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Introduction
Structural variants (SVs) are typically defined as genetic variants of greater than 50 base 
pairs (bp) in length and include insertions, deletions, duplications, and chromosome 
rearrangements [1]. Advances in sequencing technologies are constantly driving the 
improvements in SV identification, enhancing our understanding of the complex inter-
play between genetic makeup and associated phenotype [2]. Significant progress has 
been made in unraveling the importance of SVs in disease etiology, population genetic 
evolution, ethnic diversity, and gene expression regulation [3]. For example, the role of 
SVs in the key mutational process of various cancer types has been discovered including 
that rearrangements delete, amplify, or re-order large genomic segments [4–6]. Further-
more, SVs contribute to phenotypic diversity in neurological and rare diseases such as 
developmental disorders [7], autism spectrum disorders (ASDs) [8, 9], and schizophre-
nia [10]. Therefore, SVs have great potential in precision medicine via an understanding 
of SV patterns at the population level [11–15] and/or via implementation of pharmacog-
enomics (PGx) biomarkers [16].

Although great progress is being made in detecting SVs in the human genome and 
correlating this with phenotypic impact, accurately and precisely identifying SVs in spe-
cific samples and/or across samples is challenging [3]. The pressing challenges in SV call-
ing are multifactorial, comprising SV types (insertion/deletion/re-order), size (where 
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the allele often exceeds standard NGS technologies read length), genomics technologies 
(with differing abilities to identify variations in repetitive regions), and SV calling algo-
rithms (which might use different thresholds and heuristics) [1, 3, 17].

SVs are responsible for more nucleotide changes than any other genetic variants in 
humans and other species. Many technologies have been developed to identify differ-
ent types of SVs in the past 15 years, from cytogenetic-based detection (e.g., Karyotyp-
ing), array-based technologies (e.g., SNParray and FISH), short-read high throughput 
sequencing (e.g., NovaSeq), and linked-read sequencing (e.g., 10X Genomics Chromium 
Technology) to long-read sequencing (e.g., PacBio and Nanopore) [1, 18, 19]. Accord-
ingly, numerous SV-calling algorithms have been developed specific to each technology 
[3]. For example, approximately 80 SV calling tools are available for short-read whole-
genome sequencing (WGS) alone. Given these developments, how can we improve the 
detection of SVs with sufficient accuracy and precision for use in clinical diagnosis?

The accurate and reproducible detection of SVs underpins reliable clinical implemen-
tation and reduces the chance of misdiagnosis. Similar to the quality control steps made 
for SNVs and small indels [20, 21], initial steps have been made for SV detection [3, 22–
26] with an effort to standardize (i) procedures to reduce false positives and false nega-
tives through benchmark call set development (e.g., Genome in a Bottle (GIAB), Human 
Genome Structural Variation Consortium (HGSV)); (ii) high-confidence calling region 
establishment (e.g., GIAB), (iii) reproducible SV calling assessment, and (iv) reporting 
standards (e.g., GA4GH) and best practice guideline recommendations that are on-
going, led by large consortiums and government agencies [22, 23, 27].

The Sequencing Quality Control Phase II (SEQC-II), led by the U.S. FDA, is the most 
current initiative to develop actionable best practice for sequencing data analysis. The 
aim is to define reproducible and accurate genetic variant calling to facilitate the devel-
opment and regulation of precision medicine in clinical practice [28–32]. In this initia-
tive, multi-platform and multi-lab sequencing data of the standard reference materials 
was carried out, encompassing the broad spectrum of wet lab factors (e.g., library prepa-
ration and gene capture strategy). The data generated is allowing the identification of 
key factors that impact SV detection, such as calling algorithms, SV size and type, and 
genomics technologies resulting in high-quality calling sets for further application.

In this perspective, we discuss findings from these consortiums and identify gaps 
where current approaches for SV calling may be suboptimal, as well as propose potential 
solutions. Our analysis highlights three key components essential for an accurate and 
reproducible SV detection (Fig. 1): (1) characterization of standard reference materials, 
(2) determination of sequencing technology to improve SV detection, and (3) establish-
ment of high-quality calling sets. We discuss the critical aspects of each component and 
propose potential solutions based on examples drawn from SEQC-II and other consor-
tia. We also highlight the opportunity provided by artificial intelligence (AI) to poten-
tially improve the accuracy of SV calling and propose specific deep learning solutions for 
the future.

Characterization of standard reference materials

Reference standards can be used to measure the false-positive and false-negative 
rate of SV calling [33]. Specifically, a reference sample can be used to evaluate the 
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accuracy and reproducibility of sequencing technologies, prioritize confounding fac-
tors that contribute to systematic errors, and establish best practice for SV detection. 
The use of a reference standard that includes well-characterized genetic material or 
synthetic spike-in control to calibrate sequencing platforms and measure the capa-
bility of SV detection is broadly supported [33, 34]. Well-characterized and broadly 
available reference samples are the foundation for assessing SV calling accuracy and 
reproducibility, as well as for understanding potential biases in data preparation or 
analysis. For quality control in the detection of SVs, reference materials need to be 
relevant for a wide range of SVs and variant allele frequencies (VAFs) to enable a 
comprehensive assessment [18]. The SEQC-II consortium established several working 
groups to characterize reference samples and then perform high-depth multi-plat-
form sequencing across different laboratories to make progress in these areas, aiming 
to facilitate the qualification and validation of genetic variant detection and to pro-
mote reproducible science (Fig. 2).

Germline benchmarking

When reference materials are designed to improve assay development for inherited 
disease diagnosis, patient-parent trio samples offer more sensitive identification of 
the de novo SVs and any underlying predisposition mechanism. Examples of such 
trio-based reference materials (e.g., Reference Material 8392) were employed by the 
National Institute of Standards and Technology (NIST) [22] and the Human Genome 
Structural Variation Consortium [14] for the evaluation of SV detection.

