four datasets are Ramani2017 [8] and Kim2020 [15] that include mul-
tiple human cell lines, Lee2019  [10] that profiles human brain prefrontal cortex cells, 
and Li2019 [9] of mouse embryonic stem cells (mESC). Of these, Ramani2017 does not 
exhibit batch effects and the experimental design in Kim2020, where each cell type is 
either in a single batch alone or together with another cell line in two batches, largely 
confounds batches and cell types. In contrast, Lee2019  is generated from 5 sequencing 
libraries, which exhibit explicit batch effects. Therefore, we leveraged Lee2019 to inves-
tigate the impact of batch effects in detail. All the scaling-based normalization meth-
ods and methods that do not have built-in batch correction are coupled with Harmony 
[25], which has established effectiveness for scRNA-seq [26] and performed well in our 
experiments (Section 2.5), as a batch correction method unless otherwise stated. Data 
on chromosomes 1-22 and X are binned at 1Mb resolution to generate a set of loci, and 
raw data are filtered according to the specifications in the source publications to remove 
extremely sparse cells (Table  1 and Additional file  1: Fig. S1). Lee2019  is additionally 
binned at 100kb to assess the performance of methods at a high resolution and high 
sparsity setting. Unless otherwise stated, 1Mb is the default resolution for the down-
stream analysis.

Band transformation for BandNorm and scVI‑3D

scHi-C contact map is a symmetric loci by loci matrix with each entry representing the 
interaction frequency between the locus pairs that are potentially in spatial proximity. 
The diagonal or each off-diagonal on the contact matrix is considered as a band, and the 
band transformation [23, 24] is the foundation for the BandNorm and scVI-3D normali-
zation and modeling (Fig. 1a). The genomic distance effect, i.e., band effect, due to the 
random polymer looping behavior of DNA is one of the key features in both the bulk 
[1] and single-cell Hi-C data (Additional file 1: Fig. S2). As expected, such a band effect 
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leads to marked interaction frequency enrichment among loci close to the diagonal in 
the Hi-C contact matrix. Contact decay profiles that quantify interaction frequencies 
among locus pairs as a function of their genomic distance can successfully separate cells 
based on their cell cycle stages [27]. To explicitly capture this effect, the upper triangular 
of the symmetric contact matrix for each cell is first stratified into diagonal bands, each 
representing a specific genomic distance between the interacting loci. Then, bands at the 
same genomic distance are combined into a band matrix across cells (Fig. 1a) for fur-
ther BandNorm and scVI-3D normalization (Section 5). For instance, each purple off-
diagonal within a cell in Fig. 1a forms a column in the purple locus pair by cell matrix. 
Together, all the purple off-diagonals across cells construct the purple band matrix, 
and all the locus pairs in such a band matrix share the same genomic distance effect. 
By dividing the interaction frequencies of each band within a cell with the cell-specific 
band mean, BandNorm first removes genomic distance bias within a cell and scales 
the sequencing depths between cells. Subsequently, BandNorm adds back a common 
band-dependent contact decay estimate by multiplying each band within a cell with the 
average band mean across cells (Fig. 1a and Section 5). A similar strategy for imposing 
band-specific decay rates was adopted for normalization across bulk Hi-C samples [28].

In addition to this nonparametric normalization approach, we also devised scVI-
3D as a deep generative model built on the parametric count models of Poisson and 
Negative Binomial that have been successfully used in bulk measurements of chro-
matin conformation capture data [29, 30]. Motivated by the recent deep learning 
modeling approaches for single-cell transcription [18, 19] and chromatin accessibil-
ity [20], scVI-3D builds a generative modeling framework on the band matrices for 
dimension reduction and de-noising explicitly designed for the scHi-C data (Fig. 1b 
and Section  5). scVI-3D estimates and corrects the sequencing depth and poten-
tial batch effect biases and de-noises interaction frequencies among locus pairs 
that can then be leveraged for downstream analysis. Specifically, scVI-3D keeps all 
the features (i.e., locus pairs) instead of extensively discarding low variable features 
as routinely done in scRNA-seq and scATAC-seq analysis. However, cells with no 
interaction across all the locus pairs within the target band are filtered before the 
variational inference for estimating model parameters. The resulting latent embed-
dings for such zero interaction cells are imputed by 0 before concatenating the latent 
embeddings across bands while matching the cell identity. scVI-3D also adapts a 
progressive pooling strategy [23]. This pooling strategy significantly improves the 
cell type separation performance and robustifies the normalization process, particu-
larly for the distant off-diagonal bands, which tend to have fewer features and severe 
sparsity (Additional file 1: Fig. S3). The dimension of the latent space also influences 
the scVI-3D performance, and the commonly used latent variable dimension for 
scRNA-seq or scATAC-seq (i.e., 10–50) is typically not appropriate for scHi-C data. 
Our empirical investigations suggest that setting the default latent variable dimen-
sion of scVI-3D to 100 can generally achieve a good performance in separating the 
major cell types (Additional file 1: Fig. S4). Additionally, the zero-inflation compo-
nent enables scVI-3D to better fit at high resolutions and, hence, for high sparsity 
scHi-C data settings. This alone exceeds the modeling capacity of the baseline scal-
ing-based normalization methods (Additional file 1: Fig. S5).
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BandNorm is implemented as an R package (https:// github. com/ keles lab/ BandN 
orm) which also harbors all the curated public scHi-C data used in this paper. 
Expanding the scvi-tools [18], scVI-3D is implemented as a python pipeline and is 
available at https:// github. com/ keles lab/ scVI- 3D.

Existing scHi‑C methods

We benchmarked BandNorm and scVI-3D against two classes of methods, includ-
ing baseline methods for library size and genomic distance effect normalization 
and more structured modeling approaches. In the former category, in addition to 
BandNorm, we devised and evaluated two more baseline scaling-based normaliza-
tion methods: CellScale and BandScale [10, 23, 24] (Section 5). CellScale uses a sin-
gle scaling factor across all the locus pairs within a cell, while BandScale employs a 
band-specific size factor, as opposed to a global one, within each cell to eliminate 
library size bias at each genomic distance [10]. After each of CellScale, BandScale, 
and BandNorm normalizations, single-cell contact matrices are vectorized into the 
cell by locus pair matrices and used to generate low-dimensional embeddings. Since 
this strategy overlooks the matrix structure of the data, we also utilized a convo-
lutional neural network (CNN) approach, which has been previously leveraged for 
enhancing the resolution of the bulk-cell Hi-C matrix [31]. CNN method can be 
coupled with contact matrices pre-processed by either of the three baseline meth-
ods, CellScale, BandScale, and BandNorm, to learn their low-dimensional represen-
tations. CellScale+CNN stands out after systematic comparisons on Ramani2017, 
Lee2019, and Kim2020 data sets quantitatively and visually regarding the cell type 
separation (Additional file 1: Fig. S6). Therefore, for the benchmarking of the down-
stream analysis, only the CellScale+CNN strategy is utilized. In the second category, 
we considered three existing state-of-the-art scHi-C methods, namely, scHiCluster 
[16], scHiC Topics [15], and Higashi [17].

Impact on cell type separation

We first assessed the cell-type separation performances of the scHi-C methods within 
the context of unsupervised clustering. We considered six evaluation settings (Fig.  1c, 
Additional file 1: Fig. S7 and Section 5): K-means clustering of the latent embeddings of 
each method, and with or without low-dimensional projections with t-SNE and UMAP, 
and Louvain graph clustering [32]. We used Adjusted Rand Index (ARI) to compare the 
resulting clusters with the known cell labels and the average Silhouette score to quantify 
the separation between the clusters. In addition to these quantitative measures, we also 
graphically assessed whether the resulting low-dimensional representations achieve clear 
cell type separation (Figs. 2 and 3a, b) and carry left-over effects by technical variation due 
to batch (Fig. 3c-f ), library size or sparsity (Additional file 1: Fig. S8). We present Ram-
ani2017, Lee2019, and Kim2020 with UMAP visualizations for illustration (Figs. 2 and 3a-
b) and provide the t-SNE embeddings (Additional file 1: Figs. S9-S11) as well as analysis 
for Li2019 (Additional file 1: Figs. S12 and S13) in the supplementary information.

Cell clustering performances vary dramatically across data sets due to the numbers of 
cells, data quality measured by sequencing depth, sparsity, and batch effects, as well as 

https://github.com/keleslab/BandNorm
https://github.com/keleslab/BandNorm
https://github.com/keleslab/scVI-3D
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how distinguishable the cell types are. For the Ramani2017 and Lee2019 studies, Band-
Norm and scVI-3D perform as well as or outperform the rest based on all the six evalu-
ation settings (Fig.  1c and Additional file  1: Fig. S7). Almost all the methods perform 
poorly on the Li2019  dataset (ARI ∈ [0.005, 0.47] and Silhouette score ∈ [−0.56, 0.2] ), 
which has the smallest number of cells (Table 1 and Additional file 1: Fig. S1). All the 
methods except CellScale achieve their best performances on the Kim2020 dataset (ARI 
∈ [0.35, 0.91] and Silhouette score ∈ [0.3, 0.73] ), with leading performances by Band-
Norm, scVI-3D, and scHiC Topics (Fig. 1c and Additional file 1: Fig. S7). Overall sum-
mary of these evaluations yields BandNorm and scVI-3D as robustly best performing, 
followed by Higashi and scHiCluster, with median rank scores of 2, 3, 3.5, and 4, respec-
tively (Fig. 1d and Additional file 1: Fig. S7).

