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Abstract

We introduce CellPhy, a maximum likelihood framework for inferring phylogenetic
trees from somatic single-cell single-nucleotide variants. CellPhy leverages a finite-site
Markov genotype model with 16 diploid states and considers amplification error and
allelic dropout. We implement CellPhy into RAXML-NG, a widely used phylogenetic
inference package that provides statistical confidence measurements and scales well
on large datasets with hundreds or thousands of cells. Comprehensive simulations
suggest that CellPhy is more robust to single-cell genomics errors and outperforms
state-of-the-art methods under realistic scenarios, both in accuracy and speed.
CellPhy is freely available at https://github.com/amkozlov/cellphy.

Keywords: Somatic phylogenetics, Genotype evolution, Single-cell genomics, Single-
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Background

The study of single cells is revolutionizing biology, unveiling unprecedented levels of
genomic and phenotypic heterogeneity within otherwise seemingly homogeneous tis-
sues [1-6]. Understanding this somatic mosaicism has applications in multiple areas of
biology due to its intrinsic connection to development, aging, and disease [7, 8]. How-
ever, the analysis of single-cell genomic data is not devoid of challenges [5, 9], includ-
ing the development of more integrative, scalable, and biologically realistic models of
somatic evolution that can handle the inherent noise of single-cell data—mainly ampli-
fication error and allelic dropout (ADO) [10]. Understanding how somatic cells evolve
is one of the main applications of single-cell technologies. In particular, the reconstruc-
tion of cell phylogenies from single-cell DNA sequencing (scDNA-seq) can help us
understand the mode and tempo of cell diversification and its mechanisms [11]. Thus,
cell phylogenies can help disentangle key events in the ontogeny of differentiated cell
types [12] and can be used to decipher human development at a remarkable resolution
[13-17]. When geographical information is available, cell (and clonal) genealogies can
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inform us about somatic expansions and cell migrations, which are of great relevance,
for example, to understand tumor growth and metastasis [18-22].

Several methods have been proposed to reconstruct cell phylogenies from scDNA-
seq data using single-nucleotide variants (SNVs) [23, 24]. OncoNEM [25] implements a
nested-effects likelihood model to correct for observational noise, plus a simple heuris-
tic search that maximizes the likelihood of the data across tree space. It reconstructs a
tree of clones and mutations by assigning cells to the clones. OncoNEM assumes an
infinite-site mutation (ISM) model, and as we will see below, it is very slow and can
only analyze small datasets. Among the most popular, SCITE [26] assumes an infinite-
site mutation (ISM) model and uses Markov Chain Monte Carlo (MCMC) to sample
likelihoods/posterior probabilities. Apart from the cell phylogeny, SCITE can estimate a
mutation tree to which it attaches the cells a posteriori. Conveniently, it can also infer
false-positive (FP) and false-negative (FN) error rates from the data. infSCITE [27] ex-
tends SCITE to consider cell doublets, test the ISM’s validity, and learn the FP rate
from panel sequencing data. SiFit [28] implements a Markov finite-site evolution model
and a heuristic ML tree search algorithm. It can also estimate FP and FN error rates,
and in the reported simulations, outperforms OncoNEM and SCITE in terms of speed
and accuracy. SCIPhI [29] jointly estimates the cell genotypes and their phylogenetic
relationships, working directly with the read counts and considering amplification/se-
quencing errors, ADO, and loss of heterozygosity. SPhyR [30] and SASC [31] are ISM
methods that exploit Dollo parsimony, which assumes that a mutation can be gained
only once but lost multiple times. SCARLET [32] is another method that explicitly con-
siders losses, uses a statistical model for the sequencing data, and leverages copy num-
ber profiles. More recently, ScisTree [33] implements an ISM maximum likelihood
method whose input is binary/ternary genotype probabilities. In the simulations per-
formed by the author, ScisTree’s accuracy is similar to SCIPhI and SCITE, but it is
much faster. Related approaches for single-cell SNV data include methods focused on
cell clustering and clonal phylogeny [34—41], phylogenetic model selection [42, 43],
mutation ordering [44], genotype correction [45], or longitudinal comparisons [46].
Methods also exist for inferring phylogenies from single-cell copy number variants [47],
but these are out of the scope of this study.

All methods mentioned above for the specific problem of cell phylogeny reconstruc-
tion with SNVs were implemented de novo, yet they use relatively simple evolutionary
models. Indeed, developing biologically realistic and yet computationally tractable
models is one of the current challenges for single-cell phylogenetics [9]. Statistical phy-
logenetics is a well-developed field, with many sophisticated evolutionary models im-
plemented into efficient computational programs. We reasoned that we could leverage
such a framework to obtain more accurate somatic cell phylogenies. Thus, we imple-
mented a novel, dedicated single-cell somatic SNV evolution model in an existing, suc-
cessful framework for statistical phylogenetics, RAXML-NG [48]. We named the
resulting software CellPhy. The main focus of CellPhy is the complete reconstruction
of cell phylogenies, which can be the basis of subsequent evolutionary analyses. Our
computer simulations and the analysis of empirical datasets show that CellPhy can re-
construct accurate single-cell SNV phylogenies across different biological scenarios and
is substantially faster than the competing likelihood-based methods. We also evaluated
a maximum parsimony-based tool TNT [49], an extremely fast approach for
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phylogenetic reconstruction. Although TNT performed very well in error-free simula-
tion scenarios, its accuracy quickly degraded in the presence of the typical biases ob-
served in scDNA-seq data.

Results

CellPhy

We developed a probabilistic model for the phylogenetic analysis of single-cell diploid
genotypes inferred from scDNA-seq experiments, called CellPhy. For tractability, we fo-
cused on single nucleotide variants (SNVs), arguably the most common genetic data
obtained from somatic tissues nowadays. Current SNV evolutionary models for single-
cells only consider the absence/presence of mutations regardless of the nucleotides in-
volved [25, 26, 28]. Thus, they deal with at most a ternary state space where genotypes
can only have 0, 1, or 2 mutant alleles (normal, heterozygous, or homozygous mutant,
respectively). Instead, here we consider changes among all possible 16 phased DNA ge-
notypes I' = {A|A, A|C, A|G, A|T, C|A, C|C, C|G, C|T, G|A, G|C, G|G, G|T, T|A,
T|C, T|G, T|T}, by extending the well-established finite-site continuous-time general-
time-reversible Markov model of DNA sequence evolution with four states (GTR) [50]
to 16 states. We named this new model GT16. In Fig. S1, we summarize a few charac-
teristics of this model.

Because somatic evolution proceeds mainly by mitosis, where both daughter cells re-
ceive the same set of chromosomes and recombination can be safely ignored, a unique
cell history is recorded in the same way in the maternal and paternal chromosomes.
Therefore, we do not need to know whether a mutation occurred in the maternal or
paternal chromosome to infer the cell phylogeny. While the GT16 model in CellPhy
considers phased genotypes, nowadays, the vast majority of the empirical scDNA-seq
datasets are unphased due to technical limitations. Conveniently, the GT16 model can
also work with unphased genotypes (10 states) simply by considering the ambiguity of
the phase in heterozygotes (see the “Methods” section). Our simulations consist of
unphased genotypes to represent current scDNA-seq data.

Importantly, single-cell genotypes can be very noisy, mainly due to biases during
whole-genome amplification (WGA) [10]. While previous methods rely on observa-
tional error models based on FP and FN rate parameters, we built an error model with
two free parameters, the ADO rate (), and the amplification/sequencing error rate ().
Compared with previous implementations, the advantage of this parameterization is
that it can incorporate plausible situations such as an amplification/sequencing error
converting a homozygous mutant into a heterozygous genotype. Due to its low prob-
ability of occurrence, we discard the possibility of observing more than one amplifica-
tion/sequencing error at a given site. Still, we allow for the presence of both ADO and
amplification/sequencing error in a single genotype. Instead of using a genotype error
model, CellPhy can also use the Phred-scaled genotype likelihoods provided by single-
cell variant callers.

We assume that the evolutionary history of a sample of cells can be appropriately
portrayed as an unrooted binary tree and that all SN'Vs evolve in the same way and in-
dependently of each other. Given a set of single-cell SNV genotypes (provided by the
user as a matrix in FASTA or PHYLIP format, or as a standard VCF file), CellPhy
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leverages its error and genotype models to compute the tree likelihood as a product of
the independent probabilities across SNVs, using the standard Felsenstein pruning al-
gorithm [51, 52]. Conveniently, CellPhy does not need to assume any particular geno-
typic configuration at the root, like other programs. For example, SiFit assumes that
the root of the tree is homozygous for the reference allele at all sites. Instead, the Cell-
Phy tree can be easily rooted a posteriori using a particular set of cells as an outgroup
(see [51]). For example, if we study tumor cells, the outgroup could be one or more
healthy cells.

