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Abstract

Clustering of joint single-cell RNA-Seq (scRNA-Seq) data is often challenged by
confounding factors, such as batch effects and biologically relevant variability.
Existing batch effect removal methods typically require strong assumptions on the
composition of cell populations being near identical across samples. Here, we
present CIDER, a meta-clustering workflow based on inter-group similarity measures.
We demonstrate that CIDER outperforms other scRNA-Seq clustering methods and
integration approaches in both simulated and real datasets. Moreover, we show that
CIDER can be used to assess the biological correctness of integration in real datasets,
while it does not require the existence of prior cellular annotations.
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Background
The widespread adoption of single-cell RNA sequencing (scRNA-Seq) as a modality

for the investigation of functional cellular heterogeneity means it is now routine for

multiple datasets to be generated from the same type of tissues and organs across a

number of individuals. Integration of multiple scRNA-Seq datasets can provide more

comprehensive interpretations by borrowing information across experiments and even

species [1]. However, the data from multiple experiments are often confounded by

inter-batch or inter-donor variability.

Existing clustering workflows can effectively identify cell populations in batch-effect-

free datasets [2], by partitioning cells based on the inter-cell distance matrix computed

from the expression data of high variance genes (HVGs) or the derived principal com-

ponents. For example, SC3 constructs the distance matrix by applying Euclidean, Pear-

son, and Spearman metrics on the expression data of HVGs and transfers this distance

matrix by principal component analysis (PCA) or graph Laplacian transformation, be-

fore consensus clustering [3]. RaceID computes the distance matrix in the same way as

SC3 but provides more options of distance measures, including Kendall and propor-

tionality [4]. Seurat v3 calculates Euclidean distances from the principal components
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and then infers the graph of shared nearest neighbors for the subsequent graph-based

clustering, such as Louvain clustering [5]. However, distance measurements used by

these workflows cannot effectively distinguish biological variation from the technical

one and, thus, their performance is compromised in datasets confounded by batch ef-

fects or other variability caused by unwanted or unexplained factors.

In data confounded by batch effects, workflows combining batch correction or

integration methods and downstream clustering algorithms are used to identify cell

populations. Some existing batch correction and integration methods can efficiently

correct the gene expression or dimensionality reduction spaces for visualization

and other downstream analyses. For example, mutual nearest neighbors [6] (MNN)

uses the cell pairs that are mutually nearest neighbors to compute a vector that

aligns multiple batches into a common space, which is also incorporated in the

Monocle3 pipeline [7]. Scanorama [8] also used the concept of MNNs to merge

datasets with substantial improvement in the MNN search strategies. Seurat ex-

ploits canonical correlation analysis [9] (CCA) and reciprocal PCA [10] (RPCA) to

compute a subspace and then used the identified MNNs, i.e., “anchors,” to correct

the data. Harmony [11] iteratively diminishes batch effects in the PCA space by

soft clustering across batches and then adjusting cell positions based on the global

and dataset-specific cluster centroids. LIGER [12] exploits integrative non-negative

matrix factorization to compute the factor loading matrix for cell type assignment.

Combat [13] leverages the empirical Bayesian framework to derive the corrected

gene expression matrix. Clustering on network of samples [14] (Conos) computes

the cell-cell connection and downweights the intra-sample connections to construct

a joint graph for downstream analysis. However, for the majority of integration

methods, performance can vary substantially across data types and scenarios [15].

An additional limitation of the commonly used integration algorithms, e.g., CCA

and Harmony, is that they work on the low-dimensional representation, which can

be affected by the bias in the initial selection of HVGs and principal components.

Furthermore, it is often difficult to determine why existing methods drive cells

from different batches into the same cluster. This lack of explainability or inter-

pretability can make it difficult to ascertain if integration has been successful.

To address this limitation, we recently introduced the use of meta-clustering to parti-

tion scRNA-Seq data from ovarian cancer fallopian tube epithelial cells confounded by

structured batch effects and inter-patient variability [16]. This method was based on a

functional hypothesis that cells from the same biological population (either cell type,

subtype, or state) share a similar differential expression pattern, i.e., the differentially

expressed genes (DEGs) having more weights to determine cell classes compared to

other genes. Moreover, these DEGs are less affected by batch effects by regressing out

the unwanted factors. In this work, we present a scalable version of this methodology

and demonstrate its generalizable utility for wider application.

Here, we introduce a novel similarity metric based on Inter-group Differential Ex-

pRession (IDER) and propose a workflow of Clustering by IDER (CIDER). We demon-

strate that the performance of CIDER is comparable or superior to existing clustering

workflows applied on uncorrected and batch-corrected datasets in a variety of scenarios

for both simulated and real scRNA-Seq data. Furthermore, as IDER is a substantively

different form of distance metric compared to those used in popular integration
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algorithms, we show that CIDER can also be used as a ground-truth-free evaluation

metric for accurately identifying falsely integrated populations.

Results
Design of CIDER and proof-of-concept experiment

The core of CIDER is the IDER metric, which can be used to compute the similarity

between two groups of cells across datasets (Fig. 1A). IDER first identifies the differen-

tially expressed signature (DES) for each group of cells against all other cells with the

unwanted variables regressed out. Next, a similarity measure is computed by using the

consistency of DESs between two groups across datasets. Differential expression in

IDER is computed using the same principle as limma-trend [17], which was chosen

from a collection of approaches for differential expression analysis based on a number

of performance criteria (Additional file 1: Fig. S1A, B) [18].

