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Background
Single-cell RNA sequencing (scRNA-seq) technologies have enabled the functional char-
acterization of cellular states associated with dynamic biological processes such as devel-
opment [1–3] and disease progression [4–7]. While transcriptomic information holds 
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great promise for gaining insight into the biological mechanisms that govern phenotypic 
changes, inference has been traditionally limited to incompletely sampled static mature 
mRNA measurements. This poses two fundamental challenges for robust prediction of 
the dynamic progression of cell state. First, many gene regulatory mechanisms can give 
rise to the same distribution of mature mRNA measurements [8]. Second, snapshot data 
often fails to fully capture the large biological variability required for population-level 
inference by missing important transition states or rare cell populations [9–11].

More recently, computational tools such as RNA velocity have been used to extract 
directed dynamic information from single cells [12–16]. By leveraging unspliced pre-
mRNA and spliced mature mRNA molecules in a kinetic model, RNA velocity can pre-
dict the future transcriptional state of a cell. Indeed, RNA velocity has been successfully 
incorporated into algorithms for inferring fate probabilities [17], gene regulatory net-
works [18], differentiation trajectories [19–21], and embeddings [22]. However, it is still 
unclear whether integrating spliced gene expression with either unspliced molecules 
or RNA velocity predictions is useful for predictive modeling at the data-level. Such an 
integrated approach may help uncover salient features predictive of cell type or response 
to therapy, enhance our understanding of the relationship between cell states, or provide 
insight into the molecular pathways that drive a cell’s transition to a more pathological 
phenotype.

Single-cell multi-omics data integration methods have had great success in fusing dif-
ferent molecular data types, or modalities for disease subtyping, predicting biomarkers, 
or uncovering cross-modality correlations [23, 24]. Here, integration methods aim to 
merge individual layers of single-cell data (e.g., transcriptomic, proteomic, epigenomic) 
into a unified consensus representation, such as an integrated graph [25] or a joint-
embedding [24, 26]. To do so, computational approaches have leveraged techniques, 
including kernel learning [27, 28], matrix factorization [29–33], or deep learning [34]. 
Moreover, downstream analysis of integrated multi-omics data has provided fundamen-
tal insights into the molecular mechanisms underlying complex biological processes, 
including disease heterogeneity and pathological development [35].

Motivated by identifying a new more biologically meaningful set of features underly-
ing cellular dynamics, we investigate integration of gene expression modalities at three 
distinct temporal stages of gene regulation: unspliced, spliced, and RNA velocity. We 
benchmark ten integration approaches on ten biological datasets with applications rang-
ing from cellular differentiation to disease progression. We show that unspliced and 
spliced integration improves predictive performance when inferring biological trajec-
tories, perturbation conditions, and disease states. This work illustrates how integrated 
temporal gene expression modalities may be leveraged for predictive modeling of cel-
lular dynamics.

Results
We compared ten integration approaches for recovering discrete and continuous 
variation in cell and disease states. In the sections that follow, we will describe the 
integration results in more detail. We will begin by giving an introduction of the data-
sets used in this study. Next, we will provide details about the benchmarking design, 
including the integration methods considered and the evaluation criteria for each 
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prediction task. We will then demonstrate how an integrative analysis can be used to 
obtain increased biological insight over spliced expression alone. Ultimately, we will 
end with practical recommendations for task-specific integration.

Description of datasets

We tested integration method performance on inferring biological trajectories or 
classifying cells according to perturbation condition or disease status across ten pub-
licly available single-cell RNA sequencing datasets (see the “Methods” section, Addi-
tional file 1: Table S1). Datasets were grouped into three general categories according 
to the prediction task. Here, we briefly introduce the datasets used in this study.

Datasets for trajectory inference (TI)

We evaluated inference of biological trajectories using four single-cell RNA sequenc-
ing datasets representing the cell cycle and stem cell differentiation, denoted as mES 
cell cycle, hematopoiesis (Nestorowa), NKT cell differentiation, and hematopoiesis 
(Olsson), respectively. To assess inference of the cell cycle, we considered a mouse 
embryonic stem cell cycle dataset [36], where embryonic stem cells were collected 
along three stages of the cell cycle (G1, S, G2/M). Cell cycle phase was manually anno-
tated a priori based on flow sorting cells according to the Hoeschst 33342 stained 
distribution. The authors of the original study used this dataset to assess the propor-
tion of cell-cell heterogeneity that arises from cell cycle variation. To assess inference 
of complex differentiation trajectories, we considered three datasets spanning dif-
ferent biological systems and trajectory types. We first considered a mouse hemat-
opoietic stem and progenitor (HPS) cell differentiation dataset from Nestorowa et al. 
[37]. Here, the transcriptomes of HPS cells were profiled and nine cell surface protein 
measurements (Additional file 1: Table S3) were used to annotate six subpopulations, 
including long-term hematopoeitic stem cells (LT-HSC), lymphoid multipotent pro-
genitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte pro-
genitors (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte 
progenitors (GMP). Moreover, in the original study, reconstruction of the differentia-
tion trajectory revealed dynamic gene expression patterns consistent with early lym-
phoid, erythroid, and granulocyte-macrophage differentiation. To assess inference of 
Natural Killer T (NKT) cell differentiation [38], we analyzed the transcriptomes of 
four NKT cell subpopulations (NKT0, NKT1, NKT2, and NKT17) manually anno-
tated a priori based upon cell surface protein measurements (see Additional file  1: 
Table S3). In the original study, the authors elucidated both transcriptomic and epi-
genomic signatures of the differentiation and function of thymic NKT cell subsets. 
Lastly, we considered another mouse hematopoiesis differentiation dataset from Ols-
son et  al. [39], where three subpopulations (lineage negative (LSK) cells, common 
myeloid progenitors (CMP), and granulocyte monocyte progenitor (GMP) cells) were 
annotated a priori according to the expression of cell surface proteins (Additional 
file 1: Table S3). For our analysis, cells were excluded if they did not have ground truth 
annotations.
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Datasets for perturbation classification

To assess integration performance on classifying cells according to perturbation con-
dition, we considered three diverse datasets with clinical relevance representing drug 
stimulation and treatment of cells, denoted as LPS stimulation, INFγ stimulation, and 
AML chemotherapy, respectively. In the LPS stimulation dataset [40], RAW 264.7 mac-
rophage-like cells were treated with time course of lipopolysaccharide (0-min, 50-min, 
150-min, 300-min LPS) to induce NF-κ B expression. NF-κ B is a transcription factor that 
serves as a master regulator of inflammatory responses from macrophages and other 
innate immune cells [41]. The authors of this study integrated live cell imaging with 
single-cell RNA sequencing to demonstrate that NF-κ B signaling shapes gene expres-
sion and has a functional role on cellular phenotypes. Therefore, in our experiments, 
we sought to classify cells according to stimulation condition (e.g., 150-min LPS). In the 
INFγ stimulation dataset [42], pancreatic islet cells from three donors were stimulated 
with or without Interferon-γ (INFγ ) for 24 h. INFγ is a proinflammatory cytokine that 
has been implicated in pancreatic beta cell damage during the pathogenesis of type I 
diabetes [43]. Here, the authors applied their method MELD to characterize INFγ treat-
ment response across pancreatic islet cell populations and identified a non-responsive 
subpopulation of beta cells characterized by high expression of insulin. Consequently, 
we sought to classify INFγ stimulated from unstimulated cells. Lastly, the AML chemo-
therapy dataset [5] consisted of peripheral blood mononuclear cells (PBMCs) collected 
from a patient with acute myeloid leukemia (AML) at baseline or after 2 or 4 days of 
treatment with chemotherapy agents Venetoclax and Azacitidine. It is hypothesized that 
the persistence of leukemia stem cells (LSCs) following treatment drives disease sever-
ity, relapse, and results in worse clinical outcomes [7, 44]. Here, the authors demonstrate 
how chemotherapy treatment induces the depletion of LSCs through metabolic repro-
gramming, where oxidative phosphorylation, a critical pathway for LSC maintenance 
and survival, is suppressed. Thus, we sought to classify PBMCs according to treatment 
condition (day 0, day 2, day 4).

