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Abstract

We consider an increasingly popular study design where single-cell RNA-seq data are
collected from multiple individuals and the question of interest is to find genes that are
differentially expressed between two groups of individuals. Towards this end, we
propose a statistical method named IDEAS (individual level differential expression
analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each
individual by a distribution and then assesses whether these individual-specific
distributions are different between two groups of individuals. We apply IDEAS to assess
gene expression differences of autism patients versus controls and COVID-19 patients
with mild versus severe symptoms.
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Background
Single cell RNA-seq (scRNA-seq) data provide an unprecedented high-resolution view of
gene expression variation within a bulk tissue sample and thus help improve our under-
standing of the molecular basis of complex human diseases. For example, by comparing
scRNA-seq data between cases and controls, we may identify cell-type-specific gene
expression signatures that are related to disease etiology and progression [1, 2].
Early scRNA-seq studies often collect many cells from one or a few individuals and seek

to compare gene expression between two groups of cells after pooling relevant cells across
individuals. Several methods have been developed towards this end [3–8]. As the scRNA-
seq techniques evolve from a new revolution to a standard approach, many researchers
start to collect scRNA-seq data from multiple individuals, and thus differential expres-
sion (DE) testing across individuals (i.e., comparing the expression of each gene between
case and controls) becomes an imperative task. The existing cell level DE methods are
inappropriate for individual level DE testing. This is because the sampling space of the
cell level DE methods are cells but not individuals, and a significant p-value asserts DE
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if we sample more cells from the same set of individuals. In contrast, when comparing
gene expression between two groups of individuals, the statistical inference is whether we
observe DE if we collect scRNA-seq data from more individuals.
In this paper, we assume the cells have been clustered into a few cell types if needed,

and then we compare gene expression between two groups of individuals for each cell
type separately. A related but different task is to compare the gene expression of two
cell types across individuals. Currently, our method is not applicable to this setting. To
compare gene expression across individuals, one may first estimate cell type-specific gene
expression per individual by adding up the RNA-seq counts of all the cells of the same cell
type. This is often known as pseudo-bulk RNA-seq data. Then, we can apply DE testing
methods for bulk RNA-seq data [9, 10] to the pseudo-bulk RNA-seq data. This pseudo-
bulk approach captures shift of mean expression but may miss higher-order differential
expression patterns, e.g., variance changes. To fully exploit the information in scRNA-
seq data, we propose a new approach that captures the cell type-specific gene expression
of an individual by a probability distribution and then compare such distributions across
individuals. We refer to our method as individual level differential expression analysis for
ScRNA-seq data (IDEAS).

Results
An overview of IDEAS

IDEAS performs DE testing gene by gene with respect to a categorical or continuous
variable. To simplify the discussion, we consider a simple situation of two-group compar-
ison between cases and controls for a specific gene (Fig. 1). The first step of IDEAS is to
estimate the distribution of gene expression in each individual using a parametric or non-
parametric method, conditioning on cell level covariates. The parametric method can be
estimating a negative binomial (NB) or zero-inflated negative binomial (ZINB) distribu-
tion. The non-parametric method can be kernel density estimation (KDE) or empirical
estimation of cumulative distribution function (CDF). The next step is to calculate the
distance between the gene expression distributions of any two individuals by the Jensen-
Shannon divergence (JSD) or Wasserstein distance (Was) [11]. The final step is to assess
whether within-group distances tend to be smaller than between-group distances. We
define our test statistics by a pseudo F-statistic [12], and its null distribution can be esti-
mated by permutations. This permutation procedure is computationally efficient because
we do not need to re-compute the distance matrix for each permutation. We just per-
mute the observed distance matrix by permuting its rows and columns. When sample
size is large (e.g., number of individuals >50), based on the connection between distance-
based regression and kernel regression [13], we can use the asymptotic results from kernel
regression to calculate p-values [14]. More details of IDEAS method are presented in the
“Methods” section.

Design of simulation studies

We evaluated the performance of IDEAS as well as a few other methods, including a
pseudo-bulk approach (applying DESeq2 [10] on pseudo-bulk data) and four popular
methods for cell level DE:Wilcoxon rank-sum test, MAST [4], scDD [5], and ZINB-WaVE
[8, 15]. For cell level DE, we pooled all the cells in cases and controls separately and com-
pare the two groups of cells. We used two versions of MAST. One is the default MAST
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Fig. 1 An overview of the IDEAS pipeline. Here ,we illustrate a toy example with 2 cases and 3 controls, with 2
or 3 cells per individual. For each gene, we summarize its gene expression distribution within each individual
(e.g., P(x) and Q(x) in the figure) and then calculate the distance of such distributions between any two
individuals and obtain a distance matrix (the bottom right corner of the figure). This distance matrix,
combined with additional individual-level covariates, is used for differential expression analysis between
cases and controls