Fig. 2 Comparison of scHi-C normalization and de-noising methods for their performances in separating 
cells from major cell lines. Application of the scHi-C data normalization and de-noising methods on 
Ramani2017 (a) with 4 cell types and 2610 cells and Kim2020 (b) data sets with 5 cell types and 9230 cells. The 
results are displayed using scatter plots of the first two UMAP coordinates. The colors of the plotting symbols 
depict the cell types
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Next, we highlight some observations regarding the performances of each individ-
ual method. CellScale is a commonly used global library size scaling strategy for high-
throughput sequencing data but produces the least favorable cell separation. Particularly, 
for Ramani2017 and Kim2020  (Fig. 2), where most of the other methods can explicitly 
separate major cell types, CellScale exhibits no separation power, which is consistent 
with the ARI and Silhouette scores evaluation (Additional file 1: Fig. S7). Furthermore, 
BandScale and CellScale+CNN achieved a slightly better cell type separation than 
CellScale. A direct comparison of the results from BandScale to BandNorm highlights 
the marked improvement due to adding back the band-specific contact decay estimates 

Fig. 3 Separation of the neuronal sub-cell types in the Lee2019 data set and the impact of the batch effects. 
a Application of the scHi-C data normalization and de-noising methods on Lee2019 data set with 14 neuronal 
cell types. The results are displayed using scatter plots of the two UMAP coordinates. The colors of the 
plotting symbols correspond to the cell types. Excitatory neuronal subtypes (L2/3, L4, L5, L6) and inhibitory 
cells (Ndnf, Vip, Pvalb, and Sst) are highlighted by the gray dashed squares, which are amplified in b for the 
four leading methods: BandNorm, scHiCluster, Higashi, and scVI-3D, respectively. c Impact of batch effects 
on cell type separation using Lee2019 data set with samples from two donors of ages 21 and 29 years old 
and in a total of 5 batches. The results are displayed using scatter plots of the two UMAP coordinates. The 
colors of the plotting symbols correspond to the batches. d, e Cell type separation and batch effect removal 
performances of the methods, evaluated by ARI with K-means clustering (k = number of cell types) in d 
and Louvain clustering in e. ARI assesses the batch effect with K-means clustering (k = number of batches). 
f Density of integration local inverse Simpson’s Index (iLISI) scores [25] of cells evaluating the batch mixing 
performance after normalization by each of the eight methods. A high density around 1 indicates only one 
batch in a particular cell’s neighborhood, demonstrating the batch effect. Larger values indicate well mixing 
across the batches
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by BandNorm (Figs. 2 and 3a, b, and Section 5). Allowing band-specific contact decays 
can be interpreted as adding more weights to short-range bands, which play a significant 
role in separating the cell types. While CellScale+CNN strategy explicitly acknowledges 
the matrix structure of the data with a potential to learn the graph structure of each cell 
matrix, it yields limited power, possibly owing to the sparsity and low resolution of 1Mb. 
While scHiC Topics performs impressively well on Kim2020, it does not exhibit similarly 
high performance on the other datasets and is particularly challenged in the Lee2019 data 
set. This is in spite of the fact that we used the suggested strategy [15] of setting the num-
ber of topics based on the true cell labels in the Silhouette score calculations. The rest 
of the four methods, BandNorm, scVI-3D, Higashi, and scHiCluster, achieved generally 
high scores in separating cell types from the four data sets with particularly outstand-
ing performances in distinguishing the 14 cell types of human brain prefrontal cortex 
in Lee2019 (Fig.  3a). The original analysis of   Lee2019 reported that scHi-C data alone 
could barely separate the excitatory neuronal subtypes, namely L2/3, L4, L5, and L6, from 
the inhibitory cells Ndnf, Pvalb, Sst, and Vip. While this is the case for other baseline 
methods, BandNorm, scHiCluster, and Higashi show a notable exception, unambigu-
ously separating the excitatory and inhibitory cells into two clusters (Fig. 3b). Consistent 
with this, scVI-3D also achieves segregation between the excitatory and inhibitory cells at 
1Mb resolution (Fig. 3b) and even further refined separation across the sub-cell types of 
excitatory neurons and inhibitory cells at 100kb resolution (Additional file 1: Fig. S5). For 
this analysis of the Lee2019 dataset, as indicated previously, methods without batch cor-
rection, namely CellScale, BandScale, BandNorm, CellScale+CNN, scHiC Topics, were 
coupled with Harmony [25] for batch correction, and the other methods leveraged their 
built-in batch correction. Next, we utilized the single largest library of Lee2019 to create 
a batch-free context for additional systematic comparison. Consistent with findings using 
the full Lee2019 data, BandNorm, Higashi, scHiCluster, and scVI-3D achieved clear cell 
type separation for the major clusters (Additional file 1: Fig. S14), further suggesting that 
their better performances are not likely due to better batch correction.

The relatively poor performances of scHiCluster and Higashi on the Kim2020 data-
set unearth specific issues. scHiCluster requires stringent cell filtering (Table 2 and Sec-
tion 5) that may remove 88.4% of cells in datasets such as Kim2020 [15]. Without such 
stringent filtering, scHiCluster loses its cell type separation power unexpectedly. In con-
trast, in the Kim2020 study with all the 9230 cells from the source paper [15], BandNorm 
and other more structured models, such as scHiC Topics and scVI-3D, achieve distinct 
separation with high ARI and Silhouette scores (Fig. 2b). scHiCluster, however, performs 
poorly in distinguishing cells with low sequencing depth and high sparsity, leading to 
the mixing of cells from different cell types (Fig. 2b and Additional file 1: Fig. S11). This 
is consistent with the observations of others [15, 17] on scHiCluster. The most recent 
version of the Higashi software successfully resolved the batch effect issues and exhib-
ited the leading performance in the separation of the sub-neuronal and inhibitory cells 
at both the 1Mb and 100kb resolutions (Fig. 3b and Additional file 1: Fig. S5). However, 
the issues with distinguishing cell types of cells with relatively smaller library sizes and 
higher sparsity from the Kim2020 study, which was a bottleneck for scHiCluster, became 
exacerbated for Higashi. This led to inaccurate cell clustering with lower ARI and Silhou-
ette scores (Figs. 1c and 2b and Additional file 1: Fig. S7).
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BandNorm achieves the most stably high performance across data sets in separating the 
cell types. Remarkably, the BandNorm normalization is ultra-fast (15 mins compared to 
hours or even more than a day for other methods, Table 2) and requires a small amount of 
memory. Fast processing and robust performance make BandNorm particularly suitable for 
rapidly diagnosing data quality and cell type separation on scHi-C datasets or pilot studies. 
scVI-3D is generally performing as well as BandNorm in terms of separating cell types, and 
its overall high performance is stable across data sets (Fig. 1c and Additional file 1: Fig. S7).

Impact of batch effects

Batch effects are known to modulate cell type separation performances of different meth-
ods in other single-cell applications [25, 33]. scVI-3D explicitly incorporates batch fac-
tors into the deep generative framework and exhibits improved cell type separation and 
reduced batch impact (Additional file  1: Fig. S15). scHiCluster and Higashi implementa-
tions also have built-in batch effect correction components. While BandNorm already 
achieved generally high cell-type separation without batch correction (Additional file 1: Fig. 
S16A-B), consideration of the distance effect and library size without any adjustment for 
the batches exhibited an unexpected cell separation within excitatory neuronal subtypes 
of Lee2019  (L2/3, L4, L5, L6, Additional file 1: Fig. S16A-“None” panel). To enable batch 
correction for BandNorm, we considered several methods that yielded promising results in 
removing batch effects for other types of high-throughput sequencing data, including SVA 
[33], removing the principal component exhibiting the highest correlation with the batch 
variable, Seurat batch effect regression [34], and Harmony [25]. Of these, SVA [33] and 
removing the principal component exhibiting the highest correlation with the batch vari-
able did not eliminate the batch bias, while SVA even worsened the performance (Addi-
tional file 1: Fig. S16A). Seurat batch effect regression [34] alleviated the separation within 
the excitatory neuronal subtypes cluster but introduced additional batch biases  for other 
clusters (depicted in orange and yellow in Additional file 1: Fig. S16A, especially for Astro, 
MG, and ODC cell types). In contrast, Harmony [25] stood out in successfully addressing 
the batch effects and slightly enhancing the sub-cell type separation for the excitatory sub-
neurons and inhibitory cells (Additional file 1: Fig. S16B-C). Therefore, we coupled Band-
Norm with the Harmony [25] batch correction for settings with batch effects. In addition, 
we also coupled Harmony with all the methods that do not explicitly model batch factors, 
including CellScale, BandScale, scHiC Topics, and CellScale+CNN, in our benchmark-
ing experiments. Visualization based on low-dimensional embeddings of the methods and 
the quantitative evaluation on the remaining batch effect using ARI and integration local 
inverse Simpson’s Index (iLISI) scores [25] indicates scHiC Topics as still slightly affected. 
The rest of the methods appear to be adequately handling the batch effects (Fig. 3c–f).

