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Abstract

Pseudouridine (Ψ) is an abundant mRNA modification in mammalian transcriptome,
but its functions have remained elusive due to the difficulty of transcriptome-wide
mapping. We develop a nanopore native RNA sequencing method for quantitative Ψ
prediction (NanoPsu) that utilizes native content training, machine learning
modeling, and single-read linkage analysis. Biologically, we find interferon inducible
Ψ modifications in interferon-stimulated gene transcripts which are consistent with a
role of Ψ in enabling efficacy of mRNA vaccines.
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Background
Pseudouridine (Ψ) is the second most abundant mRNA modification in the mamma-

lian transcriptome as measured by quantitative mass spectrometry [1] and may exert

many cellular functions. For example, Ψ incorporation in synthetic, transfected re-

porter mRNA increases translation [2] through decreased activation of the RNA-

dependent protein kinase (PKR) [3]. The innate immune evading property of Ψ (and

its methylated derivative N1-methyl-Ψ ) in mRNA is essential to the remarkable im-

munogenicity of successful COVID-19 mRNA vaccines [4].

Functional exploration and mechanistic investigation of mRNA Ψ modification re-

quires appropriate mapping methods. Illumina sequencing of Ψ in mRNA relies on

chemical RNA treatments that induce stop, mutation, or deletion signatures in cDNA

synthesis [1, 5–8]. Many computational methods have been developed to map mRNA

Ψ sites [9–20]. However, mRNA Ψ mapping is inconsistent among these studies, in

part due to the high false positives and negatives generated by the chemical treatments.

The read-length limitation of Illumina sequencing also narrows the possibility to

examine Ψ usage in mRNA splice isoforms and the linkage of multiple Ψ sites in single

molecules.
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The emergence of nanopore sequencing enables direct interrogation of RNA modifi-

cations [21–23]. Additionally, nanopore sequencing can extend to the full length of the

mRNA [24], revealing all modified sites in single RNA isoforms [25]. Both signal

strength and dwell time have been used to identify Ψ [26]. Recently, a nanopore direct

RNA sequencing method, nanoRMS was developed by Novoa and co-workers that em-

ploys characteristic base-calling “error” signatures in the nanopore data for Ψ mapping

[27]. NanoRMS identified new Ψ sites in mitochondrial rRNA, small nuclear RNA,

small nucleolar RNA, and mRNA under normal and stress conditions in yeast and fur-

ther, predicted stoichiometry via supervised learning. Although nanoRMS prediction of

Ψ site incorporation using a threshold for base mismatch frequency is straightforward,

it is unclear whether this approach can be applied to the mammalian transcriptomes,

which are much larger than yeast, can contain introns and occur in multiple isoforms.

For example, the standard Tombo software for nanopore data analysis is ineffective

with spliced reads. Also, even though nanoRMS collects features from single reads, the

single read features were averaged before Ψ prediction, erasing single molecule Ψ site

incorporation information.

Results and discussion
The key to nanopore identification of RNA modification is to generate training data

from known modification sites. Modification training data generation, however, re-

quires reads from long transcripts with distinct sequence contexts at the modification

site. To maximize our ability to obtain nanopore training data from as many distinct Ψ

sites as possible, we generated a mixture of rRNAs from human, yeast, Caenorhabditis

elegans, Drosophila, and from human fecal bacteria (Fig. 1a). We Illumina sequenced

half of the mixture after fragmentation, using the bisulfite reaction [8] to map rRNA Ψ

sites, providing a total of 2142 Ψ sites (Additional file 1: Fig. S1a, Additional file 2:

Table S1). In Illumina sequencing of the bisulfite method, Ψ sites are found by RT de-

letions which enable identification and quantitative assessment of closely spaced rRNA

Ψ sites; these sites are more difficult to assess using the more commonly used carbodii-

mide method that identifies Ψ sites by RT stops. Sequencing the remaining sample via

direct RNA nanopore sequencing, we found that 640 of these Ψ sites passed our filter

of 20 read coverage for further analysis (Additional file 1: Fig. S1b). The lower number

of Ψ sites in nanopore sequencing was in part derived from the 3′ bias of the nanopore

sequencing library design where all reads start from the 3′ end of the rRNA. These 640

sites were combined with 689 randomly chosen unmodified U sites as the training data

set (Additional file 1: Fig. S1c). The modified and unmodified U sites contained 236 of

the 256 NN(Ψ/U)NN different 5mer contexts.