We implemented CellPhy’s phylogenetic model in RAXML-NG [48], a popular max-
imum likelihood (ML) framework in organismal phylogenetics. Therefore, to obtain
ML estimates of the model parameters (substitution rates, ADO, and amplification/se-
quencing errors) and the cell tree, CellPhy leverages the optimization routines and tree
search strategies of RAXML [53] and RAXML-NG [48]. The latter, for example, is
known to work particularly well on large trees [54]. The fact that CellPhy exploits
RAXML-NG allows it to also calculate confidence values for the inner tree branches
using either the standard [55] or transfer [56] bootstrap (BS) techniques. Moreover,
CellPhy can perform ancestral state reconstruction [57] to obtain ancestral ML geno-
types and map mutations onto the branches of the ML tree. CellPhy is freely available,
together with documentation, tutorials, and example data at https://github.com/
amkozlov/cellphy.

Validation and benchmarking

We benchmarked CellPhy against eight alternative methods for inferring cell phyloge-
nies using SNV data (TNT, OncoNEM, SASC, SPhyR, infSCITE, SiFit, SCIPhI, and
ScisTree), under multiple scenarios (Table S1). These methods represent various ap-
proaches regarding the ISM assumption, the input data, the error model, the
optimization criterion, the search algorithm, or the statistical paradigm. We do not
consider other clustering methods that do not explicitly reconstruct cell phylogenies or
require additional data (e.g., bulk sequencing data). Since SCARLET requires copy-
number profile data, and single-cell CNVs are out of the scope of this study, we did
not include this method in the comparison.

Initial assessment of methods

We carried out an initial performance assessment to understand which methods were
worth evaluating in detail. Three methods, OncoNEM, SASC, and SPhyR, already
showed poor phylogenetic accuracy under ideal conditions (no errors) or relatively low
noise levels (Fig. S2). OncoNEM produced highly unresolved trees (i.e., 50 to 90% poly-
tomies), with low phylogenetic accuracy under these (and other) simple scenarios. In
addition, OncoNEM is extremely slow and cannot handle large data sets. Similarly,
SASC showed poor phylogenetic accuracy, with many polytomies, and also extremely
long running times. SPhyR, on the other hand, was more accurate (and faster) than
OncoNEM and SASC, albeit clearly worse than the remaining competitor tools despite
being executed with the “true” simulated error rates. Unfortunately, SPhyR suffered
from memory corruption issues for most (simulated and empirical) datasets. Thus, we
did not further evaluate OncoNEM, SASC, and SPhyR.
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Simulation 1: infinite-site model and low number of SNVs (“target-ISM”)

For a simple scenario with samples of 40 cells and 250-1000 SNVs evolved under an
infinite-site mutation model, phylogenetic accuracy decreased rapidly for all methods
with increasing levels of genotype error or ADO (Figs. 1, S3—S4). CellPhy was the most
accurate method overall, although closely followed by SiFit and, to a lesser extent, by
infSCITE, which performed worse when genotype errors were prevalent. TNT, a
parsimony-based inference tool, was as accurate as CellPhy, SiFit, or infSCITE without
ADO and genotype error, but worse otherwise. The genotype coding strategy (“keep,”
“remove,” and “missing”; see the “Methods” section) influenced accuracy only when
genotype errors were present, with “missing” and “keep” being better than “remove”
(see Figs. S3-S4).

Simulation 2: finite-site model and large number of SNVs (“WGS-FSM”)

When we simulated larger data sets (100 cells, ~2000 SNVs) under a finite-site model
of DNA evolution, overall phylogenetic accuracy increased for all methods. As before,
all methods performed worse with higher levels of ADO or genotype error (Fig. 2).
CellPhy was again most accurate overall, mainly when the data contained many

Tree reconstruction accuracy in Simulation 1: target-ISM, 250 SNVs
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Fig. 1 Phylogenetic accuracy in simulation 1 (“target-ISM”) with 250 SNVs. Datasets consisted of 40 cells.
Accuracy was evaluated under different levels of genotype error (ERR), allele dropout (ADO), and genotype
recoding strategy “missing.” Phylogenetic accuracy is 1—nRF (see the “Methods” section). Boxplots were
generated with the ggplot2 R package [58] (https://ggplot2.tidyverse.org) with default parameters. Lower
and upper hinges correspond to the first and third quartiles. The upper whisker extends from the hinge to
the largest value no further than 1.5 * IQR (IQR is the interquartile range or distance between the first and
third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the
hinge. Data points beyond the end of the whiskers are called “outlier” points and plotted individually
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Tree reconstruction accuracy in Simulation 2: WGS-FSM
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Fig. 2 Phylogenetic reconstruction accuracy in simulation 2 ("WGS-FSM"). Datasets consisted of 100 cells
and ~2000 SNVs. Accuracy was evaluated under different levels of genotype error (ERR), allelic dropout
(ADO), and genotype coding strategies “missing.” Phylogenetic accuracy is 1—nRF (see the “Methods”
section). See Fig. 1 for an explanation of the boxplots

genotype errors and ADO events. As in simulation 1, the “missing” coding strategy was
slightly superior to “keep,” particularly with higher genotype error rates, and substan-
tially better than “remove” (data not shown). Thus, for subsequent simulations, we only
considered the “missing” strategy.

Simulation 3: mutational signatures and large number of SNVs (“WGS-sig”)

In simulation 3, we produced relatively large datasets (60 cells, 1000-4000 SNVs) under
COSMIC trinucleotide mutational signatures 1 and 5, assuming an infinite-site model.
The trends were as before, and CellPhy consistently outperformed the competing
methods, especially with increasing levels of genotype error or ADO (Figs. S5-56).

Simulation 4: genotype likelihoods from NGS read counts (“NGS-like”)

Here, we simulated NGS data, and the input for tree inference consisted of read counts
(SCIPhI and ScisTree), ML genotypes (CellPhy-ML and the remaining methods), or
genotype likelihoods (CellPhy-GL). Across this scenario, with a realistic sequencing
depth for single cells (5x), CellPhy performed much better than the competing
methods, in particular under its genotype likelihood mode (“CellPhy-GL”) (Fig. 3). At
30x and 100x, the accuracy differences were substantially more minor and CellPhy still
performed as well as or better than the competing methods (Figs. S7-S8). ScisTree re-
covered highly inaccurate trees as the errors increased. Strikingly, the relative
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Tree reconstruction accuracy in Simulation 4: NGS-like, 5x coverage
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Fig. 3 Phylogenetic accuracy in simulation 4 ("NGS-like") at 5x. Datasets consisted of 40 cells and 1000
2000 SNVs. TNT, SiFit, and CellPhy-ML16 use the inferred genotypes, CellPhy-GL16 uses genotype
likelihoods, and SCIPhI and ScisTree use read counts. Phylogenetic accuracy is 1—nRF (see the "Methods”
section). AMP is the ampilification error rate, SEQ is the sequencing error rate, and ADO is the allelic dropout
rate. See Fig. 1 for an explanation of the boxplots

performance of SCIPhI and ScisTree worsened at 30x and fully degraded at 100x in
the presence of single-cell noise.

Simulation 5: NGS doublets

In many single-cell experiments, cell doublets can be relatively common [24], so we
also assessed their effect. As expected, the presence of cell doublets reduced phylogen-
etic accuracy for all methods. Still, CellPhy was the most accurate method, particularly
in the presence of ADO and amplification errors (Fig. S9).

Simulation 6: NGS for large numbers of cells and SNVs

We assessed phylogenetic accuracy on large scDNA-seq datasets, with up to 1000 cells
and 50,000 SNVs, without doublets. Here we could not evaluate infSCITE, as jobs were
still running after 1 month. For the largest datasets, we could not obtain results for
SCIPhI and ScisTree after running jobs for several days. CellPhy generally outper-
formed the competing methods, with rapidly increasing accuracy as a function of the
number of SNVs, benefiting further from the use of genotype likelihoods (Fig. 4).
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Tree reconstruction accuracy in Simulation 6: NGS-large
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Fig. 4 Phylogenetic reconstruction accuracy in simulation 6 ("NGS-large”). Mutations were introduced
according to signature S1, and the sequencing depth was 5x. Read counts were simulated with a 5%
amplification error, 1% sequencing error, and 10% ADO. TNT, SiFit, and CellPhy-ML16 use the inferred
genotypes, CellPhy-GL16, uses genotype likelihoods, and SCIPhl and ScisTree use read counts. Phylogenetic
accuracy is 1—nRF (see the “Methods” section). For more than 1000 SNVs or more than 100 cells, only ten
replicates were run for SiFit for reasonable running times. The (light) orange stars indicate that we could
not obtain SCIPhl and ScisTree results for the largest datasets after running each replicate for >100 h.
CellPhy was run using the ML genotypes error model (CellPhy-ML) and genotype likelihoods (CellPhy-GL).
See Fig. 1 for an explanation of the boxplots.

Remarkably, SCIPhI showed a constant accuracy of ~0.4 across conditions. However,
we noted that the SCIPhI trees contained many unresolved nodes, which decreases the
possibility of false positives. Moreover, SCIPhI’s accuracy decreased with more SNVs,

highlighting a systematic bias.