Unlike these two working groups focusing on somatic mutations, the SEQC-II ger-
mline mutation working group focuses on a comprehensive and reproducible assess-
ment of the detection of germline variants based on a trio sample set. For this, sample 
materials are the HapMap trio from the 1000 Genome project [37] and HG001 for 
the Genome in a Bottle (GIAB) led by the NIST [21]. Notably, Chinese Quartet refer-
ence DNA materials derived from normal B-lymphocyte cell line and blood samples 
are included, enabling the comparison of SV and SNV detection in different biological 
matrices and ethnicities [36, 38, 39]. Furthermore, the ABRF NGS phase 2 DNA-seq 
study leverages RMs (National Institute of Standards and Technology (NIST) RM 8392, 
known as the Ashkenazi trio; mother (HG004), father (HG003), and son (HG002), a fam-
ily trio consented through the Personal Genome Project (PGP)) [40] to provide insight 
into currently popular sequencing instruments. Inter-laboratory and intra-laboratory 
DNA-seq replicates of the Ashkenazi trio are analyzed, as well as three individual bacte-
rial strains and a metagenomic mixture of ten bacterial species to study the effects of GC 
content and library complexity [41]. These are novel and important studies since they 
not only assess like other studies the ability to call SV or SNV across certain data sets, 
but really dive into the question what causes the variability between different sequencing 
events. This is especially important when sequencing multiple samples (e.g., from a large 
cohorts) across different sequencing centers. All three studies revealed detail insights 
in the contribution of sequencing centers themselves including library preparations but 
further investigate the impact of different filtering (deduplication, QV recalibrations) 
and analytical approaches [36, 38, 39].
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Somatic benchmarking

It is apparent that this is yet to be solved as many samples are “only” healthy cells 
derived from limited ethnic backgrounds. Especially in cancer, scientists are often 
interested in detangling complex SV that are chained, including virus insertions, 
somatic vs. germline mutations, low-frequency mutations escaping traditional dip-
loid genomic patterns or even circularized DNA are not present in any of the refer-
ence materials yet. Several attempts have been made to develop reference material for 
somatic variants identification and NGS technology calibration in clinical laborato-
ries. Specifically, the genome editing technologies such as CRISPR/Cas9 were adopted 
to biologically engineer mutation clones in mammalian cells [42, 43]. However, these 

Fig. 2 An insight into the reference samples and efforts for SV detection by the SEQC-II consortium. Great 
strides have been made in advancing SV detection by the SEQC-II consortium (Fig. 2). First, the SEQC-II 
consortium established high-quality SV calling sets based on multi-platform sequencing of tumor- normal 
reference samples and partially verified this using orthogonal methods, including PCR-based validation, 
cytogenetic array BioNano optical mapping, as well as fusion gene detected from RNA-seq [35]. Meanwhile, 
SEQC-II systematically evaluated the reproducibility of somatic SV detections across platforms and 
benchmarked the performance of various software tools. Leveraging the developed high-quality SV calling 
sets, they developed a deep learning-based calling algorithm for SV detection using the convolutional neural 
network (CNN). The proposed deep learning models achieved high robustness across multiple sequencing 
technologies for fresh and FFPE DNA input, varying tumor/normal purities, and different coverages, 
with significant superiority over conventional detection approaches in general, as well as in challenging 
situations such as low coverage, low variant allele frequency, DNA damage, and complex genomic regions. 
Furthermore, the CNV inference method was developed based on the generated single-cell RNAseq data. 
Second, the SEQC-II consortium comprehensively investigated the performance and confounding factors (i.e., 
long or short-read sequencing, capture panels, and bioinformatics pipelines) of gene fusion detection [28]. 
It was found that long-read sequencing achieved higher precision and discovered more novel fusion genes. 
Short-read sequencing achieved greater sensitivity for detecting known fusion genes correlated with the 
endogenous expression of targeted genes. Third, the SEQC-II consortium prioritized SV detection divergent 
sources by using multiple illumina-based short-read sequencing of the Chinese quartet reference samples. 
Interestingly, mapping methods are significant resources of calling variability, followed by sequencing centers 
and replicates. Surprisingly, SV supported by only one site or technical replicate often represented true 
positives defined by long-read PacBio sequencing, consistent with an overall higher false-negative rate for SV 
calling [36]
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reference materials could not be used to benchmark whole genome-based technolo-
gies and cover a broad spectrum of structural variant types. Additionally, Approaches 
to simulated sequence alignment data were also established to evaluate the variant 
calling algorithms for SNV and SVs [44]. Also, the two normal cell lines were titrated 
at various concentrations to mimic tumor heterogeneity. A normal cell line with engi-
neered mutations or synthetic DNA spike-in is difficult, if not impossible, to engineer 
somatic mutations in a whole genome scale to mimic the complexity and heterogene-
ity of a cancer genome. Therefore, whether these reference materials could capture 
and represent patient tumor samples regarding VAF, inter- and intratumor hetero-
geneity, prevalent copy number alterations (CNAs), and complex chromosomal rear-
rangements are largely questionable about biased inferences and highlight the need 
for whole genome-based reference materials.

One approach could be to use tumor-normal or mixed cancer cell lines samples with 
different tumor purity and heterogenicity that may be closer to actual cancer patients. 
Cancer genomics aims to identify somatic (tumor-specific) variants with potential diag-
nostic, prognostic, and therapeutic implications and to detect germline variants with 
inherent information for both patients and their families. Although substantial clinical 
tumor testing does not currently involve analysis of a matched germline sample due to 
cost and time to delivery, concerns have been raised that the detected genetic variants 
are truly somatic variants [45]. Moreover, consortiums such as NHGRI/NCI Clinical 
Sequencing Exploratory Research Consortium Tumor Working Group and the Amer-
ican College of Medical Genetics and Genomics (ACMG) released a set of guidelines 
recommending that laboratories performing cancer sequencing tests should include 
germline variants [46, 47]. The International Cancer Genome Consortium used tumor-
normal sample pairs from two different types of cancer, chronic lymphocytic leukemia 
(CLL), and medulloblastoma (MB), for a comprehensive assessment of somatic vari-
ants identification, emphasizing on the imperativeness of real, not simulated, mutations 
are more helpful in dissecting performance of mutation callers on establishing whole-
genome somatic variant signatures incredibly complex SVs [48]. However, the ratio of 
DNA amount between tumor and matched control in the reference materials developed 
by ICGC is predefined with low mutation burden and minimal structural changes, limit-
ing its utility to assess the detection limit of various genomics technologies.

Specifically, the SEQC-II somatic mutation working group developed a tumor-nor-
mal reference sample using a normal B-lymphocyte cell line (i.e., HCC1395BL) and a 
triple-negative breast cancer cell line (i.e., HCC1395) from the same donor purchas-
able through the American Type Culture Collection (ATCC) [35]. The HCC1395 cell 
line has been characterized with conventional genomics approaches such as cytoge-
netic analysis [49] and array-based comparative genomic hybridization [50], consisting 
of rich genetic variant types including ~40,000 SNVs, ~2000 small indels, CNAs cover-
ing over 50% of the genome, more than 250 complex genomic rearrangements [51], and 
an aneuploid genome and BRCAness [52]. Moreover, the HCC1395 DNA was pooled 
with HCC1395BL DNA at different ratios to create a range of admixtures that mimicked 
tumor purity levels of 100%, 75%, 50%, 20%, 10%, 5%, and 0%. Furthermore, this tumor-
normal reference sample set may also mimic different biospecimen types (i.e., fresh vs. 
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formalin-fixed, paraffin-embedded) for investing the effect of fixatives and sample han-
dling on variant detection.

