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Abstract

A growing number of single-cell sequencing platforms enable joint profiling of
multiple omics from the same cells. We present Cobolt, a novel method that not only
allows for analyzing the data from joint-modality platforms, but provides a coherent
framework for the integration of multiple datasets measured on different modalities.
We demonstrate its performance on multi-modality data of gene expression and
chromatin accessibility and illustrate the integration abilities of Cobolt by jointly
analyzing this multi-modality data with single-cell RNA-seq and ATAC-seq datasets.
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Background
Single-cell sequencing allows for quantifying molecular traits at the single-cell level, and
there exist a wide variety of platforms that extend traditional bulk platforms, such as
mRNA-seq and ATAC-seq, to the single cell. Comparison of different cellular features or
modalities from cells from the same biological system gives the potential for a holistic
understanding of the system. Most single-cell technologies require different cells as input
to the platform, and therefore, there remains the challenge of linking together the biolog-
ical signal from the different modalities, with several computational methods proposed
to estimate the linkage between the different modalities, such as LIGER [1] and Signac
(Seurat) [2, 3].
Recently, there are a growing number of platforms that allow for measuring several

modalities on a single cell. CITE-seq [4] jointly sequences epitope and transcriptome;
scNMT-seq [5] jointly profiles chromatin accessibility, DNA methylation, and gene
expression; and sci-CAR [6], Paired-seq [7], and SNARE-seq [8] enable simultaneous
measurement of transcription and chromatin accessibility (we direct readers to [9] for a
comprehensive review). By directly measuring the different modalities on the same cells,
these techniques greatly enhance the ability to relate the different modalities. With the
emergence of joint platforms, new computational methodologies for analyzing multi-
modality data have also been developed. Early methods mainly focused on CITE-seq
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[10–12], which jointly sequences gene expressions and at most a few hundred antibod-
ies. Recently, more methods have been proposed to enable the modeling of cells with
simultaneous measurement of gene expression and higher-dimensional modalities such
as chromatin accessibility, such as MOFA+ (also known as MOFA2 [13]), scMVAE [14],
BABEL [15], and scMM [16].
However, single-cell datasets on a single modality are far more common and are usu-

ally of higher throughput. Indeed, it is natural that joint-modality data from the same
system will be used to augment single-modality data, or vice versa. Therefore, there is a
critical need for an analysis tool that is both a stand-alone application for multi-modality
data as well as a tool for integration of these datasets with single-modality platforms.
BABEL [15] and scMM [16], while not directly targeting this task, do allow the use of the
joint-modality data to predict one single-modality dataset into another type of modality.
However, neither directly integrate the data together to allow for downstream analysis of
the joint set of data regardless of modality, such as cell subtype detection.
Our method Cobolt fills this gap by providing a coherent framework for a full inte-

grative analysis of multi-modality and single-modality platforms. The result of Cobolt
is a single representation of the cells irrespective of modalities, which can then be
used directly by downstream analyses, such as joint clustering of cells across modalities.
Cobolt estimates this joint representation via a novel application of Multimodal Vari-
ational Autoencoder (MVAE) [17] to a hierarchical generative model. The integration of
the single-modalities is done by a transfer learning approach which harnesses the valu-
able information found by joint sequencing of the same cells and extends it to the cells in
the single-cell platform. The end result is a single representation of all of the input cells,
whether sequenced on a multi-modality platform or a single-modality platform. In this
context, Cobolt gives an over-all integrative framework that is flexible for a wide range
of modalities.
We demonstrate Cobolt on two use-cases. The first uses Cobolt to analyze only

a multi-modality sequencing dataset from the SNARE-seq technology; we show that
Cobolt provides a joint analysis that better distinguishes important facets of each
modality, compared to existing methods. The second demonstrates the use of Cobolt to
integrate multi-modality data with single-modality data collected from related biological
systems, where Cobolt creates a joint representation that can be used for downstream
analysis to provide meaningful biological insights. We show that Cobolt also performs
better than related tools in this integrative task.

Results
The Coboltmodel

We develop a novel method, Cobolt, that utilizes joint-modality data to enable the joint
analysis of cells sequenced on separate sequencing modalities. We do this by develop-
ing a Multimodal Variational Autoencoder based on a hierarchical Bayesian generative
model. We briefly describe the premise of the model using the example of two modali-
ties: mRNA-seq and ATAC-seq (for more details in greater generality, see the “Methods”
section). We assume that we have a set of cells with both mRNA-seq and ATAC-seq data
collected using the joint-modality platform (XmRNA

1 and XATAC
1 ), as well as (optionally) a

set of cells with only mRNA-seq data (XmRNA
2 ), and a set of cells with only ATAC-seq data
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(XATAC
3 ). Cobolt takes all of this data as input to find a representation of the cells in a

shared reduced dimensionality space, regardless of modality (Fig. 1A).
Coboltmodels the sequence counts from themodalities inspired by the Latent Dirich-

let Allocation (LDA) [18] model. The LDA model is a popular Bayesian model for count
data which has been successfully applied to genomics in areas such as clustering of single-
cell RNA-seq data [19, 20], single-cell ATAC-seq analysis [21], and functional annotation
[22]. Cobolt builds a hierarchical latent model to model data from different modalities
and then adapts the MVAE approach to both estimate the model and allow for a transfer
of learning between the joint-modality data and the single-modality data.
Cobolt assumes that there are K different types of possible categories that make up

the workings of a cell. For ease of understanding, it is useful to think of these categories
as biological processes of the cell, though the categories are unlikely to actually have a
one-to-one mapping with biological processes. Each category will result in different dis-
tributions of features in each of the modalities—i.e., different regions of open chromatin
in ATAC-seq or expression levels of genes in mRNA-seq for different categories. The fea-
tures measured in a cell are then the cumulative contribution of the degree of activation
of each category present in that cell. The activation level of each category is represented
by the latent variable θc for each cell c, which gives the relative activity of each of the
K categories in the cell. θc is assumed to be an intrinsic property of each cell represent-
ing the underlying biological properties of the cell, while the differences of data observed
in each modality for the same cell are due to the fact that the categories active in a cell
have different impacts in the modality measured (open chromatin in ATAC-seq versus
gene expression in mRNA-seq). We assume θc = σ(zc), where zc is drawn from a Gaus-
sian prior and σ is the soft-max transformation; this is an approximation to the standard
Dirichlet prior for θc that allows use of variational autoencoders to fit the model [23]. The

