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Abstract

High-throughput single-cell technologies hold the promise of discovering novel
cellular relationships with disease. However, analytical workflows constructed for
these technologies to associate cell proportions with disease often employ
unsupervised clustering techniques that overlook the valuable hierarchical structures
that have been used to define cell types. We present treekoR, a framework that
empirically recapitulates these structures, facilitating multiple quantifications and
comparisons of cell type proportions. Our results from twelve case studies reinforce
the importance of quantifying proportions relative to parent populations in the
analyses of cytometry data — as failing to do so can lead to missing important
biological insights.

Introduction
High-parameter cytometry assays have provided biomedical scientists with an unprece-

dented detail of the cellular heterogeneity of patient samples. Flow and mass cyt-

ometers are able to characterize cells by measuring up to fifty extracellular antigens

[1], with single-cell sequencing platforms able to measure thousands of intracellular

RNA molecules [2]. Unfortunately, this ground-breaking capacity to characterize cells

to this depth has provided a computational challenge for bioinformaticians to effi-

ciently glean meaningful information from the deluge of single-cell data. Given that

most novel analytical methods neglect the hierarchical relationships in single-cell data,

there exists an opportunity to use these relationships to identify robust and interpret-

able associations between cell subsets and patient clinical end points or ex vivo

interventions.

To compare the abundance of cell subsets between samples, there has been a

decades-long legacy of either quantifying a cell type as the proportion relative to all

cells in a sample (%total), or, as the proportion relative to a parent population
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(%parent) [3–5]. The latter of these quantifications is derived naturally from the way

that cell subsets have traditionally been annotated via a process called sequential man-

ual gating [6]—where 2D scatter plots are drawn using certain markers and gated to

identify cell populations in a sequential manner. For example, regulatory T cells (Tregs)

could be identified by first gating out CD3+ and CD4+ cells to identify CD4+ T cells

and then further gating on CD25lo and CD127+ to isolate the CD4+ Tregs [7]. This

gating strategy naturally lends itself to quantification of cell types relative to their par-

ent lymphocyte populations. These quantifications are robust to changes in unrelated

subsets. The main drawbacks of this method however are its reliance on time-

consuming manual gating, which has become impractical for high-parameter assays [8],

and the substantial reliance on expert knowledge which may bias analysis towards

known and expected relationships.

As an alternative cell type identification strategy to manual gating, unsupervised clus-

tering of cells has been used to circumvent the challenges of sequentially gating high-

dimensional cytometry data. These automated methods are able to stratify cell subsets

without necessarily having a predetermined hypothesis or sequential gating strategy.

Many methods, including SPADE [9], Citrus [10], FlowSOM [11], Phenograph [12],

SC3 [13], and scClust [14] have been utilized frequently in the analysis of high-

dimensional cytometry data to identify cell populations. While they have significantly

improved the efficiency in which scientists can analyze these datasets, typical analyses

employing these methods only explore the changes in cell types as a %total, neglecting

the complex hierarchical proportions inherent in single-cell data. In other words, these

methods fail to measure cell types as a %parent, which cytometry analysts have trad-

itionally used in manual gating workflows.

A number of unsupervised clustering methods and data-driven workflows have been

developed to explore the hierarchical nature of cytometry data. SPADE and FlowSOM

utilize minimal spanning trees over clustering as a visualization tool. Citrus employs

hierarchical clustering and regularized supervised learning algorithms to identify strati-

fying populations of cells on each level of aggregation. The method treeclimbR [15]

aims to pinpoint an ideal resolution of cell populations via a hierarchical tree. Although

these methods acknowledge the importance of visualizing the hierarchical aspect of

single-cell cytometry data, they do not typically incorporate such information in their

association analysis. That is, they do not by default quantify the abundance of cell types

as a %parent and test if these compositions are associated with a treatment or pheno-

type of interest.

To this end, we have developed treekoR, a novel framework that makes use of cell

type identification from unsupervised clustering techniques while acknowledging the

hierarchical nature of single-cell cytometry data to discover robust and interpretable as-

sociations between cell subsets and patient outcomes. TreekoR achieves this by (1) al-

gorithmically deriving the hierarchy of cell type clusters, followed by (2) incorporating

this hierarchical information via measuring the %parent for each cell type. These de-

rived proportions can then be used in significance testing and classification models to

determine associations with clinical outcomes. Further to this, treekoR provides a gen-

eral framework that is flexible to the clustering approach, hierarchical aggregation

method, and type of significance testing used. This framework allows analysts to
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generate insight from the complex hierarchical relationships present in single-cell cy-

tometry data, which are often overlooked with existing automated clustering methods.