designed for cell level DE testing and the other one is to combine MAST with a linear
mixed effect model, which we refer to as MAST_lmer. The MAST_lmer approach makes
an explicit assumption that the cells of one individual are more similar to each other than
the cells of different individuals. We considered four versions of IDEAS methods, with
twomethods to estimate within-individual distributions (ZINB or KDE) and twomethods
to estimate distances across individuals (JSD or Was).
We simulated scRNA-seq data based on a real dataset of 62,166 cells from the prefrontal

cortex (PFC) of 13 autism patients and 10 controls [1] in the following steps. First, we
estimated a ZINB distribution for each gene and each cell using a data denoising neural
network method called DCA (deep count autoencoder) [16]. Next, we focused on the
8626 L2/3 neuron cells to guide our simulation. We simulated the expression for 8000
genes in n individuals (n1 cases and n2 controls, k cells per individual) with one-to-one
correspondence to the 8000 genes that were expressed in the highest fractions of the cells
(roughly > 20% of the 8626 L2/3 neuron cells). We varies the number of individuals n
from 10 to 40, and the number of cells k is set to be 360 or 1080.
For each gene, we assumed its expression followed a ZINB distribution for each cell

of the ith individual and estimated four parameters: μi = log(mean), φi = log(over-
dispersion), πi = logit(proportion of zero-inflation), and σi (the log-transformed standard
deviation of log(mean) across all the cells of the ith individual). The first three parame-
ters were estimated by taking median over the cell level estimates by DCA. We estimated
a multivariate normal distribution for these four parameters across the 23 individuals.
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Finally, we used this distribution to simulate parameters for n individuals and used the
simulated parameters to simulate cell-level count data for each individual from a ZINB
distribution. We divided the 8000 simulated genes into three groups. In the first and sec-
ond 1000 genes, we added DE signal in mean value (meanDE) and variance (varDE),
respectively. The remaining 6000 genes did not have any DE signal, and were referred to as
equivalently expressed (EE) genes. These EE genes were used to evaluate the type I error.

IDEAS can identify more DE patterns than the pseudo-bulk method

We first fixed the effect size of DE with 1.2-fold change for mean expression and 1.5-fold
change for variance and considered eight simulation setups with four choices of sample
size: 5 vs. 5, 10 vs. 10, 10 vs. 13 (to match with the sample size in the Autism data), and 20
vs. 20, and two choices of the number of cells per individual: 360 and 1080. Next, we fixed
the sample size to be 10 vs. 10 and considered a series of seven effect sizes to evaluate
type I error and power with respect to effect sizes. Here, we present the results for two
representative simulation setups with effect sizes fixed at 1.2-fold change for mean and
1.5-fold change for variance: 5 cases vs. 5 controls with 1080 cells per individual and 13
cases vs. 10 controls with 360 cells per individual. For the former, the case with 1080 cells
per individual is used since otherwise all methods have very limited power. The results of
other setups can be found in Section 2 of Additional file 1.
Pooling the cells in cases and controls separately and applying cell-level DE testing

methods to compare the gene expression between case cells and control cells leads to
severe inflation of type I error (Fig. 2A, B). This is expected because the sample size is
the number of cells, which is huge compared to the number of individuals. Interestingly,
MAST combined with linear mixed effect model (MAST_lmer) only has moderate infla-
tion of control type I error when sample size is small (5 cases vs. 5 controls, Fig. 2A) and
almost no inflation of type I error when sample size is 13 cases vs. 10 controls (Fig. 2B).
Since the linear mixed effect model down-weighs cell level difference, it is expected that

Fig. 2 A, B Simulation results for 6,000 equivalently expressed (EE) genes, 1000 genes with DE signal in mean
value, and 1000 genes with DE signal in variance in two settings. A Sample size (number of individuals) 5
cases versus 5 controls with 1080 cells per individual. B Sample size 13 cases versus 10 controls with 360 cells
per individual. Here, we illustrate the results of two IDEAS methods where the distribution of gene expression
within each individual was estimated by a parametric method (ZINB (zero-inflated negative binomial), kernel
density estimate (KDE), and distance between distributions are quantified by the Wasserstein distance (Was)).
The results of other settings of IDEAS methods are similar (Additional file 1: Fig. S1). C The pseudo-bulk data
of 23 individuals for one gene with DE signal on variance. D The same gene in C for its empirical distribution
in 23 individuals. The counts are truncated at 7 for illustration
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it can achieve better type I error control when sample size is larger. We have also evalu-
ated type I error using real data by applying different methods on permuted case/control
labels and reached similar conclusions, and MAST_lmer still has noticeable inflation of
type I error when sample size is 13 vs. 10 in one dataset (Additional file 1: Section 3.4) and
10 vs. 7 in the other dataset (Additional file 1: Table S6). This reflects additional features
in real data that are not captured by our simulations, such as violation of gene expression
distribution assumptions.
DESeq2 has slightly inflated type I error, slightly higher power than IDEAS for meanDE