Fig. 1 An overview of the Coboltmethod. The upper panel shows the workflow of Cobolt, which takes
as input datasets with varying modalities, projects the data into shared latent space, and then performs
visualization and clustering with all datasets combined. The lower panel shows the Cobolt variational
autoencoder model with encoders plotted on the left and decoders on the right
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mean of the posterior distribution gives us an estimate of our latent variable zc for each
cell, and the posterior distribution is estimated using variational autoencoders (VAE).
In the end, Cobolt results in an estimate of the latent variable zc for each cell, which

is a vector that lies in a K-dimensional space. This space represents the shared biological
signal of the individual cells, irregardless of modality, and can be used for the common
analysis tasks of single-cell data, such as visualization and clustering of cells to find sub-
types. Importantly, we can predict the latent variable zc even when a cell does not have all
modalities measured. Moreover, because of the joint-modality platforms, Cobolt does
not require that the different modalities measure the same features in order to link the
modalities together—the fact that some of the cells were sequenced on both platforms
provides the link between different types of features. Therefore, ATAC-seq peaks and
mRNA-seq gene expression can be directly provided as input. This is unlike methods that
do not make use of the joint-modality data and require that the different modalities be
summarized on the same set of features, for example by simplifying ATAC-seq peaks to a
single measurement per gene.

Cobolt as an analysis tool for multi-modality data

While the full power of Cobolt is to integrate together data from single and multi-
ple modality datasets, in its simplest form, Cobolt can be used for the analysis of data
from solely a multi-modality technology. We demonstrate this usage with the SNARE-seq
data [8], which consists of paired transcription and chromatin accessibility sequenced on
10,309 cells of adult mouse cerebral cortices.
We first compare Cobolt with a simple, but common, approach for analyzing joint-

modality data: the two modalities are analyzed separately and then the results are linked
together. This is the strategy of [8], where the authors primarily clustered the gene
expression modality to form clusters of the cells, and then performed a separate analy-
sis on chromatin accessibility modality as a comparison. Focusing on the gene expression
modality is common, since it is often assumed to have the greatest resolution in deter-
mining cell types. However, the reduced representations and clusters created on one
modality may not be representative of all the underlying cell subtypes. Indeed, when we
perform clustering analysis on only the gene expression modality using Seurat [3] and
only the chromatin accessibility modality using cisTopic [21] (consistent with [8], see the
“Methods” section), both modalities find distinct clusters that are not reflected in the
other modality (Additional file 1: Fig. S1). For example, cells identified by marker genes
as non-neuronal cells, such as astrocytes, oligodendrocytes, oligodendrocyte precur-
sors, and microglial cells, are clustered into their respective cell types based on mRNA
expression but are not separated based only on chromatin accessibility (Additional file 1:
Fig. S2A). Similarly, a subset of layer 5/6 cells has distinct chromatin accessibility peaks
but are intermingled with other layer 5/6 cells in the gene expression clusters; these dif-
ferential peaks include one near the gene Car12 which is a marker gene of the previously
annotated subtype of layer 6 (L6 Car12, [24]) and which shows higher expression in this
subset of cells (Additional file 1: Fig. S2B,C). A joint analysis with Cobolt, unlike the
single-modality analyses, finds these subtypes detected by only one modality and not the
other (Additional file 1: Fig. S1).
Next, we compare with other methods that explicitly analyze the two modalities jointly,

like Cobolt. We consider the methods MOFA2, scMM, and BABEL. MOFA2 uses
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Bayesian group factor analysis for dimensionality reduction of multi-modality datasets;
BABEL trains an interoperable neural network model on the paired data that translates
data from onemodality to the other; and scMM [16] uses a deep generativemodel for joint
representation learning and cross-modal generation. We apply each of these methods to
the SNARE-seq data.
Since a joint analysis method should be able to reflect subtype signals captured by all

modalities, we similarly evaluate themethods on howwell their lower-dimensional spaces
represent separate clusters identified separately in each modality, as described above. In
Fig. 2, we visualize the lower-dimensional space generated by Cobolt, MOFA2, scMM,
and BABEL via UMAP (Uniform Manifold Approximation and Projection [25]), where
we color the cells based on the clusters found by clustering the gene expression modal-
ity data (Fig. 2A) and those based on clustering the chromatin accessibility data (Fig. 2B).
We would note that BABEL does not create a single reduced-dimensionality represen-
tation for a paired cell, but rather one per modality (the two latent representations are
learned jointly and are quite similar). BABEL’s lower-dimensionality representation does
quite poorly, separating major clusters of cells found in both modalities, such as layer
2 to 6 intratelencephalic (IT) neurons (colored red, purple, pink, and cyan in Fig. 2A).
Both MOFA2 and scMM capture these large clusters, which are shared between the
modalities. However, we see clusters specific to a single modality not reflected on their
lower-dimensional space. For example, the highlighted gene expression cluster in Fig. 2A
is practicably indistinguishable in the scMMUMAP but separated in the CoboltUMAP.