Results
treekoR algorithmically derives cell type hierarchies to quantify %parent

We present treekoR, an analytical framework that recognizes and incorporates the hier-

archical relationships inherent in cytometry data. The treekoR package is implemented

in R and uses an automated workflow to identify cellular associations with a patient

outcome through five steps (Fig. 1): (1) cluster the data using an automated method,

(2) aggregate clusters into a tree using a hierarchical clustering algorithm, (3) calculate

the %total (the proportion of a cell type relative to all cells in a sample) and %parent

(the proportion of a cell type relative to a parent population of cells, in this case the

cells in the parent node) of cells in each node in the tree, (4) perform significance tests

using both of these proportions against a clinical end point, and (5) visualize the signifi-

cance results on the tree. The %parent calculated by treekoR aims to emulate the pro-

portions naturally derived when using sequential manual gating, which are not typically

calculated in workflows exclusively using unsupervised clustering methods. Our com-

parative procedure uncovers important associations with a clinical end point of interest
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Fig. 1 treekoR helps to extract insight from cytometry data through deriving a hierarchy of cell clusters and
measuring proportions to parent. a An example t-SNE plot showing clustering of single-cell data. b Hierarchical tree
constructed using HOPACH algorithm on the cluster median marker expressions. c Definition of proportions to parent
and proportions to all defined according to the organization of the hierarchical tree. d Significance testing is
performed using both types of proportions calculated, testing for difference between the patient clinical endpoint of
interest. e Visualization of the significance testing results. On the left, a scatterplot of each node in the hierarchical tree
with the test statistic calculated using the %total (x-axis) vs. the test statistic calculated using the %parent (y-axis). On
the right of the scatterplot, the hierarchical tree is colored with the test statistics: the nodes colored by the test statistic
using %total and the branches of the nodes colored by the test statistic using %parent. An example of a
corresponding node between the two graphs is highlighted in blue. The heatmap plots the median marker
expression of the leaf nodes to assist in identification of the corresponding cell clusters

Chan et al. Genome Biology          (2021) 22:324 Page 3 of 14



by visualizing both quantifications of cell type proportions derived from the data. Fur-

ther details are provided under “Methods.”

treekoR generates biological insight exclusive to %parent in example cytometry datasets

We illustrate the ability of treekoR to generate additional biological insight by applying

the framework to a CyTOF study of latent Cytomegalovirus (CMV) [16]. After cluster-

ing cells into one hundred cell subsets, quantifying the %total and %parent for each,

and testing for associations between CMV positivity and %total or %parent (Fig. 2a); we

observed a reduction in CD4+ Tem cells in CMV-positive patients using %parent (p =
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Fig. 2 Measuring %parent can provide additional insight over %total. a Scatterplot of test statistics with the
cell clusters in differentiating between latent CMV infection patients. Highlighted clusters are significant
using %parent, while not significant using %total. b Comparative boxplot of the proportions of highlighted
cell clusters, between patients with CMV and without CMV, with the %total (upper panel) and %parent
(lower panel). c A heatmap generated using treekoR on a CD8+ T cell compartment to predict healthy vs
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6.1 × 10−5, FDR = 3.33 × 10−3), yet no association was observed using %total (p = 0.9,

FDR = 0.99). The higher proportion of CD4 + Tem relative to its parent cluster (CD4 +

Tem and CD4 + Tcm) in CMV-negative patients as compared to CMV-positive pa-

tients is in keeping with known effector memory cell function in cytokine secretion and

viral clearance. Similarly, observed a nominally significant negative association between

CMV positivity and CD8+ CD127− Tem cells using %parent (p = 1.5 × 10−3, FDR = 3.5

× 10−2), but not with %total (p = 0.26, FDR = 0.69) (Fig. 2b). This lower proportion of

CD8+ CD127− Tem cells relative to its parent (CD8+ CD127− and CD8+ CD127+

Tem) in CMV-positive patients as compared with CMV-negative patients suggests a

role for differential CD127 expression in chronic/persistent infection. Together, this

suggests that if the %parent of these cell types had not been measured, we would have

been unable to discover the cellular relationships between CD4+ Tem and CD8+

CD127− Tem with CMV infection.