situation, and almost no power in the varDE situation (Fig. 2A, B). In contrast, the IDEAS
methods control type I error very well and have much higher power than DESeq2 in the
varDE situation (Fig. 2A-B, Additional file 1: Fig. S1). MAST_lmer has very high power
to detect varDE genes, likely because the mixed effect model is suited to capture the
change on variance. We also illustrate a varDE gene that shows no DE signal in pseudo-
bulk data (Fig. 2C) while the difference of variation can be detected when examining the
distribution of gene expression (Fig. 2D).
The results of other simulation setups, which are presented in Section 2 of Supple-

mentary Additional file 1, support our conclusions that methods designed to compare
gene expression of two groups of cells have inflated type I error and IDEAS has higher
power than the pseudo-bulk + DESeq2 method. Additionally, we also demonstrated that
the power of all methods increases with effect sizes (Additional file 1: Fig. S9) and slight
imbalance of the sample sizes of cases and controls (13 vs. 10 compared with 10 vs. 10)
does not lead to inflated type I error. Since our method uses permutations to evaluate
p-values, severe imbalance (e.g., 3 vs. 10) will affect its accuracy since there are smaller
number of possible permutations.

NB is sufficient to capture gene expression distribution derived from UMI counts

Several recent studies have shown that a NB distribution is often sufficient to model the
scRNA-seq data using UMI (unique molecular identifier)[17–20]. When applying IDEAS
on simulated data, the results (the p-values for all the genes) using NB or ZINB distri-
bution are highly consistent (Additional file 1: Fig. S10). Comparison of NB versus ZINB
distribution using real data reaches similar conclusions (Additional file 1: Fig. S11). There-
fore, by default, NB distribution is used in the following analysis. Our implementation
still allows ZINB distribution, whichmay be useful for scRNA-seq data generated without
using UMI.

Parametric approach is more robust to the sparsity of the scRNA-seq data

The cell level read-depth often varies considerably (Fig. 3A) and thus needs to be
accounted for when estimating individual-specific distributions. Adjusting for cell level
read-depth (or any other cell level covariates) is straightforward for the parametric
approach. We can run a ZINB or NB regression against the log-transformed read-depth
and then use the conditional distribution when setting the read-depth to certain value
(e.g., the median value from all the cells across individuals). For the non-parametric
approach (e.g., kernel density estimate), we can quantify read-depth effect by a linear
model with log-transformed counts as the response variable and the log-transformed
read-depth as a covariate. Then, read-depth adjusted gene expression can be calculated
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Fig. 3 A Distribution of cell-level read-depth, with median around 10,000 and range from 2,414 to 105,488. B
Correlation between the -log10(p-values) of DE testing between the two approaches to estimating
individual-specific distribution: ZINB or empirical CDF. The genes were divided into 5 groups based on the
proportion of cells where the observed gene expression is 0. C The P-value distribution when estimating
individual-specific distribution using ZINB, followed by a distance calculation using the Wasserstein distance
and a p-value calculation using permutation. D Same as C except that the input data are not the observed
counts but the counts sampled from the cell specific ZINB estimated by DCA [16]

by the summation of the fitted values given median read-depth and the residuals of the
linear model.
At this stage, the shortcoming of non-parametric method becomes obvious. In the real

dataset, after selecting the 8260 genes that are expressed in at least 20% of 8626 L2/3 neu-
ron cells, there are still more than half of the genes with zero expression in more than 50%
of the cells. In addition, the remaining non-zero counts tend to be small, e.g., 1 to 5. A lin-
ear regression with such sparse data is highly unreliable. We illustrate this by comparing
the -log10(DE p-value) for autism subjects versus controls obtained by two approaches:
NB fit or empirical CDF fit followed by a distance calculation using the Wasserstein dis-
tance. The genes are divided into 5 categories based on the proportion of 0’s across those
8626 L2/3 neuron cells. The correlation of the two approaches decreases as the propor-
tion of zero’s increases (Fig. 3B). After manual examination and comparison with results
from pseudo bulk approaches, we conclude this is mainly due to the limitation of non-
parametric approaches to handle sparse count data. Therefore, in the following analysis
we focus on distribution estimation by the parametric approach (i.e., estimation of an NB
distribution). When calculating the distances between individuals, using JSD or Wasser-
stein distance does not make much difference. We choose to focus on the Wasserstein
distance due to its optimal performance in other settings [21] and recent studies of its
properties [11, 22].