While large whole-exome and whole-genome sequencing studies are capable of 
providing new insights of genetic variants into cancers, clinical adoption of these 
approaches is still lagged and is not routinely offered by clinical laboratories [53]. In 
contrast, large, low-cost, and short turnaround time targeted cancer panels have been 
widely utilized in clinical laboratories. Encouragingly, some panel-based NGS have been 
approved or cleared by regulatory agencies such as U.S. FDA to promote precision medi-
cine (https:// www. fda. gov/ medic al- devic es/ in- vitro- diagn ostics/ list- clear ed- or- appro 
ved- compa nion- diagn ostic- devic es- in- vitro- and- imagi ng- tools). To enhance the clinical 
application of panel-based sequencing for cancer diagnosis, we suggest it is indispensa-
ble to establish reliable, robust, continuous, and generally available genomics reference 
samples for assessing and calibrating different NGS assays.

VAF of somatic mutation (e.g., VAF < 20%) is far less than the VAF in germline cells 
(e.g., ~50% and ~100%). It is technically challenging to utilize normal cell lines to estab-
lish a reference material covering a wide range of VAF magnitudes. Commonly avail-
able commercial reference samples typically consist of the limited number of genes and 
variants with distinct VAF ranges, hampering its utility for benchmark NGS assays in 
genetic variants with lower VAF (< 2~5%) and resulting in the overall variant detection 
performance is inversely correlated to the VAF of the analytes targeted (https:// www. 
horiz ondis covery. com/ refer ence- stand ards/ type/ oncos pan). To overcome the shortcom-
ing, the SEQC-II Oncopanel working group synthesized sample A by equal mass pooling 
gDNA of ten cancer cell lines that were used to make the Universal Human Reference 
RNA (UHRR) (Catalog #740000, Agilent Technologies) to ensure the wide coverage of 
actionable cancer genes under different VAF magnitudes [28]. Sample A permitted the 
investigation of 40,000 variants down to 1% allele frequency with more than 25,000 vari-
ants having less than 20% allele frequency with 1653 variants in COSMIC-related genes, 
which is 5~100× more than existing commercially available samples. Also, a cell line 
derived from a normal male individual (Agilent OneSeq Human Reference DNA, PN 
5190–8848) (termed “Sample B”) was characterized and employed as a negative con-
trol for somatic variants but also generating different genomic backgrounds. By titrating 
sample A into a control sample B with varying ratios of mixing (i.e., 1:1/4/24/124), sam-
ples C, D, E, and F were created to mimic the somatic mutation noted in extremely low 
VAF (as low as 0.02%), a range suitable for assessing liquid biopsy panels for detecting 
mutations in circulating tumor DNA [54].

Commutability, defined as the ability of reference materials to perform comparably 
to actual patient samples, is one of the most critical parameters in qualifying reference 
materials [33]. To establish a more objective quality assessment of SV detection, we sug-
gest developing additional biological certified reference materials as follows:

(1) Establish pan-ethnic normal-tumor reference materials. The ethnic diversity of SVs 
regarding size and types across different genome regions (e.g., rich GC contents 
or low complexity) in inherited diseases and cancers has been widely reported [23, 
55]. Trio-based reference materials from different ethnic backgrounds have been 
developed, such as trio samples of Han Chinese, Puerto Rican, and Yoruban Nige-

https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools
https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools
https://www.horizondiscovery.com/reference-standards/type/oncospan
https://www.horizondiscovery.com/reference-standards/type/oncospan
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rian ancestries developed by the Human Genome Structural Variation Consortium 
[14] and the Ashkenazi family trio (HG002, HG003, and HG004) in the GIAB [22]. 
However, few pan-ethnic normal-tumor reference materials are publicly available 
and/or purchasable. Therefore, an effort for coordinated, local implementation of 
the development of normal-tumor reference materials from diverse ancestries or 
admixtures is highly recommended to improve our understating of somatic SV dif-
ferences in local populations.

(2) Matrix effect-spiked reference materials. The SV detection limit within formalin-
fixed, paraffin-embedded, or liquid biopsy-based samples from patients is much 
lower than that in normal tissues. Furthermore, some complex effect of fixatives 
such as in  vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) 
screening help patients to select embryos free of rare diseases [34]. As the part of 
efforts from the SEQC-II consortium, we proposed synthetic internal standards 
(IS) and methods for better control for technical error in NGS in assessment of 
circulating tumor DNA specimens, enabling measurement of low AF mutation not 
detected by current practices. The proposed Synthetic spike-in IS could be effective 
way to mimic the complex effect of fixatives and evaluate the NGS testing [56].

(3) Use genome editing for spiked specific SV types in the reference materials. 
Genome engineering technology with programmable nucleases (e.g., ZFNs, TAL-
ENs, and CRISPR/Cas9) has been well-established, enabling precise and efficient 
genome-editing spiking of specific SV types into cells, and offering the opportunity 
to develop synthetic reference materials [57]. For example, CRISPR/Cas9-based 
genome-editing protocols have been developed for the direct generation of dele-
tions, duplications, and inversions of up to one million base pairs in zygotes [58]. 
However, a close examination of the potential unexpected off-target variants in the 
engineered cell line should be considered [59].

Determination of sequencing technologies to improve SV detection

Advances in genomics technologies continually improve the resolution of SV detections 
[1, 18]. From the use of microscopy to visualize karyotypes of short, condensed chro-
mosomes to long-read sequencing to identify complex rearrangements that consist of 
multiple combinations of SV events, Table 1 summarizes some representative NGS tech-
nologies used for SV detection. The ability to more sensitively detect SVs and resolve 
more complex rearrangements has resulted in an exponential increase in the number 
and research on SVs identified over the past 15 years. However, the genome’s intrinsic 
complexity, the technical errors introduced during sample preparation, and the limita-
tion of the existing sequencing technologies have left a substantial fraction of SV unde-
tectable and much of their complexity remains hidden.