When applied to a flow cytometry dataset profiling CD8+ T cells in COVID-19 pa-

tients and healthy controls [4], treekoR highlighted a highly activated HLA-DR+

CD38+ CD8+ T cell subset whose %parent provided a more robust association with

COVID-19 response than its %total. After applying FlowSOM to cluster cell types (Fig.

2c), we discovered a HLA-DR+ CD38+ CD8+ T cell whose %parent is greater in

COVID-19 patients than healthy controls (p = 3.19 × 10−10, FDR = 2.76 × 10−8) (Fig.

2d). This strong association is observed regardless of whether the %parent is modelled

as continuous or count data (Additional file 1: Figure S1). However, this population

only appeared marginally associated with COVID-19 response using %total (p = 1.49 ×

10−2, FDR=7.6 × 10−2). In contrast, De Biasi et al. had reported a manually gated HLA-

DR+ CD38+ CD8+ T cell population changing when using %total (p = 9.70 × 10−8).

The difference in conclusion between using %total from FlowSOM and the manually

gated population from De Biasi et al. is solely attributed to our use of a t-test and De

Biasi et al.’s use of the Wilcoxon rank sum test (Fig. 2e), which is robust to the outliers

observed in the %total quantification (Fig. 2f). When a Wilcoxon rank sum test is used

on our %total (p = 1.55 × 10−5, FDR = 1.12 × 10−3) and %parent (p = 1.15 × 10−8, FDR

= 9.96 × 10−7), the association is also observed, but not observed when a t-test is used

on De Biasi et al.’s manually gated population (p = 2.57 × 10−2). The presence of this

association in treekoR’s %parent regardless of the significance test used illustrates that

quantifying the proportion of HLA-DR+ CD38+ to a parent population (HLA-DR+

CD38+ and HLA−DR+ CD38−) can adjust for large fluctuations in cell type composi-

tions and allow subtle changes in proportion to be robustly quantified. Across both the

COVID-19 and CMV case studies, we highlight two perspectives of cell type propor-

tions, %total and %parent, which offer biological information that may be potentially

missed if only one was measured.

The %parent of cell types yields strong associations with clinical outcomes across several

datasets in our benchmark

We observed a greater discrimination between binary outcomes through quantifying

proportions as %parent than %total in several datasets. We compared twelve case stud-

ies consisting of seven CyTOF datasets, four flow cytometry datasets, and a single-cell

RNA sequencing (scRNA-seq) dataset (Table 1). Further, we also used two hierarchical
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clustering algorithms, HOPACH [17] and average-linkage hierarchical clustering, with

both generating different estimates of %parent (Additional file 1: Figure S2). After test-

ing for differences in cell type proportions between the patient conditions, we com-

pared the ordered negative log p values of each cell population from using %total

against the ordered negative log p values from using %parent (Fig. 3). Across all twelve

case studies, we were able to determine whether performing significance testing using

%parent provided comparatively stronger associations with the patient outcome than

%total—evident in instances where points conspicuously lay above the dashed identity

Table 1 Benchmark datasets. Eleven published datasets were used to compare %total and
%parent in significance testing and classification using the treekoR workflow. “Name” is used to
refer to each dataset throughout the manuscript

Name Technology Description Number of
cells

Number
of
samples

Outcome
or
response
variable

References

Age
chronic

CyTOF Age chronic
inflammation predicting
young vs old

1036209 29 Young /
old

Shen-Orr et al.
2016 [18]
Immport [30]
SDY887 dataset

Anti-CTLA-
4 and anti-
PD-1

CyTOF Predicting response vs
non-response in anti-
CTLA-4 and anti-PD-1
treatments

7264780 24 Response /
non-
response to
treatment

Subrahmanyam
et al. 2018 [21]

Anti-PD-1 CyTOF Predicting response vs
non-response in anti-
PD-1 treatment

85718 20 Response /
non-
response to
treatment

Kreig et al. 2018
[31]

BCR-XL-sim CyTOF Detecting samples with
stimulated B cells

88435 16 Spiked /
non-spiked

Weber et al.
2019 [23]

Breast
cancer
tumor

CyTOF Predicting tumor in
breast cancer samples

855914 194 Tumor/
non-tumor
breast
cancer
samples

Wagner et al.
2019 [32]