Data denoising before DE testing

One angle to explain the difference between IDEAS and the pseudo-bulk method is
through the bias-variance trade-off. The pseudo-bulk method summarizes the expression
of many cells by summing them up, which leads to information loss (potential bias) but
reduced variance. On the other hand, IDEAS tries to harvest the information from single
cells at the cost of a potentially higher uncertainty in estimating the gene expression dis-
tribution across cells. One direction to improve IDEAS is via denoising the scRNA-seq
data, which is a well-studied topic. A popular denoising method named DCA [16] is used
in this paper. DCA estimates a ZINB distribution for each gene and each cell based on a
low-dimensional space that can filter out some noise in the data.
We applied DCA to 62,166 cells of 17 cell types from the prefrontal cortex (PFC). To

assess the consequence of DCA denoising, we first focused on the 8626 L2/3 neuron cells,
one of the most abundant cell types. We sampled 5 counts from each cell-specific ZINB
estimated by DCA and pooled them across cells to estimate an NB for each individual.We
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then proceeded testing using the Wasserstein distance. This new approach using DCA
denoised and augmented data (Fig. 3D) has higher power than the same NB-Wasserstein
approach using observed count data (Fig. 3C).
This approach to sampling counts from cell-specific ZINB estimates by DCA is flexible

since we can use the sampled counts to fit an NB regression to account for any cell level
covariates. However, it is also computationally intensive. An alternative approach is to
directly estimate individual-level distributions by averaging the cell specific ZINBs esti-
mated by DCA (Additional file 1: Section 1.1). This direct computation approach gives
similar results to the results fromNB regression (Additional file 1: Section 3.2). Therefore,
we use this direct computation approach in the following analysis.
We have also studied another popular scRNA-seq denoising method named SAVER

[23]. SAVER denoises scRNA-seq data by estimating a posterior mean value of a Poisson
distribution for each gene and each cell while the prior is estimated by a Poisson LASSO
regression, using the expression of other genes as predictors. DCA and SAVER are two
representative denoising method and both perform well in a comprehensive evaluation
of different denoising methods [24]. SAVER outputs the posterior Poisson distribution
for each cell. We can estimate individual-level distributions by sampling from cell level
distributions. Though similar to our solution for DCA-denoised data, we found directly
averaging the cell specific Poisson distribution gives similar results and is computationally
more efficient. Therefore we use this direct estimation approach.

IDEAS combined with denoising improves the power to identify DE genes

We performed DE analysis between autism subjects and controls for all 17 cell types. We
only considered the genes that were expressed in at least 20% of the cells for each cell
type and the number of genes varied a lot across cell types: ranging from 578 (Microglia)
to 9291 (L5_6-CC) (Fig. 4A). We control for multiple testing across genes using q-value
[25]. With q-value cutoff at 0.2, DESeq2, IDEAS, IDEAS combined with DCA or SAVER
(IDEAS_DCA or IDEAS_SAVER) identified 1134, 134, 14,774, and 7577 DE genes respec-
tively, across the 17 cell types (Additional file 1: Table S1). These results confirm that

Fig. 4 A The left panel shows the number of genes we studied for each cell type. A gene is included in our
study if it is expressed in at least 20% of the cells. The right panel shows the estimates of the proportion of
genes that are differentially expressed between autism subjects and controls for each cell type. B An
example where IDEAS (combined with DCA) identifies strong DE signals while DESeq2 does not
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denoising scRNA-seq data can substantially improve the power of IDEAS. An example
where the DE patterns become cleaner after denoising is shown in Fig. 4B. This gene,
SLC4A8, transports sodium and ions across cell membrane and is associated with gluta-
mate release by neurons [26], and thus, it can have functional role in autism development.
While both DCA and SAVER denoising improve power, we focus on the DCA approach
in the next section to simplify discussions.
We further estimated the proportion of DE genes using a p-value distribution [27]. Here,

we estimated the proportion of DE genes as 1 − π̂0 = 1 − 2p̂0(0.5), where π̂0 was the
estimated proportion of non-DE genes and p̂0(0.5) was the proportion of genes with p-
values larger than 0.5. The DE proportion estimates were higher for excitatory neurons
(e.g., layer 2/3 or layer 4 excitatory neurons) and interneurons (e.g., vasoactive intestinal
polypeptide (VIP) and somatostatin (SST) expressing interneurons), partly due to rela-
tively higher expression level in these cell types. In contrast, few DE signals were detected
in astrocytes, endothelial cells, or microglia, possibly due to low gene expression in these
cell types. Neu-NRGN-II was an exception where the number of expressed genes was low
while all the methods identified high proportion of DE genes (Fig. 4A, Additional file 1:
Table S1-2). Neurogranin (NRGN) is a calmodulin-binding protein, and it has been asso-
ciated with Alzheimer’s disease [28] and schizophrenia [29]. Our results suggest that it is
also potentially associated with autism.

IDEAS improves the power to identify autism-related genes.

The Simons Foundation Autism Research Initiative (SFARI) has compiled a list of autism
risk genes. Most of these genes are identified because they harbor more disruptive muta-
tions in autism subjects than in a general population. DNA mutations cannot directly
affect biological function. At least part of their effect on biological systems is mediated
through gene expression, and thus, these genes may be identified by DE analysis. We
assessed whether there is significant overlap between cell type-specific DE genes (which
are defined using a liberal p-value cutoff of 0.05) and SFARI genes. IDEAS combined
with DCA identified significant overlaps in four cell types: excitatory neurons on layer
2/3 or layer 4, and interneurons expressing SST or VIP (Fig. 5A). In contrast, neither
IDEAS nor DESeq2 identifies any significant overlap. We observe similar patterns if we
just ask whether SFARI genes tend to have smaller p-values by gene set enrichment anal-
ysis (GSEA) (Additional file 1: Table S4). Lack of significant overlap between SFARI genes
and DE genes could indicate small proportions of overlap or limited power to identify DE
genes and thus that overlap is not statistically significant. For example, small proportion
of overlap is the main reason for excitatory neurons on layer 2/3 (L2_3) (Fig. 5B and D)
while limited power to identify DE genes is the main reason for interneurons expressing
VIP (IN-VIP) (Fig. 5C and E).
Microglia is of particular importance for autism because it is the resident immune cells