Estimation of genotype error and ADO rates

Besides inferring the ML tree, CellPhy can calculate ML estimates for the genotyping
error and the ADO rate of scDNA-seq datasets. Across the different simulation scenar-
ios described above, CellPhy estimated the genotyping error quite accurately (MSE:
0.00003-0.002), with a slight over or underestimation when its actual value was below/
above 5%, respectively (Fig. SI0A). The ML estimates of ADO were more variable and
tended to underestimate the actual value (MSE = 0.002-0.02), but were still generally
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accurate, particularly at higher rates (Fig. S10B). As expected, in both cases, improved
estimates were obtained with larger datasets comprising more SNVs.

Computational speed

We compared the speed of the different methods by recording the running times for
six simulated and two empirical data sets (Fig. 5). TNT was the fastest method by at
least two orders of magnitude, which is not surprising as parsimony scores are substan-
tially cheaper to compute than likelihood scores. After TNT, CellPhy under both ML
and GL models, and ScisTree—CellPhy being faster than ScisTree on larger data sets—
were second-fastest, approximately one to two orders of magnitude faster than SiFit,
SCIPhI, or infSCITE. For some of the most extensive data sets, including simulated and
empirical data, infSCITE did not finish after several days. Regarding the methods dis-
carded during simulation 1, OncoNEM and SASC were slower than infSCITE, and
SPhyR crashed before finishing the speed benchmark due to memory allocation issues
(data not shown). As expected, running 100 bootstrap replicates (+BS) increased com-
putational time by 1-2 orders of magnitude for CellPhy, but only by one order of mag-
nitude or less for TNT (Fig. S11). Still, the single-threaded version of CellPhy with 100
bootstrap replicates is faster than infSCITE. Furthermore, running CellPhy with several
threads reduces its time-to-completion by one order of magnitude on a modern multi-
core machine (Fig. S11).

Application to single-cell data

Phylogenetic reconstruction of a colorectal cancer

We analyzed a single-cell WGS dataset (CRC24) produced in our lab, consisting of 24
cells collected from two primary tumor biopsies of a patient with colorectal cancer
(CRC). After filtering out germline polymorphisms, SNVs in non-diploid regions, and
low-quality variants (see the “Methods” section), we identified a total of 17,851 SNV,
of which 126 were exonic (Fig. S12). The high quality of these data is supported by the
fact that the variant allele frequency distribution (VAF) derived from the single-cell

Sim1 Sim2 Sim3 Sim4 Sim6-100 Sim6-500 CRC24 L86

10° —

Time
(seconds)

Method D TNT D infSCITE D SiFit D SCIPhI D ScisTree . CeuPhyfmus. CellPhy-GL16

Fig. 5 Speed comparisons for simulated and real datasets. “Sim1” corresponds to a simulated single-cell
dataset with 40 cells and 4753 SNVs. “Sim2" corresponds to a simulated dataset with 100 cells and 9935
SNVs. “Sim3”" corresponds to a simulated dataset with 60 cells and 9982 SNVs. “Sim4” corresponds to a
simulated dataset with 40 cells and 3986. “Sim6-100" corresponds to a simulated dataset with 100 cells and
1000 SNVs. “Sim6-500" corresponds to a simulated dataset with 500 cells and 1000 SNVs. CRC24 and L86
correspond to two empirical datasets (see the “Methods” section). Note the logarithmic time scale on

the y-axis




Kozlov et al. Genome Biology (2022) 23:37 Page 10 of 30

SNVs is very similar to the VAF obtained from the bulk samples (Fig. S13). Some SNVs
occurred in established CRC driver genes, such as APC, BRAF, BRCA2, LRPIB, and
MAP2K4, although they were intronic. In the ML tree estimated by CellPhy using the
genotype likelihoods (“CellPhy-GL” model) (Fig. 6A), cells tended to group according
to their geographical location and phenotype, although not in a perfect fashion. Some
of these relationships are well supported by the data, as reflected by several high boot-
strap values, but others are not. This heterogeneous support illustrates one of the con-
venient features of CellPhy: it can provide phylogenetic confidence measurements for
different parts of the tree. Interestingly, in the tumor interior region (TI), non-stem
cells had longer branch lengths than stem cells, suggesting a potential difference in evo-
lutionary rate between these two cell types [59-61]. We mapped the non-synonymous
mutations onto the internal branches of the tree using a custom script (see the
“Methods” section). We found that all tumor cells share the vast majority of these mu-
tations (i.e., they are clonal), including variants affecting genes previously associated
with CRC progression (e.g., INPP1, CDC5L, ROR2, EXOSCS5) [62-65]. The tree topolo-
gies inferred by SiFit, SCIPhI, infSCITE, ScisTree, and TNT (Fig. S14) were distinct
from the topology inferred by CellPhy (nRF=0.86, 0.59, 0.50, 0.64, and 0.68, respect-
ively), but with a similar, albeit not identical, overall pattern regarding geography and
cell type. Unfortunately, for the infSCITE, SiFit, SCIPhI, and ScisTree, the absence of
branch support measures makes it impossible to determine which parts of the esti-
mated trees can be trusted.

Revisiting the evolutionary history of a metastatic colorectal cancer
We also explored a published dataset from metastatic colorectal cancer patient CRC2
in Leung et al. [21]. In that study, after performing custom targeted sequencing of 182

A CRC24 B L86

ERICH3Z
A NePFI4

EXOSC5 PCP4LT
KRTAPTS-1 I31RA
KRTAP11-1

LRRTM1
ZSCAN1

ROR2
MYO16
Z5CANT

Fig. 6 CellPhy tree for the CRC24 and L86 datasets. A “CellPhy-GL" CRC24 tree. Distinct shapes and colors
represent cell type: healthy (blue circle); tumor-non-stem from the tumor inferior (TI) region (dark green
triangle), tumor-stem from Tl region (light green square), tumor-non-stem from the tumor middle (TM)
region (dark purple triangle), and tumor-stem from the TM region (light purple square). Only bootstrap
support values above 50 are shown. Non-synonymous mutations are displayed on internal branches. B
"CellPhy-GL" 186 tree. Distinct shapes and colors represent cell type: healthy diploid cells—from both
primary and metastatic sites—(dark purple circle), healthy diploid cells missorted (light purple circle),
primary tumor aneuploid cells (light orange square), and metastatic aneuploid cells (dark orange square).
Only bootstrap values above 50 are shown
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single cells sampled from primary and metastatic lesions, the authors derived a cell tree
using SCITE. They inferred a polyclonal seeding of liver metastases (i.e., distinct popu-
lations of tumor cells migrated from the primary tumor towards the liver). However,
their findings have been recently re-evaluated in two different studies. Zafar et al. [36]
used the newly developed SiCloneFit, which relaxes the infinite-sites assumption, and
proposed a polyclonal seeding of the metastases. More recently, Satas et al. [32] per-
formed a joint analysis of SNVs and copy-number variants (CNVs) with SCARLET and
concluded instead that a single clone seeded the liver metastasis. Our analysis focuses
on cancer history, so we removed most of the healthy cells in the original dataset to
speed up computation, ending with 86 cells (L86 data set) that we used for CNV and
SNV calling. SC-Caller [66] identified 598 SNVs distributed over the genome portion
not affected by CNVs, including several variants detected in the original study (e.g.,
LINGO2, IL7R, MYHI1, FUS, PTPRD, LRPIB, TSHZ3), as well as other mutations af-
fecting essential driver genes in CRC (e.g., APC, TP53, NRAS). Note that our set of
SNVs only overlaps partially with the one in Leung et al., which is not surprising given
that we used a different pipeline and a subset of their cells.

In the CellPhy tree, all metastatic cells clustered together with high support, indicat-
ing a monoclonal origin of the liver metastasis (Fig. 6B). Interestingly, some primary
(PA-54 and PA-27) and metastatic aneuploid (MA-25 and MA-26) cells appear inter-
mixed with healthy diploid cells; these correspond to cells mislabeled during FACS
sorting, as previously noted by the authors. Furthermore, after mapping the non-
synonymous mutations onto the internal branches of the CellPhy tree (Fig. S15), we
found that all cancer cells harbor somatic variants affecting genes that can contribute
to human intestinal neoplasia (i.e.,, MYHI1 and STAGI) [67, 68]. Apart from CellPhy,
SCIPhI, and ScisTree also recovered a single metastatic clade (Fig. S16). Although in
the SiFit tree, most metastatic cells cluster together, some of them appear intermixed
with the primary tumor cells. In the infSCITE and TNT trees, the tumor cells did not
form a clade, a result that does not appear to be realistic.

Applicability of CellPhy to non-cancer data and bulk clonal sequences

Finally, we used CellPhy to analyze two non-cancer WGS single-cell datasets. The first
of these datasets (E15) consists of 242 somatic SNVs from 15 single neurons from a
healthy individual [69]. In the CellPhy tree built using genotype likelihoods (Fig. S17A),
different lineages seem to exhibit highly different evolutionary rates. However, most
branches had low bootstrap support (<50%), suggesting that more SNVs are required
before making reliable interpretations. All other methods recovered very distinct trees
(Fig. S17B-F), and in the case of TNT, also with shallow bootstrap values. Unfortu-
nately, infSCITE, SiFit, SCIPhI, and ScisTree do not assess branch support for cell
trees.