We next extracted nanopore signal features suitable for Ψ identification. NanoRMS

[27] found that Ψ had negligible effect on nanopore current signals, which means it is

hard to directly identify Ψ from the current squiggles like m6A [23, 25, 28]. However,

distinct features could be found for Ψ identification. For instance, like NanoRMS, we

found that apparent mutation to C is a prominent signature for Ψ modification, with

apparent deletion also significant for some Ψ sites (Figs. 1b, c). In total, we examined

12 features of base calling errors and found that Ψ sites tend to have lower base quality

mean values and standard deviation (Fig. 1d). The ternary plot of mutation signatures

confirmed Ψ sites having a strong preference to be read as a C but not A or G (Fig.
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1e). The significance of these features was quantified in the correlation matrix of all

features and the modification labels (Fig. 1f). We made an extremely randomized trees

(EXT) model to carry out Ψ probability prediction for each U site. To decide the com-

bination of features included in the model, we added one feature at a time in the order

of their correlation strength with the modification label. This revealed that the per-

formance of Ψ calling maximized when all 12 features were included (Fig. 1g). Using

the optimized parameters of our EXT model, its performance was evaluated by the test-

ing set with an area under curve (AUC) of 0.9383 (Fig. 1h, Additional file 1: Fig. S1d).

We named our method nanopore investigation of pseudouridines or “NanoPsu.”

Interferons (IFNs), cytokines produced by nearly all cell types during viral and

other microbial infections, play crucial roles regulating immune response [29].

mRNA vaccines incorporate Ψ or m1Ψ to evade host cell foreign RNA sensing and

enhance mRNA translation. Do endogenous mRNAs also use the same strategy

through Ψ modification? IFNs can induce the expression of more than a thousand

interferon stimulated gene (ISG) transcripts. ISGs include protein kinase R (PKR)

which phosphorylates eIF2α to reduce global translation. It is well established that

Ψ-modified reporter mRNA activates PKR much less than the same unmodified

mRNA and is translated at much higher levels [3]. We therefore hypothesize that

Fig. 1 Ψ prediction model training using model organisms and microbiome rRNA Ψ modification. a
Overview of the experiments to generate the Ψ prediction model by nanopore sequencing. b Features of a
region in human 18S rRNA from Illumina sequencing and nanopore sequencing. c Features of a region in a
microbial rRNA from Illumina sequencing and nanopore sequencing. d Box and Whisker plots with 1.5
times interquartile range of the 12 feature candidates of U and Ψ sites derived from nanopore sequencing.
Ins, insertion rate after the base. Ins_len, insertion length mean. Del, deletion rate after the base. Del_len,
deletion length mean. Del_site, deleted site ratio (the site is in a deletion). Mis, overall mismatching ratio.
Mis_A, mutation to A ratio. Mis_C, mutation to C ratio. Mis_G, mutation to G ratio. Base_qual_mean,
average base quality score. Base_qual_STD, base quality score standard deviation. Base_qual_count_0, ratio
of bases with a quality score 0 at a site. e Mutation preference for the Ψ sites in all rRNAs in a ternary plot.
Red, Ψ sites in model organisms. Blue, Ψ sites in the microbiome. f Correlation matrix of modification state
(Ψ=1, U=0) and the 12 feature candidates. The value of correlation coefficient is indicated in each box.
Same labels as panel d. Label type, modification state. g ROC (receiver operating characteristic) curves of
EXT models with different numbers of features included. The number of features and AUC (aera under
curve) values of each model are indicated by the legend. The features are added to the model in the order
of their correlation with the modification state indicated in panel f. For example, 1 feature means “mis_C”, 2
features means “mis_C” and ”mis”, and so on. h ROC curve of the testing set predicted by the optimized
EXT model. The AUC value is indicated in the graph
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ISG transcripts may have elevated levels of Ψ modification to enhance translation

in the presence of PKR.

We tested this hypothesis by treating cells with either IFN-γ or IFN-β followed by

nanopore sequencing (Additional file 1: Fig. S2a). IFN treatments worked well as deter-

mined by upregulation of surface MHC class I (Additional file 1: Fig. S2b). The mRNA

expression levels of the biological replicates were highly correlated (Additional file 1:

Fig. S2c). For improved coverage, we combined the nanopore data from the biological

replicates for downstream analysis (Additional file 1: Fig. S2d). We found strongly up-

regulated mRNA transcripts upon IFN treatment that belong to the ISG genes with the

expected gene ontology of interferon signaling pathway and viral defense (Fig. 2a, Add-

itional file 1: Fig. S3a). These results indicate the feasibility of using nanopore sequen-

cing to study the interferon response transcriptome.