in brain and immune response is an important factor of autism etiology [30]. In our
analysis, although all the methods find few DE genes in microglia, gene set enrichment
analysis (GSEA) that uses the ranking of all the genes identifies a few pathways (based on
the REACTOME pathway definitions) that are differentially expressed between autism
subjects and controls. At adjusted p-value cutoff of 0.05, GSEA using the DE ranking by
DESeq2 identifies one pathway: signaling by ERBB4. Using the ranking by IDEAS com-
bined with DCA, GSEA identifies this pathway together with 9 others, including signaling
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Fig. 5 A Fisher’s exact test p-values to assess whether autism related genes (SFARI genes) have significant
overlap with differential expressed genes (nominal p-values <0.05). B, C Odds ratios and their 95%
confidence intervals derived from Fisher’s exact test in A for two cell types: layer 2/3 excitatory neurons
(L2_3) and vasoactive intestinal polypeptide (VIP)–expressing interneurons (IN-VIP). D, E Estimates of the
proportion of DE genes among those SFARI genes or non-SFARI genes for two cell types: L2_3 and IN-VIP. F
Pathways that are over-represented by the genes that are differentially expressed between autism subjects
and controls in microglia

by ERBB2 (Additional file 1: Section 3.6). An earlier study has shown that ERBB signals
can lead to proliferation and activation of microglia [31]. Separate studies have also shown
that exonic deletion of ERBB4 is associated with intellectual disability or epilepsy [32].
Our findings, combined with these earlier studies, suggest that ERBB signals may be an
underlying factor that leads to different microglia activities between autism subjects and
controls.

Both denoising and non-mean-shift signals contribute to the improved power of IDEAS

We conducted additional analyses to further clarify what is driving the differentially
expression signals. For example why some genes are identified as DE (differentially
expressed) by IDEAS after denoising but not by DESeq2 and vice versa. Specifically, we
divided the genes into four groups based on their q-values by DESeq2 (q-value cutoff
0.2) and IDEAS_DCA (q-value cutoff 0.1). A more liberal q-value cutoff was chosen for
DESeq2 so that we could have enough genes in the four groups.
For each gene and each individual, IDEAS_DCA estimates an empirical distribution.

We calculated the mean μ̂ and variance σ̂ 2 of this distribution. They are strongly corre-
lated with each other (Additional file 1: Fig. S14). To separate the signals of variance from
mean, we calculated a (pseudo) dispersion parameter: θ̂ = μ̂2/(σ̂ 2 − μ̂) that was moti-
vated by the mean-variance relation of a negative binomial distribution. Then, we tested
whether the mean or the dispersion was associated with case/control status (Section 3.7
of Additional file 1). Among the 260 DE genes identified by IDEAS_DCA, 38/222 were
identified as DE/EE (equivalently expressed) genes by DESeq2. The mean and dispersion
test p-values of these two groups of genes are similar, suggesting the DE signals in the
222 genes are more apparent after denoising (Additional file 1: Fig. S15). When examin-
ing the proportions of genes with small mean/dispersion p-values, those genes identified
by IDEAS_DCA but missed by DESeq2 are more likely to have DE signals only by disper-
sion (Additional file 1: Table S5). In addition, we observed stronger DE signals in mean
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value, but not in dispersion, when comparing the 93 genes identified by DESeq2 only ver-
sus the 7,907 genes identified as EE genes by both DESeq2 and IDEAS_DCA (Additional
file 1: Fig. S15). This is consistent with our expectation that DESeq2 mainly detects mean-
shift of gene expression. The mean DE signals of these 93 genes tend to be weaker than
those 260 DE genes identified by IDEAS_DCA (by comparing the p-values distributions),
suggesting that IDEAS_DCA misses these genes due to relatively weaker signals in mean
shift.