In addition to confounding cell-type separation, batch effects may also impact the 
inference of cell type relationships from the pairwise similarity measurements of the 
cells (Fig.  4). We compared the robustness of the methods regarding this effect by 
considering a cell-to-cell similarity metric based on the edge weights of shared near-
est neighbor graphs [35], which we found to properly capture the similarity of two 
contact matrices at the single-cell resolution. As revealed by the hierarchical cluster-
ing of the cells based on this metric (Fig.  4 and Additional file  1: Fig. S17), CellS-
cale, BandNorm, scHiCluster, scHiC Topics, Higashi, and scVI-3D latent embeddings 
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successfully separate the excitatory neuron subtypes (L2/3, L4, L5, and L6), CGE-
derived inhibitory subtypes (Ndnf and Vip), medial ganglionic eminence-derived 
inhibitory subtypes (Pvalb and Sst), oligodendrocyte related cell types (Astro, OPC, 
ODC) and non-neuronal cell types (MG, MP, Endo). BandNorm coupled with Har-
mony batch removal, scHiCluster, and scVI-3D yield the most invariant performance 
to the batch effects on the similarity matrix (Fig. 4 and Additional file 1: Fig. S17).

Fig. 4 Cell-cell similarity analysis to recover cell type relationships. Pairwise cell similarity scores for the 
Lee2019 data set are obtained by edge weights of the shared nearest neighbor graphs constructed from 
normalized data (low-dimensional embeddings from scVI-3D, scHiCluster, and Higashi, and the first 50 PCs 
for BandNorm). The inferred relationships between the cell types are depicted by the dendrogram from the 
hierarchical clustering of the cells
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Impact of sequencing depth and sparsity

Another notable observation from our cell type separation benchmarking study is 
that UMAP and t-SNE visualizations of low-dimensional embeddings from Band-
Scale, scHiCluster, scHiC Topics, Higashi, CellScale+CNN, and scVI-3D tend to 
display systematic effects of sequencing depth and sparsity despite their implicit or 
explicit efforts to account for these factors (Additional file 1: Fig. S8). However, these 
lingering effects do not impact the overall cell type separation. Instead, they tend to 
impact the local organization of the cells within their respective clusters. We consid-
ered utilizing PCA on the low-dimensional embeddings (t-SNE or UMAP) to identify 
and remove the top principal component(s) highly correlated with sequencing depth 
and sparsity. However, their removal did not result in any discernible improvement in 
the cell type separation and, on the contrary, led to worse evaluation metrics for some 
datasets. This eludes the possibility that the sequencing depth and sparsity effects left 
in the model embeddings are confounded with other latent biological or technical 
variations and cannot be completely removed from the data.

Impact of normalization and de‑noising on downstream analysis

Next, we sought to evaluate the normalization and de-noising by BandNorm and scVI-
3D along with other methods with leading performances for their impact on down-
stream scHi-C data analysis, leveraging the Kim2020 data set as an illustration. We 
compared aggregated scHi-C contact matrices of individual cell types after normaliza-
tion (BandNorm) or de-noising (scVI-3D, Higashi, and scHiCluster) with their existing 
bulk Hi-C versions as the gold standard in terms of detection of A/B compartments and 
topologically associating domains (TADs; Figs. 5 and 6, Additional file 1: Figs. S18-S19), 
contact matrix similarity and detection of significantly interacting (Fig. 7 and Additional 
file  1: Fig. S20), as well as the differentially interacting locus pairs (Additional file  1: 
Fig. S21). The results presented are for scHi-C aggregation based on the true cell type 
labels; however, the overall benchmarking conclusions remain the same for the aggrega-
tion using unsupervised clustering labels (Section 5). When the number of cells per cell 
type is large such as in GM12878 (Additional file 1: Fig. S1), BandNorm normalized and 
aggregated scHi-C data exhibits good visual agreement with the bulk version in terms 
of the broad features of the contact matrix, such as the TADs and A/B compartments 
(Fig. 5). However, for rare cell types, i.e., IMR90 in the Kim2020, data from BandNorm 
exhibits extreme sparsity and does not yield good concordance with the bulk version 
(Fig. 6). In contrast, contact matrices de-noised with scVI-3D appear more in agreement 
with their bulk version regardless of the number of cells (Figs. 5 and 6). Higashi results in 
a blurry pattern on the aggregated contact matrix, obscuring the boundaries of compart-
ments and domains. This can be potentially attributed to smoothing across the cells in 
the hypergraph setting. Additionally, aggregated scHi-C data from Higashi consistently 
yields unexpected over-enriched locus pair clusters in the off-diagonal regions across all 
five cell types (black arrows in Figs. 5 and 6, and Additional file 1: Figs. S18-S19). This 
indicates a potential systematic over-imputation issue driven by outlier cells with arti-
facts in the long-range interaction regions (Additional file 1: Fig. S22). scHiCluster de-
noises the scHi-C contact matrix through neighborhood smoothing and random walk; 
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hence, the matrices look even more smooth and blurry than Higashi in comparison with 
their bulk versions.

Systematic quantification of these observations indicates their generality and con-
sistency across the cell types. At the domain structure level, despite the sparsity in 
the aggregated scHi-C matrices, BandNorm has the most concordant insulation score 
(purple lines in the “Insulation Score” panel of Figs. 5 and 6, Additional file 1: Figs. 
S18-S19) to that of bulk data (gray lines in the “Insulation Score” panel of Figs. 5 and 
6, Additional file 1: Figs. S18-S19). This results in the highest recovery rate for TAD 
boundaries across all the chromosomes and all the five cell types (Fig.  7a, e.g., the 
median recovery rates for GM12878 are 85.71%, 66.67%, 60% and 60.87% for Band-
Norm, scVI-3D, Higashi and scHiCluster, respectively). Furthermore, HiCRep [13] 
similarity analysis confirms that BandNorm normalization has the overall high-
est reproducibility score with the bulk Hi-C data, followed by scVI-3D and Higashi 
(Fig. 7b). Additionally, pairwise cell line reproducibility analysis reveals that Higashi 
and scHiCluster consistently have higher similarity scores between IMR90 and any of 
the rest cell types compared to the bulk version as a reference level (Fig. 7c). This can 
be partially attributed to Higashi’s imputation strategy that borrows information from 
neighboring cells and scHiCluster’s smoothing and random walk around neighboring 

Fig. 5 Impact of scHi-C normalization and de-noising methods on the compartment and domain detection 
for GM12878. Comparison of detected topologically associating domains (TADs) and A/B compartments 
between bulk GM12878 Hi-C data on chromosome 1 (upper right triangles) and the aggregated single-cell 
Hi-C data (lower left triangles) after normalization or de-noising using Kim2020 data set. The numbers after 
the red squares at the left bottom or right upper corner of each contact matrix represent the minimum 
interaction frequency for the reddest locus pair. The black arrow highlights one example region that keeps 
showing over-imputation artifacts by Higashi across all five cell types compared to the bulk Hi-C data as a 
gold standard. True cell labels for GM12878 were utilized to aggregate the processed scHi-C data. First row: 
The insulation scores [36] that trace the TAD boundaries are depicted on the contact matrices with gray lines 
corresponding to bulk Hi-C data and purple for BandNorm, blue for scVI-3D, green for Higashi, and yellow for 
scHiCluster. Second row: A/B compartments are detected using the eigenvector of the correlation map of 
bulk (upper right triangles) or aggregated (lower left triangles) Hi-C matrices, values of which are displayed 
above each correlation matrix
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bins. Both strategies reduce the heterogeneity of the cells across cell types. Imputa-
tion across neighbor cells relies strongly on the accurate separation of the cells based 
on their cell types to form informative neighborhoods. Over-expanding the neigh-
bor cells network and over-smoothing across neighbor bins can lead to homologous 
interaction patterns across different cell types. As revealed by the UMAP and t-SNE 
visualization of cell type clustering (Fig.  2b and Additional file 1: Fig. S11), none of 
the methods can isolate IMR90 cells, and most IMR90 cells are mixed with the HFF 
cell cluster. As a result, neighbors of IMR90 cells inevitably consist of cells from vari-
ous cell types and are especially enriched in HFF cells. Furthermore, as discussed in 
Fig.  2b, Higashi failed to assign cells with relatively low sequencing depth and high 
sparsity to their correct cell type clusters, which in turn impacted the purity of cells in 
the neighboring network.