CIDER is established on the hypothesis that the expression level contains the linear

combination of the effects of cluster, batch, donor, platform, etc. (Fig. 1B). The within-

dataset clustering enables the identification of the cluster effect (i.e., cell assignment)

for a given dataset, as the confounding effect (e.g., batch effects, inter-donor variability,

or inter-species variability) is a constant within the same dataset. Once the cell assign-

ments are completed for all datasets, we use limma to regress out the confounding ef-

fects across datasets and identify consistent cluster effects, represented by DESs, from

multiple datasets. Groups with a consistent cluster effect will be merged into one final

Fig. 1 IDER metric accurately measures the biological similarity between cell groups. A Schematic diagram
shows how the IDER metric measures the inter-group similarity. B The diagram shows the theoretical
justification for CIDER. Eijk denotes the expression level of gene j in cell i of batch k, zik cell assignment of
cells of cell i, C cluster effect, B batch effect, and P patient effect or other biases. In the lower panel, zik is set
to 1. C Schematic diagram of asCIDER and dnCIDER. d t-SNE plots show the cells from three batches of
Dataset 1. Each subpanel represents a batch. Cells are colored by the population. Each batch-specific cluster
is denoted by a label. E The IDER metric generated higher similarity between group pairs, (g1, g1’) and
(g2, g2’), from identical cell types and lower similarity between group pairs from different cell types
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cluster. In the workflow of CIDER, IDER is used to measure the pairwise inter-group

similarity among the batch-specific initial clusters (Fig. 1C). These initial clusters can

be either curated annotations or outputs from a clustering algorithm. The output of

the IDER step, i.e., a similarity matrix, is used to merge the connected initial clusters

into final cross-batch clusters. Depending on how the initial clusters were derived, we

named the CIDER workflows as de novo CIDER (dnCIDER), where initial clusters were

the output of a clustering algorithm, and assisted CIDER (asCIDER), where initial clus-

ters were curated annotations of cell populations. These two scenarios were considered

in our benchmarking because they are common in real-world usage.

We set about to test if the IDER metric could accurately estimate the cluster effects

and regress out biases in data confounded by batch effects. As a proof-of-concept ex-

periment, we applied it to a multiple cell line dataset (Dataset 1) [19], in which three

batches corresponded to pure 293T cells, pure Jurkat cells, and a 50/50 mixture of both

cell lines. The IDER metric was used to calculate the pairwise similarity among four

groups from these three batches (Fig. 1D, Additional file 1: Fig. S2). We showed that

the similarity computed by IDER was higher for the group pairs from the identical cell

type compared to the pairs from different cell types (Fig. 1E), demonstrating the utility

of IDER as a metric to identify cluster similarity across datasets when confounded by

batch effects.

Benchmarking clustering performance on simulated data

To test the accuracy of identifying populations, we benchmarked CIDER against other

12 workflows: nine workflows that combined integration approaches and clustering

(Seurat-CCA [9], fastMNN [6], Scanorama [8], Harmony [11], LIGER [12], Combat

[13], Monocle3 [7], Conos [14], and RPCA [10]) and three single-cell clustering ap-

proaches (Seurat v3-Louvain [5], SC3 [3], and RaceID [4]).

We used a simulated dataset (Dataset 2, Additional file 1: Table S1) as a tailor-made,

toy example, where three batches comprised non-identical compositions of populations

(Additional file 1: Fig. S3A, B). The challenge is to be able to match clusters across

batches, e.g., to identify that Group 3 cells (Yellow) exist across all three batches. In this

scenario, the cross-batch similarity computed by CIDER correctly recognized the con-

nection among initial clusters (Fig. 2A, B). In contrast, MNN and CCA overcorrected

the batch effects, leading to the incorrect merging of disparate populations as previ-

ously reported [8] (Additional file 1: Fig. S3C-F). To quantitatively compare their per-

formance, we computed the adjusted Rand indexes (ARIs) between cell labels and

clustering results (ARIpopulation) or the ARIs between batches and clustering results

(ARIbatch). Ideal performance is characterized by high ARIpopulation and low ARIbatch
(i.e., high 1-ARIbatch) such that cluster allocation is dominated by cell type and not

batch, while in this scenario of unbalanced cell composition 1-ARIbatch close to 1 corre-

sponds to overcorrection. The experimental replicates (n = 20) confirmed that CIDER

robustly outperformed fastMNN and CCA in this scenario of non-identical cellular

compositions (Fig. 2C). While Harmony, Scanorama, and SC3 could also identify the

exact cell classes, like fastMNN and CCA, LIGER, Monocle3, and Conos also overcor-

rected the batch effects (Fig. 2D). For this dataset (n = 6000 cells), the running time

(1.5 s and 10.9 s average) of asCIDER and dnCIDER was comparable to that of
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Harmony (15.5 s), Scanorama (15.9 s), and Seurat clustering (19.1 s) (Fig. 2E). While

this was a toy example, this simple simulation illustrates the challenge of confounding

effects. We next benchmarked CIDER on four real datasets.