CMV CyTOF Predicting positive vs
negative CMV titer
results in influenza
patients

18153877 69 Positive/
negative
results from
CMV titer

Tomic et al.
2019 [16]
Immport [30]
SDY478 dataset

COVID-19
whole
blood
CyTOF

CyTOF Profiling whole blood to
predict COVID-19 vs.
healthy patients

4747543 21 COVID-19 /
healthy
control

Geanon et al.
2021 [33]

COVID-19
PBMCs

Flow
cytometry

Predicting between ICU
vs. hospital ward
COVID-19 patients

4790053 38 ICU / ward Humblet-Baron
et al. 2021 [34]

COVID-19
PBMC
CD8+ non-
naive T
cells

Flow
cytometry

Profile of CD8+ Non-
Naive T Cells to distin-
guish recovered from
COVID-19 vs. healthy

11591741
(60% of cells
were sampled
and analyzed)

168 COVID-19
recovered /
healthy

Mathew et al.
2020 [35]

COVID-19 T
cells

Flow
cytometry

T cell compartment
samples (CD4 and CD8)
to predict healthy vs
COVID-19

5000 31 COVID-19 /
healthy
control

De Biasi et al.
2020 [4]

Melanoma scRNA-seq Predicting response to
checkpoint
immunotherapy in
melanoma

5928 19 Responder/
non-
responder

Sade-Feldman
et al. 2019 [36]
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line. Across half of the investigated datasets, in particular CMV [16] and Age Chronic

[18], the cell type proportion with highest significance was obtained from measuring its

%parent. Further to this, the choice of hierarchical aggregation techniques produced varia-

tions in clinical association, suggesting that using different cell type trees can help analysts

uncover a wider scope of associations. The benchmark exemplifies the importance of

measuring both %parent and %total so as not to miss pertinent clinical associations.

Multivariate classification of clinical outcomes in cytometry data can be improved by

measuring %parent

High-dimensional single-cell data have been used to construct models to classify patients to

help scientists discover and understand associations with a clinical outcome [19–22]. We eval-

uated classification performance using either %total or %parent as feature sets in several data-

sets with binary outcomes (e.g., responder vs. non-responder, COVID-19 vs. healthy control),

to determine that the incorporation of %parent features in multivariate classifications models

can help improve patient classification. There were various differences in balanced accuracy

between using %total and %parent (using either HOPACH or hierarchical clustering with

average linkage) in each dataset (Fig. 4). The datasets with the biggest increase in balanced ac-

curacy by using %parent were the BCR-XL-sim data [23] and Age Chronic data [18]. In the

BCR-XL-sim semi-simulated dataset, we predicted which samples contained stimulated B

cells. Using only %total as features produced a mean balanced accuracy of 59%, compared to

73% using %parent derived from HOPACH. In the Age Chronic CyTOF dataset, classifiers

were constructed to discriminate between older and younger adults using their immune re-

sponse signatures to influenza vaccination. Here, we show that using %parent (99%) also gives
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a higher mean balanced accuracy than %total (88%). These results support the notion that fail-

ing to measure %parent can sometimes mean neglecting important signals when trying to pre-

dict a patient’s clinical outcome in high-dimensional cytometry datasets.

Quantifying multiple views of cell type proportions can provide greater insight into

single-cell cytometry data and patient clinical outcomes. In our classification bench-

mark, we compared the use of %total, %parent (using hierarchical clustering), and

%parent (using HOPACH) cell type proportions. Exploring hierarchical representations

via treekoR can help to elucidate a broader scope of %parent relationships that exist

within cytometry data (Additional file 1: Figure S2). When each feature set was ranked

using the mean and standard deviation of the balanced accuracy in each dataset (Fig.

4), no single quantification of proportion performed the best for prediction of patient

outcomes across all analyzed cytometry datasets. The differences in rank however mean

that each type of proportion quantification provided a different perspective of the data.