Fig. 2 Comparison of multi-modality analysis methods. A, B UMAP visualizations of the reduced
dimensionality space created by Cobolt, MOFA2, scMM, and BABEL. The cells are color-coded by the cluster
they are assigned to based on clustering of A only gene expression modality and B only chromatin
accessibility modality. We note that the cluster colors are randomly and separately assigned for panels A and
B. Highlighted in the panels are clusters that are well separated in the analysis of Cobolt, but not the other
methods. More details on the silhouettes per cluster can be found in Additional file 1: Fig. S3



Gong et al. Genome Biology          (2021) 22:351 Page 6 of 21

Differential mRNA expression analysis between this cluster and neighboring cells finds
strong expression of known markers of layer 6 cells in this cluster (Col24a1 [26], Gnb4
[27], Rxfp1 [28], Nr4a2 [29, 30], and Ntng2 [29], Additional file 1: Fig. S4A) as well as
strong expression of Car3 defined in [31] as a marker of a subset of layer 6 IT cells. Neigh-
boring cells do not express these known marker genes and instead express layer 5/6 IT
markers (cyan cluster) or layer 2/3 IT markers (red cluster), indicating that this cluster
missed by scMM consists of a biologically meaningful subset of layer 6 IT cells. Similarly,
in Fig. 2B, we highlight two clusters of cells which clearly separate in the Cobolt analysis
and are separate clusters based on bothmRNA-Seq and chromatin profiles, but are mixed
together in the MOFA2 analysis. Differential mRNA expression analysis between these
clusters reveal genes Adarb2 and Sox6 differ in expression between these groups (Addi-
tional file 1: Fig. S4B), which are known markers whose expression distinguish the CGE
and Pvalb clusters, respectively [31]. Integrative analysis in the next section confirms this
identification by integrating this SNARE-Seq data with annotated scRNA-Seq data and
placing these cells with cells annotated as CGE and Pvalb in [31].
To quantitatively evaluate these observations, we calculate the average silhouette widths

of themodality-specific clustering on the UMAPs generated by Cobolt, MOFA2, scMM,
and BABEL (shown in Fig. 2C), where higher silhouette widths indicate that cells are
closer to other cells in the same cluster. As expected from our observations, BABEL’s
representation results in extremely small silhouette widths, reflecting the many clus-
ters separated in BABEL’s representation. MOFA2 has the smallest silhouette width on
chromatin accessibility clusters, supporting our observation that its joint space does not
represent this modality well; similarly, scMM gives relatively small measures on the gene
expression modality. Cobolt best represents both modalities with the highest silhouette
width measure.

Cobolt for integrating multi-modality data with single-modality data

We now turn to integrating multi-modality data with single-modality data. For this
use-case, we use Cobolt to jointly model three different datasets—the SNARE-seq of
mouse cerebral cortices analyzed in the above section, together with a scRNA-seq and
a scATAC-seq dataset of mouse primary motor cortex (MOp) [31]. In addition, we also
demonstrate Cobolt for joint modeling of single-cell sequencing of human periph-
eral blood mononuclear cells (PBMCs): two multi-modality datasets pairing ATAC and
mRNAmeasurements on 10,970 and 12,012 cells from different samples of the 10X Mul-
tiome platform [32, 33], combined with 23,837 cells from scRNA-Seq [34] and 9030 cells
from scATAC-Seq [35].
The result in both examples is a lower-dimensional latent space that aligns the dif-

ferent modality data into a single representation. In Fig. 3A and B, we visualize this
low-dimensional space via UMAP for the mouse cortex and human PBMCs, respectively,
with cells colored by their data set of origin. We see that the cells from different datasets
are well aligned regardless of their source of origin.
To consider further the biological meaning of the lower-dimensional representation, we

label the MOp cells from the mouse cortex dataset in Fig. 3C by their cellular subtype as
annotated in [31]. For the purposes of comparison across the modalities, we integrated
some cell types in [31] into larger groupings andmodified the names so as to have compa-
rable groups (see the “Methods” section). For the SNARE-seq cells, we do not have the cell
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Fig. 3 The UMAP visualization of A, B the mouse cortex integration and C, D the 10X PBMC integration. Cells
are colored in A, C by dataset of origin, in B known cell type annotation of [31], and in D by our de novo
clustering and annotated based on gene markers. For the mouse cortex integration, both the MOp
scRNA-seq and the MOp scATAC-seq contain a substantial fraction of cells labeled “unannotated” by the
authors of the data and that do not map to known cell types. The cell type abbreviation largely follows the
data paper [31]: astrocytes (Astro), caudal ganglionic eminence interneurons (CGE), endothelial cells (Endo),
layer 2 to layer 6 (L2-6), intratelencephalic neurons (IT), pyramidal tracts (PT), corticothalamic neurons (CT),
L6b excitatory neurons (L6b), microglial cells (MGC), near-projecting excitatory neurons (NP),
oligodendrocytes (Oligo), oligodendrocyte precursors (OPC), smooth muscle cells (SMC), and medial
ganglionic eminence interneurons subclasses based on marker genes (Sst, Pvalb). For the 10X PBMC
integration, the following abbreviations are observed: dendritic cell (DC), plasmacytoid dendritic cells (pDC),
monocytes (mono), and natural killer cells (NK)

types given in [8], so we use the identifications found by our analysis of only the SNARE-
seq cells (see the “Methods” section). We see that cells from the same cellular subtypes
are projected closely regardless of the data source. We also see that the representation of
Cobolt respects the larger category of cell types by grouping three major cell classes:
GABAergic inhibitory neurons (CGE, Sst, Pvalb), glutamatergic excitatory neurons (IT,
L5 PT, L6 CT, L6b, NP), and non-neurons.
The PBMC datasets do not have accompanying annotation, so we applied the Louvain

clustering algorithm to the lower-dimensional representation from Cobolt to identify
potential cell types. Using marker genes [3, 36–38], we classified the clusters into known
subtypes expected for PBMC data (Additional file 1: Figs. S5 and S6) and we see that
important cell types and functions are localized in the Cobolt representation (Fig. 3C).
The mouse cortex data also demonstrates the ability of our joint representation to

capture subtype signals that are not shared across all of the modalities. Indeed, despite
detecting mostly similar cell types, the MOp datasets profile several cell types distinct to
the modality. For example, microglial cells (MGC) and smooth muscle cells (SMC) are
uniquely detected in scATAC-seq. The different datasets also have different cellular com-
positions of their shared subtypes, where astrocytes (Astro) and oligodendrocytes (Oligo)
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are much more abundant in the scATAC-seq (6.55% and 10.50%) than in the SNARE-seq
(4.5% and 2.84%) and scRNA-seq (0.40% and 0.36%). As shown in Fig. 3B, cell populations
unique to one dataset are grouped in the UMAP plot and are distinguishable from the
other datasets/cell types. This indicates that Cobolt reconciles data even when one cell
population is entirely absent or scarcely represented in one or more data sources, which
is important in integrating datasets collected from related but slightly differing settings.
Cobolt also facilitates subtype identification at a finer resolution by transferring infor-