Benchmarking clustering performance on real data

We next tested CIDER with Dataset 3 of human peripheral blood mononuclear cells

(PBMCs) [19]. Cells were annotated into nine cell types and subtypes, namely B cell, CD4

T cell, CD8 T cell, hematopoietic stem cell (HSC), megakaryocyte, CD14 monocyte,

FCGR3A monocyte, natural killer (NK) cell, and plasmacytoid dendritic cell [20]. Cells of

this dataset were sequenced by either of two techniques (10x 3’ and 5’ single-cell gene ex-

pression), which we termed Batch 1 and Batch 2, respectively. The uncorrected space sug-

gested that the data were confounded by batch effects (the variability introduced by

techniques in this scenario), which forced a cognate cell population into more than one

cluster (Additional file 1: Fig. S4A, B). We set the technique effect as the unwanted vari-

able and regressed it out from the derived DES, which eliminated the influence of tech-

nique variability on the inter-group similarity matrix and the results of subsequently final

clustering. Both dnCIDER and asCIDER outperformed other batch correction and cluster-

ing workflows regarding the accuracy of identifying populations (Fig. 3A). The meta-

clustering workflows also overcame the effect of techniques, while the accuracy of sole

clustering methods (Seurat clustering, SC3, and RaceID) was interfered as implied by the

Fig. 2 CIDER accurately identifies cross-batch populations. A t-SNE plot shows the nine initial clusters from
three batches of the simulated dataset (Dataset 2). Cells are colored by initial clusters. B The graph network
shows the similarity among initial clusters. Vertexes represent initial clusters, colored by populations. The
width of edges represents the similarity levels. C Distribution of ARIpopulation for 20 replicates of simulated
data across integration workflows and clustering algorithms. The x-axis denotes the workflow performance
by calculating ARIs between cell populations and clustering results, and the y-axis denotes clustering and
integration workflows. The whiskers from left to right in the boxplot represent the first quartile, the median,
and the third quartile. D, E Distribution of 1-ARIbatch (D) and runtime (E) for 20 replicates of simulated data
across integration workflows and clustering algorithms
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lower values of 1-ARIbatch (Fig. 3B). CIDER also had the shortest runtime in this dataset

of moderate size (n = 14,876 cells) compared to other benchmarked methods (Fig. 3C).

Because the dnCIDER clustering results have not been annotated according to biological

functions, the results of asCIDER are used as an example to elucidate its biological rele-

vance and interpretability for this dataset and the following ones. Beyond achieving joint

clustering, asCIDER could reveal the underlying relationships among initial clusters via a

network graph (Additional file 1: Fig. S4C, D). The cliques in the network graph suggested

a hierarchical structure of cell populations. It not only presented the binary relationship,

i.e., which initial clusters should be merged, but also quantified the strength of agreement,

i.e., IDER-based similarity, among homogenous and heterogeneous populations. In

Fig. 3 CIDER leads to precise cell classification in the joint PBMC data sequenced by two techniques
(Dataset 3). A–C Distribution of ARIpopulation (A), 1-ARIbatch (B), and runtime (C) across integration workflows
and clustering algorithms. D t-SNE plot of cells from Batch 1, colored by asCIDER clustering results (final
clusters). E t-SNE plot of cells from Batch 2. F t-SNE plots of cells show expression levels of marker genes in
two batches. G Average expression levels and percentages of expression of top marker genes across
asCIDER clusters. The size of dots denotes the percentage of expression, and the color represents the
average expression level
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addition to showing the connections, it revealed the relationships between heterogeneous

populations. For example, CD4 and CD8 T cell populations, CD14 and FCGR3A mono-

cyte populations, shared high pairwise similarity. The clustering results of CIDER

methods, e.g., asCIDER, could be visualized in the unaligned low-dimensional space (Fig.

3D, E). In the downstream analysis, we regressed out the technical variability and identi-

fied the cluster-specific marker genes (Fig. 3F, G).

Given interest in cross-species comparative analysis, we benchmarked CIDER on Data-

set 4 that contains both human and mouse pancreatic data (Additional file 1: Fig. S5A, B)

[21]. This dataset is composed of 2 mouse samples and 4 human samples, resulting in the

structured combination of species effect and donor effect. CIDER was aimed to regress

out the species effect, in which case the donor effect was treated as the nesting variable in

the regression model. CIDER workflows outperformed other pipelines regarding the ac-

curacy of identifying cell classes (ARIpopulation) (Fig. 4A). With respect to the capability to

Fig. 4 CIDER accurately identifies clusters between human and mouse samples in the cross-species
pancreas data (Dataset 4). A–C Distribution of ARIpopulation (A), 1-ARIbatch (B), and runtime (C) across
integration workflows and clustering algorithms. D Heatmap shows the inter-group similarity between
mouse populations (x-axis) and human ones (y-axis). Cells are colored by the similarity levels, as shown by
the numbers. E Scatter plot shows genes driving the similarity and dissimilarity between the human ductal
group and the mouse ductal group. The x- and y-axes denote the DESs in humans and mice. Each dot is a
gene, colored and sized by the influence and its abstract value. The gray line is the linear regression line for
reference. Genes with the ten largest abstract values of influence are labeled. F Scatter plot shows genes
driving the similarity and dissimilarity between the human alpha group and the mouse alpha group
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correct batch effects (1-ARIbatch), CIDER workflows were comparable to the other inte-

gration methods ranging between 0.97 and 1, except Combat and Monocle3, which had

lower 1-ARIbatch (0.93 and 0.94, respectively) (Fig. 4B). Moreover, asCIDER cost the least

amount of processing time, while the runtime of dnCIDER was slightly longer than Sca-

norama, fastMNN, and Harmony (Fig. 4C). Dataset 4 (n = 10,127) has fewer cells than

