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Abstract

Background: Nanopore long-read sequencing technology greatly expands the
capacity of long-range, single-molecule DNA-modification detection. A growing
number of analytical tools have been developed to detect DNA methylation from
nanopore sequencing reads. Here, we assess the performance of different
methylation-calling tools to provide a systematic evaluation to guide researchers
performing human epigenome-wide studies.

Results: We compare seven analytic tools for detecting DNA methylation from
nanopore long-read sequencing data generated from human natural DNA at a
whole-genome scale. We evaluate the per-read and per-site performance of CpG
methylation prediction across different genomic contexts, CpG site coverage, and
computational resources consumed by each tool. The seven tools exhibit different
performances across the evaluation criteria. We show that the methylation prediction
at regions with discordant DNA methylation patterns, intergenic regions, low CG
density regions, and repetitive regions show room for improvement across all tools.
Furthermore, we demonstrate that 5hmC levels at least partly contribute to the
discrepancy between bisulfite and nanopore sequencing. Lastly, we provide an
online DNA methylation database (https://nanome.jax.org) to display the DNA
methylation levels detected by nanopore sequencing and bisulfite sequencing data
across different genomic contexts.

Conclusions: Our study is the first systematic benchmark of computational methods for
detection of mammalian whole-genome DNA modifications in nanopore sequencing. We
provide a broad foundation for cross-platform standardization and an evaluation of analytical
tools designed for genome-scale modified base detection using nanopore sequencing.

Keywords: DNA methylation, Base modification, Long-read sequencing, Nanopore
sequencing, Methylation calling

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Liu et al. Genome Biology          (2021) 22:295 
https://doi.org/10.1186/s13059-021-02510-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02510-z&domain=pdf
http://orcid.org/0000-0002-9543-6274
mailto:sheng.li@jax.org
https://nanome.jax.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
DNA methylation, the process by which methyl groups are added to DNA molecules, is

a fundamental epigenetic modification process in gene transcription regulation [1]. Sev-

eral DNA modifications, such as N6-methyladenine (6 mA), N4-methylcytosine (4mC),

and 5-methylcytosine (5mC) and its oxidative derivatives, i.e., 5-hydroxymethylcytosine

(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), are diversely distributed

in genomes and play important roles in genomic imprinting, chromatin-structure

modulation, transposon inactivation, stem cell pluripotency and differentiation, inflam-

mation, and transcription-repression regulation [2–4]. DNA methylation measurement

has traditionally depended on the combination of bisulfite conversion (which can dam-

age DNA) and next-generation sequencing (which detects only short-range methylation

patterns) [5].

Recently, third-generation sequencing technologies, including single-molecule real-

time (SMRT) sequencing by Pacific Biosciences (PacBio), and nanopore sequencing by

Oxford Nanopore Technologies (ONT), have overcome the read-length limitation to

achieve ultra-long read, single-base detection at a genome-wide level [6, 7]. SMRT se-

quencing can detect 5mC modifications based on polymerase kinetics at 250× coverage

[8]. However, this detection is not the result of direct 5mC detection at single-molecule

resolution but rather the aggregation of the subtle impact of 5mC on polymerase kinet-

ics signals during DNA synthesis [8]. Thus, the requirement for high coverage and in-

ability of direct single-molecule 5mC detection by SMRT is a limitation [9]. In

addition, while SMRT-based bisulfite sequencing allows sequencing of up to ~ 2 kilo-

bases (kb) in length, it relies on bisulfite conversion [10].