Depending on the dataset, one approach may provide a greater coverage of the signal

present within the data through a higher balanced accuracy. This further supports the

idea that proportions measured as %total should not be the only proportions measured

in cytometry analysis workflows, particularly when searching for the most predictive

features in distinguishing between patient clinical outcomes and understanding the

complex relationships that exist. It is therefore imperative that proportions are quanti-

fied as both %parent and %total for the effective analysis of cytometry data, as it offers

more thorough examination of this data.
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Discussion
In this paper, we examined several high-dimensional single-cell datasets to demonstrate

the importance of measuring both %parent and %total proportions, the use of %parent for

classification, and the consequences of using different hierarchical aggregation techniques

to empirically derive cell type proportions. Overall, we accentuated the importance of ana-

lyzing high-dimensional cytometry data using ideas from both traditional manual gating

and unsupervised clustering techniques and provide a general framework, treekoR, which

allows analysts to do so while overcoming key pitfalls of both approaches.

The treekoR framework allows scientists to select their own clustering algorithm for

determination of cell types and hierarchical aggregation technique for the construction

of cell type trees. While there have been numerous comparisons of clustering methods

of cytometry data [19, 24–27], there have not been as many comparisons of hierarchy

construction techniques in the context of cell type hierarchies [9, 11]. We show

through the use of HOPACH and average-linkage hierarchical clustering that the

choice of hierarchical aggregation technique can have noteworthy effects on down-

stream analysis, and suggest multiple other techniques that could also be used to pro-

duce distinct cell type trees. However, no formal evaluation to determine the most

“suitable” technique was performed throughout our analyses. Since scientists have

unique and personal workflows for hierarchically analyzing cell types, there is signifi-

cant room to explore what an appropriate cell type hierarchy might entail and deter-

mine a corresponding standard or measure which scientists can use to evaluate this.

The definition for the most “suitable” hierarchical aggregation technique, whether it is

the technique which produces the most interpretable hierarchy or produces the %par-

ent proportions most associated with a clinical outcome, has yet to be elaborated.

In treekoR, we defined %parent as the proportion of a cell type relative to its direct

parent in the cell type hierarchy. This proportion could be calculated using a broader

parent (e.g., a higher ancestor) cell type in the hierarchy, which could lead to either a

more interpretable and familiar cell type %parent or reduce the burden of multiple hy-

pothesis testing. Since the scope of proportions to be calculated becomes much larger

when numerous measurements of %parent for a single-cell type are allowed, there ex-

ists a challenge in determining which %parent to calculate, particularly as the number

of hypothesis tests increases. We do not currently address either of these points in our

workflow. To overcome this challenge, a standard set of reference cell types can be de-

termined to calculate %parent from. These reference cell types could be deduced in a

semi-supervised fashion where analysts manually select them, or in a completely un-

supervised manner by using a data-driven method (such as treeclimbR [15]). This

would limit the number of proportions calculated and potentially provide more bio-

logically relevant %parent. Another approach to this issue could be implementing a

multiple hypothesis correction that caters for the hierarchical nature of these

proportions.

Care is required in the comparison of statistical significance between the %total and

%parent of a cell type. The derived p values from significance testing inherently come

from two distinct statistical hypotheses. Therefore, the user should not conclude that

one proportion is a better metric based solely on its p value, or say that one proportion

is more relevant than the other. Rather the %total and %parent provide two comple-

mentary views, both of which may be objective and biologically relevant. Depending on
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the datasets, one quantification of cell type proportions may provide a stronger associ-

ation with a clinical outcome of interest, this nuance is important to note.

In summary, we present a framework that is general in nature, allowing scientists to

choose algorithms appropriate to their dataset to glean more information than typical

analyses. It is our broader intention to emphasize the importance of measuring %parent

in the analysis of cytometry data—and that these hierarchical proportions should not

be overlooked as researchers move towards more efficient and automated approaches

of analysis. As high-dimensional cytometry data become more ubiquitous in helping

scientists understand the underlying biological process behind patient diseases, such as

influenza and COVID-19, we envision that the implementation of treekoR will assist in

unravelling the cell type heterogeneity present in these complex patient diseases.

Methods
Overview of treekoR

treekoR is performed in five steps: (i) cluster the data using an automated method, (ii)

aggregate clusters into a tree using a hierarchical clustering algorithm, (iii) calculate the

%total and %parent of cells in each node of the tree, (iv) perform significance tests

using both of these proportions against a clinical end point, and (v) visualize the signifi-

cance results on the tree. The steps are described in detail below, along with the pa-

rameters used in the analyses throughout the manuscript.

(i) Clustering. Unsupervised clustering was performed using the FlowSOM [11]

algorithm as part of the CATALYST [28] package in R [29], using a 10 × 10 grid.