mation between modalities. For example, for the mouse cortex data, Fig. 3B shows the
cell types based on the published annotation. To make the annotation consistent between
scRNA-Seq and scATAC-Seq, some of these cell types are the result of merging some cell
types into larger categories (see the “Methods” section). One cell type, caudal ganglionic
eminence interneurons (CGE, dark green in Fig. 3B), was annotated in the scATAC-seq
MOp dataset as one cluster, but the scRNA-seq annotation further divided CGE cells into
3 subtypes based on marker genes—Lamp5, Vip, and Sncg. Our joint mapping of the cells
allows us to relate the subtypes detected in scRNA-seq to scATAC-seq and provides a
finer resolution breakdown of CGE in scATAC-seq. Specifically, we ran a de novo clus-
tering of our joint mapping of all three datasets by Cobolt (see the “Methods” section
and Additional file 1: Fig. S7). This clustering results in a cluster (cluster 13) composed of
Lamp 5 and Sncg cells, while another (cluster 16) is mostly Vip cells (Fig. 4A). This sub-
division is further validated by gene expression and gene activity levels in these clusters
of marker genes Lamp5 and Vip as well as other genes known to discriminate subtype
Lamp5/Sncg from subtype Vip [39], such as Reln and Npy (Fig. 4B). We further validated
the scATAC-seq clusters through de novo differential accessibility (DA) and differential
expression (DE) analysis (Additional file 1: Fig. S8). We identified 94 DA genes between
these two clusters. Seventy-eight of the DA genes are also found DE in the mRNA, and
all of them have the same direction of fold changes in the DE and the DA analyses, i.e.,
the genes with lower/higher gene expression in cluster 13 compared to cluster 16 are also

Fig. 4 AWe show the relative composition of cells annotated as CGE by the scATAC-seq dataset in the
clusters found by clustering of the reduced dimensionality of Cobolt and compare that to the relative
composition of the cells annotated in the subtypes Lamp5, Vip, and Sncg by the scRNA-seq dataset. B Plots
of the gene expression (scRNA-seq) and gene body accessibility summaries (scATAC-seq) in clusters 13 and
16 of the marker genes that distinguish between cell types Lamp5 and Vip [31, 39]
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less/more accessible. This shows that the joint model of Cobolt can help distinguish
noisy cells in one dataset with additional information from other datasets or modalities.
Furthermore, Cobolt is robust to poor-quality cells and low-expressed genes by using

a count-based model, which should naturally down-weight the influence of low-count
cells. In the above analysis of the mouse cortex data, we filtered out 2.5% of MOp mRNA
cells and 15.8% ATAC-seq cells due to low counts and other quality control measures
following the work of [31]. Yet Cobolt is robust to these choices, even in the extreme
case where there is no filtering on cells and only a minimal filter on genes is performed
(Additional file 1: Fig. S9).

Comparisonwith existingmethods

As described in the introduction, there are few existingmethods that allow full integration
of multi-modality sequencing data with single-modality data. MOFA2 only analyzes joint-
modality data; BABEL and scMM train a joint model on the paired joint-modality data
and allow the user to apply this model to single-modality datasets to predict the other
“missing” modality. Unlike Cobolt, these two methods do not use the single-modality
data in the training of the model, nor do they provide a representation of the single-
modality data in a single shared representation space regardless ofmodality—for example,
for the purposes of joint clustering of all of the cells across modalities.
Therefore, to have additional points of comparison, we apply the LIGER and Signac

methods, which are designed for integrating unpaired modalities (the implementation
details can be found in the “Methods” section). LIGER applies an integrative nonnegative
matrix factorization (iNMF) approach to project the data onto a lower-dimensional space
and then builds a shared nearest neighbor graph for joint clustering. Signac implements
canonical correlation analysis (CCA) for dimensionality reduction; Signac subsequently
transfers cell labels by identifying mutual nearest neighbor cell pairs across modalities.
To evaluate the performance of these methods when integrating single-modality data

with multiple-modality data, we return to the multi-modality datasets described above
to create artificial sets of multiple-modality data and single-modality data. For the 10X
Multiome data, we make use of the fact that we have two datasets from the 10X Mul-
tiome platform run on different patient samples: PBMC of a healthy male donor aged
30–35 (“Multiome Chromium X”) [32] and PBMC of a female donor aged 25 (“Multiome
unsorted”) [33]. We ignore the pairing information in the Multiome unsorted data and
treat the mRNA and ATAC measurements as coming from unpaired, separate sequenc-
ing experiments. For the SNARE-Seq data, we randomly assign the cells to be considered
as from either the multi-modality dataset (20%) or the single-modality datasets (80%) and
run each of the methods. The choice of 20% and 80% was based on the relative size of the
SNARE-Seq joint-modality data to the individual MOp scATAC-Seq data and scRNA-Seq
datasets and reflects the fact that single-modality datasets are much higher-throughput
than paired-modality data.
We give to each of the methods the multi-modality data from the cells that remain

paired and for the cells where we ignore the pairing information give the mRNA and
ATAC data from those cells as if they were single-modality datasets. For LIGER and
Signac, which are not designed for multiple-modality data, we hide the pairing informa-
tion on all cells and treat all of the cells as if they were collected on different cells. In
this way, we have a ground truth on how the cells in the single-modality datasets should
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be connected to each other, and we can compare the methods by evaluating whether
coordinates of the reduced dimensions Z for the pairs of cells assigned to the single-
modality datasets were close together. Specifically, for each method, we evaluate for each
cell in the mRNA single-modality set its coordinates ẐmRNA and for a fixed number k
locate its k nearest neighbors in the ATAC single-modality set based on the coordinates
ẐATAC . We then calculate the percentage of mRNA single-modality cells whose paired
cell in the ATAC single-modality is included in its set of nearest neighbors. The reverse
analysis was done using chromatin accessibility as the query and evaluating the percent-
age whose nearest neighbors include their mRNA pair. Many popular clustering routines
use nearest-neighbor graphs for identifying clusters, so this is a metric directly related
to whether the cells assigned to the single-modality data would likely correctly cluster
together across modalities, but avoids having to specify cluster parameters, especially as
applied to different methods (and LIGER and Signac have their own clustering techniques
specific for their methods).
As shown in Fig. 5, the Cobolt joint representation does a much better job for both