Nanopore sequencing, instead of using a sequencing-by-synthesis method to detect

signal for the amplified DNA fragment population, is able to directly detect DNA or

RNA translocation through a voltage-biased nanopore sensor, enabling rapid long-read

sequencing and single-base, single-molecule sensitivity [11]. Several different versions

of nanopore chemistry have been developed by ONT to improve the accuracy of

single-molecule sequencing (Fig. 1A [9, 12–23]). Both the first pore version, termed R6

(“R” for Reader), and the subsequent R7 pore series yielded high error rates and only

mediocre accuracy [11]. The next release, the R9 pore series, is derived from the bacter-

ial amyloid secretion pore gene Curlin sigma S-dependent growth (CsgG) and yields a

modal (i.e., most commonly observed) accuracy of up to 95% at the single-molecule

level at higher sequencing speed [24, 25]. The accuracy of nucleobase identification in

DNA sequencing can be measured using Q scores. These scores, also known as Phred

quality scores, are logarithmically linked to the error probability (P) of each called base:

Q = − 10 × log10(P). Higher Q values correspond to lower error probability and higher

quality [19, 26]. For example, Q30 indicates that the chance that a specific base is called

incorrectly is 1 in 1000, and Q50 indicates that the chance is 1 in 100,000. The R9-

series pores (including the original R9.4 version and the successor R9.4.1) are the most

broadly used pore version, and R9.4.1 version can achieve > 99.99% (Q45) consensus

accuracy [15, 27]. Recently, ONT released the R10 pore series, which has a predicted

model accuracy of 94% [18, 28], and introduced the newest version, R10.3, which has a

longer barrel and a dual-reader head inside the pore, with accuracies up to 95% and

single-molecule consensus accuracies over Q50 [19, 29]. Our present study is con-

ducted on the R9.4 and R9.4.1 version.
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Fig. 1 (See legend on next page.)
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Nanopore sequencing techniques detect DNA modifications via differences in the

electric current intensity produced from a nanopore read of an unmodified base and

that of a modified base. Specifically, the electric current patterns, also known as “squig-

gles,” resulting from the passage of modified bases through the pores differs from the

patterns produced by the passage of unmodified bases [26, 30]. The difference can be

determined after nanopore read basecalling and alignment by (1) statistical tests com-

paring the electric current pattern to an in silico reference or the pattern from a non-

modified control sample [20, 31]; (2) pre-trained supervised learning models, e.g.,

neural network [23, 32–37], machine learning model [38], and Hidden Markov Models

(HMM) [9, 39]. However, DNA-methylation detection using nanopore sequencing pre-

sents a methodological challenge, i.e., the capacity to detect modifications in different

CpGs that are in close proximity to one another on a DNA fragment (i.e., non-

singleton), as it is assumed that all CpGs within a 10-bp region share the same methyla-

tion status. Twelve methylation-calling tools have been developed for various DNA

modifications (e.g., 4mC, 5mC, 5hmC, and 6mA) and for different nanopore pore ver-

sions (e.g., R7, R9, and R10) (Table 1 [9, 20, 23, 31–39]), but DNA-methylation detec-

tion for non-singletons containing both methylated and unmethylated CpGs remains

difficult [9, 35]. Moreover, DNA methylation levels are not linearly distributed across

the genome, and CpG density is dependent on genomic context [40–42]. Therefore,

the accuracy of methylation callers likely differs among the different types of genomic

regions within which the CpGs are located. Recent benchmarking work on methylation

calling tools for nanopore sequencing either compared only three such tools and con-

sidered very few genomic contexts [43], or restricted the comparisons to E. coli and

1743 CpGs of the human genome [38]. Hence, there is no published guideline and sys-

tematic comparison of all current DNA methylation-calling tools for nanopore sequen-

cing using natural human DNA [44], especially at the whole-epigenome scale. Recently,

research with the combination of bisulfite-free enzymatic base conversion and nano-

pore sequencing [45–47] enabled high accuracy and potency in long-range epigenetic

phasing. Together, these studies opened up new and orthogonal approaches to uncover

the long-range coordination of epigenetic marks at single-molecule, single-base

resolution.

