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Abstract
Single-cell CRISPR screens are a promising biotechnology for mapping regulatory
elements to target genes at genome-wide scale. However, technical factors like
sequencing depth impact not only expression measurement but also perturbation
detection, creating a confounding effect. We demonstrate on two single-cell CRISPR
screens how these challenges cause calibration issues. We propose SCEPTRE: analysis of
single-cell perturbation screens via conditional resampling, which infers associations
between perturbations and expression by resampling the former according to a
working model for perturbation detection probability in each cell. SCEPTRE
demonstrates very good calibration and sensitivity on CRISPR screen data, yielding
hundreds of new regulatory relationships supported by orthogonal biological evidence.

Background
The noncoding genome plays a crucial role in human development and homeostasis: over
90% of loci implicated by GWAS in diseases lie in regions outside protein-coding exons
[1]. Enhancers and silencers, segments of DNA that modulate the expression of a gene
or genes in cis, harbor many or most of these noncoding trait loci. While millions of cis-
regulatory elements (CREs) have been nominated through biochemical annotations, the
functional role of these CREs, including the genes that they target, remain essentially
unknown [2]. A central challenge over the coming decade, therefore, is to unravel the
cis-regulatory landscape of the genome across various cell types and diseases.
Single-cell CRISPR screens (implemented by Perturb-seq [3, 4], CROP-seq [5],

ECCITE-seq [6], and other protocols) are among the most promising technologies for
mapping CREs to their target genes at genome-wide scale. Single-cell CRISPR screens
pair CRISPR perturbations with single-cell sequencing to survey the effects of perturba-
tions on cellular phenotypes, including the transcriptome. High multiplicity of infection
(MOI) screens deliver dozens perturbations to each cell [7–9], enabling the interrogation
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of hundreds or thousands of CREs in a single experiment. Single-cell screens overcome
the limitations of previous technologies for mapping CREs [9]: unlike eQTLs, single-
cell screens are high-resolution and can target rare variants, and unlike bulk screens,
single-cell screens measure the impact of perturbations on the entire transcriptome.
Despite their promise, high-MOI single-cell CRISPR screens pose significant statistical

challenges. In particular, researchers have encountered substantial difficulties in calibrat-
ing tests of association between a CRISPR perturbation and the expression of a gene.
Gasperini et al. [9] found considerable inflation in their negative binomial regression-
based p-values for negative control perturbations. Similarly, Xie et al. [8] found an excess
of false-positive hits in their rank-based Virtual FACS analysis. Finally, Yang et al. [10]
found that their permutation-based scMAGeCK-RRA method deems almost all gene-
enhancer pairs significant in a reanalysis of the Gasperini et al. data. These works propose
ad hoc fixes to improve calibration, but we argue that these adjustments are insufficient
to address the issue. Miscalibrated p-values can adversely impact the reliability of data
analysis conclusions by creating excesses of false-positive and false-negative discoveries.
In this work, we make two contributions. We (i) elucidate core statistical challenges at

play in high-MOI single-cell CRISPR screens and (ii) present a novel analysis method-
ology to address them. We identify a key challenge that sets single-cell CRISPR screens
apart from traditional differential expression experiments: the “treatment”—in this case
the presence of a CRISPR perturbation in a given cell—is subject to measurement error
[3, 11, 12]. In fact, underlying this measurement error are the same technical factors con-
tributing to errors in the measurement of gene expression, including sequencing depth
and batch effects. These technical factors therefore act as confounders, invalidating tra-
ditional nonparametric calibration approaches. On the other hand, parametric modeling
of single-cell expression data is also fraught with unresolved difficulties.
To address these challenges, we propose SCEPTRE (analysis of Single-CEll PerTurba-

tion screens via conditional REsampling; pronounced “scepter”). SCEPTRE is based on
the conditional randomization test [13], a powerful and intuitive statistical methodology
that, like parametric methods, enables simple confounder adjustment, and like nonpara-
metric methods, is robust to expression model misspecification. We used SCEPTRE to
analyze two recent, large-scale, high-MOI single-cell CRISPR screen experiments. SCEP-
TRE demonstrated excellent calibration and sensitivity on the data and revealed hundreds
of new regulatory relationships, validated using a variety of orthogonal functional assays.
In the “Discussion” section, we describe an independent work conducted in parallel to
the current study in which we leveraged biobank-scale GWAS data, single-cell CRISPR
screens, and SCEPTRE to dissect the cis and trans effects of noncoding variants associ-
ated with blood diseases [14]. This work highlights what we see as a primary application
of SCEPTRE: dissecting regulatory mechanisms underlying GWAS associations.

Results
Analysis challenges

We examined two recent single-cell CRISPR screen datasets — one produced by
Gasperini et al. [9] and the other by Xie et al. [8] — that exemplify several of the anal-
ysis challenges in high-MOI single-cell CRISPR screens. Gasperini et al. and Xie et al.
used CRISPRi to perturb putative enhancers at high MOI in K562 cells. They sequenced
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polyadenylated gRNAs alongside the whole transcriptome and assigned perturbation
identities to cells by thresholding the resulting gRNA UMI counts.
Both Gasperini et al. and Xie et al. encountered substantial difficulties in calibrating