Dataset 3 (n = 14,876). CIDER took longer to process Dataset 4 than Dataset 3 because its

running time is approximately associated with the numbers of batch-specific clusters. In

addition to identifying cell assignment, the asCIDER result revealed that the between-

species similarity was inconsistent across cell types (Fig. 4D). Unlike methods based on

low-dimensional space, the gene-level analysis of CIDER empowered its explainability by

delineating how various genes contributed to inter-group similarity. The influence of indi-

vidual genes was derived by the Fisher z-transformation. Positive values of influence indi-

cated the affirmative contribution to similarity, while negative values denoted the

contribution to dissimilarity. For example, the inter-species similarity (0.40) of the ductal

cell population was suppressed by the existence of negative-influence genes, e.g., CLU,

TMSB4X, and B2M (Fig. 4E). Yet the top positive-influence genes, e.g., KRT8 and KRT18,

were the main drivers of aligning human and mouse ductal groups. On the other hand,

the alpha cell population had a high value of inter-species similarity (0.62) owing to top

positive-influence genes, e.g., GCG and TTR (Fig. 4F).

We next tested the capability of coping condition effects on data from a recent COVID-

19 study (Dataset 5) [22]. This dataset contained 59,572 PBMCs collected from healthy

donors, patients with severe influenza, and patients with various severity of COVID-19

(asymptomatic, mild, and severe). These cells were cataloged into 15 populations: lgG− B

cell, lgG+ B cell, effector memory (EM)-like CD4+ T cell, non-EM-like CD4+ T cell, EM-

like CD8+ T cell, non-EM-like CD8+ T cell, NK cell, classical monocyte, intermediate

monocyte, nonclassical monocyte, dendritic cell (DC), uncategorized 1, uncategorized 2,

red blood cell (RBC), and platelet. For this dataset, the health condition was treated as the

confounding factor for correction. Among the benchmarked methods, asCIDER had the

highest ARIpopulation, while the other methods, except LIGER, Combat, RaceID, and Mon-

ocle3, had similar ARIpopulation values between 0.45 and 0.60 (Fig. 5A). The overall low

level of ARIpopulation was likely due to the manually curated and merged cell annotations

[22], where the similarity between defined cell populations might not reflect the statistical

similarity defined by these clustering and integration algorithms. Besides, because the cell

type annotations were generated from CCA-corrected data, it was expected that the com-

parison results favored CCA and similar methodologies. The lower ARIbatch values of Seu-

rat and SC3 clustering results suggested that this dataset was mildly confounded by the

effect of health conditions (Fig. 5B). AsCIDER consumed the shortest running time, while

dnCIDER was slightly slower than Harmony and fastMNN but faster than other integra-

tion methods (Fig. 5C). After regressing out the systematic effect of health conditions, the

inter-group distance matrix generated by asCIDER unraveled the cell-type-specific local

relationship of various conditions. For example, the populations of classical monocytes,

natural killer (NK) cells, red blood cells (RBC), dendritic cells (DC), and lgG+ B cells from

patients with severe COVID-19 were more akin to the ones from patients with severe in-

fluenza than the ones from patients with mild or asymptomatic COVID-19, while non-

classical monocytes and effector memory (EM)-like CD8 T cells were not (Fig. 5D–G,

Additional file 1: Fig. S6A-C).
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To demonstrate the scalability of CIDER, we benchmarked CIDER and other

methods on a breast cancer dataset (Dataset 6) containing 170,350 cells from 31 pa-

tients with the estrogen receptor-positive (ER+) subtype, the human epidermal growth

factor receptor 2-negative (HER2−) subtype, and the triple-negative breast cancer

(TNBC) [23]. For each patient, two samples were collected, one before the treatment

and one during the subsequent surgery. Thus, three potential covariates existed, namely

the donor effect, the treatment effect, and the disease effect, and donor was the nesting

variable to disease. To identify the cross-patient populations, we generated patient-

specific initial clusters and then used donor and treatment (pre-treatment or on-

treatment) as covariates to calculate the IDER-based similarity matrix, which enabled

regressing out donor and treatment effects. Compared to other methods, CIDER

methods had higher accuracy in identifying cross-donor populations (Fig. 6A). They

were also less affected by the donor effect compared to solely using Louvain clustering

(Fig. 6B). Both algorithmic variants dnCIDER and asCIDER consumed less time than

other integration methods applied to the full dataset (Fig. 6C). Other than providing

the clustering results, asCIDER also revealed that the tumor cells and, interestingly, the

B cells had higher levels of intra-population heterogeneity, even after regressing out the

systematic cross-population donor and treatment effects (Fig. 6D). Such heterogeneity

was expected in the tumor cells [23], while the one in B cells has remained obscure.

Overall, it suggested that the clustering performance of asCIDER and dnCIDER was

more accurate on data confounded by technical effects, species difference, disease

Fig. 5 CIDER identified cross-condition cell classes in the PBMC data from healthy donors and patients with
COVID-19 or influenza (Dataset 5). A–C The distribution of ARIpopulation (A), 1-ARIbatch (B), and runtime (C) of
benchmarked algorithms. SC3 and RaceID were ran on the dataset downsampled by the factor of 5. D–G
Dendrograms show the local relationships of the classical monocyte population (D), nonclassical monocyte
population (E), the EM-like CD8 T cell population (F), and the natural killer (NK) population (G) from donors
with different health conditions
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variability, and inter-donor variability, compared to the clustering results generated

from the corrected low-dimensional representations. CIDER methods could also pro-

vide insights into the intra-population heterogeneity across different conditions.