IDEAS identify genes/pathways related with COVID-19 severity

COVID-19 is a mild infection for most COVID patients but can be severe for a subset of
them. The underlying mechanism to drive severe COVID-19 cases is an active research
topic. Several recent works have revealed dysregulation of myeloid cells, particularly neu-
trophils. For example, by comparing scRNA-seq data from peripheral bloodmononuclear
cells (PBMC) of 8 mild and 10 severe COVID-19 patients, Schulte-Schrepping et al. [2]
identified two neutrophil populations that are only observed in severe cases, but not in
mild ones. In addition tomyeloid cells, the other important compartment of immune cells
is lymphoid cells, including B cells, T cells, and Nature Killer cells. In our exploration of
the scRNA-seq data by Schulte-Schrepping et al., we found a large cluster of CD8+ T cells
were distributed to both mild and severe COVID-19 patients, but the expression of many
genes in these CD8+ T cells were different between mild and severe cases.
Similar to our analysis of the Autism data, we applied five methods to analyze the

CD8+ T cells of this COVID-19 dataset: pseudo-bulk + DESeq2, MAST glmer, IDEAS,
IDEAS_DCA and IDEAS_SAVER. All the IDEAS methods used the option of permu-
tation testing, negative binomial density estimation, and Wasserstein distance. Con-
sistent with our results from Autism data analysis, denoising substantially improved
power. When controlling false discovery rate to be 5%, DESeq2, MAST_glmer, IDEAS,
IDEAS_DCA, and IDEAS_SAVER identified 243, 4244, 518, 3566, and 3270 genes respec-
tively. The large number of findings by MAST_glmer is likely due to inflated type I error
since sample size is small (Additional file 1: Table S6). Next we applied GSEA analysis
using REACTOME pathways. At adjusted p-value cutoff 0.05, GSEA identified 108, 0, 7,
20, and 12 pathways using the rankings by DESeq2, MAST_glmer, IDEAS, IDEAS_DCA,
and IDEAS_SAVER respectively. It was surprising that DESeq2 identified many pathways
but not many DE genes. We further performed a GSEA by ranking the genes based on
their mean expression and identified 235 pathways with adjusted p-value cutoff 0.05. The
vast majority of the pathways identified by DESeq2 (101 out of 108) and IDEAS (6 out
of 7) belong to these 235 pathways, suggesting they are confounded by gene expression
abundance. In contrast, only a few of the pathways identified by IDEAS_DCA (3 out of
20) or IDEAS_SAVER (1 out of 12) belong to these 235 pathways (Additional file 2).
Further examination of the GSEA results from IDEAS_DCA and IDEAS_SAVER

revealed some notable pathways (Additional file 1: Fig. S16). Two NR1H2 and NR1H3
related pathways were identified based on IDEAS_DCA results. They are also known
as the liver X receptors, LXRA (NR1H3) and LXRB (NR1H2), and function as regu-
lators of macrophage function, lipid (e.g., cholesterol) homeostasis and inflammation.
Excess levels of cholesterol can dysregulate protective immunity, for example, through
LXR sumoylation in tumor microenvironment [33]. A recent genome-wide associa-
tion study identified a locus in NR1H2 associated with critically ill COVID-19 patients



Zhang et al. Genome Biology           (2022) 23:33 Page 11 of 17

[34]. A RUNX1 pathway was identified based on the results form both IDEAS_DCA
and IDEAS_SAVER. RUNX1 (runt-related transcription factor 1) is a key regulator of
myeloid-derived suppressor cells [35]. A recent study suggested that RUNX1 inhibitor
may be beneficial as both a treatment and preventive therapy for COVID-19 [36]. Sumoy-
lation related pathways were also identified based on the results from IDEAS_DCA and
IDEAS_SAVER. Sumoylation is a post-translational modification process where small
ubiquitin-related modifiers (SUMO) proteins attach to and detach from other proteins to
modulate their function and it plays an important role in host immune response [37].

Discussion
Our method IDEAS is designed for individual level DE analysis using scRNA-seq data.
IDEAS compares gene expression distribution across individuals, and thus it can identify
any pattern of DE including shift of mean or variance. Such flexibility is important for
scRNA-seq data because of the heterogeneity of cell populations. For example, we can
divide all the cells from a brain sample to excitatory neurons, interneurons, and a few glia
cell types such as astrocyte, microglia, and oligodendrocyte. However, excitatory neurons
and interneurons can be further divided into many smaller categories. Therefore, the DE
signal may exist in a subset of the cells and IDEAS is more suitable to capture such subtle
DE patterns than the pseudo-bulk method that mainly assesses shifts in mean expression.
Methods designed to assess DE across cells can be modified using a mixed effect model

framework to account for cell-cell dependence within an individual and to perform DE
across individuals. For example, MAST has such an option [4]. Our results show that
MAST combined with linear mixed effect model can have inflated type I error when the
number of individuals is small. This is because this approach captures both cell-level and
individual level DE signals, and when the number of individuals is small, the cell-level
variance may dominate the DE signal. Therefore, it should be used with caution when the
number of individuals is small.
A key step of IDEAS is to estimate gene expression distribution for each individual.