tests of association between candidate enhancers and genes. Gasperini et al. computed p-
values using a DESeq2 [15]-inspired negative binomial regression analysis implemented
in Monocle2 [16], and Xie et al. computed p-values using Virtual FACS, a nonparametric
method proposed by these authors. Gasperini et al. assessed calibration by pairing each
of 50 non-targeting (or negative) control gRNAs with each protein-coding gene. These
“null” p-values exhibited inflation, deviating substantially from the expected uniform dis-
tribution (Fig. 1a, red). To assess the calibration of Virtual FACS in a similar manner, we
constructed a set of in silico negative control pairs of genes and gRNAs on the Xie et
al. data (see the “Methods” section). The resulting p-values were likewise miscalibrated,
with some pairs exhibiting strong conservative bias and others strong liberal bias (Fig. 1a,
gray-green).
A core challenge in the analysis of single-cell CRISPR screens is the presence of

confounders, technical factors that impact both gRNA detection probability and gene
expression. The total number of gRNAs detected in a cell increases with the total num-
ber of mRNA UMIs detected in a cell (ρ = 0.35, p < 10−15 in Gasperini et al. data;

Fig. 1 CRISPR screen analysis challenges can lead to false positives and false negatives. a QQ-plot of negative
control p-values produced by Gasperini et al. (red; downsampled for visualization) and Xie et al. (gray-green).
These p-values deviate substantially from the expected uniform distribution, indicating test miscalibration.
b–d Technical factors, such as sequencing depth and batch, impact gRNA detection probability and
observed gene expression levels in both Gasperini et al. (b) and Xie et al. (c) data. Thus, technical factors act
as confounders (d), differentiating CRISPR screens from traditional differential expression applications. e
Monocle2 estimates the dispersion of each gene by projecting each gene’s raw dispersion estimate onto the
fitted raw dispersion-mean expression curve. This estimation procedure leads to miscalibration for
high-dispersion genes
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ρ = 0.25, p < 10−15 in Xie et al. data; Figs. 1b, c). Technical covariates, such as sequenc-
ing depth and batch, induce a correlation between gRNA detection probability and gene
expression, even in the absence of a regulatory relationship (Fig. 1d). This confounding
effect can lead to severe test miscalibration and is especially problematic for traditional
nonparametric approaches, which implicitly (and incorrectly) treat cells symmetrically
with respect to confounders.
Parametric regression approaches, like negative binomial regression, are the most

straightforward way to adjust for confounders. However, parametric methods rely heavily
on correct model specification, a challenge in single-cell analysis given the heterogene-
ity and complexity of the count data. We hypothesized that inaccurate estimation of the
negative binomial dispersion parameter was (in part) responsible for the p-value infla-
tion observed by Gasperini et al. Monocle2 estimates a raw dispersion for each gene,
fits a parametric mean-dispersion relationship across genes, and finally collapses raw
dispersion estimates onto this fitted line (Fig. 1e). We computed the deviation from uni-
formity of the negative control p-values for each gene using the Kolmogorov-Smirnov
(KS) test, represented by the color of each point in Fig. 1e. Circled genes had significantly
miscalibrated p-values based on a Bonferroni correction at level α = 0.05. Genes sig-
nificantly above the curve showed marked signs of p-value inflation, suggesting model
misspecification. Analysis challenges are summarized in Table 1.
Gasperini et al. and Xie et al. incorporated ad hoc adjustments into their analyses

to remedy the observed calibration issues. On closer inspection, however, these efforts
were not satisfactory to ensure reliability of the results. Gasperini et al. attempted
to calibrate p-values against the distribution negative control p-values instead of the
more standard uniform distribution. This adjustment lead to overcorrection for some
gene-enhancer pairs (false negatives) and undercorrection for others (false positives)
(Fig. S1). Along similar lines Xie et al. compared their Virtual FACS p-values to gene-
specific simulated null p-values to produce “significance scores” that were used to
determine significance. These significance scores were challenging to interpret and could
not be subjected to multiple hypothesis testing correction procedures, as they are not
p-values.

Improvements to the negative binomial approach

We attempted to alleviate the miscalibration within the negative binomial regression
framework by following the recommendations of Hafemeister and Satija, who recently
proposed a strategy for parametric modeling of single-cell RNA-seq data [17]. First, we
abandoned the DESeq2-style size factors of Monocle2 and instead corrected for sequenc-
ing depth by including it as a covariate in the negative binomial regressionmodel. Second,

Table 1 Statistical methods employed in single-cell CRISPR screen analysis. Parametric methods are
non-robust to misspecified gene expression distributions, and classical nonparametric methods
cannot adjust for confounders. Conditional resampling (implemented in this work as SCEPTRE)
addresses both challenges

Method class Example Robust to expression
model misspecification

Able to adjust for confounders

Parametric Monocle [16] No Yes

Nonparametric Virtual FACS [8] Yes No

Conditional resampling SCEPTRE Yes Yes
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we adopted a more flexible dispersion estimation procedure: we (i) computed raw disper-
sion estimates for each gene, (ii) regressed the raw dispersion estimates onto the mean
gene expressions via kernel regression, and (iii) projected the raw dispersion estimates
onto the fitted nonparametric regression curve.
We reanalyzed the Gasperini et al. and Xie et al. negative control data using the

improved negative binomial regression approach. In addition to sequencing depth, we
included as covariates in the regression model the total number of expressed genes
per cell and the technical factors accounted for in the original analysis (total number
of gRNAs detected per cell, percentage of transcripts mapped to mitochondrial genes,
and sequencing batch). Improved negative binomial regression exhibited better calibra-
tion than Monocle regression on both Gasperini et al. and Xie et al. datasets. Still,
improved negative binomial regression demonstrated clear p-value inflation. We con-
cluded that parametric count models likely are challenging to calibrate to high-MOI
single-cell CRISPR screen data.