CIDER as a ground-truth-free test metric of integration

One of the common pitfalls of multiple dataset integration is incorrect alignment,

where two heterogeneous groups of cells are merged in the corrected space (Fig. 7A).

Although existing test metrics, such as the cell-type local inverse Simpson Index (cLISI)

[11], can measure the local impurity in the joint low-dimensional representation, its

major limitation is the demand for predefined cell populations. To address this limita-

tion, we embedded CIDER into a workflow of evaluating the integration outcome, and

our evaluation method does not require the ground truth of cell type annotations (Fig.

7B). In this workflow, after data are corrected by a chosen integration tool, an initial

clustering step generates cross-batch clusters based on the corrected expression matrix

or low-dimensional representation. Using the IDER metric, the inter-group similarity is

Fig. 6 CIDER identifies cross-donor populations in the breast tumor data of 170,350 cells from 31 patients
(Dataset 6). A–C The distribution of ARIpopulation (A), 1-ARIbatch (B), and runtime (C) of benchmarked
algorithms. D Heatmap shows the inter-group similarity matrix for donor-specific initial clusters of asCIDER.
Tiles are colored by the similarity levels. The annotation bars are colored by diseases or cell types
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calculated between the initial clusters split by batches. The empirical probability of

rejecting the alignment is next computed by comparing the distributions of similarity

between the targeted cluster and the background. Low similarity or a high empirical

probability putatively indicates the falsely aligned cluster, i.e., rejection of the fact that

cells from a cross-batch cluster belong to a homogeneous population.

We applied CCA on the dendritic cell dataset (Dataset 7) [24], which contains four cell

subtypes (CD141, CD1C, double negative [DoubleNeg], and plasmacytoid dendritic cell

[pDC]). The integration algorithm is prone to merging the CD141 cell population and the

CD1C population incorrectly (Fig. 8A) [15]. After integration and dimensionality reduc-

tion, we applied CIDER on the corrected low-dimensional representation to compute the

similarity and empirical probabilities (Fig. 7B and Additional file 1: Fig. S7A-D). The clus-

ter that had lower similarity and high probability of rejection was the mixture of the

CD141 and CD1C populations, while the other two clusters (DoubleNeg and pDC) with

high similarity and low empirical probability were properly aligned (Fig. 8B, C). It

Fig. 7 CIDER can evaluate the biological accuracy of integration results without reliance on ground truth. A
The diagram shows two scenarios, one, where the cell types from two batches are correctly aligned, and
one, where the two heterogeneous cell types (1 and 3) from two batches are falsely aligned, often because
of overcorrection. B The schematic diagram elucidates the workflow for assessing the integrated outcome
to identify falsely aligned clusters, which have lower inter-group similarity. CIDER can identify the second
scenario without prior information of cell types

Fig. 8 CIDER identifies the falsely aligned CD1C and CD141 subtypes in the dendritic cell data (Dataset 7).
A–D t-SNE plots of the CCA-corrected data, where cells are colored by cell populations (A), the similarity
score computed by CIDER (B), the empirical probability of rejection computed from the background
distribution (C), and the cLISI values (D)
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demonstrated that CIDER could accurately identify falsely aligned populations. To further

visualize the local diversity and compare it with the CIDER metric, we used the cLISI

metric [11], where the cLISI over 1 indicated the local heterogeneity of cell classes. The

results of CIDER were in accord with cLISI (Fig. 8D).

We next tested CIDER on the mouse hematopoietic progenitor data (Dataset 8) with

the continuous data structure [25, 26]. Cells of this dataset were assigned to three pop-

ulations, the common myeloid progenitor (CMP), the megakaryocyte/erythrocyte pro-

genitor (MEP), and the granulocyte/macrophage progenitor (GMP), and profiled by

two platforms, MARS-seq [26] and Smart-Seq2 [25] (Fig. 9A). After integration and di-

mensionality reduction, we used CIDER to compute the similarity and empirical prob-

abilities. The CIDER metrics indicated that the cells around the bifurcating point

shared lower levels of agreement between the two experiments (Fig. 9B, C). Based on

the ground truth of cell annotations, the results of cLISI also suggested that multiple

populations were mixed around the bifurcating point (cLISI ≥ 2; Fig. 9D). Moreover,

the results of CIDER showed that the alignment scores of CMP, the direct ancestor of

both MEP and GMP, were lower than those of MEP and GMP between two experi-

ments, which was consistent with the distribution of 3-cLISI (Fig. 9E, F). This is likely

due to the higher level of heterogeneity in the predefined CMP population compared

to MEP [26]. Taken together, we demonstrated that CIDER could accurately evaluate

the local biological homogeneity without relying on predefined cell annotations.

Discussion
In this work, we presented a meta-clustering framework, CIDER, for scRNA-Seq data

integration and evaluation. The benchmarking demonstrated the performance of

CIDER regarding the accuracy of recognizing cellular populations, the effectiveness of

removing batch effects, and its scalability.

Fig. 9 CIDER identifies a high level of heterogeneity within the CMP population in the mouse
hematopoietic progenitor data (Dataset 8). A–D Diffusion maps of the CCA-corrected data, where cells are
colored by cell populations (A), the similarity score computed by CIDER (B), the empirical probability of
rejection (C), and the local purity represented by 3-cLISI (D). E The distribution of agreement (y-axis),
denoted by the similarity calculated by CIDER, between two experiments for three cell populations (x-axis),
CMP, GMP, and MEP. F The distribution of agreement, denoted by 3-cLISI, between two experiments
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CIDER used a novel and intuitive strategy that measures the similarity by performing

group-level calculations, which stabilize the gene-wise variability. Compared to other

distance measures or anchors used for clustering and integration [6, 9], we show that

IDER is versatile in its ability to quantify biological similarity and readily interpretable.