A use case of scHi-C data is the inference of similarity between different cell types 
based on their 3D chromatin interactions. We evaluated the hierarchical relationship of 
the aggregated scHi-C normalized or de-noised matrices across 14 cell types of Lee2019 
data set constructed based on the HiCRep similarity scores. Fig. 7d demonstrates that 
both BandNorm and scVI-3D can achieve a distinct separation of the excitatory neu-
ron subtypes (L2/3, L4, L5, and L6), CGE-derived inhibitory subtypes (Ndnf and Vip), 
medial ganglionic eminence-derived inhibitory subtypes (Pvalb and Sst), oligodendro-
cyte related cell types (Astro, OPC, ODC) and non-neuronal cell types (MG, MP, Endo) 

Fig. 6 Impact of scHi-C normalization and de-noising methods on the compartment and domain detection 
for IMR90. Comparison of detected TADs and A/B compartments between bulk IMR90 Hi-C data and the 
aggregated single-cell Hi-C data after normalization or de-noising using Kim2020 data set with the known 
IMR90 cell type label. The numbers after the red squares at the left bottom or right upper corner of each 
contact matrix represent the minimum interaction frequency for the reddest locus pair. The black arrow 
highlights one example region that keeps showing over-imputation artifacts by Higashi across all five cell 
types compared to the bulk Hi-C data as a gold standard. First row: The insulation scores [36] that trace 
the TAD boundaries are depicted on the contact matrices with gray lines corresponding to bulk Hi-C data 
and purple for BandNorm, blue for scVI-3D, green for Higashi, and yellow for scHiCluster. Second row: A/B 
compartments are detected using the eigenvector of the correlation map of bulk (upper right triangles) or 
aggregated (lower left triangles) Hi-C matrices, values of which are displayed above each correlation matrix
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as suggested in Lee et al. 2019 [10]. Higashi and scHiCluster, however, fail to capture the 
cell type specificity, hence cannot recover the true cell type relationship.

We next investigated the performances of the de-noising methods at the locus pair 
level in terms of detecting significantly interacting locus pairs within a cell type and dif-
ferentially interacting locus pairs across cell types. We first set a gold standard using 
the cell line specific bulk Hi-C data. Specifically, we identified the top 50,000 significant 
interacting locus pairs from bulk Hi-C with Fit-Hi-C [37] as the “true” significant inter-
action list. Then, we quantified the percentage of this list that can be recovered by the top 
interacting locus pairs from the aggregated scHi-C matrices of each method. BandNorm 
outperforms all the other methods by achieving the highest accuracy rate (e.g., for the 
top 5000 interacting locus pairs of GM12878, the accuracy rates vary as 93.34%, 86.32%, 
63.66% and 69.26% for BandNorm, scVI-3D, Higashi, and scHiCluster, respectively), 
across all cell lines except for the IMR90 scHi-C data which has the smallest number of 
cells (Fig. 7e). scVI-3D maintains a highly significant interaction detection accuracy rate 
for the IMR90 cells owing to its zero-inflation model and successful imputation strategy 
(Fig.  7e). Using a series of FDR thresholds (FDR ≤ 0.001, 0.01, 0.05, 0.1), the number 

Fig. 7 Evaluation of scHi-C normalization and de-noising methods for their impact on downstream analysis. 
a Percentages of TAD boundaries from Kim2020 data set that are within 1Mb distance of the TAD boundaries 
of the same cell type bulk Hi-C data. The numbers above each pairwise comparison with BandNorm are the 
p values based on the two-sided t-test. b HiCRep [13] similarity scores between aggregated scHi-C matrices 
from the Kim2020 data set and the corresponding bulk Hi-C matrices. The numbers above each pairwise 
comparison with BandNorm are the p values based on the two-sided t-test. c HiCRep [13] similarity scores 
between aggregated IMR90 matrices and aggregated GM12878, H1Esc, HAP1, and HFF from Kim2020 data 
set. The numbers above each pairwise comparison with bulk are the p values based on the two-sided t-test. 
Sample sizes for a–c are n = 23 for each violin plot corresponding to chromosome 1-22 and chromosome X. 
d Hierarchical clustering of the aggregated scHi-C matrices of different cell types from BandNorm, scVI-3D, 
Higashi, and scHiCluster based on their pairwise HiCRep similarity scores, depicted in the heatmap matrices 
for Lee2019 data set. e Percentage of top N (N = 5,000, 10,000, ...) significant interacting locus pairs that are in 
the gold standard set for each method on Lee2019 data set. The gold standard set is defined as the top 50,000 
significant locus pairs detected by Fit-Hi-C [37] from the cell-type-specific bulk Hi-C data
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of significant interacting locus pairs varies across cell lines and normalization methods, 
with BandNorm and scVI-3D having the highest percentage of the significant locus pairs 
from the aggregated samples in the bulk significance list (Additional file 1: Fig. S20). In 
order to evaluate performances for detection of differential TADs or locus pairs, we con-
sidered TADcompare [38] for differential TAD boundaries detection, diffHic [39] for 
differential interacting locus pairs detection, and CHESS [40] for differential interacting 
regions detection (Additional file 1: Fig. S21). Overall, aggregated scHi-C matrices from 
all four methods resulted in similar differential interaction detection.

Single‑cell gene associating domain (scGAD) score enables analysis at gene‑level 

resolution

High scGAD score is a salient feature of marker genes

After normalization and de-noising of scHi-C data, we turned our attention to investi-
gating single-cell 3D genome architecture at the gene level. Specifically, we adapted the 
gene associating domain (GAD) analysis on the bulk tagHi-C data [41] to scHi-C data. 
GAD scores, which quantify the ratio of the interaction frequency within the gene to the 
average interaction frequency of upstream and downstream regions of the same length, 
have been identified as general structures for highly expressed genes [41]. We utilized 
this gene domain concept on the Tan2021 data set [11] to illustrate how single-cell gene 
associating domain (scGAD) [42] can reveal gene-level insights into 3D genome struc-
ture. The Tan2021 data set harbors both diploid chromatin conformation capture (Dip-
C) data and high-resolution multiple annealing and looping based amplification cycles 
for digital transcriptomics (MALBAC-DT) of post-natal brain development in mice and 
is particularly appealing for assessing whether insights from scGAD analysis can be cor-
roborated with the single-cell transcriptome data. Our benchmarking of the scHi-C data 
normalization and de-noising methods for cell type separation revealed that BandNorm 
demonstrated consistently outstanding performances for data analyzed at adequate 
resolution. Notably, Tan2021  has one of the highest genome coverages and sequenc-
ing depths compared to other scHi-C assays, and it enables binning at 100kb without 
encountering sparsity issues (Additional file  1: Fig. S23). As a result, low-dimensional 
projection of Dip-C contact matrices normalized by BandNorm achieves a level of cell-
type separation (Fig. 8a and Additional file 1: Fig. S24A) which is validated by a similar 
cell-type separation from single-cell transcriptomics with a reanalysis of the MALBAC-
DT as in Tan et al. 2021 [11] (Fig. 8b).

Next, we computed scGAD scores [42] and observed that scGAD scores are consist-
ently higher for the cell-type specific marker genes detected by MALBAC-DT data 
(Fig. 8c). Empirical correlations between scGAD and scRNA-seq expression of match-
ing cell types (Additional file 1: Figs. S25-S28) further confirmed that scGAD is a sali-
ent feature of highly expressed genes. We next leveraged the scGAD scores to derive 
cell-type-specific marker genes based on 3D genome architecture using the cell-type-
specific marker genes detection procedure applied to MALBAC-DT data in Tan et  al. 
2021 [11]. We observed a markedly significant overlap between these two sets of marker 
genes (detected by single-cell transcriptomics and scGAD scores from Dip-C, respec-
tively) (Fig.  8d and Additional file  1: Fig. S29). In addition, the gene ontology (GO) 
enrichment analysis of scGAD marker genes revealed processes congruent with the 
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cell-type-specific functions (Additional file 1: Fig. S30), further validating scGAD quan-
tification as a way of deriving cell-type-specific marker genes. For example, the top bio-
logical processes for marker genes of microglial cells are related to the immune system 
process, and immune response, consistent with the role of microglia cells as the active 
immune defense macrophage cells in the central nervous system [43]. Additionally, cen-
tral nervous system neuron differentiation and transport are the leading biological pro-
cesses for cortical L2-5 pyramidal cells. The major cellular component of scGAD marker 
genes for oligodendrocyte progenitor cells is the highly relevant synaptic vesicle mem-
brane [44] and the top biological process is the chondroitin sulfate proteoglycan biosyn-
thetic process which produces hallmark protein chondroitin sulfate proteoglycan 4 of 
oligodendrocyte progenitor cells [45, 46]. scGAD analysis also provides additional cell-
type identification utility when the expressions of scGAD marker genes are generally low 
or not specific to the target cell type, as we illustrate in microglia and mature oligoden-
drocyte cells (Fig. 8e–f). Genes such as Agmo, Dock8, and Entpd1 are among the top 10 
scGAD marker genes of microglia cells with adjusted p values below 10−30 . However, 
Agmo, detected as one of the top cell surface candidate genes enriched for microglia 