Datasets for disease status classification

To assess integration performance on classifying cells according to disease status, we 
considered three case/control datasets of two disease systems, acute myeloid leukemia 
(AML) and multiple sclerosis (MS). In the first dataset [7], leukemia stem cells (LSCs) 
were collected from AML patients at treatment-naive diagnosis ( N = 5 ) and following 
relapse after chemotherapy treatment ( N = 5 ). Here, the authors compared diagnosis 
from relapse samples to characterize gene expression heterogeneity during AML dis-
ease progression and show that differences were largely due to metabolic reprogram-
ming, apoptotic signaling, and chemokine signaling. Therefore, in our experiments, we 
sought to classify diagnosis from relapse cells. For the second and third study, we con-
sidered a multiple sclerosis dataset [6], where PBMCs and cerebral spinal fluid (CSF) 
were collected from MS patients ( N = 5 ) and controls ( N = 5 ). MS is a chronic inflam-
matory disorder of the central nervous system that results in neurological dysfunction 
[45]. When examining the transcriptional profiles of MS patient cells as compared to 
controls, CSF exhibited differences in cell type composition, including an enrichment 
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of myeloid dendritic cells and the expansion of CD4+ cytotoxic T cells and late stage B 
cells. In contrast, PBMCs exhibited increased transcriptional diversity with an increased 
proportion of differentially expressed genes. Consequently, we sought to classify control 
from MS cells across patients using either CSF or PBMC biological samples.

Selection of integration methods

The power of multi-omics data integration methods lies in their ability to combine indi-
vidual layers of data (e.g., spliced expression, RNA velocity) to identify a new set of cel-
lular features that more holistically represents cell type or functional state [23, 46]. Once 
computed, these features can be used in machine learning models to jointly analyze cell 
type-specific differences or to obtain clinically meaningful predictions that can inform 
therapeutics [47, 48]. In this study, our goal is to compare integration approaches for 
merging gene expression data matrices across the same set of profiled cells in order to 
evaluate their performance on downstream analysis tasks, including trajectory infer-
ence or sample-associated classification of cells. Given the large variety of different inte-
gration approaches, we performed a systematic evaluation of ten integration methods 
by selecting and grouping approaches according to two categories: early integration 
approaches and intermediate integration approaches. First, we consider early integration 
approaches as baseline computational strategies for merging individual modalities into 
one input matrix. Here, we selected three representative baseline strategies (cell-wise 
concatentation, cell-wise sum, CellRank [17]), in addition to an unintegrated control. 
In contrast, we consider intermediate integration approaches as computational strate-
gies that transform individual modalities into an intermediate representation prior to 
merging, such as a cell similarity graph or a subspace. Within this category, we selected 
six representative methods, including Seurat v4 [49], Multi-Omics Factor Analysis v2 
(MOFA+) [30], similarity network fusion (SNF) [25], Grassmann joint embedding [26], 
integrated diffusion [24], and Patient Response Estimation Corrected by Interpolation 
of Subspace Embeddings (PRECISE) [50]. Here, we briefly define the ten integration 
approaches evaluated in this study. For more details on the overall problem formulation 
and integration method implementation, see the integration section in the “Methods” 
section. 

1 Unintegrated: A representation consisting of one data modality. In this case, our 
unintegrated data consists of mature spliced expression counts, as this is what is tra-
ditionally used for downstream single-cell analysis, as outlined by current best prac-
tices [51].

2 Concatenation: Modalities are merged through cell-wise concatenation of data 
matrices. This baseline approach, along with element-wise sum, is a common fusion 
strategy for merging multi-modal data in deep learning [46, 52, 53].

3 Sum: Modalities are merged through cell-wise summing data matrices.
4 CellRank: CellRank [17] merges data modalities by computing a weighted sum of 

gene expression similarity and RNA velocity transition matrices. We refer to this 
approach as an early integration strategy as it simply reweights the edges of the origi-
nal gene expression cell similarity graph according to RNA velocity transition prob-
abilities. Notably, this method is specific to integrating RNA velocity data.
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5 Seurat v4: Seurat v4 [49] merges data through a weighted nearest neighbor graph 
approach. First, individual k-nearest neighbor graphs are constructed for each 
modality. Next, cell-specific modality weights are learned by computing within and 
cross modality predictions according a cell’s local neighborhood. Lastly, an integrated 
k-nearest neighborhood graph is constructed according to a similarity metric defined 
by a weighted average of modality affinities.

6 Multi-Omics Factor Analysis v2 (MOFA+): MOFA+ [30] merges data modali-
ties through a statistical matrix factorization approach formulated in a probabilis-
tic Bayesian setting that leverages a stochastic variational inference framework for 
enforcing sparsity. In particular, MOFA+ decomposes each modality into a product 
of a shared factor matrix (shared latent space that captures the global variation in the 
data) as well as a weight matrix for each modality (captures individual feature contri-
bution).

7 Similarity network fusion (SNF): SNF [25] merges data by first computing a cell affin-
ity graph for each data type. Next, individual modality networks are merged through 
nonlinear diffusion iterations to obtain a fused network.

8 Grassmann joint embedding: Grassmann joint embedding [26] integrates data 
modalities by first computing a cell affinity graph for each data modality and then 
merges networks through subspace analysis on a Grassmann manifold.

9 Integrated diffusion: Integrated diffusion [24] merges data modalities by first com-
puting a diffusion operator for each denoised data type. Next, individual operators 
are merged by computing a joint diffusion operator.

10 Patient Response Estimation Corrected by Interpolation of Subspace Embeddings 
(PRECISE): PRECISE merges data by first performing principal components analy-
sis (PCA) on each individual modality. Next, principal components are geometrically 
aligned and consensus features are determined through interpolation. For this analy-
sis, we implement two versions by projecting spliced expression onto (1) the princi-
pal vectors (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE 
consensus).

Benchmarking overview

Given that gene expression modalities are collected along a temporal axis of gene regu-
lation, we evaluated the performance of integrating unspliced, spliced, or RNA veloc-
ity modalities on predicting discrete and continuous variation in cell and disease states 
across a range of biological scenarios (Additional file 1: Table S1). Following transcrip-
tomic profiling, spliced and unspliced counts were preprocessed and jointly batch effect-
corrected prior to RNA velocity estimation (see the “Methods” section, Additional 
file 1: Table S1, Figs. S1-S10). For each set of modalities (spliced and unspliced counts, 
moments of spliced and RNA velocity), our goal is to identify a consensus representa-
tion that we can use as input to a predictive model (Fig. 1A). We benchmarked ten inte-
gration approaches for combining these gene expression modalities by evaluating how 
well integrated features infer biological trajectories, classify a cell’s response to a drug 
perturbation, or classify the disease status of a cell. Moreover, to quantify the predictive 
performance of an integration strategy, we computed several metrics for each prediction 
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task. To assess the quality of trajectory inference prediction following integration, we 
computed a trajectory inference correlation score to a ground truth reference that takes 
into account cellular positioning and trajectory-specific dynamically expressed genes. To 
assess classification performance, we computed the accuracy of predicted labels from 
an integration strategy using three complementary metrics, such as F1 score, balanced 
accuracy, and area under the receiver operator curve. For integration methods that 
required user-specified input parameters (Additional file  1: Table  S2), we performed 

Fig. 1 Schematic overview of benchmarking design. A Workflow of integration method evaluation. Ten 
integration approaches and four temporal mRNA modalities are evaluated on three prediction tasks. Data are 
first preprocessed and jointly batch effect corrected. Next cross-modality integration (spliced and unspliced 
counts or moments of spliced and RNA velocity) is performed using ten different integration approaches. 
Features specified through the integration strategy are used to infer trajectories, predict response to drug 
treatment, and classify patient cells. B Overview of data integration strategies (unintegrated, concatenation, 
sum, CellRank [17], Seurat v4 [49], MOFA+ [30], Grassmann joint embedding [26], integrated diffusion [24], 
SNF [25], and PRECISE [50])
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hyperparameter tuning to select the best performers. We then ranked the overall pre-
dictive performance of integration strategies for each task by averaging scores across all 
datasets (see the “Methods” section). This measures how well incorporating dynamic 
mRNA information aids in recovering intermediate transitions or classifying the state of 
a cell.

In selecting an appropriate data integration strategy, it is crucial that the approach 
is able to satisfy computational challenges that are specific to each modality. First, a 
method must be robust to varying amounts of sparsity between data types. Single-cell 
RNA sequencing modalities produce matrices which contain a large proportion of zeros, 
where only a small fraction of total transcripts are detected due to capture inefficiency, 
amplification noise, and stochasticity [54]. This sparsity is far greater in unspliced mol-
ecules due to polyadenylation enrichment in library preparation [12]. Moreover, given 
that unspliced, spliced, and RNA velocity predictions are influenced by biological and 
technical noise, a method must be able to resolve noisy signals for robust prediction. To 
address these challenges, we compared two classes of integration approaches for com-
bining temporal sequencing modalities, including early integration approaches (concat-
enation, sum, CellRank) and intermediate integration approaches (Seurat v4, MOFA+, 
Grassmann joint embedding, integrated diffusion, SNF, PRECISE) (see the “Selection of 
integration methods” and “Methods” sections, Fig. 1B).