An increasing body of literature has demonstrated the benefits of employing multi-
platform genomics technologies for more comprehensive SV detection across the 
human genome [14]. Chaisson et al. [14] used a suite of long-read, short-read, strand-
specific sequencing technologies, coupled with optimal mapping and SV calling algo-
rithms to provide a complete spectrum of haplotype-resolved SVs in human genomes 
from three sample trios. Specifically, their multi-platform strategy detected three- to 
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seven-fold more SVs than most standard high-throughput sequencing studies. More-
over, more inversions located within critical genome regions were discovered, asso-
ciated with rare recurrent microdeletions and microduplication syndromes [60]. 
Despite these advantages, the use of multiple sequencing technologies to resolve SVs 

Table 1 A comparison among different sequencing technologies for structural variant detection

Platform Read length Cost Comments Run time

Short reads (Illumina) NovaSeq: up to 250 bp $ Short-read NGS 
performs well for >1kb 
regions. It struggles with 
shorter CNV detection 
50-500bp, and in com-
plex genome regions

NovaSeq:
0.15Tb/day

10X Genomics Chro-
mium

Up to ~100 kb $$ Sparse sequencing 
rather than true long 
reads; more compli-
cated to align, with 
poorer resolution 
of locally repetitive 
sequences. How-
ever, 10X Genomics 
Chromium is currently 
discontinued

-

PacBio SMRT sequenc-
ing

10–15 kb (average) and 
up to 100 kb

$$$ HiFi: long reads (10-
20kbp) of high fidelity 
having a similar error 
rate as Illumina. CLR: 
Longer raw reads 
have high error rates 
dominated by false 
insertions; requires new 
alignment and error 
correction algorithms

20 Gb/day

Oxford Nanopore averaging ~10 kb and 
up to 2 Mb

$$$ Raw reads have ~5% 
error rates dominated 
by false deletions and 
homopolymer errors; 
often requires new 
alignment and error 
correction algorithms

A MinION Flow Cell : ~ 25 
Gb/day

Hi-C-based analysis <100 bp $$ Sparse sequencing with 
highly variable genomic 
distance between pairs 
(1 kb to 1 Mb or longer); 
Detection may result 
from random chromo-
somal collisions
Less than 1% of DNA 
fragments actually yield 
ligation products.
Due to multiple steps, 
the method requires 
large amounts of start-
ing material

Whole analysis within 28 
hours

BioNano Genomics opti-
cal mapping

~250kb or longer $ Limited algorithms 
to discover high-
confidence alignment 
between an optical 
map and a sequence 
assembly

100x coverage of 3 
human genomes is col-
lected in less than 6 hours
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may be impractical. Furthermore, are there certain biases introduced when sequenc-
ing the same sample multiple times?

The SEQC-II adopted multi-platform and multi-lab designs for a comprehensive 
assessment of reproducibility and accuracy of the detection of SVs. The SV working 
group set out to investigate the reproducibility and variability of SV calls when the sam-
ple was sequenced across multiple sequencing instruments or in different laboratories 
[31, 32]. Interestingly, current approaches produced a level of variability often associ-
ated with false negatives (i.e., missed SVs) in SV calls with current methodologies. The 
somatic mutation working group used the developed tumor-normal materials cou-
pled with multi-platform sequencing technologies, including short/long/linked-read 
sequencing and high-throughput chromosome conformation capture (HiC). Moreover, 
they also performed multi-platform, single-cell RNA sequencing technologies to estab-
lish best practice for single-cell RNAseq analysis [61]. The Oncopanel working group 
employed four commercialized WES panels with multiple library preparations and 10X 
Genomics linked-read sequencing for the individual cell lines to generated high-cov-
erage sequence data on the developed reference samples. SVs reported by linked-read 
sequencing data were then compared with gene fusion events detected in RNA sequenc-
ing data of UHRR. Meanwhile, the linked-based WGS and array-based SNParray/aCGH 
data were also generated for investigational and confirmation purposes. The germline 
working group utilized most Illumina-based short-read sequencings such as HiSeq 2000, 
NovaSeq to XTen, and the Chinese Quartet were also sequenced using long-read PacBio.

Although the promise of multi-platform genomics technologies for complete SV 
detection is apparent, it may be more appropriate to use a combination of different 
sequencing technologies; insight into their different strengths and weaknesses is key for 
effective deployment. The pros and cons of different genomics technology for SV detec-
tion were discussed extensively elsewhere [1, 17, 62]. Here, we focus on key points in 
optimizing the selection of multi-platform technologies for enhancing the accuracy and 
comprehensiveness of SV detection.

First, a multi-technology approach is not scalable given the costs and DNA, cell, or 
sample requirements such as quantity and quality for the clinical samples. One technol-
ogy that may enable more accurate SV detection is known as long reads [3, 63]. Despite 
the fact that long reads may have a higher error rate (HiFi: ~0.1–1%, ONT: 3–8%), they 
have shown remarkable performance and resolution of SVs across the genome. In con-
trast to short reads, they often identify almost twice as many SVs, many of which include 
novel sequences (i.e., insertions). Furthermore, long-read sequencing significantly 
reduces the overall false discovery rate seen with short reads (e.g., translocations that 
shadow repeat expansions [63]). However, long-read sequencing remains costly, and the 
DNA requirements (quality and quantity) are not always achievable. Furthermore, the 
HGSV and others have also demonstrated the limitations of long reads, such as access-
ing and recovering certain complex regions of the genome (e.g., centromeres or telom-
ers) or other complex SV types where more targeted essays might perform better (e.g., 
StrandSeq [64]).

Second, given the trend of reducing sequencing costs and improving yield as well as 
error rate, multiple long-read sequencing projects are underway from the assembly of 
individual genomes through the study of the genomic architecture of individual human 
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cells [65]. This trend is likely to continue. However, will it replace short-read sequencing? 
The answer is a tentative no, given the scalability, the DNA requirements, and the costs.

There are multiple short read-based assays currently available. Linked reads constitute 
a fast and inexpensive method that provided information across a long molecule (e.g., 
100kbp), leading to improvements in mappability and phasing. In theory, this approach 
could improve SV calling itself, but the software for achieving this was limited. Other 
interesting concepts such as HiC and StrandSeq also show promises. StrandSeq enables 
the accurate detection of inversions but requires laborious preparation, and there is not 
yet a standardized kit available. However, both technologies are limited by the mapping 
into repeats given their read length of 100–150 paired-end reads. Nevertheless, a combi-
nation of StrandSeq and PCR-free WGS may improve the detection of SVs at a cost and 
sample requirement that outcompetes long reads.

Currently, WGS remains the workhorse of genomics, with million genomes sequenced 
every year. Therefore, we need to establish robust pipelines, ensure technical reproduci-
bility, and understand the risk of bias. SEQC-II has so far approached this by sequencing 
samples across multiple centers to improve our understanding of potential variabilities 
and the impact on SV detection [66].