CIDER can be exploited for preliminary analysis, standalone clustering, or independent

validation. Since IDER is built on a different rationale from conventional integration

approaches, the similarity graph it generates can provide insights that can be treated as

an alternative to standard techniques, which often cannot genuinely preserve long-

distance and short-distance relationships. Moreover, CIDER can compute a similarity

score between cell groups from two conditions, enabling the inference of local relation-

ships based on the expression profiles. Among other methods, Scanorama [8] can also

calculate an alignment score for pairs of datasets for better interpretability, but it is de-

rived from the membership of shared nearest neighbors rather than directly estimated

from expression profiles.

A common question of integration is which effects should be considered. Two criteria,

the magnitude of the bias and their relevance to the purpose of the study, can be used to

choose covariates for correction. In the first scenario, such as Dataset 2 (simulated data)

and Datasets 3 (PBMC), the simulated batch effect and the technical effect introduced bias

into the clustering if not corrected (Figs. 2 and 3C and A), indicating the covariates for re-

gression. On the other hand, advances in the droplet-based scRNA-Seq platform and the

cryopreservation technique have enabled the minimization of technically introduced batch

effects. Thus, in the experiments that follow one consistent experimental protocol and in-

clude multiple donors, the inter-sample variability can be largely attributed to the “bio-

logical” variability, such as donors’ condition and genetic diversity [27, 28]. In this

scenario, the selection of covariates for regression can be based on the relevance to the re-

search goal. For example, the health condition in Dataset 5 (COVID-19 versus severe flu)

and the donor, as well as the treatment, in Dataset 6 (breast cancer) were corrected to

identify cross-condition and cross-donor populations.

Multiple sample integration has become one of the most frequently used tools for

scRNA-Seq data analysis [29]. Along with the rapidly growing amount of available

scRNA-Seq data, the recent advances in neural network models and approaches for

transfer learning have facilitated the query-reference mapping [30]. This highlights the

importance of accurate integration. We demonstrated the usefulness of CIDER for

evaluating the integration outcome, which can be used to select integration tools and

tune the parameters if a joint low-dimensional representation is desired.

CIDER is currently designed for scRNA-Seq data and cannot be used for the integra-

tion of single-cell multi-modal data [31, 32]. Future work can be focused on adapting

the linear model embedded in CIDER for this purpose. Although the group-level ana-

lysis CIDER performs is coarse-grained, CIDER can be applied to data with continuous

structures, as we demonstrated; further work to develop specific extensions in this

methodological direction is required.

Conclusions
CIDER provides a clustering framework for integrative analysis of multiple scRNA-Seq

datasets, enabling identifying cell assignments across datasets and validating the inte-

gration output for the assembly of multiple scRNA-Seq datasets.
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Methods
Measurement of inter-group similarity

The infrastructure of IDER was built on limma-trend [17] or voom [33]. Both limma-

trend and voom estimate the mean-variance relationship non-parametrically by locally

weighted regression and then leverage the estimation for DE analysis. The difference

between limma-trend and voom is that the mean-variance relationships exploited by

them are at the gene level and at the level of individual observations, respectively.

Limma methods were selected out of a collection of tools for DE analysis. First,

limma-trend and voom were top performers for scRNA-Seq data demonstrated by a re-

cent benchmarking study [18]. Secondly, the linear models of limma enabled complex

design. Additionally, we benchmarked limma with other top performers (MAST [34]

and edgeR [35]) in a simulated dataset confounded by batch effects. MAST uses a hur-

dle model of a two-part generalized linear model, aiming to model the bimodality ex-

pression pattern of zero-inflated scRNA-Seq data, while edgeR fits the coefficients and

the dispersion parameters using the negative binomial distribution. In our benchmark-

ing experiment, the limma methods detected the signal-to-noise better than MAST and

edgeR, and its computing speed was much faster (Additional file 1: Fig. S1A, B), which

was consistent with previous results [33]. Moreover, limma-trend was faster than voom,

because voom has an additional step of inferring variance at the level of individual ob-

servations. Limma-trend was recommended when the runtime is a major concern,

while voom may perform slightly better when library sizes are unequal [33].

IDER is aimed to measure inter-group similarity. In the scenario of multiple batches,

IDER first compares two groups, gi and gj’, with the background, i.e., cells that do not

belong to gi and gj’, respectively (Fig. 1A). For each comparison, the DE analysis is per-

formed with the linear regression including covariates of group (gi, gj’, and background),

batch, and scaled cellular detection rate. The cellular detection rate measures the num-

ber of genes detected per cell as previously described [34]. After the estimated coeffi-

cients are computed, the DE signature, vector di, for group gi (or dj’ for group gj’) is

computed by fitting the contrast of gi – background (or gj’ – background). The length

of di or dj’ is equal to the number of genes used. The DE signature is denoted by the

estimated coefficients, i.e., log2 fold-change. Between the two groups, gi and gj’, the

similarity s(gi, gj’) is measured by the Pearson correlation coefficients between DE signa-

tures, di and dj’. This similarity measure ranges from −1 to 1. IDER can also be used to

measure inter-group similarity for data with multiple levels of confounding factors.