Integration performance on inference of biological trajectories

When undergoing dynamic processes such as differentiation, cells exhibit a continuum 
of cell states with fate transitions marked by external stimuli, cell-cell interactions, and 
stochastic gene expression [55]. One limitation of trajectory inference (TI) reconstruc-
tion from snapshot single-cell data is the fact that many gene regulatory mechanisms and 
cellular dynamics could give rise to the same distribution of cell states [8]. We reasoned 
that incorporation of unspliced counts or RNA velocity data may provide increased 
granularity of the state space to more accurately recapitulate the underlying trajectory. 
To test this hypothesis, we evaluated integration method performance on inferring two 
types of biological trajectories, cell cycle and differentiation, by measuring their ability to 
(1) recover known cell population transitions and (2) infer lineage-specific dynamically 
expressed genes.

In order to construct reference trajectories for evaluation, we chose well-studied 
biological systems and selected datasets that had gold standard cell type annotations 
according to the expression of particular characteristic phenotypic markers. Therefore, 
we selected datasets consisting of mouse embryonic stem cell cycle, mouse hematopoi-
etic stem and progenitor cell differentiation (Nestorowa), NKT cell differentiation, and 
mouse hematopoiesis (Olsson) differentiation trajectories (see the “Description of data-
sets” and “Methods” sections). We then quantified how well integrated features recapitu-
lated cell cycle or differentiation trajectories by adapting an approach previously used 
to assess the accuracy of trajectory inference methods [56] (see the “Methods” section). 
Briefly, we constructed predicted trajectories for each integration approach by applying 
partition-based graph abstraction (PAGA) [57], a state-of-the-art trajectory inference 
method, on the joint graph following integration. First, PAGA was used on the inte-
grated k-nearest neighbor graph to determine directed weighted edges between known 
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cell types according to FACS annotations. Here, the edge weights quantify the strength 
in connectivity between cell populations, which represents the overall confidence of a 
cell population transition. Next, we applied diffusion pseudotime [58] to determine an 
individual cell’s progression through those high-confidence paths. Since integrated fea-
tures are used as input, the inferred trajectory now contains transcriptional informa-
tion from a transitional process at or following a measured time point. To assess the 
accuracy of predicted trajectories, we defined a trajectory inference correlation score 
that compares predicted trajectories to a ground truth reference trajectory we curated 
from the literature (see the “Methods” section). By taking into account a cell’s position 
along the trajectory, as well as the features that are dynamically expressed, this correla-
tion metric reflects how well integration infers known cellular dynamics. Moreover, to 
ensure a robust comparison across integration approaches, we generated predicted tra-
jectories and correlation scores with respect to the same ten random root cells selected 
from the annotated root cluster (mouse embryonic cell cycle: G1, mouse hematopoiesis 
(Nestorowa): long-term hematopoietic stem cells (LT-HSC), NKT cell differentiation: 
NKT0, mouse hematopoiesis (Olsson): lineage negative cells (LSK)).

When comparing predicted trajectories across integration approaches, we found 
spliced and unspliced as well as moments of spliced and RNA velocity integrated features 
led to a higher trajectory inference correlation score when compared to unintegrated 
data (Fig.  2A). Across all four datasets, integration with spliced and unspliced counts 
obtained median TI correlation scores (best performing: 0.849, 0.792, 0.712, 0.953), as 
compared to unintegrated data (0.750, 0.579, 0.472, 0.739), for mES cell cycle, hemat-
opoiesis (Nestorowa), NKT cell differentiation, and hematopoiesis (Olsson) datasets, 
respectively. In contrast, for RNA velocity integration, the median trajectory inference 
correlation scores were (0.856, 0.787, 0.672, 0.866) for mES cell cycle, hematopoiesis 
(Nestorowa), NKT cell differentiation, and hematopoiesis (Olsson) datasets respectively. 
We next investigated how incorporating temporal gene expression modalities alter the 
inferred PAGA trajectories and diffusion map embeddings for the top integration per-
formers with respect to unintegrated data (Fig. 2B). When examining the PAGA graphs, 
we found that all predicted trajectories captured the major cell state transitions sup-
ported by the literature. For example, mouse embryonic cell cycle predicted trajecto-
ries included the cyclical transition through the proliferative phases of the cell cycle [36]. 
Moreover, for mouse hematopoiesis (Nestorowa), predicted trajectories inferred known 
developmental lineages, with cells transitioning from the multipotent progenitor (MPP) 
population to early lymphoid (LMPP), erythroid (MEP), and granulocyte-macrophage 
(GMP) cell populations [37, 59]. In addition to capturing known transitions, predicted 

(See figure on next page.)
Fig. 2 Integration improves inference of cell cycle and differentiation trajectories. Trajectory inference was 
performed with partition-based graph abstraction to assess the quality of inferred embryonic cell cycle, 
hematopoiesis differentiation (Nestorowa), NKT cell differentiation, and hematopoiesis differentiation 
(Olsson) trajectories from (A top panel) spliced and unspliced or (A bottom panel) moments of spliced and 
RNA velocity integrated features generated from ten integration methods. The boxplots represent trajectory 
inference correlation scores ( TIcorr ) for ten random root cells. Asterisk indicates the method with the highest 
median TIcorr score. B PAGA predicted trajectories and diffusion map embeddings representing the inferred 
biological trajectory for unintegrated data, as well as high ranking performers for unspliced and RNA velocity 
integration
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Fig. 2 (See legend on previous page.)
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trajectories with integrated data resulted in an improved recovery of cellular dynam-
ics. For example, integration of spliced and unspliced counts with SNF better resolves 
the smooth cyclical progression through the embryonic cell cycle, with cells following a 
clear trajectory from G1 to S to G2/M (Fig. 2B). Moreover, by comparing the change in 
PAGA connectivity across the same integration strategy for different input modalities 
(Fig. 2B), we observe how temporal gene expression modalities influences the confidence 
of an inferred cell state transition. When integrating unspliced and spliced features for 
cell cycle inference, we observe an increase in PAGA connectivity from G2/M to G1 to 
S phases, whereas RNA velocity integration illustrates the next time point and provides 
stronger transition weights from G1 to S to G2/M. This added layer of granularity dem-
onstrates prioritized cell type transitions with respect to the underlying gene expression 
dynamics, which may provide additional insight into the gene regulatory programs that 
drive specific paths of temporal variation.

As a secondary approach, we performed trajectory inference on the integrated embed-
ding from an integration strategy using Slingshot [60] (see the “Methods”  section). 
Similar to the trajectory inference results with PAGA, we found unspliced and spliced 
integration led to a higher trajectory inference correlation score for mES cell cycle, NKT 
cell differentiation, and hematopoiesis differentiation (Olsson) datasets (Additional 
file 1: Fig. S11A). In contrast, integration with RNA velocity generally led to a similar 
or modest increase in median trajectory inference correlation scores when compared to 
unintegrated data (Additional file 1: Fig. S11B). Lastly, by aggregating trajectory infer-
ence correlation scores across datasets, we find Grassmann joint embedding and and 
similarity network fusion amongst the best ranking methods for predicting trajectories 
with both sets of modalities (Additional file  1: Fig. S12). Taken together, these results 
indicate that integrating gene expression data improves the ability to predict temporal 
changes in gene expression along progressive changes in cell state.