We used the EXT model to predict Ψ modification probabilities in the transcriptome.

In total, ~2.6 million U sites were analyzed in each transcriptome (Additional file 1:

Fig. S3b). We found a “RAΨU” motif and the previous revealed [30] “GUΨC” motif

among top Ψ sites in the untreated sample (Additional file 1: Fig. S3c). The Ψ sites be-

longing to “median” or higher groups in the previous study [30] showed significantly

higher predicted Ψ probabilities than other U sites in the untreated sample (Additional

file 1: Fig. S3d), indicating that our method provides valid prediction of Ψ. For the 500

sites with the highest probability of Ψ modification, the three samples shared some but

also had distinct sites (Additional file 1: Fig. S3e). However, IFN treated samples had a

wider range of GO terms than the untreated sample (Fig. 2b), suggesting that Ψ modifi-

cation becomes more widespread to transcripts belonging to more diverse cellular pro-

cesses. Going beyond the top 500 probable Ψ sites, globally the upregulated gene

transcripts had higher average modification probabilities for IFN treated vs. untreated

samples, with the magnitude of increase strongly correlated with the expression fold

change (Figs. 2c, d, Additional file 1: Fig. S3f). Increased Ψ modification probability in a

mRNA transcript could be attributed to increased number of Ψ sites and/or increased

modification fraction of modified sites. The top 50 genes with highest increase in Ψ

modification probability were related to the interferon pathway and anti-viral response

(Fig. 2e), they included 88.5% of all genes with >10-fold increase and 60.9% of all genes

with >5-fold increase in mRNA expression (Fig. 2f). These results are consistent with

increased Ψ modification in the transcriptome upon interferon treatment enhancing

ISG function.

We used a RT-qPCR method to validate the increased Ψ level in the ISG transcripts.

Our method takes advantage of the standard Ψ detection method using N-cyclohexyl-

N′-(2-morpholinoethyl) carbodiimide (CMC). The Ψ-CMC adduct introduces a RT

stop in cDNA synthesis which reduces the amount of cDNA product compared to the

control reaction without CMC. The differential amount of the cDNA product can then

be precisely measured using real-time qPCR (scheme in Additional file 1: Fig. S3g). We

first showed that the actin mRNA did not change its abundance nor its Ψ level, making

it an appropriate internal control for comparing the Ψ levels of the ISG transcripts

(Fig. 2g, Additional file 1: Fig. S3h, left panels). Ψ level increase in the ISG15 mRNA

upon interferon treatment was validated upon normalization of its expression level and

to the actin mRNA within the same sample (Fig. 2g, Additional file 1: Fig. S3h, right

panels).
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We performed single-read analysis for quantitative Ψ stoichiometry prediction and in-

vestigation of linking modification states of Ψ sites in single molecules of a mRNA tran-

script. Our training set contained the data points from previously reported [31], 100%

modified human rRNA Ψ sites and randomly selected unmodified U sites. We used the

same set of features and the same EXT algorithm, while we replaced all the “rate” features

(like “mismatch ratio”) with “indicator” features (like “mismatch-or-not”) (Additional file

1: Fig. S4a). We tested the Ψ stoichiometry prediction from single reads on 22 partially

modified Ψ sites (5–85%) and found that the predicted stoichiometry matched well with

the previous reported stoichiometry obtained by LC/MS [31] (Fig. 2h).

A new aspect of our method is the ability to perform single-read analysis that links

occurrence of multiple Ψ sites in individual mRNA transcripts. We examined whether