SCEPTRE: analysis of single-cell perturbation screens via conditional resampling

To address the challenges identified above, we propose SCEPTRE, a methodology for
single-cell CRISPR screen analysis based on the simple and powerful conditional ran-
domization test [13] (Fig. 2). To test the association between a given gRNA and gene,
we first fit the improved negative binomial statistic described above. This yields a z-
value, which typically would be compared to a standard normal null distribution based
on the parametric negative binomial model. Instead, we build a null distribution for this
statistic via conditional resampling. First, we estimate the probability that the gRNA
will be detected in a given cell based on the cell’s technical factors, such as sequenc-
ing depth and batch. Next, we resample a large number of “null” datasets, holding gene
expression and technical factors constant while redrawing gRNA assignment indepen-
dently for each cell based on its fitted probability. We compute a negative binomial
z-value for each resampled dataset, resulting in an empirical null distribution (gray his-
togram in Fig. 2). Finally, we compute a left-, right-, or two-tailed probability of the
original z-value under the empirical null distribution, yielding a well-calibrated p-value.
This p-value can deviate substantially from that obtained based on the standard nor-
mal (Fig. 2, Fig. S2). While we used a negative binomial regression test statistic for
this work, SCEPTRE in principle is compatible with any test statistic that reasonably
tracks the expression data, including, for example, statistics based on machine learning
algorithms.
We leverage several computational accelerations to enable SCEPTRE to scale to large

single-cell CRISPR screen datasets. First, we approximate the null histogram of the resam-
pled test statistics using a skew-t distribution to obtain precise p-values based on a limited
number of resamples (500 in the current implementation). Second, we employ statisti-
cal shortcuts that reduce the cost of each resample by a factor of about 100 (see the
“Methods” section). Finally, we implement the method so that it can run in parallel on
hundreds or thousands of processors on a computer cluster. (We used this approach in
our independent study of noncoding blood trait GWAS loci [14].)We estimate that SCEP-
TRE can analyze 2.5 million gene-gRNA pairs on a dataset of 200,000 cells in a single day
using 500 processors.
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Fig. 2 SCEPTRE: Analysis of single-cell perturbation screens via conditional resampling. A schematic and
outline of the SCEPTRE methodology for one gene and one gRNA. SCEPTRE estimates the probability of
gRNA detection in each cell based on its technical factors. It then builds a null distribution for the negative
binomial z-value by independently resampling gRNA presence or absence for each cell according to these
probabilities to form “negative control” datasets. A skew-t distribution is fit to the resulting histogram to
obtain precise p-values based on a limited number of resamples, against which the original NB z-value is
compared. The dashed line shows the standard normal distribution, against which the NB z-value typically
would be compared

SCEPTRE demonstrates good calibration and sensitivity on real and simulated data

First, we investigated the calibration of SCEPTRE in a small, proof-of-concept simula-
tion study (Fig. 3a). We considered a class of negative binomial regression models with
fixed dispersion and two technical covariates (sequencing depth and batch).We simulated
expression data for a single gene in 1000 cells using four models selected from this class:
the first with dispersion = 1, the second with dispersion = 0.2, the third with dispersion
= 5, and the last with dispersion= 1, but with 25% zero-inflation.We also simulated neg-
ative control gRNA data using a logistic regression model with the same covariates as the
gene expression model. We assessed the calibration of SCEPTRE and negative binomial
regression across the four simulated datasets. To explore the impact of model misspec-
ification on SCEPTRE and the negative binomial method (on which SCEPTRE relies),
we fixed the dispersion of the negative binomial method to 1. The negative binomial
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Fig. 3 SCEPTRE demonstrates good calibration and sensitivity under known ground truth. a Numerical
simulation comparing SCEPTRE and improved negative binomial regression on four simulated datasets. The
negative binomial model was incorrectly specified on three of the four datasets. SCEPTRE maintained good
calibration across all four datasets, despite model misspecification and confounder presence. b, c Application
of SCEPTRE, improved negative binomial regression, Monocle regression, and Virtual FACS to pairs of negative
control gRNAs and genes in b the Gasperini et al. data and c the Xie et al. data. Compared to the other
methods, SCEPTRE showed good calibration. d SCEPTRE p-values for Gasperini et al. TSS-targeting controls
were highly significant, and in general, more significant than the original empirical p-values. e Comparison of
p-values produced by SCEPTRE for ARL15-enh to p-values produced by an arrayed, bulk RNA-seq CRISPR
screen of ARL15-enh. The results of the two analyses coincided almost exactly, with both analyses rejecting
gene ARL15 with high confidence after a BH correction. Dotted blue lines, rejection thresholds

method worked as expected when the model was correctly specified. However, negative
binomial regression broke down in all three cases of model misspecification. SCEPTRE
demonstrated good calibration in all settings.
Next, to assess the calibration of SCEPTRE on real data, we applied SCEPTRE to test

the association between negative control gRNAs and genes in the Gasperini et al. data
(Fig. 3b) and Xie et al. data (Fig. 3c). We compared SCEPTRE to Monocle regression and
the improved negative binomial method. For the Xie et al. data, we also compared to
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Virtual FACS, the method originally applied to the data. SCEPTRE showed good calibra-
tion on both datasets; by contrast, Monocle regression and improved negative binomial
regression demonstrated signs of severe p-value inflation, while Virtual FACS exhibited a
bimodal p-value distribution peaked at 0 and 1.
SCEPTRE demonstrated modestly better calibration on the Gasperini et al. data than