Testing integration under perturbation conditions

A key application of scRNA sequencing is the ability to identify subpopulations of cells 
that are either responsive or resistant to drug therapy [61]. To examine if integration of 
unspliced or RNA velocity data can aid in these tasks, we tested integration performance 
on classifying perturbation condition labels from three diverse datasets with clinical 
relevance, including lipopolysaccharide (LPS) stimulated macrophage-like cells, Inter-
feronγ (INFγ ) stimulated pancreatic islet cells, and peripheral blood mononuclear cells 
(PBMCs) collected from a patient with acute myeloid leukemia (AML) after chemother-
apy treatment (see the “Description of datasets” section). Using these perturbation data-
sets, we constructed a set of integrated features corresponding to a cell’s transcriptional 
response following a perturbation. We then considered the problem of cell state classifi-
cation, where our goal is to learn the annotated condition labels (e.g., INFγ stimulated or 
unstimulated) from the underlying feature set. We labeled or classified cells using label 
propagation [62] (see the “Methods” section) and compared predictions to the ground 
truth labels using three complementary accuracy metrics, including area under the 
receiver operator curve (AUC), F1 score, and balanced accuracy ( accb ). Across all three 
datasets, we found that integration of spliced and unspliced counts led to higher classi-
fication accuracy than unintegrated data (Fig. 3A), with median AUCs (best performing 
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integrated: 0.921, 0.989, 0.785; unintegrated: 0.895, 0.930, 0.768) for LPS, INFγ , and AML 
chemotherapy datasets, respectively. In contrast, we found that RNA velocity integra-
tion generally led to worse classification accuracy than unintegrated data (Fig. 3B). One 
notable exception was integration performed with CellRank, which resulted in a simi-
lar performance to unintegrated data, with median AUCs (CellRank: 0.895, 0.934, 0.766, 
unintegrated: 0.895, 0.930, 0.768). Similar results were obtained for additional metrics, 
such as F1 score and balanced accuracy (Additional file 1: Fig. S13). As a secondary vali-
dation, we trained a support vector machine (SVM) classifier to learn perturbation labels 
from the shared lower dimensional space following integration. We performed nested 
10-fold cross validation to obtain a distribution of predictions for each method and data-
set (see the “Methods” section). We observed similar classification results with unspliced 
integration outperforming unintegrated data (Additional file 1: Fig. S14).

To rank methods according to how accurately they can predict a cell’s perturbation, 
we computed aggregate scores by taking the mean of individual method scores across 
datasets (see the “Methods” section). Overall, we found that early integration strategies 
(concatenation, sum, CellRank) as well as MOFA+ tended to outperform intermediate 
embedding-based approaches (SNF, Grassmann joint embedding, integrated diffusion, 
Seurat v4) (Additional file 1: Fig. S15). The best performing method for unspliced inte-
gration was MOFA+ (Additional file 1: Fig. S15A), whereas the best performing method 
for RNA velocity integration was CellRank (Additional file 1: Fig. S15B). Overall, these 
results suggest that a straightforward integration of spliced and unspliced counts with 
concatenation or integration using matrix factorization approaches like MOFA+ may 
provide the best strategy to most accurately predict a cell’s associated perturbation. 

Fig. 3 Integrating spliced and unspliced counts improves drug treatment condition prediction. Label 
propagation was used to classify cells according to treatment response from (A) spliced and unspliced or (B) 
moments of spliced and RNA velocity integrated features generated from ten integration approaches. The 
boxplots represent classification accuracy according to area under the receiver operator curve (AUC) and the 
asterisk represents the method with the highest median AUC. Across all three datasets, spliced and unspliced 
integration achieves increased classification accuracy over unintegrated data
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Furthermore, these results illustrate how an integrated analysis of gene expression 
modalities may provide the granularity necessary for better identifying cells that are 
strongly associated with a particular treatment condition, which may provide insights 
into the biological mechanisms conferring a phenotypic response.

Spliced and unspliced integration improves disease state classification

We next asked if an integrative analysis of unspliced or RNA velocity data can help dis-
tinguish discrete disease cell states. In particular, we aimed to evaluate integration per-
formance on predicting whether or not cells were from control or disease patients using 
three datasets, including an acute myeloid leukemia (AML) diagnosis/relapse dataset, 
a multiple sclerosis (MS) case/control dataset of cerebral spinal fluid (CSF), and a MS 
case/control dataset of peripheral blood mononuclear cells (PBMCs) (see the “Descrip-
tion of datasets” section). To test whether leveraging temporal gene expression modali-
ties can aid in this tasks, we used the same label propagation strategy; however, now 
formulated as a binary classification task based on the disease status labels for each cell. 
Similar to the perturbation results, we found that unspliced integration achieves higher 
classification accuracy for predicting disease status, with the median AUCs for the best 
performing methods (0.930, 0.861, 0.884) compared to unintegrated data (0.895, 0.828, 
0.825) for AML, MS-CSF, and MS-PBMC datasets, respectively (Fig. 4A). Interestingly, 
we observe differences in the predictive performance of integrated modalities across 
biological samples (CSF, PBMCs) collected from the same cohort of patients. Over-
all trends for integration performance were consistent across additional metrics and 

Fig. 4 Integrating spliced and unspliced counts improves disease state classification. Label propagation 
was used to classify cells according to patient disease status from (A) spliced and unspliced or (B) moments 
of spliced and RNA velocity integrated features generated from ten integration approaches. The boxplots 
represent classification accuracy according to area under the receiver operator curve (AUC) and the asterisk 
represents the method with the highest median AUC. Across all three datasets, spliced and unspliced 
integration achieves increased classification accuracy over unintegrated data
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classifiers (Additional file 1: Figs. S14, Fig. S16). When ranking each particular method’s 
performance on classifying the disease status of a cell across datasets, we found the best 
performing methods for unspliced integration to be PRECISE, sum and concatenation 
(Additional file 1: Fig. S17).

Overall integration method performance across datasets and tasks

Figure  5 displays the overall ranked aggregate scores for each method colored 
according to task (green: trajectory inference, pink: perturbation classification, 
blue: disease state classification). Across all three tasks, we found unspliced inte-
gration (Fig. 5A) to be more predictive of cellular state than RNA velocity integra-
tion (Fig. 5B) or no integration (unintegrated Fig. 5A, B). While integration method 
performance varied across datasets, experimental modalities, and tasks, some clear 
trends emerged. When inferring biological trajectories using PAGA, unspliced inte-
gration with PRECISE and similarity network fusion (SNF) provided the highest 

Fig. 5 Ranked integration method performance across prediction tasks. Integration methods were ranked 
by averaging their overall performance across datasets for each prediction task (trajectory inference with 
PAGA: green, perturbation classification: blue, and classification of disease status: pink). Ranked scores were 
computed for several metrics for evaluating a prediction task: TIcorr , F1 score, balanced accuracy ( accb ), 
and area under the receiver operator curve (AUC). Here, higher ranked method scores are indicated by a 
longer lighter bar. A Overall quality of spliced and unspliced integration performance according to several 
metrics for evaluating prediction tasks. B Overall quality of moments of spliced and RNA velocity integration 
performance according to several metrics for evaluating prediction tasks. Of note, CellRank was not 
performed on unspliced and spliced integration, as it relies on RNA velocity data. Across all three prediction 
tasks, unspliced integration outperforms unintegrated data, while RNA velocity integration often achieves 
increased trajectory inference correlation and perturbation classification scores
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trajectory inference correlation score to the ground truth (Fig. 5A). In comparison, 
when evaluating perturbation or disease cell state classification, concatenation, 
sum, and PRECISE were among the best ranking methods across all three metrics 
and datasets (Fig.  5A). Collectively, these results indicate that integration method 
performance is task-specific, with intermediate embedding-based approaches out-
performing unintegrated data on inferring biological trajectories and early baseline 
approaches achieving increased classification performance.

Lastly, as computational cost is an important practical consideration when select-
ing an integration strategy, we compared the runtime scalability of all integration 
methods by randomly downsampling the IFNγ  dataset and varying the total number 
of cells or features prior performing integration (see the “Runtime scalability” sec-
tion). By measuring the total elapsed time, we found the simple integration strat-
egies including sum, concatenation, and PRECISE, to be the most efficient when 
varying the number of cells or features (Fig. 6). In contrast, the intermediate integra-
tion strategies such as SNF, MOFA+, and integrated diffusion required increasing 
amounts of compute time. These results further highlight the practical usefulness of 
baseline integration strategies for providing increased predictive performance, while 
easily scaling to large-scale datasets for the tasks outlined in this study.

Discussion
Several limitations should be considered when integrating gene expression modalities 
for cellular trajectory inference or disease state classification. In this study, we evalu-
ated methods for constructing integrated graphs or joint embeddings with a priori 
knowledge of ground truth labels. For trajectory inference evaluation, we explored 
how integrated data influences the change in connectivity or inferred cell state transi-
tions between known cell types identified via FACS. We found that integrated data 

Fig. 6 Overall runtime scalability. Runtime comparison of ten integration approaches after varying the 
number of cells or features. Total elapsed time was averaged over five random trials and is plotted on natural 
log scale. All the integration strategies were run on a Linux server allocating 16 cores and 32GB of memory 
(Intel Xeon E5-2680 v3 processors). MOFA+ was evaluated with GPU mode enabled (1 GPU Nvidia GeForce 
GTX1080)
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resulted in increased trajectory inference correlation with respect to a reference tra-
jectory. However, given that the results are sensitive to choice in hyperparameters, it 
may be challenging to select optimal hyperparameters without a priori knowledge of 
cell types or expected cell type transitions. Here, a range of hyperparameters should 
be considered when using the intermediate integration methods outlined in this 
study. Of note, we observed that baseline integration approaches, such as sum and 
concatenation of spliced and unspliced counts perform consistently well on classify-
ing sample-associated cell phenotypes. This is particularly useful as these approaches 
are less computationally expensive and do not require hyperparameter tuning. Of 
note, these baseline methods did not perform well when integrating moments of 
spliced data with RNA velocity predictions for classification.