The second dataset (LS140) consists of 140 single cell-derived human hematopoietic
stem and progenitor colonies from a healthy individual [15]. In this case, because there
is no single-cell genome amplification involved, we expect a minimal genotype error
and no ADO. Remarkably, CellPhy ML estimates for this data set were zero for both
error and ADO parameters. The CellPhy tree shows very high bootstrap values (Fig.
S18), highlighting the quality of this dataset, which has a strong phylogenetic signal.



Kozlov et al. Genome Biology (2022) 23:37 Page 12 of 30

We expected this result given that the dataset has 127,884 SNVs and lacks single-cell
biases. Moreover, our analysis confirms an early, well-supported divergence of the cell
colonies into two distinct groups, together with a lack of geographical structure,
hence reinforcing the idea of a continuous redistribution of stem cell pools at the
whole-body level.

Discussion
We have developed CellPhy, a phylogenetic tool for analyzing single-cell SNV data in-
spired by existing models and methods in statistical phylogenetics. Unlike most of its
competitors, CellPhy does not assume an infinite-site model of evolution, a widespread
postulate in somatic evolution challenged by recent studies [27, 70]. CellPhy’s evolu-
tionary model explicitly considers all 16 possible phased DNA genotypes—but can
work with both phased and unphased data—and can also account for their uncertainty
by using genotype likelihoods as input. Furthermore, CellPhy can directly estimate
single-cell error and ADO rates from the genotypes if the genotype likelihoods are un-
available. Finally, CellPhy can reconstruct ancestral states, predict mutations on tree
branches, and provide a statistical measure of branch support. To benchmark CellPhy,
we conducted computer simulations under different scenarios with varying degrees of
complexity. Unlike in previous comparisons [25-28], we consider more realistic som-
atic genealogies by sampling sets of cells from a growing population. Demographic
growth results in more difficult-to-reconstruct phylogenies, with shorter internal and
longer terminal branches that require hundreds of SNVs to be accurately inferred.

Overall, CellPhy was the most accurate method, under infinite- and finite-site muta-
tion models with different mutational patterns (e.g., using COSMIC trinucleotide muta-
tional signatures), mainly when genotype errors and ADO were common, which is
often the case for scDNA-seq data. Our simulations suggest that accounting for SNV
calling uncertainty is essential when sequencing depth is low to moderate, which is typ-
ically the case for single-cell WGS due to the sequencing costs. With a 5x sequencing
depth, the ability to account for genotype uncertainty makes CellPhy substantially more
accurate than its competitors. Notably, the accuracy of CellPhy does not come at the
cost of speed. CellPhy is one to two orders of magnitude faster than SiFit, infSCITE, or
SCIPhI. Although, as expected, parsimony-based TNT was by far the fastest tool, this
comes at the cost of considerably worse accuracy under most scenarios. Moreover,
CellPhy allows multi-threading, so running times could be considerably shorter if a
multi-core computer—very common nowadays—is used, even with bootstrapping. Cell-
Phy’s bootstrap analyses illustrate the importance of explicitly considering phylogenetic
uncertainty. Without such a measure, one cannot assess if the data support the esti-
mated phylogeny. Further, the analysis of cell colonies shows that CellPhy can also be
used to estimate trees from clonal sequences that do not necessarily correspond to
amplified single-cells. As expected, and as shown in previous studies (e.g., [26, 28]), cell
doublets can be detrimental for single-cell phylogenetic reconstruction. When doublets
are likely to occur in the data, specific sScDNA-seq doublet detection methods might be
used to remove suspicious cells [71].

Our results suggest that CellPhy is an efficient tool for estimating phylogenetic trees
from scDNA-seq data. It is important to note that to achieve high phylogenetic accur-
acy under realistic conditions (i.e., growing populations with long terminal branches),
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CellPhy requires a reasonably high number of SNVs (hundreds to tens of thousands,
depending on the number of cells). However, as can be seen in our benchmark, this
limitation is common to all methods. It reflects the fundamental problem of poor
signal-to-noise ratio: the faster the cell population grows, the more cells we have, and
the higher the single-cell error and ADO rates are, the more SNVs are needed to re-
cover the true cell relationships. We expect that further improvements in single-cell se-
quencing accuracy, variant calling sensitivity, and genotype phasing will yield datasets
that are better suited for phylogenetic inference. Furthermore, some common simplify-
ing assumptions of the classical phylogenetic models (reversibility, stationarity, context-
independence) could be particularly problematic in the context of somatic evolution,
which takes place at a much shorter temporal scale. Albeit methodologically and com-
putationally demanding, eliminating those assumptions could improve accuracy on
scDNA-seq datasets with a weak phylogenetic signal. Finally, another critical challenge
for the future, particularly relevant for cancer data, will be developing models that sim-
ultaneously take into account SNVs and CNVs. While more or less simple methods
have been proposed [32, 34, 40, 72], a full SNV + CNV phylogenetic Markov model is
not trivial because copy number variants can overlap, breaking the site independence
assumption typical of many phylogenetic models, including CellPhy.

Conclusions

The main focus of CellPhy, and its principal output, is the estimation of cell lineage
trees. Our extensive simulations show that CellPhy can produce accurate cell phyloge-
nies for small and large scDNA-seq SNV datasets within a reasonable timeframe. Cell
phylogenies encode information regarding temporal diversification, demographic
history, migration, and adaptation and can shed light on multiple aspects of cell
biology [11]. CellPhy’s model is a step forward towards more realistic models of
somatic genotype evolution and can be applied to any population of somatic cells
that divide asexually. Therefore, the use of CellPhy is not limited to cancer cells,
as it could also be applied to normal cells, for example, to better understand hu-
man development [13-16].

Methods

The CellPhy model

Model of nucleotide substitution for phased/unphased diploid genotypes

We developed a substitution model for diploid genotypes akin to those typically used
for DNA sequences in organismal phylogenetics ([see [51]). Specifically, we built a
finite-site, continuous-time, Markov model of genotype evolution considering all pos-
sible 16 phased diploid states I'= {A|A, A|C, A|G, A|T, C|A, C|C, C|G, C|T, G|A, G|C,
G|G, G|T, T|A, T|C, T|G, T|T}, in which SNVs are independent and identically distrib-
uted. This model, named GT16, is defined by a rate matrix Q that contains the instant-
aneous transition rates qX«»Y among genotypes X and Y. For computational
convenience, we assume a time-reversible process, in which case the Q matrix is the
product of a symmetric exchangeability matrix R (rX<Y = rY<X) and a diagonal

matrix of stationary genotype frequencies 1y
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Q=R- diag(ﬂA|A7ﬂA\C7~--7”T\T) (1)

We assume that only one of the two alleles in a genotype can change in an infinitesi-
mal amount of time. Furthermore, because maternal and paternal chromosomes evolve
independently in somatic cells, we also assume that the instantaneous transition rate of
a given allele a in genotype X to allele b in genotype Y does not depend on the identity
of the homologous allele # within the respective genotypes. In other words, we assume
r(na—nb) = r(b<>a). Conveniently, these assumptions significantly reduce the number
of free parameters in the Q matrix, as we only need to consider five nucleotide ex-
changeabilities (« = r(A—C), f = rA—G), y= HA-T), k = (CoG), A = r(CoT); let p
= 1(G—T) = 1) and 15 stationary-phased genotype frequencies (TTaja, Tla|c) TTA|G) TTA|TS

Tic|as Tic|cr Tic|Gy Tic T TG IA TIG|Cr TG |Gs TTG|T» TT|As TIT|Cr ToT|Gs Torjr= 1 - X7iy):
AlA CC GG TIT AC AG AT G CT GT CA GA TA Glc Tc TG

AlA [ —qaa O 0 0 amgc Prac yrar O 0 0 amga Prga Ymra O 0 0
clc 0 —qgeec O 0 amge O 0 xmge Angr O amga O 0 xmge Ampe 0
G|G 0 0 —dcic 0 0 Brtac 0 KTe|g 0 WG 0 BriGia 0 KTTGc 0 WG
T|T 0 0 0 =471 0 0 YIAIT 0 Amter pmGT 0 0 YTT|A 0 Amtric pmpG
AlC | amqa amge O 0  —qac kg Amar O 0 0 0 0 0 prge e 0
AlG | Brtga 0 Brgic 0 KTac —qac War &7 0 0 0 0 0 0 0 16
AT | ytaa 0 0 YT ATAc HAAG —qAIT 0 aner  Prgr 0 0 0 0 0 0

0= clG 0  xmee Kkmgg O 0 amyg 0 —qce pmer 0 Pmea O 0 0 0 Ampg (2)
qr 0 Amge O Ampp 0 0 amyr pmcc —der KTgr a0 0 0 0 0
G|T 0 0 HTGIG MTT|T 0 0 BTt 0 KTeir —qG|T 0 YG|A 0 Amtgic 0 0
ClA | amga amge 0O 0 0 0 0  PBrge Yieqr O —deja Kmg Ampa 0O 0 0
GIA | pras 0 Brge O 0 0 0 0 0 amgr KMga s MTma amge O 0
TIA | yman 0 0 qmpr 0 0 0 0 0 0 Amca HTGIA —qTiA 0 ampc Prrg
G|C 0 Kcie KT 0 Brtaic 0 0 0 0 ATtg 7 0 QTG 0 —qgic  MTrc 0
T|C 0 ATteie 0 ATtrir YTAc 0 0 0 0 0 0 0 AT A PG —qric K776
T|G 0 0 umge mrpr 0 amac 0 Amge 0 0 0 0 Bapa 0 kA —dnc

The Q matrix gives us the probabilities of changing from one genotype to another in
an infinitely small time interval. When two genotypes differ at more than one nucleo-
tide, these rates are 0. To calculate the tree likelihood, we first need to compute the
change probabilities from the beginning to the end of each branch. The probabilities of
changing from a given genotype to another along a branch of length ¢ (in units of ex-
pected number of mutations per SNV site) are given by:

P(t) = &% (3)

The resulting matrix P(¢) is known as the transition probability matrix, and all its en-
tries are (small) positive values. For further details, we refer the reader to Felsenstein
[51] and Yang [73].