on the Xie et al. data. This likely is because the Gasperini et al. negative control pairs
— which consisted of real, non-targeting gRNAs — were higher-quality than the Xie et
al. negative control pairs — which were constructed in silico using enhancer-targeting
gRNAs (see the “Methods” section). We reasoned that the Xie et al. negative controls
carried mild regulatory signal, resulting in slight inflation of the SCEPTRE p-values on
these data relative to the Gasperini et al. data.
To assess the sensitivity of SCEPTRE, we applied SCEPTRE to test the 381 positive

control pairs of genes and TSS-targeting gRNAs assayed by Gasperini et al. (Fig. 3d).
Allowing for the fact that the empirical correction employed by Gasperini et al. limited
the accuracy of p-values to about 10−6, the SCEPTRE p-values for the positive controls
were highly significant, and in particular, almost always more significant than the original
empirical p-values, indicating greater sensitivity. Finally, we assessed the sensitivity of
SCEPTRE on the Xie et al. data. Xie et al. conducted an arrayed CRISPR screen with bulk
RNA-seq readout of ARL15-enh, a putative enhancer of gene ARL15. Both SCEPTRE and
the bulk RNA-seq differential expression analysis rejected ARL15 at an FDR of 0.1 after
a Benjamini-Hochberg (BH) correction, increasing our confidence in the calibration and
sensitivity of SCEPTRE (Fig. 3e).

Analysis of candidate cis-regulatory pairs

We applied SCEPTRE to test all candidate cis-regulatory pairs in the Gasperini et al.
(n = 84, 595) and Xie et al. (n = 5, 209) data. A given gene and gRNA were considered
a “candidate pair” if the gRNA targeted a site within one Mb the gene’s TSS. SCEPTRE
discovered 563 and 139 gene-enhancer links at an FDR of 0.1 on the Gasperini et al. and
Xie et al. data, respectively. We used several orthogonal assays to quantify the enrich-
ment of SCEPTRE’s discovery set for regulatory biological signals, and we compared the
SCEPTRE results to those of other methods.
SCEPTRE’s discovery set on the Gasperini et al. data was highly biologically plausible,

and in particular, more enriched for biological signals of regulation than the original dis-
covery set. Gasperini et al. discovered 470 gene-gRNA pairs at a reported FDR of 0.1.
The SCEPTRE p-values and original empirical p-values diverged substantially: of the 670
gene-enhancer pairs discovered by either method, SCEPTRE and the original method
agreed on only 363, or 54% (Fig. 4a). Gene-enhancer pairs discovered by SCEPTRE were
physically closer (mean distance= 65 kb) to each other than those discovered by the orig-
inal method (mean distance = 81 kb; Fig. 4b). Furthermore, SCEPTRE’s gene-enhancer
pairs fell within the same topologically associating domain (TAD) at a higher frequency
(74%) than the original pairs (71%). Pairs within the same TAD showed similar levels of
HI-C interaction frequency across methods, despite the fact that SCEPTRE discovered
85 more same-TAD pairs (Fig. 4c). Finally, enhancers discovered by SCEPTRE showed
improved enrichment across all eight cell-type relevant ChIP-seq targets reported by
Gasperini et al. (Fig. 4d, Fig. S5a).
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Fig. 4 Application of SCEPTRE to Gasperini et al. data yields biologically plausible gene-enhancer links. a
Comparison of the original empirical p-values to those obtained from SCEPTRE. The two analysis methods
differed substantially, with 200 gene-enhancer links discovered only by SCEPTRE and 107 discovered only by
the original analysis. Annotations correspond to pairs in panel (e). b Distribution of distances from TSS to
upstream paired enhancers. Compared to Monocle NB (original) and improved NB analyses, SCEPTRE paired
genes with nearer enhancers on average. c For those gene-enhancer pairs falling in the same TAD, the
cumulative distribution of the fractional rank of the HI-C interaction frequency compared to other
distance-matched loci pairs within the same TAD. SCEPTRE showed similar enrichment despite finding 25%
more within-TAD pairs compared to the original analysis. Inset table shows gene-enhancer pairs falling in the
same TAD. SCEPTRE found 93 more total pairs compared to the original analysis, and a higher percentage of
pairs fell within the same TAD. d Enrichment of ChIP-seq signal from seven cell-type relevant transcription
factors and one histone mark (H3K27ac) among paired enhancers. SCEPTRE showed stronger enrichment
across all ChIP-seq targets. e Five gene-enhancer pairs discovered by SCEPTRE but not the original analysis,
each supported by a whole blood GTEx eQTL or FANTOM enhancer RNA correlation p-value

When we compared discoveries unique to SCEPTRE (n = 200) against those unique to
the original method (n = 107), the disparities became more extreme (Fig. S3). For exam-
ple, only 57% of pairs unique to the original method fell within the same TAD, compared
to 73% unique to SCEPTRE. We concluded that many pairs in the Gasperini et al. discov-
ery set likely were false positives. Finally, when we compared SCEPTRE to the improved
negative binomial method (n = 824 discoveries), we observed even greater differences in
discovery set quality in favor of SCEPTRE (Figs. 4b–d).
We highlight several especially interesting gene-enhancer pairs discovered by