Fig. 2 Interferon treatment elicits more Ψ modification in mRNA. a Log10 expression levels of genes in
untreated sample and IFN β-treated (left) or IFN γ-treated (right) samples. Expression level is calculated as
the peak height of the piled reads. Red, genes with an increase of > 2 fold in expression. Blue, genes with a
decrease of > 2 fold in expression. b Venn diagram of the GO terms of the genes containing the 500 U
sites with the highest Ψ probabilities in each sample. c Scatter plot showing the mean modification
probability change versus log10 expression fold change of each gene between untreated and IFN β-treated
(left) or IFN γ-treated (right) sample. Red, genes with an increase of > 2 fold in expression. Blue, genes with
a decrease of > 2 fold in expression. d Mean Ψ modification probability of genes assigned to groups based
on expression fold change between untreated and IFN β-treated (left) or IFN γ-treated (right) samples.
***p<10-3, and ****p<10-4. e GO analysis of the 50 genes with highest mean Ψ probability change between
untreated and IFN β-treated (top) or IFN γ-treated (bottom) samples. Blue vertical line indicates p=0.05. f
Mean Ψ probability change of the highest 50 genes between untreated and IFN β-treated (left) or IFN γ-
treated (right) samples. Genes with a significant increase in expression levels are marked in red (>10 fold) or
orange (5–10 fold). g Relative Ψ level of mRNA transcript of ACTB (left panel, data from set 1 and set 2
primers) and ISG15 (right panel, data from set 1, set 2, and set 3 primers) in the untreated and interferon-
treated samples measured by RT-qPCR. *p < 0.05; **p < 0.01. h Single read prediction results for the
partially modified Ψ sites in human rRNA. The stoichiometry predicted by our method is compared with the
stoichiometry reported previously by quantitative LC/MS. The correlation coefficient is 0.6566 (Pearson’s r). i
Clustering heatmap showing the Ψ probability of two pairs of sites in single reads of the B2M transcript in
the IFN γ-treated sample. Each row represents a read. Site numbers are defined as the chromosomal
locations in the hg38 nomenclature. These two pairs show either negative linkage (left) or no linkage
(right). j Reads in panel i are assigned to “Ψ” and “U” groups based on the posterior probabilities of site 1 in
Gaussian mixture model (k=2). The cumulative distribution curves of Ψ probabilities of site 2 are drawn for
reads in “Ψ” or “U” groups or for all reads. The curves for “Ψ” and “U” groups undergo two sample
Kolmogorov-Smirnov test; p values are <2.2x10-16 (left) and 0.7684 (right). k P value in the two sample
Kolmogorov-Smirnov test for selected pairs of sites in the B2M transcript in the untreated and IFN
treated samples
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pairs of Ψ site modifications are linked either positively or negatively, meaning whether

the modification state of site 2 is affected by the modification state of site 1 and vice

versa. We selected 31 positions in the B2M transcript (which encodes the common

small subunit of MHC class I molecules) and checked pairwise linkage by two sample

Kolmogorov-Smirnov test. In most cases, the maximum distance D value from two

sample K-S test was small (Additional file 1: Fig. S4b), which is consistent with the

presence of Ψ at site 1 being independent of Ψ at site 2, these two sites are not linked.

An example of a specific unlinked pair is shown in Fig. 2i, j (right panels). A few pairs

of sites had high D values, but most of those were immediately adjacent Ψ sites. The

pairs of Ψ sites with negative linkage tend to avoid each other in the same mRNA mol-

ecule (Additional file 1: Fig. S4c). An example of a specific negatively linked pair is

shown in Fig. 2i, j (left panels) where simultaneous Ψ occurrence at both sites is very

rare. This result indicates that the modification of Ψ at two sites in single molecule

transcripts is negatively related for some and completely independent for others. Upon

IFN treatment, the linkage between some sites in the B2M transcript became more

prominent (Fig. 2k), suggesting that IFN-induced Ψ installation has stronger co-

dependency.

Conclusions
In summary, we generated a supervised-learning-based protocol to predict Ψ modifica-

tion in the human transcriptome and analyzed Ψ on single reads which allows for the

evaluation of stoichiometry and linkage between distal Ψ sites in the same mRNA mol-

ecule. Human genome contains 13 confirmed and putative Ψ installation enzymes [32],

suggesting that Ψ installation is a highly robust and dynamic process in human cells.

How these enzymes coordinate or antagonize their activities remains to be determined.

We found a biological response of Ψ modification change in endogenous mRNA upon

IFN treatment which is consistent with Ψ playing a role in IFN signaling pathway and

viral defense.

Methods
Stool sample collection and total RNA extraction

Stool specimens were self-collected by 1 female volunteer using a commercial “toilet

hat” stool specimen collection kit (Fisherbrand Commode Specimen Collection System;

Thermo Fisher Scientific, 02-544-208). Specimens were immediately transported to the

laboratory (<1h) and thoroughly homogenized. A 100 mg of stool was transferred into

a cryovial using a sterile spatula, and 700 μl RNAlater Stabilization solution was added.

Specimens were stored at −80°C until extraction.