Fig. 8 Single-cell gene associating domain analysis links single-cell 3D genome organization with 
single-cell transcriptome. a Single-cell 3D genome Dip-C data of postnatal mouse forebrain cell types from 
Tan2021 data set [11]. UMAP visualization is generated after BandNorm normalization of single-cell contact 
matrices. b UMAP visualization of single-cell transcriptomics MALBAC-DT data of postnatal mouse forebrain 
cell types from Tan2021 data set. c Comparison of single-cell gene associating domain (scGAD) scores 
between cell type-specific marker genes detected by the MALBAC-DT data and non-marker genes. d Overlap 
between cell-type-specific marker genes detected using scGAD scores and single-cell transcriptomics 
(MALBAC-DT) gene expression. P values are obtained by Fisher’s exact test. e‑f scGAD scores and gene 
expression values of marker genes that are specifically detected by the scGAD scores for Microglia (e) and 
Mature Oligodendrocyte (f) cells, highlighted by the pointing arrows
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cells in a virus-induced neuroinflammation study [47], ranks below 700 using MALBAC-
DT gene expression data, barely making it on the cell-type-specific transcriptome-based 
marker gene list. Moreover, Dock8 is a marker gene of mouse brain macrophages cells 
[48], and its microglial regulation activities have been extensively investigated [49]. 
Entpd1, also known as CD39, is a microglia signature gene [50] and has been shown to 
promote depression behavior in mice [51]. Both Dock8 and Entpd1 are slightly outside 
of the transcriptome-based marker gene list. Similarly, Ano4, Pde4b, and Usp6nl rank 
1st, 2nd, and 32nd for the scGAD marker gene detection with adjusted p values all below 
10−32 albeit without mature oligodendrocyte specific gene expression according to the 
MALBAC-DT data. However, Allen Brain Atlas browser 10X-SMART-SEQ taxonomy 
data [52] confirms the enrichment of Ano4, Pde4b, and Usp6nl gene expression specific 
to post-natal Oligodendrocyte cells. Altogether, these underline the potential of scGAD 
analysis to reveal cell-type-specific marker genes based on 3D genome architecture data.

scGAD scores of marker genes support novel clustering of neonatal neuronal cells based on 3D 

genome architecture

Analysis in Tan et al. 2021 [11] separated neonatal neuronal cells into two sub-clusters based 
on their 3D genome architecture as neonatal neuron 1 and 2 (Fig. 3A of Tan et al. 2021 [11]). 
This clustering is primarily driven by age as 78.78% of neonatal neuron 1 cells originate from 
day 1 and 68.8% of neonatal neuron 2 from day 7. After BandNorm normalization, both 
UMAP and t-SNE projections reveal a novel cluster separation among neonatal neuronal cells 
(labeled as neonatal neuron I and II in Fig. 8a and Additional file 1: Fig. S24A). To investi-
gate the biological relevance of this sub-clustering, we first ruled out that tissue (cortex or hip-
pocampus), age (day 1 or day 7), sex (female or male), and sequencing depth are the driving 
factors for this sub-cluster separation (Additional file 1: Fig. S31). Next, leveraging the ability 
of scGAD scores to accentuate marker genes, we asked whether any of the cell-type-specific 
transcriptome-based marker genes of the neonatal-related cell types (Additional file 1: Fig. S32 
and Section 5) has differential scGAD scores between the two sub-clusters. This did not reveal 
any marker gene that is able to separate these two sub-clusters from Tan et al. 2021 [11] (neo-
natal neuron 1 vs. 2). In contrast, 50 of the transcriptome-based marker genes had significantly 
different scGAD scores between the two sub-clusters with the new cluster labeling on the 
BandNorm normalized data (neonatal neuron I vs. II, Fig. 9a). We further partitioned these 
50 marker genes into two groups based on the direction of their differential scGAD scores for 
the two sub-clusters. Then, we investigated the single-cell expression of these genes in three 
major neonatal neuron-related cell types: PV/SST neonatal interneuron, hippocampal pyram-
idal neonatal, and cortical L2-5 pyramidal neonatal cells (Figs. 8b and 9b). As depicted by the 
black rectangles on the heatmaps, a cluster of marker genes with significantly higher scGAD 
scores in the neonatal neuron I sub-cluster show high expression among interneuron neo-
natal cells, suggesting that the neonatal neuron I sub-cluster of the 3D genome architecture 
might be enriched for interneuron neonatal cells. In contrast, marker genes with significantly 
higher scGAD scores in the Neonatal Neuron II sub-cluster exhibit an exclusive expression 
pattern for the interneuron neonatal cells, especially during day 1, suggesting that the neu-
ron II sub-cluster of the 3D genome architecture might be depleted of interneuron neonatal 
cells. Furthermore, the expression patterns of the marker genes highlight that neonatal neuron 
I sub-cluster is likely to exclude the day 1 (P1) versions of the other two neonatal cell types 
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(hippocampal pyramidal and cortical L2-5 pyramidal neonatal) and harbor more mature (P7) 
versions of these cell types (Fig. 9b). GO enrichment analysis of the two groups of marker 
genes for neonatal neuron I and II also exhibit different biological processes, components, and 
functions, further supporting the feasibility of novel neonatal neuron sub-clustering (Fig. 9c). 
Collectively, this analysis highlights the utility of scGAD scores in interpreting new cell clus-
ters revealed by clustering of the 3D genome architecture (Additional file 1: Fig. S24C) and 

Fig. 9 Detection of two novel neonatal neuronal sub-clusters after BandNorm normalization. a 
Transformed p values from the comparison of scGAD scores of marker genes across the two sub-clusters. 
“New clusters” and “Original clusters” depict the sub-cluster labels obtained in this paper and in Tan et al. 
2021 [11], respectively. The marker genes are inferred by Tan et al. 2021 [11] from the neonatal single-cell 
transcriptomics data. P values are obtained by Wilcoxon rank-sum test. b Heatmaps of gene expression 
of the marker genes with differential scGAD scores between the newly identified neonatal neuron I and II 
sub-clusters among the PV/SST interneuron, hippocampal pyramidal, and cortical L2-5 pyramidal neonatal 
cells. Marker genes with significantly different scGAD scores among the two sub-clusters are partitioned into 
two groups. Top heatmap: genes with significantly higher scGAD scores in the newly identified neonatal 
neuron I sub-cluster compared to neonatal neuron II sub-cluster. Bottom heatmap: genes with significantly 
higher scGAD scores in the newly identified neonatal neuron II sub-cluster compared to neonatal neuron 
I sub-cluster. c Gene ontology analysis of marker genes with significantly different scGAD scores between 
Neonatal Neuron I and II. d scGAD scores of lists of cell-type-specific marker genes, detected by comparing 
scGAD scores across cell types among single cells (left panel) and averaged for each cell type (right panel). 
scGAD score values are standardized into z-scores
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cell-type identification at individual cell resolution (Fig. 9d - left panel) or using the averaged 
scGAD scores across cells of the same cell type (Fig. 9d—right panel).

Run time and memory requirements

Finally, we quantified the run time and memory requirements of each method on the 
Lee2019 data set with large numbers of cells and high sequencing depths. Higashi exper-
iments using GPU version and scVI-3D were carried out on a machine with 18 cores 
2 sockets Intel(R) Xeon(R) Gold 6254 CPU addressing 562GB RAM and one NVIDIA 
GeForce RTX 2080 Ti GPU addressing 11GB RAM. The rest of the methods, including 
Higashi experiments only using CPU, were tested on machines with 14 cores 2 sockets 
Intel(R) Xeon(R) CPU (E5-2680 v4) addressing 256GB RAM. The run times of the meth-
ods vary dramatically from less than 15 min to several hours or even days using multiple 
cores for parallel running with one core per chromosome (Table 2).

Discussion
The profiling of single-cell 3D genome organization is poised to generate new types of 
investigations of transcriptional regulation at the single-cell level. A critical analytical 
task of these investigations is de-noising and normalization of scHi-C data to infer clus-
ters of cells representing cell types, stages, and conditions. We developed BandNorm 
and scVI-3D at the two opposite ends of the structured modeling of scHi-C data. Our 
evaluations of data sets with known cell types and varying data characteristics indicate 
that BandNorm, which corrects for genomic distance bias and library size, performs as 
well and even better than elaborate modeling approaches on these data sets. When cou-
pled with Harmony, BandNorm is also robust to batch effects in cell type separation. In 
comparison, scVI-3D can account for genomic distance, library size, sparsity, and batch 
effects and impute sparse contacts to provide advantages in addressing high sparsity or 
rare cell types for downstream analysis compared to BandNorm. Collectively, our com-
putational investigations suggested that BandNorm would be effective for the initial 
exploration of the scHi-C data with normalization and cell-type identification. If and 
when rare cell types are identified, detailed modeling with scVI-3D can enable impu-
tation and better inference for downstream analysis, especially for high sparsity set-
tings. We also expect that the framework of scVI-3D could foster further model-based 
approaches for the analysis and integration of scHi-C data with other data modalities.

To enable exploration of scHi-C data at the gene level, we adapted gene-associating domain 
analysis to single-cell level as scGAD scores and leveraged these to infer highly expressing 
and/or marker genes of cell types. Our current implementation of scGAD scores identified 
marker genes from 3D genome organization clustering, largely agreeing with cell-type-spe-
cific marker genes inferred from single-cell transcriptome analysis. We further illustrated how 
scGAD scores could elucidate cell types in a novel sub-clustering of neonatal neuronal cells. 
scGAD scores are calculated for genes of length at least 100kb owing to the low resolution of 
chromatin conformation capture data. As the resolution of single-cell 3D genome organiza-
tion data improves, we expect that the length constraint for scGAD scores can be removed by 
careful design of background distributions to take into account gene densities.