Furthermore, the limitations of integration performance are an extension of the 
modalities used as input. RNA velocity is a noisy extrapolation of gene regulation that 
can be biased by insufficient sampling of unspliced molecules [63], relies on model 
assumptions that may be violated [64], and is sensitive to choice in preprocessing 
tools, such as the quantification of mRNA abundances [65]. Notably, the accuracy of 
RNA velocity estimation can be improved by incorporating both gene expression and 
chromatin accessibility data [16]. Moreover, there is currently no consensus on how 
to appropriately batch effect correct linked gene expression modalities [63]. We chose 
to jointly correct spliced and unspliced count matrices according to the three metrics 
and three methods outlined in this study; however, we note that this challenge may 
bias or limit the interpretation of our results. We anticipate improved performance as 
bioinformatics tools are developed to better analyze such data. Lastly, although RNA 
velocity often did not result in an increase in classification accuracy for the datasets 
selected in this study, this does not preclude it from being informative for the analysis 
of other datasets. RNA velocity captures gene expression dynamics over the timescale 
of hours and thus may provide crucial information for longitudinal datasets with finer 
temporal sampling.

In this study, we showed how integrated features can be used to build a predictive 
model for trajectory inference or classification tasks when ground truth annotations 
are provided. However, future work could focus on evaluating temporal gene expres-
sion integration for its ability to gain increased biological insight according to a wider 
range of tasks, such as unsupervised cell population identification [66], characteriz-
ing phenotypic-related cells [42], characterizing differentially abundant cell popula-
tions [67, 68], or gene regulatory network inference [69]. As temporal gene expression 
modalities provide a window into a cell’s regulatory response following a drug treat-
ment, integrating modalities may provide additional signal required for refining cell 
state or for identifying sources of variation and gene signatures that are specific to a 
cell’s immediate transcriptional response. Moreover, this work could also be extended 
to the analysis of other extrapolated regulatory modalities, including RNA velocity in-
situ [14], protein velocity [15], or chromatin velocity [70].



Page 17 of 32Ranek et al. Genome Biology          (2022) 23:186  

Conclusions
In this study, we investigated integration of unspliced, spliced, and RNA velocity gene 
expression modalities for resolving discrete and continuous variation in cell and disease 
states. We found that integrating modalities along a temporal axis of gene regulation 
provides additional information necessary for robustly predicting cellular trajectories 
during differentiation and cell cycle. Additionally, we show how spliced and unspliced 
integrated features can be used to better classify cells according to sample-associated 
phenotypes acquired after an experimental perturbation or within a disease state. Lastly, 
by benchmarking ten data integration methods on the aforementioned prediction tasks, 
we elucidate method performance specific to gene expression modalities or tasks. While 
intermediate integration approaches such as Seurat v4, SNF, Grassmann joint embed-
ding, integrated diffusion, and PRECISE facilitate increased performance on inferring 
biological trajectories, simple integration of spliced and unspliced counts through con-
catenation, sum, or PRECISE achieves increased trajectory inference correlation scores, 
perturbation classification accuracy, and disease state classification accuracy across 
most datasets. To this end, integrating multiple gene expression modalities profiled from 
the same set of cells provides a finer resolution of the transcriptional landscape of devel-
opment or disease. Thus, an integrated analysis of gene expression modalities may be 
crucial for the interpretation of dynamic phenotypes.

Methods
Datasets

We evaluated trajectory inference, experimental perturbation, and disease classification 
performance on ten datasets spanning various biological contexts. For more details on 
data preprocessing, see Additional file 1: Table S1.

Hematopoiesis differentiation (Nestorowa)

FASTQ files consisting of hematopoietic stem and progenitor cells were accessed from 
Nestorowa et al. [37] with the accession code GSE81682. FACS labels from broad gat-
ing were used to annotate six cell populations along three differentiation lineages: long-
term hematopoietic stem cells (LT-HSC), lymphoid multipotent progenitors (LMPP), 
multipotent progenitors (MPP), megakaryocyte-erythrocyte progenitors (MEP), com-
mon myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP) (see 
Additional file 1: Table S3). Individual cell FASTQ files were aligned to the mouse refer-
ence genome mm10 with the STAR v2.7.7 aligner. A loom file containing spliced and 
unspliced molecular counts was obtained using Velocyto v0.17.

Mouse embryonic cell cycle

A dataset of mouse embryonic stem cells undergoing different stages of the cell cycle 
was accessed from Buettner et al. [36] with the accession code E-MTAB-2805. FACS cell 
cycle labels from Hoesct flow sorting were used to annotate cells along three phases: G1, 
S, and G2/M. Individual cell FASTQ files were aligned to the mouse reference genome 
mm10 with the STAR v2.7.7 aligner. A loom file containing spliced and unspliced molec-
ular counts was subsequently generated with Velocyto v0.17.
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NKT cell differentiation

FASTQ files consisting of natural killer T (NKT) cell differentiation was accessed from 
Engel et al. [38] with the accession code GSE74596. FACS labels were used to annotate 
the four NKT cell subpopulations: NKT0, NKT1, NKT2, and NKT17 (see Additional 
file 1: Table S3). Files were aligned to the mouse reference genome mm10 with the STAR 
v2.7.7 aligner prior to generating a loom file containing spliced and unspliced counts 
using Velocyto v0.17.

Hematopoiesis differentiation (Olsson)

FASTQ files of mouse hematopoiesis was accessed from Olsson et al. [39] with the acces-
sion codes GSE70236, GSE70240, and GSE70244. FACS labels were used to annotate the 
three subpopulations: lineage negative (LSK) cells, common myeloid progenitors (CMP), 
and granulocyte monocyte progenitor (GMP) cells (see Additional file 1: Table S3). Indi-
vidual cell FASTQ files were aligned to the mouse reference genome mm10 with the 
STAR v2.7.7 aligner prior to generating a loom file containing spliced and unspliced 
counts using Velocyto v0.17.

LPS stimulation

FASTQ files were accessed from Lane et  al. [40] with the accession code GSE94383. 
Here, a macrophage-like cell line RAW 264.7 was stimulated with lipopolysaccharide 
(LPS) over 4 time points: 0-min unstimulated, 75-min, 150-min, 300-min post LPS stim-
ulation. Files were aligned to the mouse reference genome mm10 with the STAR v2.7.7 
aligner. A loom file containing spliced an unspliced molecular counts was generated 
with Velocyto v0.17. Following preprocessing, batch effect correction was performed on 
the libraries.

INFγ stimulation

Aligned BAM files of pancreatic islet cell INFγ stimulation were accessed from Bur-
khardt et  al. [42] with the accession code GSE161465. This dataset consisted of three 
donors per stimulation condition (control, INFγ stimulated). A loom file containing 
spliced and unspliced molecular counts was generated for each donor and condition 
with Velocyto v0.17, then subsequently merged into a single file. Following preprocess-
ing, batch effect correction was performed using the donor labels.

AML chemotherapy

To assess disease progression, aligned BAM files of an individual patient with AML 
undergoing chemotherapy were accessed from Pollyea et al. [5] with the accession code 
GSE116481. Condition labels consisted of three timepoints: d0 untreated, d2-, d4- post-
Venotoclax and Azacitidine treatment. A loom file containing spliced and unspliced 
molecular counts for each timepoint was generated with Velocyto v0.17, then merged 
into a single file. Following preprocessing, batch effect correction was performed on the 
condition labels.
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AML matched diagnosis/relapse

Raw FASTQ files were accessed from Stetson et  al. [7] with the accession code 
GSE126068. In this dataset, PBMCs were collected from 5 patients with AML on the 
onset of diagnosis and following relapse. FASTQ files were aligned to the human refer-
ence genome GRCh38 with the STAR v2.7.7 aligner. A loom file containing spliced and 
unspliced molecular counts was obtained with Velocyto v0.17. Following preprocessing, 
batch effect correction was performed using the patient labels.

MS case/control

Aligned BAM files were accessed from Schafflick et  al. [6] with the accession code 
GSE138266. Here, two biological samples were collected from each patient (CSF, 
PBMCs) with a disease status label (control or MS). Loom files containing spliced and 
unspliced molecular counts for each patient sample were obtained with Velocyto v0.17. 
Then, a merged loom file consisting of control and MS patient cells was generated for 
each sample independently. Following preprocessing, batch effect correction was per-
formed using the patient labels.