Establishment of high‑quality SV call sets

The evolution of genomics technologies has also resulted in the proliferation of differ-
ent SV calling algorithms. Over 85 publicly available SV calling algorithms have been 
developed for different NGS data types [26]. These algorithms aim to identify the diver-
gence between the reference genome and the sample reads, which examine the follow-
ing read features or combinations: read-pair, read-depth, split-read, and de novo or local 
assembly [1]. The motivation behind continually producing new SV calling algorithms 
is to improve on previous shortcomings, resulting in better precision and recall rate, 
speed and user-friendliness, and handling specific SV types. To establish newly devel-
oped SV calling algorithms, researchers compared outcome with previous calling algo-
rithms using simulated and actual NGS data and highlighted their superiority from a 
particular perspective. Consequently, downstream users have little to guide them when 
choosing the best “fit-for-purpose” algorithms since they find every algorithm claims to 
be the right option. As a result, community efforts comparing the SV calling algorithms 
are being carried out to determine relative advantages and disadvantages and suggest 
best-practice for SV algorithm selection [25, 26].

This work started over a decade ago. SV calling is improving but has by no means 
reached the reliability and quality of SNV calling. While multiple reasons may attrib-
ute to this problem, SV alleles are longer and often more complex than SNV which can 
be contained in a single-short read. Nevertheless, what steps can be taken to improve 
the field further or spark a new evolution of methodologies and approaches? Here we 
highlight some potential directions and discuss their promises. These are (1) extending 
the number and diversity of SV benchmark sets, (2) alignment vs. assembly vs. graph 
genome approaches, (3) single caller vs. consensus vs. genotyping approaches to improve 
SV precision, and (4) incorporation of machine learning and AI.
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Extending the number and diversity of SV benchmark sets

Over the past few years, multiple methods have been proposed and implemented to 
simulate SV (e.g., VarSim [67], SURVIVOR [68], etc.) and simulate read data (e.g., Nano-
Sim [69], PBsim [70], etc.) [71]. While these methods are helpful for rapid, early under-
standing of the utility of an SV caller, they often under- represent the complexity of SVs 
either at the level of the allele itself or in the regions they tend to occur (e.g., repeti-
tive). Therefore, they are no replacement as yet for high-quality benchmark sets such as 
HGSV or GIAB, comprising by now 10–20 benchmark sets across multiple individuals 
and ethnicities. Nevertheless, these SV benchmark sets range in quality and accessibility 
and thus also in their ability to be leveraged for benchmarking SV callers. For exam-
ple, for SV, NA12878 from GIAB is an older and lower quality benchmark set compared 
with the HG002-4 trio, mainly because NA12878 has multiple redundant SV calls and 
imprecisions. HG002-4, however, is of high-quality spanning over 90% of the human 
genome, but is only available for hg19 at the moment [22]. HGSV also produced high-
quality assemblies, leveraging multiple technologies over the past years. Having the lat-
est releases will improve the phasing, continuity, and accuracy of their assemblies and 
thus also the SV calls themselves. These samples are derived from different genders and 
a few different ethnicities, but so far do not cover all ethnicities and are missing disease 
phenotypic benchmark genomes. At the time of writing the review, no one from our 
knowledge have done a head-to-head comparison of the GIAB and HGSV released call 
set also potentially because both seems to be of very high-quality given all the valida-
tion and QC steps done. Both efforts focus mainly on insertion and deletions (especially 
GIAB) as they represent the majority of SV. HGSV also included inversions, but both 
are not addressing the biggest issue around translocations or other more complex SV 
types [72]. Short read SV call sets often report in the access of up to 4000 transloca-
tions of which ~50–70% are repeat extensions [63]. In contrast most methods can detect 
50–300bp insertions these days (e.g., delly and manta), but fail at larger size ranges. The 
high-quality calling set generated from SEQC-II tumor-reference samples is potentially 
the first step in the right direction (Fig.  2). Here, we summarized the data generated 
from SEQC-II consortium efforts for trigger the community’s interest to further explore 
the potential improvement for SV detection (Table 2).

Furthermore, some cancer cell lines (e.g., SKBR3) have already been heavily sequenced 
and studied, but no official benchmark SV set is available. Cancerous but also other 
human disease genomes will be important as these include challenging regions (e.g., 
oncogene amplification) that are not trivial to resolve. Additionally, the need to include 
different ethnicities and the potential for novel sequences (e.g., in African Americans) 
suggests that there is still some way to go. In any case, the current existing benchmark 
sets are already showing an improvement in SV calling methods and methodologies and 
are also providing standards for wet lab technology development.

Alignment vs. assembly vs. graph genome approaches

There is often a debate about the best approach to identify SVs, either at scale (multiple 
hundred to thousand samples) or comprehensively (complex structures within a sample). 
Mapping (i.e., the alignment of reads to an established reference genome) compared to 
de novo assembly (i.e., the reconstruction of the sample genome without any template) 
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often has different advantages and disadvantages [3]. In general, de novo assemblies 
require more coverage to provide a continuous reconstructed sequence without gaps 
or uncertainties, while mapping strategies rely on the completeness of the reference 
genome [3, 17]. While these two particular criteria might sound trivial, they present a 
challenge with multiple implications for the performance of different approaches. For 
example, mapping an African sample to the human genome (GRCH38) may result in 
some unaligned reads due to the absence of reference sequences in the human reference 
genome. SV caller tries to identify this sequence later on as insertions are often miss-
ing (e.g., short reads) or at least missing to reconstruct larger insertions (multiple kbp 
for long reads). Thus, mapping approaches often succeed in scaling and requiring less 
expensive sequencing technologies or coverages to succeed. Their disadvantages, how-
ever, are often that more complex alleles are hard to resolve and the reconstruction of 
larger (multiple kbp) novel sequences often fails [3].

Alternatively, for assemblies, there are still risks of over-merging or splitting regions 
due to high (e.g., immune regions) or low (e.g., LOH) heterogeneity. This is mainly 
due to the central paradigm of an assembly of when are two genomic regions the same 
and some sequencing artifact altered them slightly or if these are indeed two differ-
ent regions. Prominent assembler for short reads (e.g., SPAdes [78]) or even long reads 
(e.g., Canu [79], hiFiasm [80], Shasta [81]). Furthermore, the current bottleneck is often 
caused by the accuracy of genomic alignment [82]. Still, de novo assembly is currently 
the way to establish new benchmark SV sets [83]. The suggestion that de novo assembly 
will replace mapping for large-scale genomics is currently not foreseen.