RNAlater was first removed from stool sample by centrifugation at 17,200 rcf for 10

min at 4°C. Pelleted material was lysed in 400 μL of 0.3M NaOAc/HOAc, 10mM

EDTA, and pH 4.8 with an equal volume of acetate-saturated phenol to chloroform pH

4.5 (Invitrogen, AM9722). After addition of 1.0 mm glass lysing beads (Bio-Spec Prod-

ucts, 11079110) in a 1:1 ratio (bead to sample weight), samples were placed in a recip-

rocating bead beater (Mini-Beadbeater-16, Bio-Spec Products) for two 1-min intervals

on maximum intensity. Samples were centrifuged at 17,200 rcf for 15 min at 4°C before

re-extraction and isopropanol precipitation of total RNA. Pellets were washed with 75%
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ethanol before resuspension in an acid-buffered elution buffer (10mM NaOAc, 1mM

EDTA, pH 4.8).

rRNA mixture sample preparation

A mixture of human HEK293T, yeast BY4741 strain, Drosophila S2 cells, and C.

elegans whole animal and stool microbiome total RNA was made by mixing 1 μg

RNA from each model organism sample and 8 μg total RNA from a stool micro-

biome sample. ZYMO RNA Clean & Concentrator-5 (R1013) kit was used on this

mixture to remove all small RNAs <200nt. The final sample was eluted with 20 μl

RNase-Free H2O. The mixture was split into two halves. One half was used for

Illumina sequencing (see below). For nanopore sequencing, the other half was poly-

adenylated by yeast Poly(A) Polymerase (ThermoFisher 74225Z25KU) by incubation

with 0.48 mM ATP, 20 U/μL Poly(A) Polymerase, and 1x Poly(A) Polymerase Re-

action Buffer at 37°C for 15 min. The product was size selected using ZYMO RNA

Clean & Concentrator-5 (R1013) kit, and RNA molecules >200nt were retained.

The sample was eluted with 20 μL RNase-free H2O. Then, ~500 ng of this rRNA

mixture was used for nanopore direct RNA seq library preparation and nanopore

direct RNA sequencing described below.

rRNA mixture Illumina sequencing and mapping

For Illumina sequencing, bisulfite treatment was performed as described previously

[8]. Ψ modification was identified through the deletion at the Ψ site in the sequen-

cing data. Raw reads were demultiplexed via a 4nt barcode on read 2 using je suite

[33] with the following parameters: je demultiplex F1=#read1 F2=$read2 BF=$bar-

code_key BPOS=BOTH BM=READ_2 LEN=6:4 O=$output. Only read 2 from

paired-end reads were mapped with bowtie2 (version: bowtie2-2.3.3.1-linux-x86_64)

[34] using the following parameters: bowtie2 -x $reference -U $read2 -S $ouput -q

-p 10 --local --no-unal. Reads were mapped to either a set of rRNA from model

organisms or a set of bacterial rRNA reads: rfam family RF02541 (bacterial large

subunit) and RF00177 (bacterial small subunit). SAM files from bacterial rRNAs

were processed with a custom python script to count the total number of reads

mapping to each sequence. Only sequences with >1000 reads were processed fur-

ther. Model organism rRNA sequences from human (NCBI: NR_003286.4, NR_

003287.4), yeast (RNACentral: URS00005F2C2D_559292, URS000061F377_4932), C.

elegans (RNACentral: URS00005A42AA_6239, URS00008C9AB9_6239), and Dros-

ophila (RNACentral: URS000030AF9A_7227, URS000008C6A9_7227) to form a ref-

erence genome for bowtie mapping. Bowtie2 output “sam” files were converted to

sorted bam files with samtools [35]. IGV was used to calculate deletion rates with

the following parameters: igvtools [36] count -z 5 -w 1 -e 250 --bases $input $out-

put $reference. Custom python scripts were used to reformat the “wig” file.

Nanopore direct RNA seq library preparation and sequencing

The library preparation followed the protocol of Direct RNA Sequencing Kit (SQK-

RNA002) provided by Oxford Nanopore Technology. Briefly, ~500 ng of Poly(A)+ RNA

sample was used for each run. Each single run contained one biological replicate of one
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sample. The RT Adaptor (RTA) was ligated to the 3′ end of Poly(A)+ RNA by T4 DNA

ligase (NEB M0202S) and then reverse transcribed by SuperScript III Reverse Tran-

scriptase (ThermoFisher 12574018). The RNA was purified by 1.8x RNAClean XP

beads (72 μL) (Beckman Coulter A63987) and then the RNA Adaptor (RMX) was li-

gated to the 3′ end of Poly(A)+ RNA using T4 DNA ligase (NEB M0202S) and then the

RNA was purified with 1x RNAClean XP beads (40 μL). The sample was eluted with 21

μl Elution Buffer. Then, the sample was loaded onto a R9.4.1 flow cell (FLO-MIN106D)

in a MinION sequencer. Each flow cell was sequenced for 72 h.