the SNARE-Seq and 10X multiome data of assigning coordinates to the single-modality
cells that place them close to their matching pair. The proportion of single-modality cells
that are neighbors to their pair is much larger than any of these other methods in both
datasets. Surprisingly, for the SNARE-seq data, the other methods that make use of the
joint-modality data to develop their model (scMM and BABEL) do much worse than
Signac and LIGER which do not have any information linking the cells together. The
10X multiome data, which has similar numbers of cells from the single-modality datasets
as the multi-modality dataset, shows scMM and BABEL perform comparably to Signac,
though not as well as Cobolt; similarly, we see improved performance of scMM and
BABEL in the SNARE-Seq data when we increase the proportion of dual-modality cells
to 80% and only 20% of cells being single-modality (Additional file 1: Fig. S12), but still
well below the performance of Cobolt. This points to the power of truly integrating the
high-throughput single-modality data into the analysis, particularly when there are more
cells sequenced from the single-modality data, as is frequently the case.
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modality. The plot gives the results when using gene expression data as the query. We observe very similar
results when chromatin accessibility is used as the query (Additional file 1: Fig. S10)
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Subtype detection is a critical aspect of single-cell data analysis, and integrating single-
modality data with multiple-modality data gives the potential for higher resolution
detection. Our nearest-neighbor metric is directly related to subtype detection, with a
higher neighbor proportion corresponding roughly to finding larger clusters in a cluster-
ing algorithm. scMM and BABEL only provide cross-modality predictions, rather than
a joint embedding of the single-modality data with the multiple-modality data. Down-
stream tasks such as clustering for subtype detection must be done on either the mRNA
expression space or the chromatin expression space, and as we have seen in the SNARE-
seq only analysis each of which can miss important features of the data. Indeed, this may
be an important factor in their low performance on our nearest-neighbor analysis. LIGER
and Signac do provide a joint embedding of all of the data, but do so without the use of
the pairing information for the joint-modality data for training the embedding.
The previous analysis provides a comparison with a known ground-truth and the eval-

uation at different levels of analysis. Now, we return to the joint embedding of MOp
scRNA-Seq and scATAC-Seq with the SNARE-Seq data that we considered in the pre-
vious section and consider the performance of LIGER and Signac, which performed
comparatively well. We would note that LIGER and Signac have their own clustering
strategies, separate from their dimensionality reduction, but we focus here on the results
of their dimensionality reduction. We provided LIGER and Signac only the MOp data, as
there is no clear way of including the SNARE-seq into LIGER and Signac without focus-
ing on one of its modalities and adding extra batch correction steps. We compare the
results to the clusters published with the scRNA-seq and scATAC-seq data in [31] (Addi-
tional file 1: Fig. S13). We see that Cobolt generates a UMAP visualization that well
represents rare subpopulations and respects broader cell classes. LIGER gives greater sep-
aration between cell types but splits several subtypes into far-away islands, such as for L5
PT, MGC, and Astro. Signac adopts an asymmetric strategy of transferring scRNA-seq
labels to scATAC-seq data, and as a result, Signac performs well on major cell types but
poorly on under-represented subpopulations in scRNA-seq such as astrocytes (Astro),
which accounts for only 0.4% of the cells in scRNA-seq but 6.55% in scATAC-seq. Fur-
thermore, Cobolt, unlike LIGER and Signac, not only groups together the subtypes,
but appears to also represent the three broader categories major GABAergic inhibitory
neurons, glutamatergic excitatory neurons, and non-neurons.
These cluster identifications that we highlight from [31] are relatively robust, well-

known cell types, representing the large structural changes in the data, for which we
expectmost strategies to be able to detect reasonably well. On the other hand, our nearest-
neighbor analysis emphasizes the performance at a high level of resolution. Putting both
of these together points to the fact that Cobolt provides a superior integration of the
datasets across a wide spectrum of resolutions.

Discussion
In this paper, we have shown that Cobolt successfully integrates multi-modal data and
provides a representation that can be used for downstream analysis tasks, such as cell-
type discovery. Pseudo-time estimation for reconstructing developmental order of cells
[40], while not meaningful for the datasets we considered, is another important down-
stream application where the integrated representation of Cobolt allows the analysis of
cells from different modalities. Future work could make use of the graphical model and
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inferred parameters to establish connections between features. For example, the probabil-
ity vectors generated by B(i) naturally provide a reduced-dimensional space of molecular
features and can potentially help in the construction of gene networks.
We would note that while we have focused on the capability of Cobolt to analyze data

from twomodalities, the underlying method can be extended to larger number of modali-
ties and integration of different combinations ofmodalities, such as datasets with different
pairs of modalities (see the “Methods” section). Thus, Cobolt provides a framework to
integrate a wide range of varieties of multi-modality platforms as well as single-modality
platforms.
Cobolt is available as a Python package at https://github.com/epurdom/cobolt_

manuscript. All of the code used for the analysis is available as a github repository: https://
github.com/epurdom/cobolt_manuscript.

Conclusions
We have shown that Cobolt is a flexible tool for analyzing multi-modality sequencing
data, whether separately or integrated with single-modality data. Cobolt synthesizes the
varied data into a single representation, preserving meaningful biological signal in the
different modalities and at different resolutions. Moreover, this latent variable space is
appropriate for standard downstream analysis techniques commonly used for analyzing
cells without any further specialized adjustments, allowing Cobolt to fit into standard
analysis pipelines.

Methods
While the most common application of joint-modality platforms consists of pairs of
modalities (such as the example of mRNA-seq and ATAC-seq we described above), we
will describe Cobolt in generality, assuming that there areM modalities.