Another option that might be able to combine these advantages over time is a graph 
genome approach. Here multiple genomes (e.g., representing different ethnicities, can-
cer samples, or other groups) are first assembled into high-quality genomes and then 
utilized to improve mapping and thus variant detection. As one can imagine, if this 
graph genome carries a novel sequence or complex SV, it enables the detection of these 
in the analysis of other samples. However, there are apparent limitations such that there 
needs to be a balance between comprehensiveness (i.e., including every private allele) 
and complexity (too many alternative SNVs and SVs making the graph ambiguous). 
While these problems are being addressed, graph genomes have already shown signifi-
cant promises for SV calling: Paragraph [84] and VGTool [85]. As such graph genomes 
are still seen as a novelty and not many robust and established methods exist. Neverthe-
less, this will likely change in the near future with ever more high-quality assemblies 
being made available [82].

Single caller vs. consensus vs. genotyping approaches to improve SV precision

The SV detection limit differs across different types (e.g., deletions vs. insertions), sizes 
(e.g., 50 bp vs. 50 kb), and genomic regions (e.g., repeats). SV calling algorithms were 
developed based on different heuristics, hypotheses, and thresholds, resulting in a con-
siderable divergence. This is illustrated by comprehensive benchmark papers across SV 
callers [25, 26]. Both authors found no single SV calling algorithms could perform at 
the top across different SV types and sizes. The high divergence on the precision and 
recall rate between the simulated data and actual data highlights the low commutability 
of simulated data. Long run time and increased memory requirement do not guarantee 
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better SV detection performance. Importantly, the assembly-incorporating callers such 
as GRIDSS [86] and Manta [87] outperformed other callers with the actual data, consist-
ent with the conclusion reached by Kosugi et al. [25]. We suggest further investigating 
whether SV caller performance findings drawn from these studies could be extrapolated 
to the different sequence depth and tumor purity through SEQC-II multi-platform and 
multi-lab sequencing data. One aspect to consider is of course also the size of the var-
iants that are of interest. For example, very large alterations of multiple Mbp or even 
chromosome arms are often better detected by coverage approaches than SV callers 
(i.e., utilizing alignment signals) themselves [3]. That is often the case since these large 
CNV events do not have resolved breakpoints. Thus, a CNV approach over coverage or 
B-allelic (i.e., using SNP called) often performs better to characterize these.

The use of consensus calls generated from multiple SV callers can achieve better pre-
cision and recall rate [25, 26]. Nevertheless, unions of all SVs calls across multiple SV 
calling methods might result in a high false-positive rates than a single caller has despite 
often having a higher sensitivity [88, 89]. This is as the new SV set will incorporate also 
the falsely identified SV calls from the individual SV callers. On the other hand, a too 
restrictive approach to require, for example, three or more SV caller to agree leads often 
to a low sensitivity but high precision [88, 89]. Thus, the balance is often hard to achieve. 
Meta-callers, created by combining multiple SV calling algorithms have been proposed 
[88, 90, 91]. The proposed meta-callers could be mainly divided into rule-based strate-
gies and machine learning with discriminating features based on the adopted ensem-
ble strategy. However, these meta-callers either focus on a few SV-calling algorithms or 
need a “true set” to train the optimized model, leaving room for further improvement. 
The primary problem with rule-based strategies is the absence of unified criteria to pri-
oritize SV calling results from different callers. For example, a few meta-callers such as 
Parliament2 [91] and SVMerge [92] focus on coordinate overlap through soft clip com-
parison and adjustment with local assembly. Parliament2 incorporates the usage of five 
pre-defined and optimized SV calling methods and allows users to decide on an opti-
mized SV caller combination through quality score determined by SURVIVOR [68] and 
genotyping with SpeedSeq [93]. Alternatively, MetaSV adopts a priority-based combina-
tion strategy, exemplifying the weight of read pair-based callers over the split read-based 
ones. For the employed ensemble strategy, a true set was utilized for training SV callers 
either through machine learning strategies (e.g., CN-Learn [94]) or statistical measure-
ments for each different SV type and size condition (e.g., Parliament2 [91] and FusorSV 
[88]). All three methods (Parliament2, FusorSV, and MetaSV) either incorporate or 
require a certain set of SV calling methods over short reads to improve their runtime 
and consensus performance. Noteworthy is that SURVIVOR offers a generalizable 
framework; however, this might need to be optimized further for a comparison across 
different technologies or methodologies (e.g., assembly vs. mapping-based SV calls) as 
the representation of SV are often different. Thus far, SURVIVOR has been used across 
different sequencing technologies successfully [95].

Another less-studied area is the use of a SV genotyper after initial SV calling. Here, 
a SV genotyper uses a VCF with predefined SVs and summarizes the evidence for 
these SVs across a given sample or bam file. There are currently multiple SV genotyp-
ing methods available such as STIX, Paragraph, SVTyper, GraphTyper, and others. Their 
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performance varies similar to SV callers over sizes and types of SV [89]. Still, one poten-
tial benefit is that SV genotypers have, in general, fewer constrains and thresholds to 
identify SV as they operate on a given list of SVs. Thus, this might be able to improve 
recall while retaining high precision compared to other consensus methods that rely 
only on SV discovery methods.

Incorporation of machine learning and AI

Machine learning algorithms especially neural networks have impacted almost every 
facet of our daily life and have revolutionized genomics [96–99]. For example, deep 
learning has shown merits in enhancing SNV/small indel detection, outperforming most 
well-established SNV callers [100]. Inspired by DeepVariant and others, we believe that 
machine learning has a great potential to improve every step of the proposed roadmap 
towards accurate and reproducible SV detection.

The fundamental difference between conventional SV calling algorithms and deep 
learning approaches lies in retrieving the SV information from the BAM file. Traditional 
methods aim to detect the divergence between the sample sequence and reference at a 
per read level first. In contrast, deep learning approaches such as convolutional neural 
networks (CNNs) transform variant detection as a classification problem by considering 
the BAM file or its genomic regions as an image [100].

A few initial attempts to apply deep learning algorithms for SV detection have been 
conducted, and some encouraging results were obtained [101–103]. One example is 
DeepSV, which utilized the CNN model for training the visualized sequence in the 1000 
Genomes Project for deletion/detection and yielded better accuracy than the conven-
tional SV callers [102]. The proposed DeepSV could be extended to detect other SV 
types using the SEQC-II high-quality calling set and NIST germline SV calling set [22]. 
Another way to utilize the power of machine learning is for the assessment of the quality 
or accuracy of an SV. It is interesting to note that multiple visualization methods around 
SV enabled a fast and reliable filtering of SV as a replacement for manual assessments. 
However traditional SV callers lack this intuition of the human eye or mind. Samplot-
ML is a method that combined the visualization of SV and was trained on false calls 
from SV methods to better distinguish true from false SV candidate calls. It will be inter-
esting to observe future developments that use different machine learning approaches 
for the field of SV calling, all of which could potentially improve the field. Here, we 
propose a few deep learning frameworks illustrating the potential of AI to enhance SV 
detection that is intended as a discussion point within the community (Fig. 3).