Here, we present the first systematic benchmark of computational methods for detec-

tion of DNA 5mCs for nanopore sequencing at the human whole-genome scale. We

(See figure on previous page.)
Fig. 1 Technological development of methylation-calling tools and benchmark strategy. A Timeline of publication
and technological developments of Oxford Nanopore Technologies (ONT) methylation-calling tools to detect DNA
cytosine modifications. Methylation-calling tools are listed in the order of their publication dates instead of by their
bioRxiv online submission dates (except for: BioRxiv date for methBERT and DeepMP, Github repository release time
for Megalodon, since these two tools lack an available official publication). Chemical pore versions of Oxford
Nanopore flow cells are represented as horizontal-colored bars. Methylation-calling tool are colored by the
methylation calling methods (Green: statistical tests, Purple: HMM, Orange: neural network, white: machine learning
models). Relevant publication dates are from multiple source [9, 12–23]. BWorkflow for 5-methylcytosine (5mC)
detection for nanopore sequencing. The analytic pipeline has three steps: (1) Basecalling by Guppy, which requires
raw signals and reference genome as input. (2) Alignment to the reference genome by miniMap2 and re-squiggle by
Tombo. (3) Methylation calling and evaluation. C Per-read and per-site performance evaluation. We considered the
following genomic contexts: singletons, non-singletons, genic and intergenic regions, CpG islands, shores, and shelves,
and regions with different CG densities, and repetitive regions. We utilized four nanopore sequencing benchmark
datasets and BS-seq datasets as ground truth. We evaluated per-read, per-site performance, the running speed, and
computing-memory usage
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assess the impact of CpG locations on detection accuracy using nanopore sequencing

data generated from human cell lines and primary leukemia specimens, with a focus on

the impact of singletons (CpG sites with only one CpG up and down 10-base-pair re-

gions, Additional file 1: Fig. S1A), non-singletons (CpG sites with multiple CpG sites

up and down 10-base-pair regions, Additional file 1: Fig. S1A), genomic context (i.e.,

genic and intergenic regions, CpG islands, shores, and shelves, Additional file 1: Fig.

S1B), regions of various CG density, and repeat regions. Furthermore, even homoge-

neous cell populations can exhibit cell-to-cell variations in epigenetic patterns (epial-

leles), such as a gain or loss of cytosine methylation at specific loci [48]. Such

epigenetic heterogeneity is increasingly recognized as a contributor to biological vari-

ability in tumors and worse clinical outcomes in malignancies [5]. Thus, to enable as-

sessment of this critical epigenetic heterogeneity, we have evaluated the DNA

methylation calling accuracy at single-molecule and single-base resolution, which is

critical for epigenetic heterogeneity assessment [5, 48–50]. This comprehensive survey

and systematic comparison offer user-specific, best-practice recommendations to

maximize accurate 5mC detection using current methylation-calling tools and provides

guidance for next-generation calling tools. We also generated and made available an R

Shiny database to distribute the modification-detection power associated with different

genomic regions using different tools, to assist in the development of future algorithms

and analytic tools.

Results
Benchmark strategy

Currently, twelve analytic tools have been developed to detect DNA methylation using

ONT direct sequencing (Table 1). Among them, ten tools are compatible with R9.4

series flow cells, and nine of these ten can predict 5-methylcytosine (5mC). We com-

pared the performance of those seven state-of-the-art methylation-calling tools target-

ing 5mCs in different CpG contexts; those seven tools are all compatible with the most

favored ONT flow cell version (R9.4 and R9.4.1 pores): Nanopolish [9], Megalodon

[36], DeepSignal [35], Guppy [32, 51], Tombo/Nanoraw (referred to as Tombo) [20],

DeepMod [34], and METEORE [38] (Fig. 1B). Tombo is statistics-based while the other

six tools are model-based. METEORE combines predictions from two or more tools

that showed improved accuracy over individual tools using random forest (RF) models

or multiple linear regression models. We chose the METEORE RF model combining

Megalodon and DeepSignal as it achieved lower root mean square error (RMSE) than

other available METEORE models [38]. We excluded SignalAlign [39], as its repository

has not been updated for over 4 years. We also excluded DeepMP [37], as its repository

is still under development. We developed the following three-step standardized work-

flow for benchmarking (Fig. 1B, C):