Modeling modality dependency

For an individual cell c, we can (potentially) observe M vectors of data xc ={
x(1)
c , · · · , x(M)

c
}
, each vector of dimension d1, . . . , dM corresponding to the number of

features of each modality. We assume a Bayesian latent model, such that for each cell
there is a latent variable zc ∈ RK representing the biological signal of the cell, where zc is
assumed drawn from a Gaussian prior distribution. Given zc, we assume that the data x(m)

c

for each modality has an independent generative process, potentially different for each
modality. Specifically, we assume that the data x(m)

c from each modality are conditionally
independent given the common latent variable zc. That is,

p
(
x(1)
c , · · · , x(M)

c , zc
)

= p(zc)
M∏
i=1

p
(
x(i)
c |zc

)
.

We use q
(
zc|x(1)

c , · · · , x(M)
c

)
as a variational approximation of the posterior distribution

p
(
zc|x(1)

c , · · · , x(M)
c

)
. q

(
zc|x(1)

c , · · · , x(M)
c

)
, the encoder, is assumed Gaussian with param-

eters modeled as neural networks (i.e., Variational Autoencoder, VAE [41]). This allows
for estimation of the posterior distribution p

(
zc|x(1)

c , · · · , x(M)
c

)
and the underlying latent

variable for each cell c. The posterior mean of this distribution ẑc will be our summary of
the shared representation across modalities.

https://github.com/epurdom/cobolt_manuscript
https://github.com/epurdom/cobolt_manuscript
https://github.com/epurdom/cobolt_manuscript
https://github.com/epurdom/cobolt_manuscript
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Importantly, this model can be estimated even when not all of the input data contains
all modalities. In this case, an individual cell c contains a subset of the modalities, Sc ⊂
{1, . . . ,M}, and consists of data xc =

{
x(i)
c , i ∈ Sc

}
. Without all modalities observed, the

cell can contribute to the estimation of the model as its distribution can be explicitly
written out:

p(xc, zc) = p(zc)
∏
i∈Sc

p
(
x(i)
c |zc

)
.

Furthermore, we can estimate latent variables for such cells by using posterior distri-
bution of zc when conditioning only on the observed modalities, q

(
zc|

{
x(i)
c , i ∈ Sc

})
.

Instead of using separate neural networks for 2M − 1 posterior distributions of differ-
ent modality combinations, we adopt a technique introduced in Multimodal Variational
Autoencoder (MVAE) [17], which largely reduces the number of encoders to 2M (See
Additional file 2: Supplementary Methods for inference details).
As an example, if there are two modalities, mRNA-seq and ATAC-seq, and we have n1

cells with paired data from the joint modality platform, X1 = (
XmRNA
1 ,XATAC

1
)
; n2 cells

with only mRNA measured, X2 = XmRNA
2 ; and n3 cells with only ATAC-seq measured,

X3 = XATAC
3 . All N = n1 + n2 + n3 cells can be used in the estimation of the joint

distribution of the latent variables, and estimates of the latent variables can be found as
the mean of the relevant approximate posterior distributions:

Ẑ1 = E
(
Z|XmRNA

1 ,XATAC
1

)
(Paired cells)

ẐmRNA
2 = E

(
Z|XmRNA

2

)
(mRNA-seq only)

ẐATAC
3 = E

(
Z|XATAC

3

)
(ATAC-seq only)

Correcting formissingmodalities

In practice, we find that the distributions qφ

(
zc|

{
x(i)
c , i ∈ S

})
have subtle differences for

different subsets S , i.e., the latent variables Ẑ1, ẐmRNA
2 , and ẐATAC

3 show distinct sepa-
rations (Additional file 1: Fig. S15). One possibility could be due to platform differences
between the different datasets that remain even after our batch correction. However, we
also see differences in these distributions even if we only consider the joint-modality data,
where we can estimate all of these posterior distributions on the same cells, ẐmRNA

1 =
E

(
Z|XmRNA

1
)
or ẐATAC

1 = E
(
Z|XATAC

1
)
(Additional file 1: Fig. S15). Indeed, there is noth-

ing in the optimization of the posterior distribution that requires these different posterior
distributions to be the same.
While the effects are small, these subtle differences can affect downstream analyses,

e.g., in clustering cells for subtype discovery. Rather than directly force these posterior
distributions tomatch in our estimation of themodel, Cobolt fits themodel as described
above (using all of the data) and then uses the paired data to train a predictionmodels that
predict Ẑ1 from the modality-specific estimates ẐmRNA

1 and ẐATAC
1 . We then apply these

prediction models to ẐmRNA
2 and ẐATAC

3 to obtain estimates Ẑ2 and Ẑ3 which are better
aligned to be jointly analyzed in the same space. In practice, we find XGBoost [42] and
k-nearest neighbors algorithm work equally well. We present results based on XGBoost.
We would note that there is little difference in performance when we predict coordinates
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into the ATAC-Seq space E
(
Z|XATAC)

or mRNA-Seq space E
(
Z|XmRNA)

, rather than the
joint space (E

(
Z|XmRNA

1 ,XATAC
1

)
), see Additional file 1: Fig. S16.

Modeling single modality of sparse counts

The choice of the generative distribution pψ

(
x(i)|z) should be chosen to reflect the data

and in principle can vary from modality to modality. For example, single-modality VAE
models using zero-inflated negative binomial distributions (ZINB) [43] have been pro-
posed for scRNA-seq datasets to account for sparse count data. However, we found
ZINB models performed less well for technologies that measure modalities like chro-
matin accessibility, which results in data with sparser counts and larger feature sizes than
scRNA-seq. Therefore, we develop a latent model for these types of modalities inspired
by the Latent Dirichlet Allocation (LDA) [18].
Our generative model for a single modality i starts by assuming that the counts mea-

sured on a cell are the mixture of the counts from different latent categories. In the
genomic setting, these categories could correspond to biological processes of the cell, for
example. Each category has a corresponding distribution of feature counts. The cumu-
lative feature counts for a cell c are then the result of combining the counts across its
categories, i.e., a mixture of the categories’ distributions. Specifically, each cell c has a
latent probability vector θc ∈[ 0, 1]K describing the proportion of each category that
makes up cell c. Each category k has a probability vector σ(βk) that provides the distribu-
tion of its feature counts. Here, σ indicates the softmax function that transforms βk to a
probability vector that sums to 1. The observed vector of counts xc is a multinomial draw
with probabilities πc, where πc = σ(B)θc, and B = (β1, . . . ,βK ) is a matrix of the indi-
vidual βk vectors. To extend this model to multiple modalities, we assume a shared latent
variable zc that is common across modalities, but each modality has a different B(i) that
transforms the shared latent class probabilities into the feature space of the modality.
Furthermore, it is well known that there can be meaningful technical artifacts (“batch