Notably, the GT16 model can also work with unphased genotype data simply by
assigning the same relative likelihood at the tips of the tree to the two possible resolu-
tions of the phase for the observed genotype (see Table S2). This flexibility is relevant
because current scDNA-seq techniques do not reveal the phase of the genotypes (i.e.,
we do not know which allele is located in the maternal or paternal chromosome).
Therefore, in our simulations (see below), the simulated genotypes will always be
unphased.

In addition to the GT16 model, we also implemented a model for unphased geno-
types with only ten states, called GT10 (see Supplementary Note 2 for details). The
GT10 model is computationally less expensive, approximately twice as fast as GT16.
To maintain the reversibility assumption—otherwise, the calculations are much more
complex—the GT10 model assumes that the probability of change between homozy-
gous and heterozygous genotypes is equivalent. However, this is incorrect, as the
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change from homozygote to heterozygote is twice as likely as the change from hetero-
zygote to homozygote. Despite this theoretical flaw, GT10 and GT16 showed very simi-

lar tree inference accuracy in our experiments.

Single-cell genotype error model

We assume that the true genotypes are always diploid and biallelic. To incorporate er-
rors in the observed genotypes arising during single-cell whole-genome amplification
(scWGA) and sequencing, we consider two free parameters: the allelic dropout (ADO)
rate (8) and the amplification/sequencing error (ERR) rate (g).

Allele dropout occurs during scWGA when one of the two alleles is not amplified
and is absent from the sequencing library. ADO always implies a single allele in our
model, as if both alleles drop, no reads would be available, and no genotype could be
observed (i.e., it would be “missing”). Therefore, § is the probability that the amplifica-
tion of one or the other allele has failed and thus that we observe the homozygous
genotype defined by the amplified allele. Given the phased genotype a|b, and with “_”
indicating the dropped allele, we define the ADO rate as:

& = P(_|bla|b) + DP(al|a|b), (4)

where P (Y]X) is the probability of observing genotype Y after sequencing, given the
true genotype X.

Genotype errors other than ADO can result from polymerase errors during scWGA,
in the course of sequencing, variant calling, or generally represent an incorrect allele.
Importantly, we assume a maximum of one ERR per genotype. Given that ¢ tends to be
small, in the order of 10 to 10™ [74], the probability of two ERR in one genotype, €7,
is negligible. Specifically, € is the probability that allele a will be observed as another al-
lele b = a:

¢ =P(bla) (5)
Note that we allow for the presence of both ADO and ERR in the same observed

genotype. Under these assumptions, if the true genotype is homozygous a|a, for phased
genotypes P (Y]|X) becomes:

P(alalala) = 1-¢ +' /,5¢ (6)
P(alblala) = (1-6) -' /6¢ (7)
P(blblala) =" /¢3¢ (8)

Likewise, if the true genotype is heterozygous a|b, P (Y]|X) can be shown to be:

Palalalb) ="/,8 +' [ge="/30¢ ©)

P(cc|alb) =" /5 (10)

P(a|clalb) = (1-8) ' /6¢ (11)
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P(alblalb) = (1-0) - (1-¢) (12)

For the remaining scenarios, given the assumptions of the error model, P (Y]X) is
zero. See Supplementary Material Note 1 for a detailed explanation.

Given the observed genotype Y for the SNV i and cell j, the likelihood of a genotype
X being the true genotype at this position becomes:

L/(X]Y)= P(Y|X),VXel (13)

This follows from Bayes’ theorem assuming equal prior genotype probabilities.
For missing data, we consider all possible genotypes to be equally likely, which is a
standard assumption in likelihood-based phylogenetic inference. In this case:

L{(X|missing) = P(missing|X) = 1,VXel (14)

Phylogenetic likelihood

We consider the evolutionary history of cells as an unrooted binary tree, where 7 is a
tree topology, and ¢ is a vector of branch lengths. We define the phylogenetic likelihood
of the cell tree T as the conditional probability of the observed SNV matrix S given the
substitution model M with parameters 6 and T:

L(T,M,6) =P(S| T, M.,0) (15)

We assume that genomic sites evolve independently under model M. Therefore, the
probability of observing the SNV matrix S is the product over the independent prob-
abilities for all individual SNVs, S;:

L(T,M,0) = [[_P(Si T, M,6) (16)

where s is the total number of SNVs. For numerical reasons, that is, to avoid floating-
point underflow, in practice, we calculate the log-likelihood score:

logL(T,M,6) =~ logP(S;|T, M, 6) (17)

We can efficiently compute the log-likelihood score of a given tree with the standard
method called Felsenstein’s pruning algorithm [52]. Let us place an additional imagin-
ary node, called virtual root, into an arbitrary branch of the unrooted tree T at a ran-
dom position along that branch. Without loss of generality, if we assume that this
virtual root node has an index of 0 and that ¢ is the number of cells, we can index the
tip nodes from 1 to c¢ by their respective cell numbers and index the internal nodes
from c+1 to 2c—2 (note that an unrooted binary tree with c leaves has ¢—3 inner nodes,
ie., (2c=2) — (c+1) = ¢-3). Then, under the GT16 model, per-SNV probabilities can be
computed as follows:

P(S,|T,GT16,R,m) = >  L)(X)my,i=1...s (18)
Xer
where X is a genotype, 7,is the stationary frequency of the genotype X, and L?is the
vector of genotype likelihoods at the virtual root, which we compute as follows:

LI(X) =Y Pxy(t)LH(Y) Y Pxy(t)LY (Y), VXeT, ve[l...c (19)
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where Y is another genotype, u and w are both children nodes of v in the direction
from the virtual root (Fig. S19) for the respective branch lengths.

We initialize the genotype likelihood vectors at the tip nodes (L.. L) depending on
the input type (see Section “Input data” below) and the error model. If the input is the
genotype matrix S, in the absence of observational error, these tip likelihood vectors

are:

L}(X) = {1if S! = X, Ootherwise}, vel...c|, i€[1...s] (20)

while if we include the error model, the tip likelihoods are computed according to the
equations in the “single-cell genotype error model” section.
Otherwise, if the input consists of genotype likelihoods G, the tip likelihoods are:

L'(X) = 10%Y) vXel, ve[l...], ie[1...s] (21)

The GT16 model will consider both phasing options equally likely when the input
genotype likelihoods are unphased:

L!(alb) = L!(bla) = 10%“/Y) Ya b, ve[l...c|, ie[1...5] (22)

where a and b represent any two alleles.
Finally, if Phred-scaled likelihoods for REF/REF, REF/ALT, and ALT/ALT genotypes
are provided (PL field in a VCF file), we calculate tip likelihoods as follows:

107 0VPLEO) if 4 — REFAb = REF
107 1PHM) if(a = REFAb = ALT)V(a = ALT Ab = REF)
10°91PL@) if 4 = ALTAb = REF

0 otherwise

LX) = Li(alb) =

(23)

The final tree can be rooted using an outgroup (see [51]). For the sake of complete-
ness, we included a simple explanation of standard phylogenetic likelihood calculations
on DNA sequence alignments in the Supplementary Material (Figs. S19-S20, Supple-
mentary Note 3).

Implementation

Overview

We implemented CellPhy as a pipeline based on a modified version of RAXML-NG
[48]. In addition to the core tree search functionality of RAXML-NG, the CellPhy pipe-
line offers VCF conversion, mutation mapping, and tree visualization using the ape [75]
and the ggtree package [76]. Furthermore, CellPhy provides reasonable defaults for
most parameters, which allows the user to run a “standard” CellPhy analysis by specify-
ing just the input VCF file (or the genotype matrix). Alternatively, expert users can
customize every aspect of the CellPhy analysis to fit their needs, as shown in the tutor-
ial (https://github.com/amkozlov/cellphy/blob/master/doc/CellPhy-Tutorial.pdf). In the
remainder of this section, we will also provide implementation details on each step of
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the CellPhy pipeline. CellPhy code and documentation are freely available at https://
github.com/amkozlov/cellphy.