Preprocessing

Quality control, normalization, and highly variable gene selection

All scRNA sequencing datasets were quality control filtered according to read depth and 
distributions of counts. Following empty droplet and doublet removal, dying cells were 
removed by ensuring less than 20% of total reads were mapped to mitochondrial tran-
scripts. Genes were filtered out if they were expressed in less than five cells or had less 
than five counts shared between spliced and unspliced matrices. To perform normali-
zation, we estimated size factors for filtered spliced and unspliced count matrices with 
Scran pooling normalization v1.20.1 [71]. For datasets with an appreciable batch effect, 
size factors were subsequently scaled according to median normalization of the ratio of 
average counts between batches with Batchelor v1.8.0; this ensures data is downsam-
pled based upon the batch with the smallest read depth. To restrict the feature space, we 
selected highly variable genes on log+1 transformed data by estimating a normalized 
dispersion measure [72] using the highly variable genes function in Scanpy v1.8.1 (flavor 
= seurat, minimum mean = 0.012, minimum dispersion = 0.25, maximum mean = 5).

Batch effect correction

RNA velocity relies on an ordinary differential equation framework to estimate the rela-
tionship between two connected modalities, spliced and unspliced mRNA counts [12, 
13, 73]. As such, correcting each modality independently may lead to incorrect model 
fitting and spurious velocity vectors [63]. We evaluated the performance of batch effect 
correction methods, ComBat [74], mutual nearest neighbors (MNN) [75], and Scano-
rama [76] on correcting count data simultaneously. These methods were chosen as they 
directly correct the original gene expression data and were shown to be the top perform-
ing methods for recovering cell states [77]. Briefly, we considered two simple approaches 
for combining the data prior to correction (1) summed spliced and unspliced counts or 
(2) cell-wise concatenation. To obtain corrected count matrices for summed input data, 
we followed the batch effect correction approach introduced in Ref. [78],



Page 20 of 32Ranek et al. Genome Biology          (2022) 23:186 

Here, S and U represent spliced and unspliced count matrices, respectively. Batch effect 
correction was performed on the summed total expression matrix, M, to yield a cor-
rected data matrix Mc . Corrected spliced Sc and unspliced Uc counts were then obtained 
by inverting the log transformation through exponentiation. ComBat was run in python 
using Scanpy v1.8.1, MNN was run in R using Batchelor v1.8.0, and Scanorama was run 
in python using Scanorama v1.7.2.

Batch effect correction evaluation

To evaluate batch effect correction methods on combined spliced and unspliced modali-
ties, we consider three metrics for assessing batch effect removal while preserving both 
biological variation and the unspliced to spliced relationship. 

1 k-nearest neighbor batch effect correction test (kBET): The kBET algorithm [79] 
quantifies batch effects by comparing the batch label composition of local random 
neighborhoods to the overall global label composition through a χ2 test. Tests are 
then averaged to obtain an overall rejection rate. To test for batch effects, we per-
form kBET using a fixed neighborhood size of k = 10 neighbors for each correction 
approach (uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat 
concatenation). kBET scores were computed using kBET v0.99.6.

2 Local Inverse Simpson’s Index (LISI): The LISI score [80] measures the degree of batch 
label mixing by computing the number of cells that can be drawn from a local neigh-
borhood before a batch label is observed twice. Here, local distances are weighted 
according to a Gaussian kernel and probabilities are determined by the inverse 
Simpson’s index. LISI returns a diversity score ranging from 1 to the total number 
of batches. To test for batch label diversity, we compute LISI using a fixed perplexity 
of 30 for each correction approach (uncorrected, MNN sum, MNN concatenation, 
ComBat sum, ComBat concatenation). LISI scores were computed using harmonypy.

3 Pearson correlation of phase space pairwise distances: The dynamical model of RNA 
velocity estimates transcriptional dynamics by inferring gene-specific reaction rate 
and latent parameters through an expectation-maximization framework on the 
phase space (spliced and unspliced counts) of the data. To quantify how well a batch 
effect correction approach preserves the unspliced to spliced relationship across all 
cells, we compared phase space cellular neighborhoods by computing the Pearson 
correlation of pairwise distances in the phase space for each donor and pairwise dis-
tances of the same cells in corrected data. In other words, for each gene we obtain 
a single correlation score capturing how well cell-cell distances are preserved in the 

(1)M = log(S+ U + 1)

(2)R =
S

S+ U

(3)Sc = exp(Mc · R − 1)

(4)Uc = exp(Mc · (1− R)− 1).
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phase space of corrected data with respect to an individual donor/patient. The dis-
tribution of gene correlations measure the overall quality of correction for retaining 
similar cell distributions for RNA velocity fitting and estimation.

To select a batch effect correction approach, we evaluated correction performance on the 
each biological condition individually. Furthermore, we took the intersection of genes 
that were highly variable across all profiled samples (e.g., libraries, donors, patients) to 
ensure that the data being compared were specific to the biological system under study 
and that donor-specific variation was removed. For each dataset, we selected the batch 
effect correction approach that had the best performance across all three metrics (see 
Additional file  1: Table  S1, Fig. S10). One exception was the AML diagnosis/relapse 
dataset, which contained too few cells for the analysis. Here, we selected ComBat con-
catenation, as it was the approach that consistently performed well on all other datasets. 
Once an approach was selected, we performed joint correction on the original full data-
set as outlined previously (see the “Preprocessing” section).

RNA velocity estimation

To estimate RNA velocity, we used the dynamical model implementation in Scvelo 
v0.2.3. More specifically, first order moments of spliced and unspliced counts were com-
puted based on a k-nearest neighbor graph of cells ( k = 10 ), constructed by calculating 
pairwise Euclidean distances between cells based on their first 50 principal components 
(PCs). The full dynamical model was then solved for all genes to obtain a high dimen-
sional velocity vector for every cell. Given that populations of cells may have different 
mRNA splicing and degradation kinetics, we performed a likelihood ratio test for dif-
ferential kinetics on the clusters identified from Leiden community detection (resolution 
parameter of 1.0) [81]. Clusters of cells that exhibited different kinetic regimes were fit 
independently and velocity vectors were corrected.

Sketching

To evaluate integration performance on the large-scale datasets, we first performed 
subsampling with geometric sketching. Geometric sketching [82] is an algorithm that 
aims to select a representative subset of cells that preserves the overall transcriptional 
heterogeneity of the full dataset. By approximating the underlying geometry of the data 
through a plaid covering of equal volume hypercubes, geometric sketching is able to 
evenly select cells such that rare cell types are sufficiently sampled. We implemented 
geometric sketching to select a representative subset of cells from both multiple sclero-
sis case/control datasets. Sketches were constructed from the transcriptional landscape 
of the mature gene expression data (spliced or moments of spliced), with sketch sizes 
of approximately 20% of the total data. Sketch indices were then used to subsample all 
modalities prior to integration and disease state classification evaluation.
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Integration methods

Problem formulation

Let X = {xi}
n
i=1 denote a single-cell dataset consisting of one gene expression modality, 

where xi ∈ R
d represents a vector of d genes measured in cell i. Given a collection of 

m gene expression modalities {Xm}mk=1 sampled from N individuals, where for sample 
i there is an associated label yi , our goal is to identify a biologically meaningful con-
sensus representation, Z = {zi ∈ R

p}ni=1 where p represents shared latent features such 
that p ≤ d . In this case, we wish to use this consensus representation to build a pre-
dictive model to infer biological trajectories or to predict the patient-specific or treat-
ment-induced phenotypic label for sample i, yi . In this section, we describe the methods 
selected for integrating two groups of gene expression modalities measured from the 
same set of cells, either moments of spliced counts with RNA velocity data or normal-
ized and log transformed spliced and unspliced count matrices. For more details on 
implementation and hyperparameter tuning, see Additional file 1: Table S2.

Unintegrated To evaluate a baseline approach representing unintegrated data, we con-
structed a k-nearest neighbor graph ( k = 10 ) from the top 50 principal components, 
generated from the normalized and log transformed spliced counts. This is akin to what 
is traditionally used for downstream single-cell analysis, as outlined by current best 
practices [51].

Concatenation Gene expression data matrices were horizontally concatenated, X1‖X2  
where ‖ denotes concatenation, to obtain a merged data matrix with dimensions n× 2d . 
Principal component analysis (PCA) was performed on the concatenated matrix and a 
k-nearest neighbors graph ( k = 10 ) of cells was ultimately constructed based on the top 
50 principal components.