Nanopore data pre-processing

All raw fast5 files generated during sequencing were uploaded to Midway2 cluster for

the following steps. Reads were base called by guppy base caller (version 3.2.2+9fe0a78)

with min_qscore 7. The reads were aligned to by minimap2 (version 2.18-r1015) [37]

with parameters -ax splice -uf -k14. The rRNA mixture reads are aligned to the same

reference as the rRNA Illumina seq data described above. The human mRNA reads are

aligned to the hg38 human genome reference (GRCh38.p13). The mapped reads were

piled up to the reference chromosomes by samtools (v1.11). The “error” features were

extracted from the mpileup files by customized python scripts (https://github.com/

sihaohuanguc/Nanopore_psU).

Model training

For nanopore seq data of rRNA, all sites mapped to “T” in the reference with >20

coverage made up the data pool. 640 Ψ sites revealed by Illumina sequencing and 689

randomly selected U sites from the data pool made up the model training dataset. The

dataset was divided into 60% training set, 20% validation set, and 20% testing set. The

Ψ modification prediction models were generated by training set and validated with the

validation set by extremely randomized trees (EXT) models with 1–12 features and cus-

tomized parameters. Then, the models were applied to predict Ψ modification probabil-

ities of the testing set and evaluated by AUC of ROC (receiver operating characteristic)

curves derived from the predicted probabilities of the testing set. The final model used

EXT algorithm (n_estimators=200, criterion= “gini”, max_depth=None, min_samples_

split=2) with 12 features.

HeLa cell culture and interferon treatment

HeLa cells (ATCC, authenticated and tested for mycoplasma contamination) were cul-

tured in the presence of 500 U/mL human interferon gamma (IFN γ, Peprotech), 500

U/mL human interferon beta (IFN β, Peprotech), or left untreated, with biological du-

plicates for each. Cells were incubated for 24 h, and an aliquot of each was processed

for flow cytometry. Cells were washed into a flow cytometry staining buffer (FBS-con-

taining RPMI and Hanks’ Balanced Salt Solution) containing the anti-pan-MHC-I anti-

body W6/32 (BioXcell) conjugated with AlexaFluor 647 (Invitrogen). Cells were then

washed 3× and analyzed by a Fortessa X-20 (BD Biosciences) to determine upregulation

of MHC class I. The rest of the cells were used for RNA extraction via the RNeasy Mini

kit (Qiagen) following the manufacturer’s protocol. RNA was eluted in pure water and

quantified by Nanodrop (Thermo). PolyA+ RNA from 50 μg total RNA of each sample
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was extracted by Promega PolyATtract® mRNA Isolation Systems Z5310. Each sample

was eluted with 15 μL H2O.

Prediction of Ψ in HeLa samples

The raw data of two replicates for the untreated, IFN γ-treated, and IFN β-treated sam-

ples were merged after aligned to the hg38 human genome reference (GRCh38.p13).

The merged samples were down sampled so that they have almost the same number of

reads and are directly comparable. The Ψ modification probabilities of all sites mapped

to “T” in the reference with over 20 coverage were evaluated by the EXT model gener-

ated with the rRNA mixture sample. The coverage independence of Ψ probability was

examined by down sampling all sites of the samples to similar coverages (expectation =

30) using different random seeds. We found that the change in mean Ψ probability of

the transcripts maintained the same after down sampling. The coverage completeness

of the transcripts was checked by counting the U sites predicted in the samples [38].

For the untreated sample, the U sites within 5′UTR, CDS, and 3′UTR represented

2.43%, 42.84%, and 54.73% of all U sites, respectively. The gene information was pro-

vided by the comprehensive gene annotation file (gencode.v37.annotation.gff3) in the

GENCODE database (https://www.gencodegenes.org) [39]. The gene ontology (GO)

analysis was performed using the Gene Ontology Resource (http://geneontology.org)

[40, 41]. The sequence logo plots were generated by MEME (https://meme-suite.org/

meme/tools/meme) [42].