Besides SV detection, machine learning and AI may also be a good option for SV path-
ogenicity prediction to facilitate clinical application. Although NGS has tremendously 
improved the resolution of SV detection, it also poses a significant challenge to prior-
itize and pinpoint a small subset of SV that is clinically relevant. Therefore, accurately 
discerning the pathogenicity of the SVs identified through NGS testing is profound for 
its clinical adoption [112]. The guideline for the interpretation and reporting of con-
stitutional CNVs have been jointly proposed by the ACMG and the Clinical Genome 
Resource (ClinGen), suggesting scoring metrics by integrating reported cases, consist-
ency of phenotype, the pattern of inheritance, and the pathogenic mechanisms of vari-
ants to prioritize the CNV pathogenicity [113].
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Fig. 3 The role of AI in promoting SV detection. AI-powered natural language processing (NLP) for SV calling. 
Considering the suboptimal performance of different SV calling algorithms concerning completeness and 
accuracy, we suggest that deep learning may be an alternative worth further exploration. CNNs are the 
primary deep learning algorithm investigated for SV detection, which considers the BAM files as image. 
Rapid development of deep learning algorithms such as AI-powered NLP not only provided unprecedented 
innovation for information retrieve from free-text documents but repositioned in other type of biological 
information such as chemical structures and protein sequences [104]. Here, we developed a hypothesis 
by resembling chromosomes as paragraphs, the sequence reads as sentences, and different A, T, G, C 
combinations (e.g., tandem repeats and microsatellite) as vocabularies. Subsequently, the AI-powered 
language models such as different transformers [105–107] could be utilized to digest genome sequence 
as human beings read a book. The difference between the sample genome and reference genome (i.e., 
variants) could be extracted by compared transformer-based genome embedding, which is very similar to 
the rationale behind de novo assembly (A). Reinforcement learning optimizing meta-caller combination. 
There is the potential to integrate multiple callers using more sophisticated approaches than simple heuristic 
union/intersection rules for improving SV detection. Artificial intelligence (AI) may be a solution. The rapid 
evolution of emerging genomics technologies suggests that improved SV detection should be taking place. 
The ideal combination strategy for combining different SV callers is to take advantage of each SV caller and 
eliminate the false positives, which fits well the concept of reinforcement learning. Reinforcement learning is 
a branch of deep learning that focuses on how intelligent agents ought to take actions in an environment to 
maximize cumulative reward [108]. AlphaGo is an excellent example of reinforcement learning applications 
[109]. Reinforcement learning could be utilized to develop the intelligent ensemble SV callers to maximize 
SV detection performance (B). For each type of SV, the combination for each SV caller could be learned by 
minimizing the loss function that measures the divergence between called SV and ground truth. Ultimately, 
reinforcement learning-based ensemble SV callers allow the integration of any individual caller, incorporate 
different SV types, and incorporate the advantages of newly developed technologies. Generative adversarial 
network (GAN)-based SV simulation. A true set is the key to investigate the accuracy and reproducibility of 
SV detection. Unfortunately, the complexity of the SV events and associated genome properties are central 
to the whole picture of SV events in the sample, hampering objective evaluation. Many reports suggest 
that simulated ground truth cannot recapitulate genome and SV characteristics and mimic the actual 
patient situation. Therefore, the simulated SV truth sets with high commutability are urgently needed. The 
generative adversarial network (GAN) is a deep neural network framework integrating a generative model 
and discriminative model to generate new data similar to the statistical distribution of the training set [110]. 
GANs have been widely applied in image generation in fashion, art, and advertising and have attracted much 
attention in the scientific community. For example, one type of GAN model, named DeepFake, has been 
utilized to predict cell type-specific transcriptional states induced by drug treatment [111]. Here, we envision 
a generative adversarial network (GAN) to simulate the binary alignment map (BAM) file spiked in different 
SV types based on the actual data (C). The proposed GAN model collects the high-quality BAM files with 
varying SV and length types from the real data, such as SEQC-II and other consortium efforts, as a training set 
to generate the target SV spiked BAM file. The potential benefit of the proposed GAN model is the simulated 
SV spiked BAM file could maximize the preservation of the original matrix effect of real data such as VAF level 
and tumor purity
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Some efforts have been made for pathogenicity prediction of SV, such as strategies 
by aggregation of SNP pathogenicity within the SV intervals (e.g., SVscore [114] and 
AnnotSV [115]) and rule-based approaches for pathogenicity assessment based on the 
ACMG guideline (e.g., ClassifyCNV [116]). The guideline’s execution relies heavily on 
domain experts and opinion specific, limiting its application to tackle a large number 
of CNVs detected by NGS testings [117]. ClassifyCNV is the first tool that automates 
the implementation of the updated ACMG guidelines to classify CNVs, which is suitable 
for integration into NGS analysis pipelines. However, current SV pathogenicity scoring 
tools mainly focus on protein-coding regions, and no single approach integrates the dis-
tribution of CNVs across ethnic groups to more precisely predict CNV pathogenicity.

Machine learning-based approaches by integrating different genome features and eth-
nic information across the population could effectively improve the prediction perfor-
mance of SV pathogenicity in the whole genome scale. As part of the FDA-led SEQC II 
effort, we developed a novel machine learning-based framework X-CNV (www. unimd. 
org/ XCNV) by integrating over 30 informative features correlating with SNV patho-
genicity, to quantitively predict the pathogenicity of CNVs across various ethnic groups 
across approximately 93% of the human genome [118]. The proposed X-CNV outper-
formed all the current CNV pathogenicity tools with an AUC of 0.94. Moreover, we 
developed a meta-voting prediction (MVP) score to quantitively measure the pathogenic 
effect aligned with the ACMG guideline to enhance clinical application. In the current 
version of X-CNV, we employed the XGBoost algorithm, and further investigations on 
advanced deep learning algorithms may promise enhanced performance.