Input data

CellPhy accepts two input types, a matrix of genotypes in FASTA or PHYLIP format or
a standard VCF file (https://samtools.github.io/hts-specs/VCFv4.3.pdf). When the input
is a genotype matrix, genotypes are encoded as shown in Table S2. When the input is a
VCEF, CellPhy can run in two distinct modes. The first mode (“CellPhy-ML”) requires a
VCF with at least the GT field (that stores the genotype calls), in which case CellPhy
simply extracts the genotype matrix. The second mode (“CellPhy-GL”) requires a VCF
with the PL field (which stores the Phred-scaled genotype likelihoods) and uses the
likelihood of each genotype instead. While commonly used variant callers for single-
cell data (e.g., Monovar [77]) generate VCF files with a standard PL field, users should
know that the PL definition may differ from its standard meaning in different callers.
Indeed, SC-Caller [66], for instance, uses the PL field to store the likelihood of hetero-
zygous and alternative homozygous genotypes and the likelihood of sequencing noise
and amplification artifacts. On this basis, the PL field in VCF files stemming from SC-
Caller needs to be converted to the standard PL format before CellPhy can be used (see
Table S3 outlining CellPhy’s compatibility with popular variant calling algorithms).

Phylogenetic tree search

CellPhy uses the broadly used and well-tested heuristic tree search strategy of RAXML
[53] and RAXxML-NG [48]. CellPhy’s search algorithm starts by default with 20 different
trees, ten obtained using a maximum parsimony-based randomized stepwise addition
order routine and ten with a completely random topology. The ML tree search itself al-
ternates between model parameter optimization and tree topology optimization phases.
One of the most popular approaches for searching tree topologies is the so-called sub-
tree pruning and regrafting (SPR) [78], which removes subtrees from the tree and sub-
sequently places them into different branches to assess if the likelihood improves.
Those SPR moves are applied iteratively until no SPR move further increases the tree’s
likelihood. In this case, CellPhy terminates and returns the best-found ML tree. For fur-
ther details, please see [79] and references therein.

Model parameter optimization

CellPhy uses the L-BFGS-B method [80] to optimize genotype substitution rates and
equilibrium base frequencies. ADO rate and amplification/sequencing error rate are op-
timized independently using Brent’s method [81]. After each iteration of Brent’s algo-
rithm, CellPhy re-computes all per-genotype likelihoods according to Eq. 7 using the
new values of the ADO rate §" and the amplification/sequencing error €.

Branch support

CellPhy can compute confidence values for individual inner branches of the ML tree
using two bootstrap (BS) techniques, the standard BS [55], and the transfer BS [56]. In
the standard BS, the first step consists of generating many BS replicates, typically 100
to 1000, from the original dataset by randomly sampling SNV sites with replacement.
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Then, an ML tree is estimated for each replicate. Finally, the support for each inner
branch in the ML tree is computed as the percentage of BS trees that contain that
branch, as outlined in the example provided in Fig. S21. The standard BS only con-
siders exact matches (i.e.,, the branch in the ML tree and the BS trees must match
exactly to be counted). In contrast, the transfer BS also considers inexact matches to
account for the tree search uncertainty and vastness of the tree search space in phylo-
genetic analyses with many cells.

Mapping mutations onto the tree

CellPhy can show predicted mutations on the branches of the inferred cell tree. To this
end, it performs marginal ancestral state reconstruction [57] to obtain the ML genotype
for every SNV at every inner node of the tree. At the tips of the tree, occupied by the
observed cell genotypes, depending on the input, CellPhy applies Eq. 4 to compute
genotype likelihoods given the observed genotype y and estimated error rates (9, €) or
directly uses the genotype likelihoods provided in the VCF file. Then, it compares ML
genotypes between two nodes connected by a branch, and if they differ, a mutation is
predicted on the corresponding branch. The mutation mapping output consists of two
files, a branch-labeled tree in the Newick format and a text file with a list of predicted
mutations (SNV names or positions) at each branch. We also provide a script (https://
github.com/amkozlov/cellphy/blob/master/script/mutation-map.R) that automatically
generates a plot with the mutations mapped onto the resulting phylogenetic tree, to-
gether with a tutorial that explains its use.

Computational efficiency

RAXML-NG was developed with a particular focus on high performance and scalability
to large datasets. Hence, CellPhy capitalizes on numerous computational optimizations
implemented therein, including highly efficient and vectorized likelihood calculation
code, coarse- and fine-grained parallelization with multi-threading, checkpointing, and
fast transfer bootstrap computation [82].

Benchmarking

We used computer simulations to benchmark the accuracy of CellPhy under different
scenarios (Table S1) relative to state-of-the-art methods for single-cell phylogenies like
OncoNEM [25], SPhyR [30], SASC [31], ScisTree [33], infSCITE [26, 27], SiFit [28],
and SCIPhI [29]. For OncoNEM, SPhyR, SASC, infSCITE, and SiFit, the input is the
matrix of observed reference/non-reference homozygous/heterozygous genotypes. Scis-
Tree uses a matrix of genotype probabilities estimated from the simulated read counts
for each site, while SCIPhI relies on a standard mpileup file with the simulated read
counts. Also, we included in the comparison the standard phylogenetic method TNT
[49]. TNT implements a maximum parsimony (MP) approach and attempts to find the
tree/s that require the least number of mutations to explain the data. TNT is very
popular in MP organismal phylogenetics, heavily optimized for computational speed
and efficiency. It is not designed for single-cell NGS data and therefore assumes that
the observed genotypes are error-free.


https://github.com/amkozlov/cellphy/blob/master/script/mutation-map.R
https://github.com/amkozlov/cellphy/blob/master/script/mutation-map.R

Kozlov et al. Genome Biology (2022) 23:37 Page 20 of 30

Simulation of genealogies and genotypes

For the simulation of single-cell diploid genotypes, we used CellCoal [83]. This pro-
gram can simulate the evolution of a set of cells sampled from a growing population,
introducing single-nucleotide variants on the coalescent genealogy under different
models of DNA mutation. Furthermore, it can also introduce the typical errors of
single-cell sequencing, specifically ADO, amplification, and sequencing errors, and dou-
blets, either to the observed genotypes or directly into the read counts.

We designed six distinct simulation scenarios (simulations 1-6) representing different
types of scDNA-seq datasets (Table S1), including variable numbers of cells (40-1000) and
sites (1000-50,000). We simulated unphased genotype data in all cases, as current scDNA-
seq techniques do not reveal the genotype phase. We chose a set of scenarios and parameter
values that, in our opinion, are representative of different situations that researchers are
likely to encounter. The cell samples were assumed to come from an exponentially growing
population (growth rate equal to 1x10™*) with a present-day effective population size of
10,000. Across scenarios, we set a constant value of 0.1 for the root branch. Note that the
mutations in this branch are shared by all cells. We also defined an outgroup branch length
of zero in all cases, so the healthy cell and the most recent common ancestor (MRCA) of
the sample (a single healthy cell plus several tumor cells) have identical genotypes. The
standard coalescent process results in an ultrametric tree, where all tips have the same dis-
tance from the MRCA of the sample. However, we introduced rate variation across cell line-
ages by multiplying the branch lengths of the resulting coalescent genealogy with scaling
factors sampled from a Gamma distribution with a mean of 1.0.

Only in the first simulation scenario, we consider a fixed number of SNVs. In the
remaining scenarios, the number of observed mutations resulted from applying a muta-
tion rate of 1x107° [84], plus the different scDNA-seq errors. We explored different in-
finite- and finite-site mutation models at the single nucleotide or trinucleotide level.
Except for the ISM scenarios (simulations 1 and 3), we introduced a variable mutation
rate across sites using a Gamma distribution with a mean of 1.0.

We simulated unphased genotypes, as current scDNA-seq techniques do not reveal the
phase. We generated the observed genotype matrices in two distinct ways. In the first three
scenarios (simulations 1-3), we obtained the observed genotypes by directly adding sequen-
cing/amplification errors (ie., changing one or both alleles) and ADO to the simulated
genotype matrices. In the other three (simulations 4-6), the generation of the observed ge-
notypes was more complex. In this case, we first simulated read counts for each cell based
on the true genotypes, considering different overdispersed sequencing depths, as well as
amplification and sequencing errors. For simplicity, we assumed that maternal and paternal
chromosomes are amplified with the same probability. Also, we consider that the number
of reads is half for those genomic positions in which only one allele was amplified. In simu-
lation 5, we introduced so-called doublets, that is, two cells that are erroneously sequenced
together and that thus appear as a single cell in the sequencing data. For every combination
of parameters, we generated 100 replicates. In total, we generated 19,400 cell samples.

Preliminary simulations
We carried out a set of preliminary simulations under favorable conditions, without er-
rors or relatively low noise levels (ADO = 0.10 and amplification error= 0.01). We
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simulated 40 cells with 250 SNVs, assuming a diploid ISM model [85]. Under this
model, a given site can only accumulate a single mutation along with the genealogy, ei-

ther in the maternal or paternal chromosome.