Cells are over-clustered to try to account for all cell types present within the data

and to avoid missing rare cell populations (any superfluous clusters are then natur-

ally aggregated in the hierarchical clustering step). For the datasets that were pro-

vided with previously analyzed or manually gated cell types, those cell types were

used instead of the FlowSOM clustering.

(ii) Construction of hierarchy. Following clustering of the data, the scaled median

marker expression for each cluster was calculated and used to construct a

hierarchical tree. Several hierarchical clustering techniques can be used in treekoR

and are included in the R stats hclust function [29]. These include HOPACH and

agglomerative hierarchical clustering using average linkage, Ward linkage, single

linkage, complete linkage, and McQuitty. HOPACH allows for multiple children

per node while other included methods only cater for two children per node.

Throughout the analysis, we used two main methods for hierarchical aggregation:

HOPACH (with K = 5 maximum children per parent node) and average-linkage

hierarchical clustering.

(iii)Calculation of proportions. After clustering, when a hierarchical tree of cell types

has been established in the data, the proportions of these clusters are quantified.

For each patient, the proportions of cells belonging to the clusters in each node of

the tree are measured relative to their total number of the cells, referred to as

%total. In addition, the clusters in each node of the tree are measured as a

proportion of the cluster in the direct parent node of the tree, referred to as

%parent.
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(iv)Significance testing. For each node in the hierarchical tree on the clusters,

significance testing is then performed using a two-sample t-test for equal means

between the desired patient outcome using both the %total and %parent.

(v) Visualization. The results of these proportions can be then visualized through a

colored tree plotted next to a corresponding heatmap. The heatmap displays the

median scaled marker expressions of each cluster to help understand what cell

type each cluster may represent, and the tree not only reveals how clusters have

been hierarchically aggregated, but is colored on each node by the test statistic

obtained when testing using %total of that node, with the branch connecting the

child to the parent colored by the test statistic obtained when testing using the

%parent of the child node.

Benchmark data and data processing

The twelve benchmarking datasets consist of seven CyTOF, four flow cytometry, and

one single-cell RNA-seq dataset as shown in Table 1. In the flow cytometry datasets,

COVID-19 T cells were counted as two datasets—CD4 and CD8 T cells.

Data normalization

For each of the cytometry datasets, we applied an arcsinh transformation with a co-

factor of 5 on the expression values. The samples were then filtered to only include the

patients with the clinical end points of interest. For analysis of the CMV dataset,

66.67% of cells were randomly subsampled and gated for live intact cells before

transforming.

Calculation of proportions

For each of the patients/samples, the proportions of each of the FlowSOM clusters or

cell types were calculated as %total, as well as %parent from a HOPACH [17] tree and

an average-linkage hierarchical clustering tree. The %parent for each cluster in each

sample is calculated as the (# cells in a cluster) / (# cells in a cluster + # cells in sibling

clusters). The %total is calculate as (# cells in a cluster) / (# cells in sample).

Hypothesis testing

For each of the cell types/clusters, a two-sample t-test was used to test if there was a

significant difference in mean proportion between the binary clinical outcome of inter-

est, using both %total and %parent. In our COVID-19 T cells and CMV case studies, p

value adjustment was performed using the FDR method, while p value adjustment was

not performed in the benchmark comparison.

The p values obtained from using t-tests on %parent and %total were compared to

the p values obtained from the count models: edgeR [37] and generalized linear mixed

models [38] (GLMM). The method of testing the difference between patient conditions

using these count models was adapted from differential abundance testing in the diffcyt

[23] package. These methods were naturally able to test differences in %total; however,

they had to be adapted slightly to test for %parent. More specifically, we tested %parent

in edgeR by using the counts of each cluster, using library sizes of 1, and using the

number of cells in the parent clusters as an offset. We tested %parent using GLMM by
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treating %parent as the dependent variable, condition as an independent variable with

fixed effect, sample as an independent variable with random effect, and using the num-

ber of cells in the parent clusters as weights.

Classification

The %total and %parent proportions were then used as features separately, for sake of

comparison, to predict the binary patient clinical end point. For each feature set and

dataset combination, we trained a random forest (using mlr3 [39]) with 500 trees in

each iteration of a 5-fold cross validation with 20 repetitions. The balanced accuracy

was measured in each iteration of the cross validation and used to compare predictive

power between the feature sets.
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