CMC-mediated RT-qPCR (CRP) validation of Ψ level in mRNA transcripts

Primer design

qPCR primers were designed using NCBI Primer-BLAST tool (https://www.ncbi.nlm.

nih.gov/tools/primer-blast/). Two to 3 sets of primers were selected to cover the 3′

end, middle, and 5′ end region of the whole transcript. qPCR was performed with Taq-

Man style fluorescent probes. Probes for each PCR primer pair were designed using

IDT PrimerQuest tool (https://www.idtdna.com/pages/tools/primerquest) and exam-

ined using NCBI nucleotide BLAST. Primers and probes were purchased from IDT.

Actin (NM_001101.5) and ISG15 (NM_005101.4) transcripts were selected for Ψ valid-

ation. Below is the list of the sequences of qPCR primers and probes.

ISG15 primer1-Forward: GTGGACAAATGCGACGAACC

ISG15 primer1-Reverse: ATTTCCGGCCCTTGATCCTG

ISG15 probe1: 5′-/56-FAM/TCC TGG TGA/ZEN/GGA ATA ACA AGG GCC/

3IABkFQ/-3′

ISG15 primer2-Forward: GCGCAGATCACCCAGAAGAT

ISG15 primer2-Reverse: GTTCGTCGCATTTGTCCACC

ISG15 probe2: 5′-/56-FAM/TTC CAG CAG/ZEN/CGT CTG GCT GT/3IABkFQ/-3′

ISG15 primer3-Forward: CAGCGAACTCATCTTTGCCAG

ISG15 primer3-Reverse: GACACCTGGAATTCGTTGCC

ISG15 probe3: 5′-/56-FAM/TGG GAC CTG/ZEN/ACG GTG AAG ATG C/

3IABkFQ/-3′

ACTB primer1-Forward: ACAGGAAGTCCCTTGCCATC

ACTB primer1-Reverse: CAGTGTACAGGTAAGCCCTGG
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ACTB probe1:5′-/56-FAM/ACA CGA AAG/ZEN/CAATGCTATCACCTCCC/

31ABkFQ/-3′

ACTB primer2-Forward: AGATGTGGATCAGCAAGCAGG

ACTB primer2-Reverse: GGGGGATGCTCGCTCCA

ACTB probe2: 5'-/56-FAM/TCG TCC ACC/ZEN/GCA AAT GCT TCT AGG/

31ABkFQ/-3′

CMC-mediated RT-qPCR (CRP) experiment

CMC [N-cyclohexyl-N′-(2-morpholinoethyl) carbodiimide] treatment was done as pre-

viously described [43]. 1.5 μg of untreated, IFNβ-treated, and IFNγ-treated total RNA

in 12 μl was mixed with 24 μl TEU buffer (50 mM Tris-HCl (pH 8.3), 4 mM EDTA, 7

M urea) in microcentrifuge tubes. Four microliters of freshly made 1 M CMC (Sigma,

C1011) in TEU buffer or 4 μl TEU buffer was added to each sample for +CMC or

−CMC treatment, respectively. The sample mixture in 40 μl 0.7× TEU was incubated

at 37°C for 1 h. The mixture was diluted to 200 μl with 160 μl of 50 mM KOAc (pH 7)

and 200 mM KCl. One microliter of 5 μg/μl glycogen and 550 μl ethanol were added to

the mixture to precipitate RNA at −80°C for >2 h. The mixture was then centrifuged at

highest speed (17000×g) for 30 min. The RNA precipitate was mixed with 500 μl 75%

ethanol and kept at −80°C for >2 h followed by centrifugation at 17000×g for 30 min.

The washing step was repeated once. The RNA precipitate was mixed with 50 μl of 50

mM Na2CO3 and 2 mM EDTA (pH 10.4) and incubated at 37°C for 6 h to remove

CMC-U/CMC-G adducts. The RNA was purified using Zymo RNA Clean and Concen-

trator column (Zymo, R1014) with in-column DNase treatment by following the manu-

facturer’s manual. The RNA was eluted in 11 μl sterile H2O. The concentration of the

±CMC treated RNA was measured using Nanodrop, and equal amount (~300 ng) of

total RNA was used for RT-qPCR experiment.