Under this circumstance, the additional covariates were included as a covariate in the

regression model. For example, in the breast cancer data (Dataset 6), both the donor ef-

fect and the treatment effect were included in the regression model Ei jk ¼ C j;zik þ Bjk

þTi j þ Ri , where Eijk denotes the expression level of gene j in cell i of donor k, zik cell

assignment of cells of cell i, C cluster effect, B donor effect, T treatment effect, and R

cellular detection rate.

CIDER for identifying cell populations

To cluster multi-batch data, CIDER consists of three steps: initial clustering, computing

the similarity matrix, and final clustering. For dnCIDER, we first used Louvain clustering

to cluster cells within each batch. Pairs of batch-specific clusters with high similarity of
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IDER were merged, generating the initial clusters for the next step. For asCIDER, we

concatenated the batch tag and the cell annotation as the initial cluster. Next, to generate

the similarity matrix, the pairwise similarity was computed for inter-batch initial clusters

by IDER. We downsampled each initial cluster to the same size (35 to 50 cells). We do

not suggest downsampling to a number smaller than 15. For initial clusters smaller than

this size, we allowed replacement for sampling. To visualize the similarity among initial

clusters, this similarity matrix was transferred to a graph by using igraph in R (https://

igraph.org/r/). In the final clustering step, the similarity matrix S was transferred to a dis-

tance matrix by 1 − S and the initial clusters were merged by the hierarchical agglomera-

tive clustering with complete linkage, enabling the initial clusters with the highest

similarity to be merged first. For large datasets, parallel computation (R package doParal-

lel) was used to shorten the runtime.

Interpretability

To measure the influence of individual genes on the inter-group similarity, the correl-

ation ri of only leaving gene i out was calculated and the Fisher z-transformation 1
2 ln ð

1þri
1−ri

Þ was taken, which transformed the sample distribution of the correlation coeffi-

cients to the Gaussian distribution. The influence was computed as 1
2 ln ð1þr

1−rÞ− 1
2 ln ð

1þri
1−ri

Þ, where r denotes the correlation including all genes.

Downstream analysis of marker genes

We used limma-voom to identify the marker genes. For Dataset 3, clustering results,

batch information, and the cellular detection rate were used to construct the design

matrix. The linear model was first fitted for the given design matrix, and then the esti-

mated coefficients were computed for the contrasts between the target cluster and the

background. Empirical Bayes statistics were calculated. Expression of the top marker

genes with Benjamini-Hochberg-adjusted p values lower than 1.83 × 10−18 and log2
fold-changes over 1.47 were visualized using the function DotPlot from Seurat.

External data

Cell line data (Dataset 1) [19]

We obtained the data of 293T cells and Jurkat cells from http://scanorama.csail.mit.

edu/data.tar.gz [8]. This dataset came from three batches. The first batch has only

293T cells, the second batch only Jurkat cells, and the third batch 1:1 mixture of these

two cell lines.

Human PBMC data (Dataset 3) [19]

This dataset contains 14,876 cells of human PBMC samples from two platforms (10x 3’

and 10x 5’). The raw count matrix and the sample information were downloaded from

https://hub.docker.com/r/jinmiaochenlab/batch-effect-removal-benchmarking, which

were curated in the recent benchmarking study [15]. Cells were annotated [20]. Cells

with at least 500 genes detected were kept for further analysis. Putative doublets were

filtered by DoubletFinder [36] for each batch. The first 10 PCs were used for clustering

analysis. The resolution of Louvain clustering was 0.4.
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Cross-species pancreatic data (Dataset 4) [21]

The count matrix and sample information were downloaded from NCBI GEO acces-

sion GSE84133. We kept cells with minimum 500 genes detected for downstream ana-

lysis. Doublets were filtered by DoubletFinder. The gene set shared by both the human

and the mouse was kept for downstream analysis. The human gene INS was treated as

the mouse gene Ins1 as previously described [9].

COVID-19 data (Dataset 5) [22]

The 10x data were downloaded from GSE149689, and the cell annotations were down-

loaded from https://junglab.wixsite.com/home/db-link.

Breast cancer data (Dataset 6) [23]

The count matrix and cell annotations were downloaded from https://lambrechtslab.

sites.vib.be/en/single-cell. Cells were cataloged into eight cell types, namely cancer cell,

myeloid, T cell, pDC, fibroblast, endothelial, B cell, and mast. Putative doublets were

filtered by DoubletFinder [36] for each batch.

Human dendritic data (Dataset 7) [24]

The data were downloaded from https://hub.docker.com/r/jinmiaochenlab/batch-

effect-removal-benchmarking [15]. The data contained four cell subtypes (CD141,

CD1C, DoubleNeg, and pDC) from two batches [24]. The raw count matrix and the

sample information were also downloaded from the curated set [15]. Cells with less

than 500 genes detected were removed.

Mouse hematopoietic progenitor data (Dataset 8) [25, 26]

The data were downloaded from the curated set [15] and contain three cell popula-

tions, named CMP, GMP, and MEP, sequenced by two platforms (MARS-seq and

Smart-seq). CMP was recognized as the direct ancestor of GMP and MEP.

Integration pipelines

Seurat CCA and RPCA

We used the recommended CCA and RPCA correction pipelines of Seurat v4.0.3 [9].