SCEPTRE. Five discoveries (Fig. 4a, labels 1–5; Fig. 4e) were nominated as probable
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gene-enhancer links by eQTL [18] and eRNA [19] p-values in relevant tissue types. The
SCEPTRE p-values for these pairs were 1–2 orders of magnitude smaller than the orig-
inal empirical p-values, hinting at SCEPTRE’s greater sensitivity. Additionally, six pairs
(Fig. 4a, blue triangles) were discovered by SCEPTRE but discarded as outliers by the orig-
inal analysis, underscoring SCEPTRE’s ability to handle genes with arbitrary expression
distributions.
We repeated the same orthogonal analyses for the SCEPTRE discoveries on the Xie

et al. data, comparing SCEPTRE’s results to those of Xie et al. Xie et al.’s analysis
method, Virtual FACS, outputted “significance scores” rather than p-values (see the
“Analysis challenges” section). Because significance scores cannot be subjected to multi-
ple hypothesis testing correction procedures (like BH), we compared the top 139 Virtual
FACS pairs (ranked by significance score) against the set of 139 (FDR = 0.1) SCEPTRE
discoveries (Fig. 5a; see the “Methods” section). Of the 195 pairs in either set, SCEP-
TRE and Virtual FACS agreed on only 83, or 43%. The SCEPTRE discoveries were more
biologically plausible: compared to the Virtual FACS pairs, the SCEPTRE pairs were (i)
physically closer (Fig. 5b), (ii) more likely to fall within the same TAD (Fig. 5c), (iii) more
likely to interact when in the same TAD (Fig. 5c), and (iv) more enriched for all eight
cell-type relevant ChIP-seq targets (Fig. 5d, Fig. S5b). When we examined the symmetric
difference of the discovery sets, these differences became more pronounced (Fig. S4).
We additionally compared SCEPTRE to Monocle regression (n = 180 discoveries)

and improved negative binomial regression (n = 156 discoveries) on the Xie et al. data.
SCEPTRE uniformly dominated Monocle: SCEPTRE pairs were physically closer to one
another (median distance = 44kb versus 110kb; Fig. 5b); SCEPTRE pairs interacted more
frequently and were more likely to fall within the same TAD (68% versus 61%; Fig. 5c);
and SCEPTRE pairs were more enriched for seven of eight cell type-relevant ChIP-seq
targets (one target, DP22, was a tie; Fig. 5d). Improved negative binomial regression was
more competitive than Monocle across metrics (Fig. 5b–d). However, as noted earlier,
improved negative binomial regression exhibited severe miscalibration on the negative
control pairs (Fig. 3d), rendering its discovery set less reliable than that of SCEPTRE.

Gene expression level and sensitivity

To better understand when SCEPTRE works best, we investigated the impact of gene
expression level on the sensitivity of SCEPTRE. We binned candidate gene-enhancer
pairs into non-overlapping categories based on mean expression level of the gene. On
both the Gasperini et al. and Xie et al. data, we found that candidate pairs containing
a highly expressed gene were more likely to be rejected than candidate pairs contain-
ing a lowly-expressed gene (Tables S1, S2), indicating SCEPTRE’s greater sensitivity for
highly expressed genes. We observed similar trends for the other methods (not shown),
consistent with the intuition that highly-expressed genes carry more information.

Discussion
In this work we illustrated a variety of statistical challenges arising in the analysis of
high-MOI single-cell CRISPR screens, leaving existing methods (based on parametric
expression models, permutations, or negative control data) vulnerable to miscalibration.
To address these challenges, we developed SCEPTRE, a resampling method based on
modeling the probability a given gRNA will be detected in a given cell, based on that
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Fig. 5 SCEPTRE discovers biologically plausible gene-enhancer links on Xie et al. data. a Comparison of
SCEPTRE p-values to Virtual FACS significance scores. Significant SCEPTRE p-values (n = 139) are colored in
blue and purple, and the top 139 Virtual FACS pairs, as ranked by significance score, are colored in gray-green
and purple. The two sets diverged substantially, with only 43% of pairs in shared across sets. b–d These
panels are similar to the corresponding panels in Fig. 4. SCEPTRE pairs showed strong enrichment for
biological signals associated with enhancer activity on b physical distance, c HIC interaction, and d ChIP-seq
metrics relative to other methods

cell’s technical factors. We found that SCEPTRE exhibited very good calibration despite
the presence of confounding technical factors and misspecification of single-cell gene
expression models. We implemented computational accelerations to bring the cost of
the resampling-based methodology down to well within an order of magnitude of the
traditional negative binomial parametric approach, making it quite feasible to apply for
large-scale data. We used SCEPTRE to reanalyze the Gasperini et al. and Xie et al. data.
While our analysis replicated many of their findings, it also clarified other relationships,
removing a large set (> 20% for Gasperini) of pairs that exhibited a weak relationship
and adding an even larger set (> 40% for Gasperini) of new, biologically plausible gene-
enhancer relationships. These links were supported by orthogonal evidence from eQTL,
enhancer RNA co-expression, ChIP-seq, and HI-C data.
As an example application of SCEPTRE, we highlight STING-seq, a platform that we