effects”) between different datasets on the same modality, for example due to differences
between platforms or laboratory preparations. To counter this, our model also adjusts
the sampling probabilities σ(B(i))θc differently for data from different batches within the
same modality i. We would note that the model can also take batch-corrected counts
as input, such as are available for mRNA expression data (e.g., [44–46]), but we antici-
pate that for some modality types stand-alone batch correction techniques may not be
as well developed. We evaluate the effect of our batch correction on the 10x Multiome
data, which consists of two runs of 10x Multiome on the different patient input sam-
pled at different times. This creates a batch effect between the multi-modality input and
the single-modality input where we know the ground truth of how the single-modality
data should be linked. We use the same nearest-neighbor analysis as in Fig. 5B, with and
without the batch correction terms and see much improved performance using the batch
correction (Additional file 1: Fig. S17). This type of quantitative nearest-neighbor analy-
sis is not possible for the SNARE-Seq data, since we do not have two different batches of
paired multi-modality data, but we visually see large improvement due to the batch cor-
rection when analyzing the single-modality datasets jointly with the multi-modality data
(Additional file 1: Fig. S18).
The parameter θc is the latent variable describing the contributions of each category to

cell c and is shared across all modalities. In LDA models, it is typically assumed to have
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a Dirichlet prior distribution. However, we use a Laplace approximation to the Dirichlet
introduced in ProdLDA [23], which allows for incorporation into a VAEmodel. This prior
assumes a latent variable zc with a Gaussian prior and sets θc = σ(zc), where σ is the soft-
max transformation. We use this approximation to the Dirichlet distribution to provide a
multi-modality method appropriate for sparse sequence count data.

Data processing andmethod implementation

SNARE-seq processing and annotation

We downloaded the processed counts of the adult mouse cerebral cortex data (10,309
cells) [8].We applied quality filtering that retained cells having a number of genes detected
greater than 20. For genes, we used the ones detected in more than 5 cells and have a total
number of counts greater than 10. For peaks, we removed the ones having nonzero counts
in more than 10% of cells or less than 5 cells. We performed clustering analysis using
Seurat (version 3.2.2) on the gene expression modality. The data were normalized using
SCTransform function with default parameters, followed by principal component anal-
ysis (PCA) using the default 3000 variable features. Louvain algorithm was applied on the
first 50 PCs with the resolution parameter equals 0.65. Cell type annotations are gener-
ated on the resulting 15 clusters using the marker genes [31].We applied cisTopic (version
0.3.0) on the chromatin accessibility data with default parameters. Model selection was
conducted based on log-likelihood using runWrapLDAModels and selectModel

functions, and 30 topics are used in the results.
For the integration of SNARE-seq with the MOp data using Cobolt, we map the

SNARE-seq counts to the peak set called on the MOp scATAC-seq data. Since peaks are
typically called in a dataset-specific manner, the ideal integration strategy would be to
redo the peak-calling with all datasets combined. However, in Additional file 1: Fig. S10,
we show that our simple alternative of mapping data to peaks called on a different dataset
from the same system does not result in significant performance loss for Cobolt.

MOp data preprocessing

We downloaded the single-nucleus 10x v3 transcriptome dataset (90,266 cells) and the
open chromatin dataset (15,731 cells, sample 171206_3C) [31]. For mRNA-seq quality
control, we filtered cells that have less than 200 genes detected or have greater than 5%
mitochondrial counts. For ATAC-seq, we utilized the TSSEnrichment and blacklist
region reads calculation functionalities in Signac. We subsetted cells with the blacklist
ratio less than 0.1, the number of unique molecular identifiers (UMIs) greater than 50,
and the TSS enrichment score greater than 2 and less than 20. A total of 88,021 and 13,249
were retained for mRNA-seq and ATAC-seq, separately. To make annotation in the two
datasets consistent, we merged the layer 2/3 IT and layer 4/5 IT subclusters in ATAC-seq
data. For mRNA-seq, we merged Lamp5, Vip, and Sncg into one CGE cluster. When inte-
grating the MOp datasets with the SNARE-seq data, we used only genes detected in both
the scRNA-seq and the SNARE-seq datasets.

10X PBMC data preprocessing

PBMC datasets were downloaded from the 10X website (Multiome Chromium X, Mul-
tiome unsorted, scRNA-seq, scATAC-seq). For chromatin accessibility, we mapped the
scATAC-seq reads and the Multiome unsorted reads to the peaks called on the Multiome

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/2.0.0/10k_PBMC_Multiome_nextgem_Chromium_X
https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-10-k-1-standard-2-0-0
https://www.10xgenomics.com/resources/datasets/20-k-human-pbm-cs-3-ht-v-3-1-chromium-x-3-1-high-6-1-0
https://support.10xgenomics.com/single-cell-atac/datasets/2.0.0/10k_PBMC_ATAC_nextgem_Chromium_X
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Chromium X data. No quality filtering was applied to any of the four 10X datasets.
Clusters with high mitochondrial expression are identified and annotated as low qual-
ity clusters, and clusters with the majority of cells identified by DoubletFinder [47] are
annotated as doublet clusters in the downstream clustering analysis.

Gene activity calculation

Gene activity matrix for chromatin accessibility is generated by counting the number of
reads overlapping genes and their promoters using BEDOPS [48], where a promoter is
defined as the region starting from the transcription start site (TSS) to 3000 base pairs
upstream of TSS.