We first split objects by batches, followed by normalization and selection of HVGs

based on the relationship between mean and variance. The integration anchors were

identified to integrate the data. The corrected low-dimensional representation was used

for Louvain clustering.

fastMNN

We used scran v1.14.5 to identify HVGs, which were used as the input of fastMNN (R

package batchelor v1.2.4) [6]. The fastMNN-corrected low-dimensional representation

was used for Louvain clustering.
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Scanorama

We used Scanorama [8] via reticulate v1.16 in R as suggested by the Scanorama reposi-

tory (https://github.com/brianhie/scanorama). The corrected embedding was used for

Louvain clustering.

Harmony

We used the RunHarmony function of Harmony v1.0 [11] to perform integration and

used the first 15 corrected PCs as the input of Louvain clustering with the resolution of

0.4.

LIGER

We used rliger v1.0.0 [12]. The Seurat object was first converted to the Liger object,

followed by normalization, HVG selection, scaling, integrative non-negative matrix

factorization, construction of the shared factor neighborhood graph, and the Louvain

clustering.

Combat

We used R package sva v3.34.0 [13]. The count matrix was log2 transformed and cor-

rected by the Combat function. The corrected expression matrix was used as the scaled

data for the HVG selection, PCA computing, and Louvain clustering. The downsam-

pling factor of Dataset 6 was 3.

Conos

R packages conos v1.4.2 [14], SeuratWrappers v0.3.0, and pagoda2 v1.0.5 were used.

The data were first split by the batch variable and preprocessed by the Seurat pipeline.

The joint graph was built in the PCA space, and then, the cell clusters were identified

as communities in the joint graph.

Monocle3

We used monocle3 v1.0.0 [10] for preprocessing, dimension reduction, batch effect re-

moval [6], and clustering [37].

Clustering pipelines

Seurat Louvain clustering

We used the suggested pipeline of Seurat v3.1.5 [5]. The top 2000 HVGs were used to

compute PCs, while the first fourteen PCs were used for Louvain clustering with the

resolution of 0.4.

SC3

We used SC3 v1.14.0 [3]. The number of clusters based on ground truth was given to

the clustering function. The downsampling factor of Datasets 5 and 6 was five.

RaceID

We used the suggested pipeline of RaceID v0.1.9 [4], including filterdata, getfdata,

compdist, and clustexp. The number of clusters based on ground truth was given to
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the clustering function. As the SingleCellExperiment object that SC3 and RaceID

depended on consumed a substantial amount of memory, the data were downsampled

for Datasets 5 and 6 before applying SC3 and RaceID. The downsampling factor of

Datasets 5 and 6 was five.

Proof-of-concept analysis

The cell line dataset (Dataset 1) was corrected by Scanorama as previously described

[8]. The first two components of t-SNE were used to perform Hierarchical DBSCAN (R

package dbscan v1.1) with the minimum size of clusters set at 75. The output of

DBSCAN and the batch information were combined to generate initial clusters. The

Scanorama correction was used here as the ground truth, as its correctness has been

demonstrated previously [8]. The initial clusters were downsampled to the size of 50

cells. The IDER-based similarity matrix was computed among the initial clusters to

demonstrate the ability to capture biological variance.

Data simulation

We used Splatter v1.10.0 [38] to simulate scRNA-Seq data. We first simulated a dataset

with five groups and three batches and removed groups 4 and 5 from batch 1, groups 1

and 5 from batch 2, and groups 1 and 3 from batch 3. This generated the non-

overlapped scenario (Dataset 2). The replications were generated in the same way with

various seed values.

Benchmarking clustering performance

The adjusted Rand index (ARI) was used to measure the consistency between cluster-

ing results and ground truth.

ARIpopulation
We calculated the ARI between clustering results and the annotation of cell popula-

tions, termed ARIpopulation. It indicates the accuracy of identifying cell populations.

1-ARIbatch
We also computed the ARI between clustering outcome and the annotation of batches,

termed ARIbatch. It represents the confounding effects of batches. Therefore, a larger

value of 1-ARIbatch indicates that the clustering result is less confounded by batch

effects.

Runtime

The runtime was tested on a Linux server with a maximum number of cores of 16.

Given that CIDER needed to compute pairwise similarity, the runtime of CIDER was

approximately O(n2), where n denotes the number of batch-specific initial clusters. It

was also positively associated with the covariates and the number of genes included in

the regression.
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CIDER for evaluating integration

In this evaluation workflow, the batch-corrected low-dimensional representation was

first used to partition cells into multi-batch clusters. These multi-batch clusters were

further divided into batch-specific subclusters. Within each cluster, the inter-group

similarity was calculated between subclusters from a pair of batches, while the batch ef-

fects were regressed out by using the IDER metric. Higher levels of inter-group similar-

ity indicated better quality of integration for the cluster. For two batch-specific

subclusters from the same cluster, we could estimate the probability of whether they

come from a true biological population (either cell type, subtype, or state). To estimate

the probability, we assumed that the two mutual nearest batch-specific groups with the

highest similarity are from the same population (“mutual nearest neighbor” hypothesis)

and that the variability within a given biological population is at an almost constant

level (“constant variability” hypothesis). By further partitioning the combination of

these two batch-specific subclusters, we could get a distribution of the variability within

this merged cluster. An empirical probability was next calculated for each pair of sub-

clusters from the same cluster to indicate the probability of belonging to the same

population.

The cLISI metric, computed by R package lisi [11], was used to validate the similarity

and the empirical probability calculated by CIDER. LISI measures the population diver-

sity within the neighbors of a given cell, and the neighborhoods are defined by Gauss-

ian kernel-based distributions. Here, cLISI was calculated as the LISI between the

ground-truth annotations of cell populations in the batch-corrected t-SNE space.
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