developed in parallel to the current work in an independent study [14]. STING-seq
leverages biobank-scale GWAS data and single-cell CRISPR screens to map noncoding,
disease-associated variants at scale. First, we used statistical fine-mapping to identify a
set of 88 putatively causal variants from 56 loci associated with quantitative blood traits.
We perturbed the selected variants at highMOI in K562 cells using an improved CRISPRi
platform and sequenced gRNAs and transcriptomes in individual cells using ECCITE-seq
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[6], a protocol that enables the profiling of multiple modalities and the direct capture of
gRNAs.
We then applied SCEPTRE to quantify associations between perturbations and changes

in gene expression in cis (within 500 kb) and trans. SCEPTRE confidently mapped 37
noncoding variants to their cis target genes, in some cases identifying a causal variant
among a set of candidate variants in strong LD. Nine variants were found to regulate a
gene other than the closest gene, and four variants were found to regulate multiple genes,
an apparent example of pleiotropy. Several perturbations lead to widespread changes in
gene expression, illuminating trans-effects networks. For example, two variants that were
found to regulate the transcription factor GFI1B in cis altered the expression of hundreds
of genes in trans upon perturbation; these differentially expressed genes were strongly
enriched for GFI1B binding sites and blood disease GWAS hits. We concluded on the
basis of this study SCEPTRE can power the systematic dissection regulatory networks
underlying GWAS associations.
Despite these exciting results, key challenges remain in the analysis of single-cell

CRISPR screens. Currently, SCEPTRE does not estimate the effect sizes of perturba-
tions, disentangle interactions among perturbed regulatory elements [20, 21], or leverage
information from off-targeting gRNAs to improve power. Such extensions could be imple-
mented by harnessing more sophisticated, multivariate models of gRNA detection or
applying methods for estimating variable importance in the presence of possibly misspec-
ified models [22]. The statistical challenges that we identified in this study — specifying
an accurate expression model and accounting for technical factors — and the solutions
that we proposed — conditional resampling and massively parallel association testing —
will help guide the development of future versions of SCEPTRE.

Conclusions
Single-cell CRISPR screens will play a key role in unraveling the regulatory architecture
of the noncoding genome [23]. Technological improvements and methodological innova-
tions will increase the scope, scale, and variety of theses screens over the coming years.
For example, screens of candidate CREs could be extended to different, disease-relevant
cell types and tissues (although this remains a challenge); new combinatorial indexing
strategies, such as scifi-RNA-seq, could enable the scaling-up of such screens to millions
of cells [24]; different CRISPR technologies, such as CRISPRa, could enable the activation,
rather than repression, of candidate CREs, yielding new insights; and information-rich,
multimodal single-cell readouts could strengthen conclusions drawn about regulatory
relationships [25]. SCEPTRE is a flexible, robust, and efficientmethod: it has now success-
fully been applied to three single-cell CRISPR screen datasets, across two technologies
(CROP-seq and ECCITE-seq), to map regulatory relationships both in cis and in trans.
We expect SCEPTRE to facilitate the analysis of future single-cell screens of the noncod-
ing genome, advancing understading of CREs and enabling the detailed interpretation of
GWAS results.

Methods
Gasperini et al. and Xie et al. data

Gasperini et al. used CROP-seq [5, 11] to transduce a library of CRISPR guide RNAs
(gRNAs) into a population of 207,324 K562 cells expressing the Cas9-KRAB repressive
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complex at a high multiplicity of infection. Each cell received an average of 28 pertur-
bations. The gRNA library targeted 5779 candidate enhancers, 50 negative controls, and
381 TSS-targeting positive controls. Xie et al. used Mosaic-seq [7, 8] to perturb at a
high multiplicity of infection 518 putative enhancers in a population of 106,670 Cas9-
KRAB-expressing K562 cells. Each putative enhancer was perturbed in an average of 1276
cells.

Cis and in silico negative control pairs for Xie et al. data

We generated the set of candidate cis gene-enhancer relationships on the Xie et al. data
by pairing each protein-coding gene with each gRNA targeting a site within 1 Mb of the
TSS of the gene. This procedure resulted in 3553 candidate cis gene-enhancer links that
we tested using SCEPTRE and Virtual FACS.
To generate the set of in silico negative control pairs for calibration assessment, we (i)

identified gRNAs that targeted sites far (> 1 Mb) from the TSSs of known transcription
factor genes and (ii) paired these gRNAs with genes located on other chromosomes. We
excluded all pairs containing genes known to be transcription factors, and we downsam-
pled the pairs so that each gRNA was matched to 500 genes. The final in silico negative
control set consisted of 84,500 pairs, the elements of which were not expected to exhibit
a regulatory relationship.

Conditional randomization test

Consider a particular gene-gRNA pair. For each cell i = 1, . . . , n, let Xi ∈ {0, 1} indicate
whether the gRNA was present in the cell, let Yi ∈ {0, 1, 2, . . . } be the gene expression in
the cell, defined as the number of unique molecular identifiers (UMIs) from this gene, and
let Zi ∈ R

d be a list of cell-level technical factors. Letting (X,Y ,Z) = {(Xi,Yi,Zi)}ni=1, con-
sider any test statistic T(X,Y ,Z) measuring the effect of the gRNA on the expression of
the gene. The conditional randomization test [13] is based on resampling the gRNA indi-
cators independently for each cell. Letting πi = P[Xi = 1|Zi], define random variables

˜Xi
ind∼ Ber(πi). (1)

Then, the CRT p-value is given by

pCRT = P[T(˜X,Y ,Z) ≥ T(X,Y ,Z) | X,Y ,Z] . (2)