Simulation 1: infinite-site model, low number of SNVs (“target-ISM”")

We started the full simulations with a simple scenario with 40 sampled cells and 250,
500, or 1000 SNVs, assuming a diploid ISM model [85]. We introduced genotype errors
and ADO at different rates (Table S1).

Simulation 2: finite-site model, large number of SNVs (“WGS-FSM”)

In this case, we simulated a larger number of SNVs, more typical of whole-genome se-
quencing (WGS) experiments. The number of sampled cells was 100. The mutation
model, in this case, was a non-reversible version of the finite-site General Time Revers-
ible Markov model [50], that we called GTnR, assuming a set of single-nucleotide in-
stantaneous rates extrapolated (essentially, we pooled the same mutation in the same
rate independently of the 5 and 3’ context) from the trinucleotide mutational signa-
ture 1 at COSMIC (https://cancer.sanger.ac.uk/cosmic/signatures):

0 0.03 0.12 0.04

_loa1 o 0.02 0.68

Qe = 6.68 0.02 0 0.11
0.04 0.12 0.13 0

(24)

The overall mutation rate was set to 1x10°°, which resulted in about 2000 #rue SNVs
(see Table S1). However, since ADO events and genotype errors can introduce false
negatives and false positives, the number of observed SNVs ranged between 1531 and
10,000. The mutation rates varied across sites according to a Gamma distribution (+G)
with shape parameter and mean equal to 1.0 (i.e, moderate among-site rate
heterogeneity).

Simulation 3: mutational signatures and large number of SNVs (“WGS-sig”)

This scenario is similar to the previous one, with 60 cells and assuming a trinucleotide
ISM model, with COSMIC signatures 1 and 5. The former is a ubiquitous signature in
human cells with a predominance of C>T transitions in the NCG trinucleotide context
and is related to the spontaneous deamination of 5-methylcytosine [86]. The latter is
also a typical age-related signature with a predominance of T>C substitutions in the
ATN trinucleotide context, related to transcriptional strand bias [87].

Simulation 4: genotype likelihoods from NGS read counts (“NGS-like”)

In this scenario, and the next two, we simulated NGS read counts from the simulated
genotypes. The number of sampled cells was 40, with 10,000 sites and the same muta-
tion model (GTnR+G) and mutation rates as in Simulation 3. We explored three se-
quencing depths (5x, 30x, and 100x), three ADO rates (0, 0.05, 0.10), three
amplification error rates (0, 0.05, 0.10), and three sequencing error rates (0, 0.01, 0.05).
We assumed that amplification and sequencing errors among the four nucleotides were
equally likely. From the read counts, CellCoal can also simulate the likelihood for all
ten possible unphased genotypes at each SNV site, in this case under a 4-template


https://cancer.sanger.ac.uk/cosmic/signatures
https://en.wikipedia.org/wiki/Transition_(genetics)

Kozlov et al. Genome Biology (2022) 23:37 Page 22 of 30

amplification model [83]. The input for CellPhy was either the ten genotype likelihoods
at each SNV site (CellPhy-GL mode) or the unphased genotype with the maximum
likelihood (ML) value (CellPhy-ML mode). The input for SCIPhi was the read counts,
while for the rest of the programs, it was the ML unphased genotype. In the rare case
of tied ML genotypes, we chose one of them at random.

Simulation 5: NGS doublets (“NGS-doublet”)

In this case, we intended to explore the effects of doublets in the data. Settings were
very similar to those for Simulation 4 but, for simplicity, we fixed the sequencing depth
to 5x and explored two amplification error rates (0, 0.05), two sequencing error rates
(0, 0.01), and four doublet rates (0, 0.05, 0.10, 0.20).

Simulation 6: NGS for large numbers of cells and SNVs (“NGS-large”)

Finally, to assess the scalability of the tools, we simulated scenarios with 100, 500, or
1000 cells and with 1000, 10,000, or 50,000 sites. Given the mutation rate, a large num-
ber of cells, and, most importantly, the amplification and sequencing error rates, almost
all sites were observed as SNVs. Settings were very similar to those specified for Simu-
lation 5 but, for simplicity, we fixed the sequencing depth to 5x and explored only one
amplification (0.05) and one sequencing (0.01) error value. We only analyzed the first
20 replicates in this scenario due to the high computational cost and prohibitive run-
ning times for several competing tools.

Settings for the phylogenetic analyses

Coding DNA into ternary genotypes Our simulations produce unphased DNA geno-
types with ten possible states. However, except for CellPhy, existing tools work with an
alphabet composed of 0 (homozygous for the reference allele), 1 (heterozygous), 2
(homozygous for the alternative allele), and 3 (missing genotype). Therefore, we had to
encode the simulated DNA genotypes into ternary genotypes (0-3). For this, we used
the true reference allele, considering that, in real life, we usually know which allele is
the reference. For the sake of simplicity, we did not introduce germline mutations. Im-
portantly, our simulations do not necessarily produce bi-allelic SNVs, as in the finite-
site model multiple mutations can coincide, and amplification and sequencing errors
can also result in new alleles called. CellPhy does not limit the number of alleles at an
SNV site, but competing tools handle multi-allelic sites differently. We explored three
ways of coding sites with more than two alleles into ternary genotypes:

e Option keep: transform all heterozygotes to “1” and all homozygotes for the
alternative allele/s to “2”. In this case, all simulated sites are held, regardless of the
number of observed alleles.

e Option remove: eliminate sites from the data with more than two alleles. The final
genotype matrix includes only bi-allelic sites.

e Option missing: keep only those genotypes that contain the reference allele and/or
the major (most common) alternative allele. All other genotypes (containing minor
alternative alleles) are considered as missing data (“3”). Therefore, the final ternary
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genotype matrix includes the same number of sites as the original DNA genotype

matrix.

We considered all three encoding options only in simulations 1 and 2. In the
remaining simulations, we used only the “missing” option, as it maximized accuracy in

most cases.

TNT settings We performed the TNT analyses using a binary data matrix in TNT for-
mat for all simulated and empirical datasets. We allowed 1000 trees to be retained for
each run and performed tree searches by setting mult = replic 100. We stored all
equally parsimonious trees and used additional ttags to store branch lengths and boot-

strap support values.

OncoNEM settings We ran OncoNEM following the recommended settings in the
OncoNEM vignette. We set the false positive rate as the actual genotype error for each
scenario and performed a tree search for 200 iterations. Because of its heavy computa-

tional requirements and poor performance, we only run it in Simulation 1.

SASC settings We generated binary matrices as input files and set -k option to 1. Add-
itionally, the false positive rate was set as the actual genotype error, and the false nega-
tive rate was set as the actual ADO rate. The command line was: sasc -n <CELLS> -m
<SNVS> -k 1 -a <ADO> -b <ERR> -E data.CellID -l -i data.sasc -p 24. Similar to
OncoNEM, due to its bad performance, SASC was only run partially in Simulation 1.

SPhyR settings We produced binary input files using a custom script and ran the
KkDPEC version with the false positive rate (-a) set to the simulated genotype error and
the false negative rate (-b) set to the simulated ADO rate. The command line was
kDPFC data.sphyr -a <ERR> -b <ADO> -k 1 -t 24 > data.sphyr.result. Afterwards, we
used the visualize program to generate the output tree. The command line was
visualize data.sphyr.result -c¢ data.snv_labels -t data.cell labels > data.sphyr.dot. Be-
cause it continuously crashed for most datasets, SPhyR was only run partially in simula-
tion 1.

infSCITE settings For simulations 1-3, we ran infSCITE using a ternary data matrix
composed of 0, 1, 2, and 3, as described above, and set the false positive rate (-fd) to be
the actual genotype error for each simulated scenario. We set the false-positive rate for
simulations 45 as the sum of the simulated sequencing and amplification error rates.
For the empirical analyses, we set the false positive rate to le-05. We set the remaining
parameters to the default values in all runs and obtained results after running an
MCMC chain with 5 million steps, a fair trade-off between runtime and apparent
MCMC convergence (the best tree score barely changed after 1M iterations). We add-
itionally set the -transpose option to return a tree where the single-cell samples are the
leaf labels. The command line was infSCITE -i data.infSCITE -n <SNVS> -m <CELLS>
-r 1 -1 5000000 -fd <ERR> -ad 1.46e-1 -cc 1.299164e-05 -transpose -e 0.2 -0
data.infSCITE. Tree
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SiFit settings For all simulated and empirical datasets, we ran SiFit for 200,000 itera-
tions. The command line was java -jar /SiFitjar -m <CELLS> -n <SNVS> -r 1 -iter
200000 -df 1 -ipMat data.sf -cellNames data.names.

SCIPhI settings Since SCIPhI requires read counts to perform joint variant calling and
phylogenetic reconstruction, we ran it only for simulations 4—6. We set the mean error
rate (-wildMean) for each scenario as the sum of the true sequencing and amplification
error rates. The command line was sciphi -o data.Result --in sampleNames -u 1 --ncf 0
--md 1 --mmw 4 --mnp 1 --ms 1 --mc 1 --unc true -1 200000 --seed $RANDOM data.m-
pileup --ese 0 --wildMean <ERR>. To make the results comparable, for the empirical
datasets we used samtools to generate mpileups for the positions previously identified
by SC-Caller. These were in turn used as input for SCIPhI: sciphi -0 <SET>.SCIPhI --in
<SET>-SampleNames.txt -u 0 --ncf 0 --md 0 --mmw 4 --mnp 1 --unc true -I 200000
--seed 421 <SET>.SCCaller-Positions.mpileup.