Sum Gene expression data matrices were summed, X1 ⊕ X2 where ⊕ denotes element-
wise sum, to obtain a merged data matrix with dimensions n× d . PCA was performed 
on the summed matrix and a k-nearest neighbor graph ( k = 10 ) was constructed from 
the top 50 principal components.

CellRank CellRank [17] computes a joint transition probability matrix through a 
weighted sum of expression and velocity transition probability matrices as,

Here, Pv represents the velocity transition matrix, Ps represents the expression sim-
ilarity transition matrix, and � is the weight parameter. Importantly, CellRank models 
cell state transitions using a Markov chain and assumes that (1) the sampled cells cover 
the entire state-change trajectory and (2) the transitions between cell states are gradual 
and can be directed according to local velocity vectors. We used CellRank v1.1.0 and 
performed hyperparameter tuning by varying the weight parameter � , the measure of 
velocity similarity (correlation, dot product, or cosine), and the model that determines 
if velocity uncertainty is propagated in the transition matrix computation (monte-carlo, 

(5)P = �Pv + (1− �)Ps for � ∈ [0, 1].
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dynamical). Given that this approach relies on RNA velocity directionality, integration 
was only performed using moments of spliced and RNA velocity data.

PRECISE PRECISE [50] was adapted to integrate temporal gene expression modalities. 
PRECISE first finds a linear subspace of the data by computing principal components 
for each modality individually, then geometrically aligns components to extract common 
principal vectors that represent similar weighted combinations of genes. From here, a 
consensus feature representation is computed by optimizing the match between inter-
polated sets of features (e.g., expression and velocity). For this analysis, we obtained a 
lower dimensional latent space by projecting expression data onto (1) the principal vec-
tors (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consen-
sus). From this shared embedding space, we constructed a k-nearest neighbor graph 
( k = 10 ). For both approaches, we performed hyperparameter tuning by varying the 
number of included principal vectors. Given that the principal vectors are rank ordered 
according to modality similarity, selection is analogous to filtering the data based on 
shared or unshared information. PRECISE v1.2 was used and modified to include dis-
similar components.

Similarity network fusion Similarity network fusion (SNF) [25] constructs a joint graph 
of cells according to gene expression data modalities using a two-step process. First, a 
cell affinity graph Gm = (Vm, Em) is computed for each modality, where Vm represents 
cells and edges, Em , are weighted according to modality-specific similarity using a heat 
kernel as follows. Here, we compute Wm

ij  , which gives the specific edge-weight between 
cells i and j in modality m as,

Specifically, Wm is a n× n similarity matrix for modality m, µ is a scaling hyperpa-
rameter, and ǫij is a bandwidth parameter that takes into account local neighborhood 
sizes. Here, SNF assumes that local similarities are a reliable representation of data and 
that remote ones can be modeled through graph diffusion on the network. Next, the 
two individual modality networks are integrated through nonlinear diffusion iterations 
between each modality to obtain a fused network. Importantly, the network fusion step 
ensures that the merged graph representation retains edge similarities that are strongly 
supported by an individual modality in addition to similarities shared across modalities. 
To compare results to the intermediate embedding integration methods, we modified 
SNF by constructing a shared embedding from the fused network through eigendecom-
position of the unnormalized graph Laplacian Lu . Note that Lu is computed as,

Here, D is a diagonal degree matrix with i-th diagonal element, di =
∑

j Aij and A is the 
symmetric merged SNF affinity adjacency matrix. Given that eigenvectors of the Lapla-
cian represent frequency harmonics, we selected the eigenvectors corresponding to the 
K smallest eigenvalues to low pass filter high frequency noise [83]. We then constructed 
a k-nearest neighbor graph ( k = 10 ) for evaluation. We performed hyperparameter 

(6)Wm
ij = exp

(

−
�xmi − xmj �

2

µǫij

)

.

(7)Lu = D− A.
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tuning by varying the number of nearest neighbors, the bandwidth scaling parameter 
µ , and the number of eigenvectors for the merged graph embedding. SNF was imple-
mented using the snfpy v0.2.2 package in python.

Grassmann joint embedding The Grassmann joint embedding approach introduced in 
Ref. [26] was adapted to construct a shared representative subspace of temporal gene 
expression information. Similar to SNF, the Grassmann embedding approach begins by 
constructing affinity matrices to encode similarities between cells i and j in each modal-
ity using a heat kernel as,

Here, Sm is a n× n between-cell similarity matrix for modality m and t is the kernel 
bandwidth parameter. To prioritize local similarities, the k-nearest neighbors according 
to the similarity matrix Sm are identified and the similarity matrix is further redefined as,

Specifically, cell vi and vj are connected with an edge with edge weight Sij if the cell is 
within the set of vi ’s neighbors, Ni . Next, low-dimensional linear subspaces are com-
puted through eigendecomposition of the normalized graph Laplacian of each data type. 
The normalized graph Laplacian Lmn  is formally defined as:

Here, m indexes the data modality and Dm represents a diagonal degree matrix, such 
that the i-th diagonal element, dmi =

∑

j W
m
ij  . Furthermore, Am is the symmetric Grass-

mann affinity matrix of modality m. A shared representative subspace from [26] is then 
ultimately computed as,

Here, Um represents an individual subspace representation and α controls the trade-off 
between preserving modality-specific structural similarities (in the first term) and mini-
mizing the distance between each subspace representation (in the second term). Lastly, 
an eigendecomposition of the Laplacian of the joint graph Lmod was computed to extract 
the K eigenvectors corresponding to the first K eigenvalues to represent the merged 
embedding space. For evaluation, we constructed a k-nearest neighbor graph ( k = 10 ) 
from this shared space. Hyperparameter tuning was performed by varying the number of 
nearest neighbors and kernel bandwidth parameter t in the affinity graph construction, 
as well as α , and the number of eigenvectors to include for the merged graph embedding.

Integrated diffusion Integrated diffusion [24] combines data modalities by comput-
ing a joint data diffusion operator. First, individual modalities are locally denoised by 

(8)Smij = exp

(

−
�xmi − xmj �

2

2t2

)

.

(9)Wm
ij =

{

Smij , if vj ∈ Ni

0, otherwise.

(10)Lmn = Dm
− 1
2
(

Dm −Wm
)

Dm
− 1
2
.

(11)Lmod =

m
∑

k=1

Lmn − α

m
∑

k=1

UmUm′

.
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performing a truncated singular value decomposition (SVD) on local neighborhoods 
determined through spectral clustering. Next a symmetric diffusion operator is con-
structed for each denoised modality, and spectral entropy is used to determine the num-
ber of diffusion time steps to take. By taking the reduced ratio of information, the joint 
diffusion operator Pj is computed as:

Here, P1 and P2 represent individual modality diffusion operators (e.g., expression 
and velocity) and t1 and t2 represent the reduced ratio of diffusion time steps, respec-
tively. By powering transition probability matrices independently, this captures both 
modality-specific information, while allowing the random walk to jump between 
data types for merging. Lastly, the joint diffusion operator is powered using the same 
spectral entropy measure. It is important to note that approach assumes that high 
frequency signals may be low pass filtered; thus, choice of t can be crucial, as it can 
either effectively denoise data or remove important variation and lead to oversmooth-
ing. We eigendecomposed the diffused joint operator and selected the eigenvectors 
corresponding to the K largest eigenvalues to obtain a merged lower dimensional 
representation. We then constructed a k-nearest neighbor graph ( k = 10 ). Hyperpa-
rameter tuning was performed by varying the number of clusters for local denoising, 
the number of nearest neighbors in affinity graph construction, and the number of 
included eigenvectors.

Multi‑Omics Factor Analysis v2 Multi-Omics Factor Analysis v2 (MOFA+) [30] 
merges data modalities through a statistical matrix factorization approach. In particular, 
MOFA+ decomposes each data modality as:

Here, Xm denotes the matrix of observations for the modality m, Z denotes the 
shared factor matrix, Wm denotes the weight matrix for modality m, and ǫm denotes 
the residual noise for modality m. The model is formulated in a probabilistic Bayesian 
setting with sparsity priors and hierarchical variance regularization. We implement 
MOFA+ using the mofapy2 v0.6.4 package in python, assuming a Gaussian likelihood 
model where the residuals are normally distributed and selected the top 50 factors. 
For evaluation, we constructed a k-nearest neighbor graph ( k = 10 ) from this shared 
space.