Although machine learning and AI shed light on SV detection and interpretation, more 
comprehensive evaluation and further investigation on the context of use are highly rec-
ommended towards a robust, secured, privacy-preserving, and explainable machine 
learning and AI solution for clinical application. The U.S. Food and Drug Administration 
(FDA) recently issued the “Artificial Intelligence/Machine Learning (AI/ML)-Based Soft-
ware as a Medical Device (SaMD) Action Plan” to enable the FDA and manufacturers to 
evaluate and monitor a software product in a lifecycle-based regulatory framework for 
machine learning and AI technologies and allow for modifications to be made from real-
world learning and adaptation (https:// www. fda. gov/ medic al- devic es/ softw are- medic 
al- device- samd/ artifi cial- intel ligen ce- and- machi ne- learn ing- softw are- medic al- device). 
Crowdsourcing efforts led by government agencies such as NIST and FDA will be tre-
mendously helpful to prioritize fundamental and translational AI research consistent 
with regulatory priorities for robust, safe, secure, and privacy-preserving machine learn-
ing in different real-world applications. One example is PrecisionFDA, led by the U.S. 
FDA, which is a secure, collaborative, high-performance computing platform to advance 
precision medicine, inform regulatory science, and enable improvements in health out-
comes. Several PrecisionFDA challenges have been launched, such as calling variants 
from short and long reads in difficult-to-map regions to standardize NGS testing in the 
precision medicine practice (https:// preci sion. fda. gov/ chall enges) [119]. The SEQC-II 
consortium will release a new challenge on machine learning and AI powering genetic 
variant identification in the PrecisionFDA to take advantage of crowdsourcing efforts to 
better understand AI’s pros and cons in the context of NGS testing in a clinical setting.

http://www.unimd.org/XCNV
http://www.unimd.org/XCNV
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://precision.fda.gov/challenges
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Towards clinical implementation of NGS‑based SV detection

Although NGS has tremendously improved the resolution of SV detection and facili-
tated our understanding of disease etiology and pathogenesis, substantial challenges 
remain for its full clinical implementation [34]. The influential critical aspects of the 
clinical implementation of NGS-based SV detection are multifactorial, and the signifi-
cant factors include pathogenicity assessment, reporting, accreditation, analytical, and 
clinical validation. The current first-line clinically accredited laboratory genetic tests are 
still array-based technologies such as array comparative genome hybridization (aCGH) 
or SNP arrays, which are only capable to detect CNV down to a resolution of ~ 50 kb 
and unable to detect other types of SV events, such as inversions or balanced translo-
cations. NGS has shown high sensitivity, specificity, and reproducibility for the SV less 
than 50 bp [36]. Besides, NGS shows its promise in the large SV detection, although sub-
stantial space for further improvement for enhanced sensitivity and specificity.

The strategies of promoting NGS towards its clinical implementation and adoption 
have been intensively discussed elsewhere [120, 121]. One of the outstanding prerequi-
sites of NGS application in a clinical setting is whether the NGS-based SV detection is 
superior to the current first-line clinically accredited genetic testing. Gross et al. [122] 
conducted a comparative analysis between NGS-based CNV detection and clinically 
accredited array-based strategy across a clinical cohort of 79 rare and undiagnosed 
cases. The study showed CNV calls from NGS are at least as sensitive as those from 
microarrays while only creating a modest increase in the number of variants interpreted 
(~10 CNVs per case). Encouragingly, 15% of these incidental or secondary findings 
(ISFs) from NGS could be confirmed with an orthogonal approach.

The potential high false-positive rate of NGS-based SV detection is one of the major 
concerns for its clinical applications compared to currently clinically accredited labo-
ratory genetic tests. Since the NGS pipeline for SV detection involves multiple steps, 
a standard framework for managing and standardizing the NGS-based SV detection is 
urgently needed for clinical application. To fill the gap, a ClinSV was recently proposed 
to provide a “one-stop” solution for WGS based SV integration, annotation, prioritiza-
tion, and visualization [123]. The proposed ClinSV achieved a low false rate (1.5~4.5%) 
and high reproducibility (95~99%), and high sensitivity (99.8%) for simulated pathogenic 
ClinVar CNVs > 10 kb and 100% from clinically accredited array-based testing. More 
importantly, ClinSV identified actionable variants in 22 of 485 patients (4.7%), 35~63% 
of which were not identified by current clinical microarray designs.

Future directions

The accurate and reproducible detection of SVs is required for use in clinical appli-
cations. As a direct benefit of the rapid evolution of genomic technologies coupled 
with the work of different stakeholders, an increased appreciation of the contribu-
tion of SVs in genetic diversity and disease etiology continues to emerge [4, 124–126]. 
A strategic and thoughtful application of genomics technologies can drive seamless 
harmonization of diverse strategies to provide reliable and robust SV detection. Here, 
we have made several proposals to improve the accuracy and reproducibility of SV 
detection. Some aspects remain to be addressed such as the reliable estimation for SV 
pathogenicity [115, 116, 118] and the association between SV and complex trait loci 
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[127]. Furthermore, our perspective is only focused on the human genome; however, 
SV events are also widely distributed in other species [128, 129]. One notable exam-
ple is SV events in SARS-CoV-2, which may contribute to COVID-19 transmission 
and severity [130, 131]. Additionally, we did not discuss RNA-seq based gene fusion 
detection. Gene capture strategies, genomics technologies selection and calling algo-
rithms divergence have been extensively studied under SEQC II. Specifically, the 
SEQC Oncopanel working group generated multi-platform and multi-lab long/short-
read RNA sequencing data along with conventional genomics technologies such as 
stranded/polyadenylated/ribosome-depleted sequencing [28, 29]. This enables a com-
prehensive assessment of gene fusion detection capability using the common refer-
ence material UHRR.

The field of SV detection continues to expand with advances in genome technologies, 
the establishment of and more reference standards and the release of high-quality call-
ing sets. These resources allow us to further investigate some of the critical questions 
that remain and facilitate novel genomics technology development towards reliable 
and comprehensive SV identification (see Outstanding Questions). Notably, regulatory 
attention is on standardizing structural variant detection and on classification for con-
venient clinical adoption [132]. We suggest establishing a bridge among different stake-
holders to establish best-practice recommendations and quality control to encourage the 
uptake of SV diagnosis into clinical practice. Additionally, we argue that innovations in 
AI may help in tackling key challenges in SV detection and provide alternative options to 
develop more accurate and robust approaches. However, these proposed deep learning 
frameworks still require close examination and feasibility analysis. For example, there 
are still multiple challenges to fully implement deep learning framework in SV call-
ing such as lack of training data, divergency of performance on complexity of SV and 
regional differences.

Conclusions
The ongoing development of many genomics technologies sees a period of excite-
ment, huge investment and perhaps disappointment that, in turn, may trigger a new 
wave of innovation. We foresee that more accurate and reproducible SV detection 
approaches will emerge soon, generating a more complete picture of the landscape 
of the human genome. Next steps will require different stakeholders to work towards 
a common goal of further resolving the difficulty in SV detection and accelerating 
clinical application.
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