ScisTree settings We extracted allele counts from VCF files using a custom script
(available in the CellPhy’s GitHub repository) and obtained genotype probabilities using
the scprob program provided with ScisTree. We ran ScisTree v1.2.0.6 with default pa-
rameters, which we called as follows: scistree <genotype-probability-matrix>.

CellPhy settings For simulations 1-6, we performed a heuristic tree search starting
from a single parsimony-based tree under the GT16 model. The command line for runs
with ML genotypes as input was cellphy.sh RAXML --search --msa data.phy --model
GT16+FO+E --tree pars{l}. The command line for runs where the input was genotype
likelihoods (VCF) was cellphy.sh RAXML --search --msa data.vcf --model GT16+FO
--tree pars{1}. For all empirical datasets except LS140, to take advantage of the geno-
type likelihood model, we used an in-house bash script (sc-caller-convert.sh, distributed
together with CellPhy) to convert the PL field from our SC-Caller VCFs. In short, fol-
lowing SC-Caller authors’ suggestion, we used the highest likelihood score of the first
two values in the PL field (i.e., sequencing noise, amplification artifact) as the Phred-
scaled genotype likelihood of the reference homozygous (0/0) genotype, and the
remaining values as the likelihood for heterozygous (0/1) and alternative homozygous
(1/1) genotypes, respectively. Afterward, we ran CellPhy using the following command
line cellphy.sh RAXML --all --msa data.vcf --model GT16+FO --bs-metric fbp,tbe --bs-
trees 100 to perform an all-in-one analysis (ML tree inference and bootstrapping based
on 100 bootstrap trees). For LS140, since we only had the genotype matrix available
and these data were generated without whole-genome amplification, we ran CellPhy
without the single-cell error model using the following command line cellphy.sh
RAXML --all --msa data.vcf --model GT16+FO --prob-msa off --bs-metric fbp,tbe --bs-
trees 100.

Evaluation of phylogenetic accuracy

We defined phylogenetic accuracy as one minus the normalized Robinson-Foulds (nRF)
distance [88] between the inferred tree and the (true) simulated tree. This
normalization divides the (absolute) RF distance by the total number of (internal)



Kozlov et al. Genome Biology (2022) 23:37 Page 25 of 30

branches in both trees. Hence, the nRF distance is a convenient metric from zero to
one that reflects the proportion of branches (bipartitions of the data) correctly inferred.

Running time comparisons

We characterized the computational efficiency of CellPhy by comparing running times
for all methods on six datasets from simulations 1-6 (sim1-ADQ:0.50, ERR:0.10, sim2-
ADOQO:0.10, ERR:0.05, sim3-ADO:0.15, ERR:0.10, Signaturel, sim4-Number of cells:40,
ADOQ:0.25, Amp error:0.10, Seq error: 0.05; sim6-100-Number of Cells:100, ADO:0.10,
Amp error:0.05; Seq error:0.01; and sim6-500-Number of Cells:500, ADO:0.10, Amp
error:0.05; Seq error:0.01) and two empirical datasets (CRC24 and L86) described
below. We measured running times using the Linux/Unix “time” command, as follows:
{time ./cellphy.sh RAXML --search --msa data.vcf --model GT16+FO --tree pars{l}
--prefix data-out --threads 1 ; } 2> data-CellPhyGL16.time. We ran all analyses on a
single core from an Intel Xeon E5-2680 v3 Haswell Processor 2.5 GHz with 128 Gb of
RAM. For the bootstrap benchmark, the CellPhy command line was {time ./cellphy.sh
RAXML --all --msa data.vcf --model GT16+FO --tree pars{l} --bs-trees 100 --prefix
data-out-Boot --threads 1 ; } 2> data-CellPhyGL16.Boot.time. As for TNT, additional
ttags were used to perform and store 100 bootstrap replicates.

Analysis of empirical data

In-house single-cell WGS data from a colorectal cancer patient (CRC24) We ob-
tained a fresh frozen primary tumor and normal tissues from a single colorectal cancer
patient (CRC24). We isolated EpCAM+ cells with a BD FACSAria III cytometer from
two tumoral regions (tumor inferior (TI) section and tumor middle section (TM)) and
classified them as stem or non-stem according to the stemness markers at the cell sur-
face (stem: EpCAM+/Lgr5+/CD44-/CD166-; non-stem: EpCAM+/Lgr5-/CD44-/
CD166-). We amplified the genomes of 24 cells with Amplil (Silicon Biosystems) and
built whole-genome sequencing libraries using the KAPA (Kapa Biosystems) library kit.
Each library was then sequenced at ~ 6x on an Illumina Novaseq 6000 at the National
Center of Genomic Analysis (CNAG-CR; https://www.cnag.crg.eu/).

Retrieval of publicly available datasets (L86, E15, and LS140) We also analyzed
three public data sets with 86, 15, and 140 cells (L86, E15, and LS140, respectively).
The 186 dataset consists of targeted sequencing data from 86 cells from a metastatic
colorectal cancer patient (CRC2 in [21]) that we downloaded from the Sequence Read
Archive (SRA) in FASTQ format, together with paired healthy-tumor bulk cell popula-
tion samples (accession number: SRP074289). The E15 dataset consists of WGS data
from 15 neurons [69] from a healthy donor, downloaded from the SRA in FASTQ for-
mat, together with a bulk cell population from heart tissue (accession number:
SRP041470). The LS140 dataset consists of 140 single cell-derived human
hematopoietic stem and progenitor colonies from a healthy individual [15]. For this
dataset, we directly downloaded the substitution calls from the Mendeley data archive
(https://data.mendeley.com/datasets/yzjw2stk7f{/1).


https://www.cnag.crg.eu/
https://data.mendeley.com/datasets/yzjw2stk7f/1

Kozlov et al. Genome Biology (2022) 23:37 Page 26 of 30

NGS data processing and variant calling We aligned single-cell and bulk reads to the
human reference GRCh37 using the MEM algorithm in the BWA software [89]. The
mapped reads were then independently processed for all datasets by filtering reads dis-
playing low mapping quality, performing local realignment around indels, and remov-
ing PCR duplicates. For the tumor bulk samples (i.e., CRC24 & L86), we obtained SNV
calls using the paired-sample variant-calling approach implemented in the MuTect2
software [90]. For the E15 dataset, we ran HaplotypeCaller from the Genome Analysis
Toolkit (GATK) [91] software on the bulk sample from the heart tissue to identify and
remove all germline variants.

In parallel, we used the single-cell SC-caller software [66] to retrieve single-cell SNV
calls. In short, for each single-cell BAM, we ran SC-Caller together with the corre-
sponding healthy bulk DNA as input under default settings. Since different amplifica-
tion methods were used to generate each dataset, we defined the bias estimation
interval (--lamb) as the average amplicon size of each amplification method—10,000
for MDA-based protocols (L86, E15) and 2000 for Amplil (CRC24). Besides, since the
actual genomic targets of the L86 dataset were not available, we ran SC-caller on the
entire exome. We applied a series of heavy filters (see below) to remove potential off-
target calls. We additionally estimated copy-number variants (CNVs) for each single-
cell dataset. For the sc-WGS datasets (CRC24 and E15), we obtained CNV calls with
the Ginkgo software [92] using variable-length bins of around 500 kb. For the L86 data-
set, we determined CNVs using CNVPanelizer, an algorithm specifically designed to
infer copy number states from targeted sequencing data.

We filtered our raw single-cell VCFs by excluding short indels, SNVs with a flag
other than “true” in the SO format field (i.e., showing weak evidence of being a true
somatic mutation), and variable sites with an alternative read count < 3. We also ex-
cluded variable sites in which the ML genotype estimate was above 120 (Phred-scaled).
Such uncertainty in the genotype call was usually associated with sites experiencing an
apparent disparity in the proportion of both alleles (i.e., allelic bias). Moreover, as we
are primarily interested in analyzing diploid genomic regions, we removed those SNVs
located within CN variable regions.

For each dataset, we then merged single-cell VCFs using the bcftools software [93]
and applied a “consensus” filter to only retain sites present in at least one cell and the
bulk tumor sample, or in two cells. For the E15 dataset, we limited this “consensus”
filter to somatic sites observed in at least two cells, as we classified as germline all var-
iants observed in the bulk sample. Finally, we removed positions missing (i.e., not
covered by any read) in more than 50% of the cells and SNVs comprising more than
one alternative allele. For the L86 dataset, we filtered out off-target SN'Vs located out-
side exonic regions. For the LS140 dataset, we converted the binary genotype matrix
into a VCF by transforming 0, 1, and NA values into 0/0, 0/1, and ./., respectively.
Afterward, we removed all duplicated (non-biallelic) positions and indels.
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