We note that the current version of scVI-3D does not consider spatial dependence among 
adjacent locus pairs, i.e., (i, j) with (i − 1, j − 1) and (i + 1, j + 1) in the band matrices. While 
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high-resolution contact maps, e.g., locus size ≤ 10Kb from bulk Hi-C data exhibit local spa-
tial dependency between interacting loci [53], the spatial independence assumption is well 
justified for low resolution (200 Kb–1 Mb) scHi-C data (Additional file 1: Fig. S33).

Conclusions
In conclusion, we have presented BandNorm as an initial tool for exploring and scVI-3D for 
more structured denoising of scHi-C data. Compared to existing approaches, both methods 
performed as well or markedly better than existing approaches with specific time and mem-
ory efficiency advantages for BandNorm and the ability to adapt to data sparsity and cell type 
rarity for scVI-3D. Our re-analysis of the single-cell 3D genome data from post-natal brain 
development in mice [11] together with scRNA-seq data from the same system further illus-
trated the potential of integrating scHi-C data with other single-cell data modalities and high-
lighted an exciting emerging direction [42].

Methods
Band transformation of scHi‑C data

Band transformation of scHi-C contact matrices forms the basis for our normaliza-
tion and modeling approaches. To explicitly capture the genomic distance effect, the 
upper triangular of the symmetric contact matrix for each cell is first stratified into 
diagonal bands, each representing the genomic distance between the interacting loci. 
Then, bands from the same genomic distance are combined into a band matrix across 
cells (Fig. 1a). Specifically, we denote the set of bands by V = {0, 1, · · · ,D − 1} , where 
D denotes the number of loci in the contact matrix (i.e., the number of rows) and v 
= 0 represents the diagonal band, A(v) = {(i, j), i, j = 1, · · · ,D : j ≥ i & j − i = v} 
indices of the locus pairs in the band v, and mv the total number of locus pairs in the 
band v. We only consider the off-diagonal interactions for the modeling and down-
stream analysis, hence v ≥ 1. Therefore, each element in the band matrix at genomic 
distance v is denoted as Y cv

r  representing the raw interaction frequency, i.e., quantifi-
cation of how strongly two loci interact, between genomic loci i and j where r ∈ A(v) 
in cell c ( c = 1, · · · ,N  ). Ycv denotes a vector of interaction frequencies of locus pairs 
for cell c at band v.

BandNorm: a fast baseline band normalization approach for scHi‑C data

Bandnorm provides computationally fast normalization of scHi-C data and operates 
by first removing genomic distance bias within a cell and sequencing depth normaliz-
ing between cells followed by adding back a common band-dependent contact decay 
estimate for the contact matrices across cells. More specifically, the BandNorm nor-
malized interaction frequencies are obtained by

(1)Ccv
r =

Y cv
r

Lcv/mv
(α(v)/mv) =

Y cv
r

Lcv
α(v), ∀r ∈ A(v),
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where Lcv denotes the total interaction frequency of cell c at the v-th band, 
Lcv =

∑mv
r Y cv

r  , and α(v) is the average interaction frequency of band v across cells and 
is defined as N

c=1 L
cv/N .

scVI‑3D: a deep generative model for scHi‑C data

scVI-3D models the interaction frequencies of locus pairs in each cell as a sample from 
a zero-inflated negative binomial distribution while accounting for library size and 
batch effect for each band matrix. The two key components of this model are a non-
linear latent factor model to obtain low-dimensional representations zcv of cell c across 
band matrices Ycv and a hierarchical generative model for Pr(Ycv

| zcv) . Low-dimen-
sional latent variable zcv enables nonlinear dimension reduction for characterizing dif-
ferences among cells in band v. In the generative process, each interaction frequency 
Y cv
r  is drawn independently conditional on zcv through the following process, assuming 

that zcv ∼ Normal(0, IK ) . In order to account for the sparsity of the scHi-C data, a zero 
inflation variable Tcv

r  is defined while setting Y cv
r = 0 if Tcv

r = 1 and Y cv
r = Ncv

r  other-
wise. Here, Ncv

r  denotes the observed interaction frequency in the absence of a drop-
out, and Tcv

r ∼ Bernoulli(π cv
r ) , where π cv

r = ωv
r (zcv , sc) . sc is the batch information 

for cell c and ω(.) is a neural network that encodes whether a particular locus pair has 
dropped out due to the technical artifacts [29] and maps the latent space zcv back to the 
full dimension of all locus pairs in band v. Additionally, Ncv

r ∼ Poisson(lcbv�
cv
r ) where 

�
cv
r ∼ Gamma(µcv

r , δv) , lc denotes the latent library size factor for cell c, and the band 
size factor bv modulates the impact of the size factor on the true interaction frequencies 
for band v. The band size factor, bv , is motivated by the genomic distance effect in which 
interaction frequencies between locus pairs vary systematically by the distance between 
the loci. The band effect has been observed to vary markedly between two bulk Hi-C 
experiments [30]. We inquired whether this effect varied depending on the observed 
library size of the individual cells by leveraging one of our case study data sets (Lee2019) 
and formally tested for an interaction between library size and band. Specifically, we 
considered a mixed linear model for cell-specific mean band interaction frequencies as a 
function of cell type, observed library size, and band indices as

where interaction frequencies are normalized to per million within each cell and log 
transformed, and the model term (1|Cell Number) denotes the random effects 
of the cells to accommodate potential correlations between measurements from the 
same cell. This analysis revealed a significant interaction between library size and band 
(p value << 10e − 6 ), and the model with the interaction term fitted better than the 
smaller submodels based on the Bayesian information criterion (BIC [54]). This obser-
vation enables a more flexible parametrization of scaling factor that merges library 
( lc ) and band size ( bv ) factors into cell type specific band size factors as dcv . Moreover, 
we let dcv ∼ Log Normal(µv

d , (σ
v
d )

2) parametrize the prior for this scaling factor in the 

(2)

Normalized mean band IFs

∼ Cell Type+ Library Size+ Band

+ Library Size× Band

+ (1|Cell Number),
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generative model. Next, the mean parameter µcv
r  is modeled as a nonlinear function of 

zcv as µcv
r = ηvr (zcv) , where η(.) is a neural network that maps the latent space to the full 

dimension of the locus pairs.
Computationally, we extended the existing variational inference tools, scvi-tools 

(single-cell variational inference tools [18]), to fit on each chromosome and each band 
matrix separately. The estimated latent components zcv of each cell and band were 
concatenated for final low-dimensional projection by UMAP or t-SNE and down-
stream analysis. Prior to the modeling, we filtered each band matrix to exclude the 
cells with no interaction across all the locus pairs within each band. Consequently, 
the latent embeddings were missing for the no interaction cells. We impute the miss-
ing embeddings by 0. The scVI-3D software offers an option to tune the dimension of 
latent space; however, we suggest starting with the default value of 100 as computa-
tional experiments illustrate advantages over the commonly used 10–50 dimensions 
in scRNA-seq or scATAC-seq analysis (Additional file  1: Fig. S4). Furthermore, we 
also offer optional usage of the band pooling strategy to combine the farther off-diag-
onals for gathering sufficient locus pairs and interaction frequencies for the model 
fitting to perform more robust dimension reduction and de-noising. The default pool-
ing strategy leverages the progressive pooling concept from multiHiCcompare [24], 
where the diagonal is modeled on its own. The second and third off-diagonal of the 
band matrices are concatenated, followed by combining the fourth, fifth, and sixth 
diagonals. Then, the 7th to 10th diagonals are concatenated, and so on. The last group 
pools all the remaining off-diagonal band matrices, and all the bands concatenated 
together share the same training parameters. We also explored four additional pool-
ing strategies (Additional file 1: Fig. S3). Strategy 2 models the diagonal and first nine 
off-diagonal independently and then pools the 11th and 12th bands, 13th to 15th, 
16th to 19th, and so on. Strategy 3 merges the first five diagonals, then the next ten 
off-diagonals, followed by the next 20. Strategy 4 merges every ten bands, and strat-
egy 5 models the first ten bands individually and then starts merging every ten bands 
subsequently. Computational investigation illustrates that the default strategy gener-
ally demonstrates the leading performances in better separating the cell types while 
exhibiting minor batch effects (Additional file 1: Fig. S3). We also considered apply-
ing a similar pooling strategy for BandNorm. However, the genomic distance decay 
profiles that are critical for BandNorm normalization became less precise (Additional 
file  1: Fig. S34), and we observed deteriorating cell type separation performance 
(Additional file  1: Fig. S3). Therefore, progressive pooling is not incorporated into 
BandNorm.

scHi‑C data analysis methods compared in the benchmarking experiments

In our evaluations of unsupervised clustering of the cells based on scHi-C data, we 
considered two classes of methods, including baseline methods for library size and 
genomic distance effect normalization and more structured modeling approaches. In 
the former category, in addition to BandNorm, we devised and evaluated CellScale, 
which uses a single scaling factor across all the locus pairs within a cell and scales 
the  library sizes of each cell to a common size (10,000 in our applications). We also 
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considered the first normalization step of BandNorm separately as BandScale, where 
interaction frequencies of each band within a cell are divided by the cell’s band means. 
BandScale uses band-specific size factors rather than a global size factor within a cell 
and has been used previously to eliminate library size bias at each genomic distance 
[10, 23, 24]. After each of CellScale, BandScale, and BandNorm normalizations, sin-
gle-cell contact matrices are vectorized into the cell by locus pair matrices and used 
to generate low-dimensional embeddings. To incorporate the matrix structure of the 
data, we utilized a convolutional neural network (CNN) approach, which has been 
previously leveraged for enhancing the resolution of the bulk-cell Hi-C matrix [31], 
on contact matrices from CellScale to learn the lower-dimensional representation of 
the contact matrices.