Seurat v4 Seurat v4 [49] constructs a joint graph of cells according to weighted near-
est neighbor graph approach. First, individual k-nearest neighbor graphs are constructed 
for each modality to obtain local modality-specific neighborhoods. Then, using a two-
step process, cell specific-modality weights are learned in order to determine the relative 
information content of each data type within the cell by: (1) computing within and cross 
modality predictions based upon modality-specific local neighborhoods and (2) com-
puting the similarity between predicted and actual molecular profiles. Lastly, an inte-
grated k-nearest neighborhood graph is ultimately constructed according to a similarity 

(12)Pj = P
t1
1 · P

t2
2 .

(13)Xm = ZWmT
+ ǫm.
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metric defined by the weighted average of modality affinities. For this analysis, we con-
structed individual k-nearest neighbor graphs ( k = 10 ) from the top 50 principal com-
ponents. Seurat v4 integration was implemented in Seurat v4.1.1 using the FindMulti-
ModalNeighbors function in R.

Evaluation

Trajectory inference

To quantify how well incorporation of unspliced counts or RNA velocity recapitulates 
the underlying biological trajectory, we compared predicted trajectories to a ground 
truth reference using the metrics implemented in the R suite Dynverse [56]. Reference 
trajectories were curated from the literature [36–39, 59], with cell groups, connections, 
and root cluster provided by the authors of the original study. We note that cell popula-
tion annotations were externally determined through cell surface protein measurements 
and not from unsupervised clustering on the expression data.

To obtain predicted trajectories from integrated data, we performed trajectory infer-
ence using two approaches that were shown to outperform other methods for inference 
of complex or tree differentiation trajectories [56]. First, we evaluated trajectory infer-
ence on the integrated graphs from an integration strategy using partition-based graph 
abstraction [57] followed by diffusion pseudotime [58]. Predicted trajectories consisted 
of two main attributes: (1) a trajectory network, where nodes represent FACS cell groups 
and edges connect populations based on PAGA inferred connectivity generated from 
the integrated or unintegrated k-nearest neighbor graph and (2) a list of cellular percent-
ages representing a cell’s relative position between groups. Here, cellular percentages 
were determined from diffusion pseudotime using 20 diffusion map components. For 
each integration approach, we computed predicted trajectories for ten random root cells 
selected from the annotated root cluster. As a secondary approach, we also evaluated 
trajectory inference with Slingshot [60]. Here, the trajectory network consisted of the 
cluster minimum spanning tree and cellular percentages were determined from pseu-
dotime estimated from the integrated or unintegrated embedding from an integration 
approach. Therefore, performance was evaluated for the integration methods that infer 
a joint latent space after specifying the annotated root cluster as the starting population.

To evaluate a method’s performance on inferring developmental gene expression 
dynamics from integrated or unintegrated data, we compared reference and predicted 
trajectories using two metrics previously described in Ref. [56]: cell distance correlation 
and feature importance score correlation. 

1 Cell distance correlation Ccorr : Geodesic distances represent the shortest path dis-
tance between two cells on a nearest neighbor graph of the data [84]. To estimate 
a measure of the correlation of between-cell distances between reference and pre-
dicted trajectories, geodesic distances were computed between cells on a trajectory 
graph. The cell distance correlation is defined as the Spearman rank correlation 
between the geodesic cell distances of both trajectories.

2 Feature importance score correlation Fcorr : To assess whether the same temporally 
expressed genes were found in the predicted trajectory as in the reference, a random 
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forest regression framework was used to predict the expression values of each gene 
based on geodesic distances of each cell to each cell state cluster. The feature impor-
tance score correlation is defined as the Pearson correlation between the reference 
and predicted scores.

To obtain an overall trajectory inference correlation score reflective of high cell and fea-
ture similarity, we compute the harmonic mean of both correlation metrics as,

Classification

Label propagation To quantitatively compare integration methods on disease state 
prediction, we aimed to implement an approach that would use the underlying inte-
grated or unintegrated graph structure. Label propagation [62] is a semi-supervised 
learning algorithm that uses iterative diffusion processes to predict the labels of unla-
beled nodes. The output of this algorithm is a probability distribution of labels for every 
cell. We implemented label propagation to predict stimulation condition or disease sta-
tus labels as follows.

Let G = (V , E , y = {yi}
n
i=1) denote a graph of n cells comprising the nodes ( V ) gen-

erated from an integration approach and the set E edges encoding between-cell simi-
larities. Similarly, a particular yi gives a phenotypic label for cell i (e.g., patient disease 
status). Let y′ = (yl , yu) denote a vector consisting of a training subset of cells that are 
labeled yl = {yj}

m
j=1 where yj ∈ y and m < n , and a test subset of cells that are unlabeled, 

yu = {0}n−m . Given G and y′ , our goal is to assign a label to the unlabeled cells and the 
corresponding entries of y′s . To do so, we perform the following approach. 

1 Stratified random sampling is used to assign cells to a training or test set; this ensures 
that the original ratio of class labels (e.g., AML diagnosis or relapse) remains the 
same as in the full dataset.

2 Initialize algorithm on the training set to predict the labels of the masked test set. 
Each node has a label y′i , and edge weight wij representing the strength of similar-
ity between nodes i and j. Here, larger weights indicate a higher probability of cell i 
propagating its label y′i to cell j.

3 Labels are iteratively updated through diffusion, where D is a diagonal degree matrix 
with i’th diagonal element di =

∑

j Wij as, 

4 Row normalize labels y′ to maintain a probability distribution.
5 Training labels are clamped after each iteration as, 

(14)TIcorr = 2 ·
Ccorr · Fcorr

Ccorr + Fcorr
.

(15)y′(t+1) ← D−1Wy′(t).

(16)y
(t+1)
l ← y

(t)
l .
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6 Iterations are repeated until convergence, with a threshold δ = 0.001 , such that, 

7 Class labels are assigned to every node by taking the label with the maximum prob-
ability.

We repeated this procedure for ten random training initializations to obtain a set of pre-
dicted labels for each integration approach.

Support vector machine (SVM) The support vector machine (SVM) [85] is a supervised 
learning algorithm that constructs hyperplanes in the high dimensional data to sepa-
rate classes. We implemented SVM as a secondary classification approach for predicting 
perturbation response or disease status labels from the individual or joint embedding 
space (e.g., PCA, diffusion embedding). Specifically, nested 10-fold cross validation was 
performed using stratified random sampling to assign cells to either a training or test set. 
SVM hyperparameters were tuned over a grid search within each fold prior to training 
the model and labels were subsequently predicted from the test data.

Metrics To quantify stimulation condition and disease status classification perfor-
mance, we compared predicted labels to ground truth annotations using three metrics: 
F1 score, balanced accuracy ( accb ), and area under the receiver operator curve (AUC). 
The F1 score measures the harmonic mean of precision and recall as,

Balanced accuracy represents the average of sensitivity (true positive rate) and speci-
ficity (true negative rate). When predicting more than two labels (e.g., disease progres-
sion), we computed the mean sensitivity for all classes.

Lastly, area under the receiver operator curve was computed using the soft probability 
assignments. For the multi-class case, each class label was compared to the remaining 
in an all vs. rest approach, then averaged. All of these metrics return a value between 0 
and 1, where 1 indicates predicted labels were in perfect accordance to the ground truth 
annotations.

Aggregate scores

To rank methods for each prediction task, we compute aggregate scores by taking the 
mean of scaled method scores across datasets. More specifically, we first define an over-
all method score per dataset as the median of each metric. Method scores were subse-
quently min-max scaled to ensure datasets were equally weighted prior to computing 
the average.

(17)|y′(t) − y′(t−1)| < δ.

(18)F1 = 2 ·
precision · recall

precision+ recall
.

(19)accb =
sensitivity+ specificity

2
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Runtime scalability

To compare the runtime efficiency for each integration strategy, we randomly down-
sampled the INFγ stimulation dataset by (1) varying the number of cells (250, 500, 
1000, 2500, 5000, 7500, 10,000) while keeping the number of features constant (1000) 
or (2) varying the number of features (250, 500, 1000, 1500, 2000, 2500, 3000) while 
keeping the number of cells constant (1000). All of the integration strategies were run 
on a Linux server allocating 16 cores and 32GB of memory (Intel Xeon E5-2680 v3 
processors). MOFA+ was evaluated with GPU mode enabled (1 GPU Nvidia GeForce 
GTX1080). Moreover, elapsed time was averaged over 5 trials of random sampling 
prior to integration with moments of spliced and RNA velocity modalities. Of note, 
we used the native implementation of software when available (CellRank, SNF, 
MOFA+, and Seurat v4) or we reimplemented the code in Python when modified or 
unavailable (concatenation, sum, PRECISE, Grassmann joint embedding, and inte-
grated diffusion).
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