We have demonstrated that non-parametric estimates of gene expression distribution are
often unreliable, especially for the genes with low expression. Therefore, we recommend
parametric approaches, e.g., estimating gene expression distribution for one individual by
a negative binomial distribution, which is a Poisson-Gamma mixture. In addition to the
parametric or non-parametric estimates, an alternative is a semi-parametric one using a
Poisson mixture with a non-parametric mixing distribution. We pursued this approach in
a separate work [22].
We have observed that denoising scRNAseq data can improve the power of IDEAS. We

have evaluated two representative denoising methods DCA [16] and SAVER [23]. Both
methods provide estimates of cell-level gene expression distributions. Sampling from
such cell level distributions is more appropriate for down-stream analysis than simply
taking the posterior mean [17]. Since our method focuses on the whole distribution, it is
conceptually equivalent to sampling from such cell-level distributions. Though in prac-
tice, to improve computational efficiency, we directly add up the cell level densities to
derive the individual level density. A denoising method may remove both technical and
biological signals; thus, it should be used with caution. In general, a denoising method
works well if there is a latent structure in the data that reflects biological signals and it
is not confounded with case/control status. For example, considering scRNA-seq data of
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many cells that can be grouped into a few cell types, then the latent structure is specified
by cell type-specific gene expression. Therefore, we recommend running the denoising
procedure for all the cells of different types. DCA handles read-depth difference across
cells by a simple approach: dividing the observed read counts by read-depth. There is
room to improve it by making more flexible correction of the read depth, for example,
through a conditional variational autoencoder [38]. We will explore such more flexible
denoisingmethods in a future work.We found both denoising and non-mean-shift signals
contributed to the improved power of IDEAS. It is important to clarify what aspects of
the gene expression distributions contribute to DE signals. Though due to the sparsity of
the scRNA-seq data, it is hard to quantify gene expression difference in higher moments.
This is an important direction for future research.
Our implementation of IDEAS is computationally efficient for large scale analysis. For

example, for the analysis of cell type L2_3 of Autism data, with 8260 genes and 8626
cells from 13 cases vs. 10 controls, when running using 4 cores on a Mac with 3.8 GHz
8-Core Intel Core i7 CPU and 64GB memory, IDEAS took about 12 min to calculate
the distance matrix and 16 min for testing using up to 9999 permutations. IDEAS_DCA
or IDEAS_SAVER is faster than IDEAS when calculating distance matrix since they can
directly use the output from DCA or SAVER to calculate individual-specific distribution
function. In contrast, MAST_glmer took about 2 h, and DESeq2 took less than 1 min.
Similarly, when running the simulation setup with 10 cases vs. 10 controls and 360 cells
per individual, using 6 cores of a laptop with 2.3 GHz 8-Core Intel Core i9 CPU and 32GB
memory, IDEAS took 7 min to calculate the distance matrix and 2 minutes for testing
with up to 999 permutations. In contrast, MAST_glmer took about an hour, and DESeq2
took less than 1 min.

Conclusions
When scRNA-seq data are collected from multiple individuals, differential expression
analysis often seeks to make statistical inference for the population of individuals, e.g.,
cases vs. controls. We demonstrate that in such situations, methods designed to compare
gene expression between cell populations often have inflated type I errors. We propose
to use cell level gene expression data to estimate a distribution of gene expression for
each individual, and then compare such distributions between individuals. Since we com-
pare the distributions, our method can detect any pattern of differential expression, e.g.,
mean shift or variance difference. We find denoising gene expression data can improve
the power of our method. In summary, our work provides a new avenue to improve the
sensitivity, while preserving specificity, to detect any pattern of gene expression difference
between individuals using scRNA-seq data.

Methods
IDEAS

Input and output

The input data for IDEAS include gene expression data (a matrix of scRNA-seq fragment
counts per gene and per cell), the variable of interest (e.g., case-control status), together
with two sets of covariates. One set is cell level covariates, such as read-depth per cell.
The cell level covariates are used to estimate the gene expression distribution of each indi-
vidual across all the cells. The other set is individual-level covariates such as age, gender,
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batch effect, etc.. The output of IDEAS is a permutation p-value for each gene under the
null hypothesis that the expression of this gene is not associated the variable of interest,
given the rest covariates.

Calculation of distancematrix across individuals

We examine two metrics to evaluate the distance between the gene expression distribu-
tions of two individuals. One is the Jensen-Shannon divergence (JSD) and the other one
is the Wasserstein distance. For two probability distributions denoted by P and Q:

JSD(P,Q) =[DKL(P‖M) + DKL(Q‖M)] /2,

where M is a distribution whose density function is fM(x) = 0.5[ fP(x) + fQ(x)],
and DKL(P‖M) = ∫

x fP(x) log
[
fP(x)/fM(x)

]
dx is the Kullback-Leibler divergence. The

Wasserstein distance has attracted lots of attention in the machine learning fields recently
[11]. We use the Wasserstein-1 distance, which is also referred to as the earth-moving
distance. Intuitively, it is the minimum amount of effort to move the mass from one distri-
bution to the other distribution. For one dimensional problem, the Wasserstein distance
has a close form:

Was(P,Q) =
∫

|FP(x) − FQ(x)|dx,
where FP(x) and FQ(x) denote the cumulative distribution functions for P and Q,
respectively.
We explore two approaches to estimate the distribution of gene expression across all the

cells of an individual. The first approach is a parametric one where we estimate the gene
expression distribution by an NB or a ZINB distribution. Here, we describe our method
for the ZINB and NB is a special case for ZINB. Since our method is applied for each gene
separately, we describe the procedure for one gene and ignore gene index to simplify the
notation. Let Yi be a random variable for gene expression of individual i. Then, a ZINB is
a mixture distribution of a zero-inflation component and a negative binomial distribution
component:

f (Yi) = πiI(Yi = 0) + (1 − πi)fNB(μi, θi), (1)

where πi is the zero-inflation proportion,μi and θi are themean value and over-dispersion
parameter for a negative binomial distribution, respectively, such that the variance of the
negative binomial distribution is μi + μ2

i /θi.
Suppose we observe gene expression across ni cells of the ith individual, denoted by yi.

A naive approach is to estimate a ZINB distribution using yi. This approach will most
likely have little power for differential expression testing because cell level read depth can
vary a lot across cells/individuals, and thus, it may dominate the estimated distribution
and obscure any other signals. Therefore, we perform ZINB regression (or NB regression
if NB distribution is assumed) of confounding factors such as the cell level read-depth.
We used function zeroinfl from R package pscl to perform the ZINB regression and
used function glm.nb from R package MASS to perform NB regression.
The second approach is a non-parametric one. The specific solution depends on

the distance metric used. For JSD, we estimate density using kernel method, by R
function density with default Gaussian kernel. For Was, we use the R function
wasserstein1d from R package transport, which takes input data points to cal-
culate inverse of CDF and Wasserstein distance. In either case, we log transform the
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observed count data and then use a linear regression to obtain the adjusted log counts
when all the covariates are set to their medians.

Data augmentation using auto-encoder

ScRNA-seq data are often noisy due to the limited number of RNA molecules per cell.
Many methods have been developed to denoise scRNA-seq data. We employ two repre-
sentative methods: deep count autoencoder network (DCA) [16] and SAVER [23] in our
analysis. DCA exploits the low-dimensional structure of scRNA-seq data by an autoen-
coder, a neural network method. The input to DCA is the observed count matrix and the
output is the estimated ZINB distribution for each gene and each cell. Note that this ZINB
is a cell-specific distribution, and it is different from what we seek to estimate, which is
an individual-specific distribution. We estimate individual-specific distributions in two
ways. One is to simulatem counts from each cell-specific distribution and then pool them
across cells to estimate the individual-specific distribution. This approach givesmore flex-
ibility to account for cell-level covariates though it is computationally intensive. The other
approach is to directly add up the density estimates across cells to estimate the individ-
ual level distribution. SAVER estimates a Poisson distribution for each gene and each cell,
and imposes a Gamma distribution prior for the mean value of the Poisson distribution,
which is estimated by a Lasso regression using the expression of other genes as predic-
tor. Then, the posterior mean of the Poisson distribution is estimated. Using the output
from SAVER, we directly add up the Poisson density estimates across cells to estimate the
individual level distribution.

Calculation of p-value

We compare two approaches to calculate a p-value for each gene given the distancematrix
across all individuals and individual level covariates. One is a distance-based test known
as Permutational Multivariate Analysis of Variance (PERMANOVA) [12, 39], and the
other one is kernel based regression implemented in R package MiRKAT [14]. When the
number of individuals is larger, kernel regression should have more computational advan-
tages since it can calculate p-values using the asymptotic distribution of the test-statistic,
though for studies with small or moderate sample sizes (number of individuals), kernel
regression will also rely on permutation to assess p-values. For either kernel regression or
PERMANOVA, the distance matrix D needs to be transformed to a kernel matrix G by

G =
(

I − 1
n
11′

)

A
(

I − 1
n
11′

)

, (2)

where A = −(1/2)D2 and G is the Gower’s centered matrix of A [12, 40]. This matrix
may have some negative eigenvalues. Following earlier works, we set those negative
eigenvalues to 0 [13, 41].
Let Z be the set of variables including the variable of interest (X) and all the covariates.

Let HZ be the hat matrix HZ = Z(Z′Z)−1Z′, and denote the trace of a square matrix U
by tr(U). Then, the (pseudo) F statistic [12, 39] that quantifies the collective association
between the gene expression and all the variables in Z is

F = tr(HZGHZ)

tr[ (I − HZ)G(I − HZ)]
. (3)

To generate the distribution of F under permutation, we permute X or re-sample X
given all the covariates, following the PERMONVA-S method [42], and combine the
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permuted/re-sampled X with the covariates and generate a new data matrix Zp. The re-
sampling approach is more desirable because it maintains the association between X and
other covariates. However, when the number of individuals is small, it could be unstable
and thus we use permutation by default. Given Zp, we can calculate the F-statistic follow-
ing equation (3). Note that ourmethod is different from PERMONVA-S since we consider
all the covariates when calculating the F-statistics while PERMONVA-S only considers
the variable of interest.When the covariates have strong association with gene expression,
our method can remove their impact and thus increases the power for testing.
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