This translates to repeatedly sampling ˜X from the distribution (1), recomputing the test
statistic with X replaced by ˜X, and defining the p-value as the probability the resampled
test statistic exceeds the original. Under the null hypothesis that the gRNA perturbation
does not impact the cell (adjusting for technical factors), i.e., Y ⊥⊥ X | Z, we obtain
a valid p-value (2), regardless of the expression distribution Y |X,Z and regardless of the
test statistic T. We choose as a test statistic T the z-score of Xi obtained from a negative
binomial regression of Yi on Xi and Zi:

Yi
ind∼ NegBin(μi,α); log(μi) = β0 + Xiβ + ZT

i γ , (3)

where α is the dispersion. Following Hafemeister and Satjia [17], we estimate α by pool-
ing dispersion information across genes, and we include sequencing depth as an entry
in the vector of technical factors Zi (see the “Improvements to the negative binomial
approach” section).
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Accelerations to the conditional randomization test

We implemented computational accelerations to the conditional randomization test.
First, we employed the recently proposed [26] distillation technique to accelerate the
recomputation of the negative binomial regression for each resample. The idea is to use a
slightly modified test statistic, consisting of two steps:

1 Fit (̂β0, γ̂ ) from the negative binomial regression (3) except without the gRNA term:

Yi
ind∼ NegBin(μi,α); log(μi) = β0 + ZT

i γ . (4)

2 Fit ̂β from a negative binomial regression with the estimated contributions of Zi
from step 1 as offsets:

Yi
ind∼ NegBin(μi,α); log(μi) = Xiβ + ̂β0 + ZT

i γ̂ . (5)

Conditional randomization testing with this two-step test statistic, which is nearly identi-
cal to the full negative binomial regression (3), is much faster. Indeed, since the first step
is not a function of Xi, it remains the same for each resampled triple (˜X,Y ,Z). There-
fore, only the second step must be recomputed with each resample, and this step is faster
because it involves only a univariate regression.
Next, we accelerated the second step above using the sparsity of the binary vector

(X1, . . . ,Xn) (or a resample of it). To do so, we wrote the log-likelihood of the reduced neg-
ative binomial regression (5) as follows, denoting by �(Yi, log(μi)) the negative binomial
log-likelihood:

n
∑

i=1
�(Yi,Xiβ + ̂β0 + ZT

i γ̂ ) =
∑

i:Xi=0
�(Yi, ̂β0 + ZT

i γ̂ ) +
∑

i:Xi=1
�(Yi,β + ̂β0 + ZT

i γ̂ )

= C +
∑

i:Xi=1
�(Yi,β + ̂β0 + ZT

i γ̂ ).

This simple calculation shows that, up to a constant that does not depend on β , the
negative binomial log-likelihood corresponding to the model (5) is the same as that cor-
responding to the model with only intercept and offset term for those cells with a gRNA:

Yi
ind∼ NegBin(μi,α); log(μi) = β + ̂β0 + ZT

i γ̂ , fori such thatXi = 1. (6)

The above negative binomial regression is therefore equivalent to Eq. 5, but much faster
to compute, because it involves much fewer cells. For example, in the Gasperini et al. data,
each gRNA is observed in only about 1000 of the 200,000 total cells.

SCEPTREmethodology

In practice, wemust estimate the gRNA probabilities πi as well as the p-value pCRT. This is
because usually we do not know the distribution X|Z and cannot compute the conditional
probability in Eq. 2 exactly. We propose to estimate πi via logistic regression of X on Z,
and to estimate pCRT by resampling ˜X a large number of times and then fitting a skew-t
distribution to the resampling null distribution T(˜X,Y ,Z)|X,Y ,Z. We outline SCEPTRE
below:

1 Fit technical factor effects (̂β0, γ̂ ) on gene expression using the negative binomial
regression (4).

2 Extract a z-score z(X,Y ,Z) from the reduced negative binomial regression (6).
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3 Assume that

Xi
ind∼ Ber(πi); log

(

πi
1 − πi

)

= τ0 + ZT
i τ (7)

for τ0 ∈ R and τ ∈ R
d , and fit (̂τ0, τ̂ ) via logistic regression of X on Z. Then,

extract the fitted probabilities π̂i = (1 + exp(−(̂τ0 + ZT
i τ̂ )))−1.

4 For b = 1, . . . ,B,

• Resample the gRNA assignments based on the probabilities π̂i to obtain˜Xb (1).
• Extract a z-score z(˜Xb,Y ,Z) from the reduced negative binomial

regression (6).

5 Fit a skew-t distribution̂Fnull to the resampled z-scores {z(˜Xb,Y ,Z)}Bb=1.
6 Return the p-value p̂SCEPTRE = P[̂Fnull ≤ z(X,Y ,Z)].

In our data analysis, we used B = 500 resamples.

Numerical simulation to assess calibration

We simulated one gene Yi, one gRNA Xi, and two confounders Zi1,Zi2 in n = 1000 cells.
We generated the confounders Zi1 and Zi2 by sampling with replacement the batch IDs
and log-transformed sequencing depths of the cells in the Gasperini dataset. The batch
ID confounder Zi1 was a binary variable, as the Gasperni data included two batches. Next,
we drew the gRNA indicators Xi i.i.d. from the logistic regression model (7), with τ0 =
−7, τ1 = −2, and τ2 = 0.5. We selected these parameters to make the probability of
gRNA occurrence about 0.04 across cells. Finally, we drew the gene expression Yi from
the following zero-inflated negative binomial model:

Yi ∼ λδ0 + (1 − λ)NegBin(μi,α), log(μi) = β0 + ZT
i β .