Eleven microliters of 300 ng ±CMC-treated total RNA from untreated/IFNβ/IFNγ

samples were mixed with 1 μl 50 μM 5′T22VN (V=A,C,G, N=A,C,G,T) primer (IDT)

and 1 μl 10 mM dNTP mix. The mixtures were incubated at 65°C in thermal cycler for

5 mins followed by incubation at room temperature for 3 min. The PCR tubes were

kept on ice until the addition of the SuperScript IV RT mix. 7 μl RT mix was prepared

for each sample by combining 4 μl 5× SSIV Buffer, 1 μl 100 mM DTT, 1 μl RNaseOUT

RNase inhibitor, and 1 μl SSIV reverse transcriptase. 7 μl RT mix was added to each

PCR tube. The tubes were incubated at 55°C in thermal cycler for 1.5 h. The PCR tubes

were then incubated at 80°C for 10 min followed by incubation on ice immediately to

deactivate RT. 45 μl sterile H2O was added to each tube to dilute the RT mixture to 65

μl, and 2 μl was used for qPCR reaction.

qPCR reaction was performed in 10 μl consisting of 5 μl 2× PrimeTime Gene Expres-

sion Master Mix (IDT, 1055772), 2 μl RT mix, and 3 μl primer and probe mix. Three

microliters of primer and probe mix (1.5 μM each PCR primer and 0.6 μM probe) was

first added into each well of 384-well plate or 96-well plate. RT mix of each sample and

2× PrimeTime Gene Expression Master Mix were mixed at 2:5 ratio to make master

mix based on the number of qPCR reactions for each sample. Seven microliters of the

template and PrimeTime master mix were then added to each well. The plate was spun

on a swing bucket plate centrifuge at 3000 RPM for 2 min. qPCR reaction was
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performed on Bio-Rad CFX384 or CFX96 qPCR machine for 40 cycles. Cq/CT values

were obtained for follow-up data analysis.

Relative Ψ levels for ISG15 transcript was calculated using ACTB-1 as internal refer-

ence. First, we obtained ΔCq(-) = Cq(ISG15,-CMC) - Cq(ACTB,-CMC), and ΔCq(+) =

Cq(ISG15,+CMC) - Cq(ACTB,+CMC); then, we obtained ΔΔCq(ISG15) = ΔCq(+) -

ΔCq(-). The relative Ψ level is represented as 2^ ΔΔCq(ISG15).

Single read Ψ prediction model training

The 100% modified human rRNA sites were reported in a previously work measured

by quantitative LC/MS [31]. A basic assumption was that all reads in our human rRNA

sample would have Ψ at the reported 100% modified sites and U at the reported com-

pletely unmodified sites. The dataset for training contained 25 100% Ψ sites with

49,437 data points and 26 randomly selected U sites with 50,922 data points. The data-

set was divided into 60% training set, 20% validation set, and 20% testing set. Features

were extracted from each base in each read. The features describing the ratios in bulk

prediction model were replaced with features indicating the mismatching and indel

states of the base. The Ψ modification prediction models were generated by training set

and validated with the validation set using the EXT algorithm (n_estimators=200, cri-

terion= “gini”, max_depth=None, min_samples_split=2) with 10 features, which are in-

sertion_ot_not, insertion_length, deletion_or_not, deletion_length, deleted_site_or_not,

mismatch_or_not, mutate_to_A, mutate_to_C, mutate_to_G, base quality score. The

AUC value for the prediction of testing set was 0.8269. To further evaluate the model,

Ψ modification probabilities of data points from 22 previously reported [31], partially

modified human rRNA Ψ sites (modification fraction from 5 to 85%) were predicted.

The base was viewed as Ψ when the probability was larger than 0.5 and as U when the

probability was less than 0.5. The stoichiometry of each site was calculated as the num-

ber of predicted Ψ bases divided by the coverage of the site.

Single read Ψ analysis in HeLa samples

The Ψ probabilities of all U residues in selected genes were predicted with the protocol

above. To investigate the linkage of multiple Ψ on single reads, each read was indexed

so that the U data points with the same read index were from the same read. Ψ prob-

abilities of residues of a certain site were fitted by Gaussian mixture model (GMM)

with 2 components. The sites with abs(μ1-μ2)>0.5 and λ1 and λ2>0.05 were selected for

following analysis. When doing pair wise linkage analysis, the reads were assigned into

“Ψ” and “U” groups when it had >95% posterior probability for one population in the

GMM for site 1. To evaluate whether there was a difference in the Ψ probabilities dis-

tribution of site 2 upon the presence or absence of Ψ at site 1, two sample

Kolmogorov-Smirnov test was performed on the Ψ probabilities cumulative distribu-

tion curves of site 2 in the “Ψ” and “U” groups with an output of the maximum dis-

tance D value and p value. The R library to do a two-sample Kolmogorov-Smirnov test

was from GitHub (https://rdrr.io/github/happyrabbit/DataScienceR/man/pairwise_ks_

test.html).

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02557-y.
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