Among the more structured modeling approaches, in addition to scVI-3D, we also 
considered the state-of-the-art scHi-C data processing methods scHiCluster, scHiC 
Topics, and Higashi. scHiCluster starts with neighborhood smoothing and random 
walk imputation to reduce the contact matrix sparsity. For dimension reduction, the 
contact matrix of each chromosome is vectorized into a cell by a locus pair matrix, 
and after concatenating across chromosomes, truncated singular value decomposi-
tion (SVD) is leveraged for dimension reduction, followed by clustering and visualiza-
tion. Notably, scHiCluster requires the most stringent cell filtering, where only cells 
with total off-diagonal interaction frequencies > 5000 are kept. It further enforces less 
sparsity by discarding cells with less than x non-zero locus pairs, where x is the num-
ber of x Mb loci on each chromosome, separately for the contact matrices of each 
chromosome. scHiC Topics focuses more on the short to mid-range interactions by 
only considering the intra-chromosomal locus pairs within 10Mb genomics distance. 
This aims to balance the data sparsity and reduce model complexity. Contact matri-
ces of the cells are first vectorized to construct the cells by locus pairs matrix, which 
is further binarized and input into a topic modeling framework. Cell type cluster-
ing is implemented on the cell by topics matrix where “topics” are proxies for cell 
types. Higashi trains a hypergraph neural network and enables neighboring cells in 
the hypergraph to share information for capturing interaction patterns. The result-
ing embeddings are then used for learning cell types. Table 2 summarizes these eight 
methods in terms of their pre-processing and treatment of various sources of biases.

Benchmark and analysis data sets

We considered four existing studies with varying data characteristics and known 
cell types to benchmark the scHi-C low-dimensional embedding approaches. These 
four datasets are scHi-C measurements from human cell lines (Ramani2017  [8] 
and Kim2020  [15]), human brain prefrontal cortex cells (Lee2019  [10]), and mESC 
cells (Li2019  [9]). We utilized one additional cortical and hippocampal mouse study 
Tan2021  [11] to explore single-cell 3D genome information with scGAD scores and to 
validate with scRNA-seq data.

Ramani2017 has four human cell lines, HeLa S3, HAP1, K562, and GM12878. These 
cell lines are distributed over five sequencing libraries labeled as ml1, ml2, ml3, pl1, pl2, 
where pairs ml1 and ml2, and pl1 and pl2 are sequencing experiments with the same 
library preparations, respectively, and hence present different batches. We downloaded 
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the Ramani2017 data from GEO [55] with data accession GSE84920, and followed the 
instructions of literature [8] to filter out low count reads. Data was transformed into the 
sparse matrix format at 1Mb by scHiCTools [56].

Lee2019 generated scHi-C data from 14 human brain prefrontal cortex cell types, 
Astro, Endo, L2/3, L4, L5, L6, MG, MP, Ndnf, ODC, OPC, Pvalb, Sst, Vip, originat-
ing from two donors with ages of 21 and 29 years and in a total of five sequenc-
ing libraries. Data were downloaded from https:// salki nstit ute. app. box. com/s/ fp63a 
4j36m 5k255 dhje3 zcj5k fuzky j1/ folder/ 82405 563291. This dataset has a relatively 
large number of sequencing reads and a high average interaction frequency per 
cell. Furthermore, since all the cells are prefrontal cortex cells, they are expected to 
exhibit less heterogeneity compared to other datasets.

 Li2019  dataset harbors mESC cells cultured in serum and leukemia inhibitory fac-
tor (LIF) condition (serum mESCs: serum 1 and serum 2) and mESCs cultured in LIF 
with GSK3 and MEK inhibitors (2i) condition. This data is valuable in benchmarking 
the performances of the methods when the number of cells is small. We downloaded the 
Li2019 data from GEO under the accession number GSE119171 and converted it  into 
sparse contact matrices by Juicer [57].

Kim2020 dataset contains scHi-C data from five human cell lines, GM12878, H1Esc, 
HAP1, HFF, and IMR90, with nine sequencing libraries. While this data has the larg-
est number of cells, the average off-diagonal interaction frequency per cell is the small-
est. Notably, the numbers of cells vary dramatically across cell types, with GM12878, 
H1Esc, and HAP1 having more than 2k cells and IMR90 with less than 100 cells (Addi-
tional file 1: Fig. S1). We downloaded the data from https:// noble. gs. washi ngton. edu/ proj/ 
schic- topic- model/.

All the scHi-C data on chromosomes 1-22 for human cell lines and 1-19 for mouse cell 
lines and chromosome X were binned at 1Mb resolution (default resolution of all the 
analyses unless otherwise specified) to generate a set of loci, and extremely sparse cells 
were removed if the number of non-zero locus pairs was less than x/6 for the contact 
matrix of each chromosome where x is the chromosome size in Mb (Table 1). We also 
added one additional investigation of Lee2019  at 100kb for inspection of method per-
formance at high resolution and high sparsity scenario. At 100kb, cells that have more 
than 99.9% of sparsity rate, i.e., more than 99.9% interacting bins on the within-chromo-
some contact matrix are zero, are excluded. We discarded the scHiCluster cell filtering 
requirement (Table 2) since it led to the removal of as high as 88.4% of the cells in the 
Kim2020 dataset. The valid numbers of cells per cell type in all four data sets are summa-
rized (Additional file 1: Fig. S1). As part of pre-processing, all the locus pairs along the 
diagonal of the contact matrices were excluded from the analysis. We observed distinct 
distributions of interaction frequencies among the diagonal and off-diagonal locus pairs 
(Additional file 1: Fig. S35) across the datasets. In the benchmarking experiments, locus 
pairs at all genomic distances (excluding the diagonals) were utilized to avoid the exclu-
sion of large percentages of interactions (Additional file  1: Fig. S36), except for scHiC 
Topics, which only focus on locus pairs within 10Mb.

We used existing bulk Hi-C datasets of specific cell types as the gold standard for com-
paring different methods. Specifically, GM12878 combined in situ and IMR90 combined 
in situ data were downloaded from GEO under accession GSE63525 [53]. For differential 

https://salkinstitute.app.box.com/s/fp63a4j36m5k255dhje3zcj5kfuzkyj1/folder/82405563291
https://salkinstitute.app.box.com/s/fp63a4j36m5k255dhje3zcj5kfuzkyj1/folder/82405563291
https://noble.gs.washington.edu/proj/schic-topic-model/
https://noble.gs.washington.edu/proj/schic-topic-model/
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interaction detection, two deeply sequenced biological replicates (replicates HIC019 and 
HIC020 for GM12878 and HIC051 and HIC056 for IMR90) were utilized. One com-
bined replicate of HAP1 was obtained from GEO with the accession number GSE74072 
[58] and another replicate utilized the wild-type condition data from GEO with acces-
sion number GSE95015 [59]. H1ESC (accession 4DNESRJ8KV4Q) and HFF (accession 
4DNES2R6PUEK) data were obtained from the 4D Nucleome portal [60].

Tan2021 dataset has both the single-cell 3D genome data profiled by diploid chromatin 
conformation capture (Dip-C) and single-cell transcriptomics data using high-resolution 
multiple annealing and looping-based amplification cycles for digital transcriptomics 
(MALBAC-DT) on the mouse forebrain cortex and hippocampus tissue during the first 
post-natal month. Processed Dip-C and MALBAC-DT data are available at GEO [55] 
under accession GSE162511. Tan et al. [11] report 13 cell types from the Dip-C data and 
26 from MALBAC-DT (Fig. 8a, b). The mouse reference genome is GRCm38 and gene 
annotations were downloaded from the GENCODE (https:// www. genco degen es. org/ 
mouse/) M19 release. We binned the genome at 100kb resolution and normalized the 
contact matrices by BandNorm before visualization and downstream analysis.