Note that gRNA presence or absence does not impact gene expression in this model. We
set β0 = −2.5,β1 = −2,β2 = 0.5 to make the average gene expression about 4 across
cells. We generated the four datasets shown in Fig. 3a by setting the dispersion parameter
α and the zero inflation rate parameter λ equal to the following values:

(λ1,α1) = (0, 1); (λ2,α2) = (0, 5); (λ3,α3) = (0, 0.2); (λ4,α4) = (0.25, 1).

For the first, the negative binomial model is correctly specified. For the second and third,
the dispersion estimate of 1 is too small and too large, respectively. The last setting
exhibits zero inflation.We applied SCEPTRE and negative binomial regression to the four
problem settings, each with nsim = 500 repetitions. The negative binomial method, and
in turn SCEPTRE, was based on the z statistic from the Hafemeister-inspired negative
binomial model (3) with α = 1. We used B = 500 resamples for SCEPTRE, the default
choice.

scMAGeCK

scMAGeCK-LR [10] is a method for high MOI single-cell CRISPR screen analysis.
(A complimentary method, scMAGeCK-RRA, is designed for the low-MOI setting.)
scMAGeCK-LR (henceforth scMAGeCK) uses a permutation test with ridge regression
test statistic to compute p-values for pairs of genes and gRNAs. Unfortunately, we were
unable to apply scMAGeCK to the real data. First, we were unable to understand the doc-
umentation of the scMAGeCK software well enough to confidently apply the method.
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Second, scMAGeCK is prohibitively expensive to apply at-scale. The authors of the origi-
nal scMAGeCK study applied their method only to a small subset of pairs in the Gasperini
et al. data. We could not meaningfully compare scMAGeCK to SCEPTRE on calibration
and sensitivity metrics without applying scMAGeCK to the full set of gRNA-gene pairs,
which, to our knowledge, never has been done (and likely is infeasible).
To enable a simple comparison to scMAGeCK on the simulated data, we imple-

mented a custom, in-house version of scMAGeCK based on a careful examination of
the scMAGeCK codebase and a close reading of the original paper. We view this custom
implementation as a faithful interpretation of the method in the specialized one-gene to
one-NTC setting. We applied our implementation of scMAGeCK to the simulated data,
using B = 1, 000 permutations, the default option. To reduce confusion, we reported
the results of the scMAGeCK simulation study in the supplementary materials (Fig. S6)
rather than the “Results” section. We could not apply our custom implementation of
scMAGeCK to the real data, because the real data are significantly more complex than
the simulated data. For example, the real data consist of many genes and gRNAs, and the
gRNAs are differently typed (e.g., negative control, positive control, enhancer-targeting,
etc.), complicating the analysis considerably.

Definition of Gasperini et al. discovery set

Gasperini et al. reported a total of 664 gene-enhancer pairs, identifying 470 of these
as “high-confidence.” We chose to use the latter set, rather than the former, for all
our comparisons. Gasperini et al. carried out their ChIP-seq and HI-C enrichment
analyses only on the high-confidence discoveries, so for those comparisons we did
the same. Furthermore, the 664 total gene-enhancer pairs reported in the original
analysis were the result of a BH FDR correction that included not only the candi-
date enhancers but also hundreds of positive controls. While Bonferroni corrections
can only become more conservative when including more hypotheses, BH corrections
are known to become anticonservative when extra positive controls are included [27].
To avoid this extra risk of false positives, we chose to use the “high-confidence” set
throughout.

Xie et al. significance scores and discovery set

Xie et al. reported a local (or cis) discovery set, which consisted of gene-gRNA pairs
with a significance score of greater than zero (see original manuscript for definition of
“significance score” [8]; cutoff of zero arbitrary). This discovery set was not directly com-
parable to the SCEPTRE discovery set. First, the candidate set of cis gene-gRNA pairs
tested by Xie et al. consisted of gRNAs within two Mb of a protein-coding gene or long-
noncoding RNA. Our candidate cis set, by contrast, consisted of gRNAs within one Mb
of a protein-coding gene. We defined our candidate cis set differently than Xie et al.
to maintain consistency with Gasperini et al. Second, Xie et al. appear to have used a
significantly more conservative threshold than Gasperini et al. in defining their discov-
ery set, but this was challenging to ascertain given the impossibility of FDR correction
on the significance scores. To enable a meaningful comparison between Virtual FACS
and SCEPTRE, we therefore ranked the Virtual FACS pairs by their significance score
and selected the top n pairs, where n was the size of the SCEPTRE discovery set at
FDR 0.1.
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ChIP-seq, HI-C enrichment analyses

ChIP-seq and HI-C enrichment analyses on the Gasperini et al. data (see Figs. 4e, f and
S5a) were carried out almost exactly following Gasperini et al. The only change we made
is in our quantification of the ChIP-seq enrichment (Fig. 4f ). We used the odds ratio of
a candidate enhancer being paired to a gene, comparing the top and bottom ChIP-seq
quintiles. On the Xie et al. data, we binned the candidate enhancers into two (rather than
five) quantiles due to the fewer number of candidate cis pairs. We computed odds ratios
by comparing enhancers in the upper quantile to those that did not intersect a ChIP-seq
peak at all (Fig. S5b).
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