Cobolt network architecture and training

For each modality i, the encoder takes as input the log-plus-one transformed counts. We
use one fully connected layer of size 128, followed by fully connected layers for mean μ̃(i)

and log-variance log �̃(i).We tried networks with one or two hidden layers of varying sizes
and found the results pretty stable. The decoders follow our probability model for sparse
counts (see also Additional file 2: Supplementary methods, for details) and do not contain
neural networks. We set the parameter of the Dirichlet prior to 50 divided by the number
of latent variables K. The actual parameters used for the Gaussian prior are calculated
using the Laplace approximation (see also Additional file 2, Supplementary methods, for
details). For the ELBO objective, we set the weighting terms λA reciprocal to the number
of samples available for modality combination A. We set the hyperparameter weights η

for conditional likelihood terms to 1. Adam optimizer is used, and we select a learning
rate of 0.005 after tunning. We adopt a KL cost annealing schedule that linearly increases
the weight of the KL term γ from 0 to 1 in the first 30 epochs. During training, we use a
batch size of 128 and a fixed number of 100 epochs.
We note that the softmax transformation from zc to θc is not a one-to-one transfor-

mation. Therefore, we scale ẑc to mean 0 before the downstream correction, followed by
clustering and visualization.
In correcting for missing modalities, we predict using XGBoost, setting the objective

function to regression with squared loss, the learning rate to 0.8, and the maximum depth
of a tree to 3. XGBoost is applied separately to each modality (scRNA-Seq and scATAC-
Seq), resulting in our corrected estimates Ẑ2, Ẑ3.
The number of latent variables K was set to 10 in the SNARE-seq analysis and the

method comparison analysis so as to be consistent with the default of several other meth-
ods for comparison purposes. We used K = 30 for the mouse cortex integration and
K = 10 for the 10X PBMC integration. Estimations of the data’s marginal likelihood were
used to assist the selection of K.
For the mouse cortex data integration, we focused on genes and peaks that have top

30% average expression and removed the ones in the top 1%. For the SNARE-seq analysis
and the 10X PBMC integration, all features were included in training. The choice of top
features is less important here, which we found to have a small effect on the results.

Clustering and visualization of Cobolt results

Clusters were generated on the corrected latent variables using Louvain algorithm [49].
We used the implementation of naive Louvain algorithm in FindClusters function
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from the R package Seurat. All parameters, other than the resolution controlling the num-
ber of clusters identified, were set to default. The results of the clustering of the integrative
analysis of the SNARE-Seq with the MOP scRNA-Seq and ATAC-Seq from the mouse
cortex are given in Additional file 3: Table S1 (resolution = 0.8). The results of the cluster-
ing of the integrative analysis of the 10X PBMC data are given in Additional file 4: Table S2
(resolution = 0.8). UMAPs were generated using the umap function from the R package
uwot with the number of neighbors set to 30.

MOFA2, scMM, and BABEL analysis on the SNARE-seq data

Following the vignette of MOFA2, we used the top 2500 variable genes and cisTopic
embeddings of the chromatin accessibility modality as input. Variable genes are selected
using the FindVariableFeatures function from Seurat using selection method
“vst”. The number of factors was set to 10. Two factors were identified as technical fac-
tors after inspecting their correlation with the total number of reads counts per cell. The
UMAP representation was then generated using the rest of the factors with the number
of neighbors set to 30. scMMwas run with batch size equals 32, number of epochs equals
50, learning rate equals 10−4, number of latent dimensions equals 10, number of hidden
dimension for gene expression equals 100, and number of hidden dimensions for chro-
matin accessibility equals 500. The parameters were chosen following the scMM paper.
BABEL was run with the number of latent dimensions set to 10 and the batch size set to
256. Other parameters were chosen to follow the built-in SNARE-seq defaults.

Differential analysis

DE analysis on gene expression and DA analysis on gene activities were performed using
the Wilcoxon rank sum test followed by Bonferroni correction, implemented by the
FindMarkers function in Seurat. Gene expression and gene activities were visualized
by heatmaps using DoHeatmap in Seurat. DA analysis on the peaks for the SNARE-seq
analysis was performed using Fisher’s exact test followed by the Benjamini–Hochberg
procedure (following [8]). Peak-by-cluster matrix was normalized by size factors calcu-
lated by Monocle [50] and visualized by heatmaps (following [8]). Genes and peaks with
adjusted p-values lower than 0.05 were called significant.

LIGER and Signac analysis on theMOp data

LIGER and Signac (Seurat) take as input gene-level count summaries from different
modalities, such as gene expression or gene body methylation/chromatin accessibility
measures. The input is different from Cobolt, which uses the peak summaries directly
without needing to summarize at the gene level. Therefore, we applied these two meth-
ods on the gene expression and gene activity matrices, where the latter is defined as the
summarized chromatin accessibility counts over gene and promoter regions.
We ran LIGER (version 0.5.0) using default parameters on the filtered data. Parameter

K for factorization is set to 30 after inspecting the plot generated by function suggestK.
Louvain clustering was performed by setting the resolution such that 17 clusters were
obtained.We ran Signac (version 1.1.0) on the same filtered data.We first performed clus-
tering analysis on the gene expression modality and then transferred the cluster labels to
the open chromatin modality. Both the gene expression matrix and gene activity matrix
were normalized by running NormalizeData followed by ScaleData. For the gene
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activity matrix, the scale.factor parameter was set to the median of UMI distribu-
tion as suggested by the vignette. Other parameters were kept as default. We then ran
FindTransferAnchors with the default number of dimensions equals 30, which is
the same as used for LIGER. Finally, we ran TransferData with weight reduction set
to “cca” or the Latent Semantic Indexing (LSI) from analyzing the peak matrix. Results
using LSI are presented in the paper as it performed better than the “cca” option.

Test training split for method comparison

For scMM and BABEL, which do not allow the single-modality data to be used in the
training of themodel, we assign 20% of the cells as pairedmodality data that is used for the
training set; the trained model was then used to generate the embedding on the rest of the
cells without providing the pairing information. This provided separate estimates for the
unpaired mRNA and ATAC modalities, respectively, with which we evaluated whether
the paired cells were close together. For Cobolt, which allows the use of single-modality
data for the training of the model, we assign 20% of the cells as paired modality data and
the other 80% were given as single-modality data, and then we trained the model on all of
the cells. For LIGER and Signac, which are not designed for multiple-modality data, we
hide the pairing information on all cells and treat all of the cells as if they were collected
on different cells. To be comparable with the other methods, we only evaluated their
performance on the 80% of cells treated by the other methods as single-modality data.
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