Evaluation metrics

We considered both K-means clustering with and without low-dimensional projections 
with t-SNE and UMAP, and Louvain graph clustering [32] to identify cell types. The 
cluster number of K-means is the number of cell types with true labels (e.g., k = 14 for 
Lee2019). The clustering resolution of Louvain graph clustering is tuned with a binary 
search so that the final cluster number is close to the true number of cell types. Applica-
tion without t-SNE and UMAP involved applying K-means and Louvain graph clustering 
on the vectorized cell by locus pairs matrices (for CellScale, BandScale, and BandNorm) 
or the method latent component embeddings. Applications with t-SNE and UMAP low-
dimensional projections first leveraged PCA to reduce the dimensions of the vector-
ized cell by locus pairs matrices or method latent component embeddings to the top 50 
principal components before applying t-SNE and UMAP to generate low-dimensional 
embeddings. We quantified the resulting clustering performances with adjusted rand 
index (ARI) [61], which measures the similarity between two data clusterings, i.e., true 
underlying cell types and the estimated clustering, adjusted for chance similarity. We 
also evaluated average silhouette scores [62] to measure the separation between known 
cell types in the t-SNE and UMAP visualizations. Collectively, these led to six evaluation 
settings (Fig. 1c).

Implementation details

scHiCluster

We utilized the scHiCluster open-source software published at https:// github. com/ 
zhouj t1994/ scHiC luster with the release version in December 2021. The software 
commit ID is 9c58381cb8d15dceafe410cd4b44cf3f376a475f. All the parameters are 
set to the default suggested by scHiCluster and followed the instructions to obtain the 
latent embeddings for all the chromosomes by the truncated singular value decompo-
sition (SVD) extraction.

https://www.gencodegenes.org/mouse/
https://www.gencodegenes.org/mouse/
https://github.com/zhoujt1994/scHiCluster
https://github.com/zhoujt1994/scHiCluster
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scHiC Topic

Following the pre-filtering guidelines from scHiC Topics [15] (https:// github. com/ khj30 
17/ schic- topic- model), only locus pairs within 10Mb of each other were utilized for cell 
type separation. To determine the optimal topic number based on the silhouette score 
as suggested in the method paper [15], we set the lowest topic number to be 10 and the 
highest to be 90 with increments of 5. The final optimal number of topics selected for 
Ramani2017, Li2019 and Kim2020 are 35, and 60 for Lee2019, respectively.

Higashi

We utilized the Higashi software of release version in October 2021 with the commit ID 
19ec13f7da265f8d0780e3f6106b380056661991. All the parameters were set to defaults 
suggested by the Higashi pipeline (https:// github. com/ ma- compb io/ Higas hi). We 
benchmarked the performance of Higashi using GPU and only using CPU, therefore the 
cpu_num was set to 23 and gpu_num was set to 1 or 0 accordingly.

CellScale+CNN

The CNN was implemented with some modifications to the CNN Variational 
Autoencoder module of Pytorch (https:// github. com/ sksq96/ pytor ch- vae). Both the 
encoder and decoder are symmetric and contain two layers. The latent vector z was 
set to have 20 dimensions and kernel_size parameter to 4. Furthermore, bias 
was set to False and stride was set to 2 for all the layers. The minimal iteration 
parameter was set to 90 with a batch size of 10. The learning rate for the Adam algo-
rithm was set to 0.001.

scVI‑3D

The implementation of scVI-3D on each band was built on the scVI-tools [18] 
(https:// github. com/ Yosef Lab/ scvi- tools), where we set the latent variable dimen-
sion to 100. We filtered cells that have no interaction for all the locus pairs in each 
band matrix. When concatenating the latent embeddings across band matrices, the 
latent value for the missing cells was filled with zero.

SVA

We first divided the obtained matrix by its minimum value to get a non-negative matrix 
and then use the ComBat_seq function in R package sva to do batch removal.

Seurat

We constructed the ScaleData and utilized vars.to.regress function in R package Seurat 
to regress out the batch effect.

Harmony

Use HarmonyMatrix function in R package harmony with do_pca = FALSE to remove 
the batch of the matrix. Harmony batch correction is utilized for all the scaling meth-
ods and more structured modeling approaches that do not explicitly model the batch 

https://github.com/khj3017/schic-topic-model
https://github.com/khj3017/schic-topic-model
https://github.com/ma-compbio/Higashi
https://github.com/sksq96/pytorch-vae
https://github.com/YosefLab/scvi-tools
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factor in their algorithms, namely, CellScale, BandScale, BandNorm, CellScale+CNN, 
and scHiC Topics.

Integration local inverse Simpson’s Index (iLISI) score

The iLISI [25] is employed with the “compute_lisi” function of the R package LISI to 
evaluate the batch effects. A high density of cells around one indicates that the neighbor-
hoods of these cells have a single batch representation; hence, it signifies batch effects. In 
contrast, larger iLISI scores indicate that batches are well mixed in the cells’ neighbor-
hood, signaling a low impact of the batch effect.

diffHic

Differential chromatin interaction detection requires at least two replicate per condition. 
For differential detection between two aggregated scHi-C cell types, we randomly parti-
tion the cells with the same cell label into two groups, with each forming a pseudo-repli-
cate. Differential detection is implemented using R package diffHic.

Evaluation metrics

K-means replied on the kmeans function of stats R package using the default Har-
tigan-Wong algorithm. nstart was set to 300 and iter.max to 1000. Louvain 
graph clustering was carried out based on FindNeighbors and FindClusters 
functions in Seurat R package. Silhouette coefficients were obtained using silhou-
ette function from cluster R package.

De‑noising performances with aggregated scHi‑C data using cell labels from unsupervised 

clustering

We repeated the assessment of the impact of the normalization and de-noising methods 
on the downstream analysis using the cell type labels inferred from clustering in aggre-
gating the scHi-C contact matrices. This ensured a more unbiased assessment of the 
overall effect of the analysis methods without relying on true cell type labels (Additional 
file 1: Fig. S37). K-means clustering of the UMAP embeddings of the Kim2020 dataset 
resulted in four clusters which we labeled as GM12878, H1ESC, HAP1, and HFF cell 
type (Additional file 1: Fig. S37a). Concordant with the results that relied on true cell 
labels, detection of A/B compartments and topologically associating domains (TADs), 
contact matrix similarity, and detection of interacting locus pairs yield the advantages 
of BandNorm followed by scVI-3D (Additional file 1: Fig. S37b-e). Similarly, comparison 
with respect to the differentially interacting locus pairs resulted in similar performances 
across the methods (Additional file 1: Fig. S37f-g).

Single‑cell gene associating domain (scGAD) analysis

scGAD score definition

Inspired by the GAD analysis of bulk Hi-C data [41], single-cell gene associating 
domain (scGAD) adjusts the interaction frequencies within the gene region for gene-
level sequencing depth and other potential genomic biases implicitly by a standardiza-
tion procedure [42]. The scGAD score is calculated based on the individual cell contact 
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matrix after BandNorm normalization. Only protein-coding genes longer than 100kb 
are considered for scGAD scoring.

Marker gene detection with scGAD

To detect the genes that have significantly high scGAD scores (i.e., marker genes with 
respect to scGAD scores), we first determined a threshold above which scGAD scores 
can be considered high using the same procedure as Zhang et al. 2020 [41]. Genes that 
are longer than 100kb are first ranked by the average scGAD scores across all the cells. 
Both the average scGAD scores and the gene ranks are scaled to [0, 1] to create a curve 
of scGAD scores as a function of scaled gene ranks. The threshold for  a high scGAD 
score is then defined by deriving a tangent line to this curve with a slope of 1. The cor-
responding scGAD score before scaling to [0, 1] is set as the threshold to represent high 
scGAD scores (Additional file  1: Fig. S24B), resulting in a threshold of 1.638 for the 
Dip-C data. Then, for each cell type, we tested whether the mean scGAD score of genes 
exceeded this threshold using cell level scGAD scores and employing the  one-sample 
Wilcoxon signed rank test. The resulting p-values were adjusted for multiplicity across 
genes within each cell type with the Benjamini-Hochberg procedure [63].

scGAD cell‑type specific marker gene detection

To recognize the marker genes that are specific to one cell type using scGAD score, we 
first normalize the scGAD scores using “NormalizeData” and “ScaleData” functions 
from Seurat R package. The detection is carried out using “FindMarkers” function from 
Seurat R package with the following parameters “only.pos = TRUE, min.pct = 0.1, logfc.
threshold = 0.25,” which are consistent with the single-cell transcriptomics cell-type 
marker gene detection in Tan et al. [11].

scGAD differential marker gene detection between two neonatal neuron sub‑clusters

Single-cell transcriptomics marker genes of five categories provided by Tan2021  [11] 
are considered for the differential detection between two neonatal neuron sub-clusters 
of original or new cell type labeling using scGAD scores and tested by the Wilcoxon 
signed-rank test. These five categories are P1-7, neuron, PV/SST interneuron neona-
tal, hippocampal pyramidal neonatal, and cortical L2-5 pyramidal neonatal (Additional 
file 1: Fig. S32).

GO analysis

Gene ontology analysis is performed by “goseq” function from goseq R package with 
reference data from “org.Mm.eg.db” and “TxDb.Mmusculus.UCSC.mm10.ensGene” R 
packages.

Gene overlap analysis

The significance of the overlap between marker genes detected using single-cell tran-
scriptomics data (MALBAC-DT) and those detected using scGAD scores are assessed 
by the Fisher’s exact test.
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