Step 1. Basecalling and quality control

To translate raw signal data into nucleotide sequences, we conducted the basecalling

step using Guppy (v4.2.2). Then we used NanoPack [52] for data visualization and pro-

cessing, to assess the read-length and basecalling quality, and to demultiplex sequen-

cing data for downstream analysis. Together, the four ONT datasets exhibited median
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read lengths ranging from 3756 to 6524 bp, and median base quality ranging from 9.8

to 13 (Fig. 2A, B). The proportion of long reads (> 10,000 bp) is higher in the NA19240

dataset (36.75%) than in the other three datasets (median proportion = 32.29%), due to

library preparation differences (See “Methods” for more details). We assessed CpG sites

located in singletons and non-singletons (Additional file 1: Fig. S1A), and biologically

relevant genomic contexts including gene bodies and CpG islands (Additional file 1:

Fig. S1B), different CpG densities, and repetitive regions. The distribution of CpG sites

in different regions is shown in Fig. 2C–F, Additional file 1: Fig. S2, and Additional file

2: Table S1.

Step 2. Genome assembly and polishing

We aligned the basecalled reads to human genome assembly GRCh38/hg38 using mini-

map2 [53]. Basecalling a squiggle, i.e., translating the electric current signal from a

nanopore read into a DNA sequence, typically contains some errors when comparing

the resulting sequence to a reference sequence [54]. The Tombo re-squiggle algorithm

Fig. 2 Characteristics of the nanopore sequencing datasets. A, B Quality assessment for four datasets. A
Violin plot of read length. B Violin plot of basecalling quality. Data shown are colored by dataset and
plotted by Plots NanoPack [52]. C–F CpG distribution (coverage ≥ 3) of human B-lymphocyte cell line
NA19240 and NA12878 nanopore sequencing data based on C singletons/non-singletons, D genic and
intergenic regions, E different CG densities, and F repetitive regions
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refines the assignment from a squiggle to a reference sequence after basecalling and

alignment. The refined basecalled reads and alignment by this re-squiggle algorithm is

required by Tombo and DeepSignal for DNA methylation calling.

Step 3. Methylation calling and evaluation

We detected 5mCs in different CpG contexts using each of the seven methylation-

calling tools based on the corresponding recommended parameters. Specifically, Guppy

recommended using the ONT fast5Mod program [55] to extract the methylation call-

ing information at the site level from the basecalling output (Fig. 1B). We then de-

signed three performance-evaluation criteria (Fig. 1C) to benchmark the performances

of each methylation-calling tool and used bisulfite sequencing (BS-seq, coverage ≥ 5)

data to determine the ground truth. First, we evaluated the per-read performance of

the 5mC prediction, i.e., at single-molecule, single-base resolution, based on fully meth-

ylated or fully unmethylated CpG sites across various genomic contexts. The perform-

ance metrics included F1 score, accuracy, receiver operating characteristic curves (ROC

curves), and area under the ROC curve (AUC). Second, we assessed the per-site per-

formance of the 5mC prediction. Specifically, we measured the 5mC percentage correl-

ation coefficient between nanopore sequencing and BS-seq across all CpG sites at the

human whole-genome level. Furthermore, we evaluated the relationship between CpG

methylation percentage and distance to the annotated transcription start site (TSS) or

CCCTC-binding factor (CTCF) binding sites. Third, we assessed the running speed and

resource usage evaluation. Further details on performance criteria used in the evalu-

ation are shown in “Methods.”

Benchmark datasets

We used four datasets for benchmarking: nanopore sequencing of the human B-

lymphocyte cell lines NA19240 (referred to as NA19240, R9.4.1) [56] and NA12878 (re-

ferred to as NA12878, R9.4) [57], the human leukemia cell lines K562 (referred to as

K562, R9.4.1), and a human primary acute promyelocytic leukemia clinical specimen

(referred to as APL, R9.4.1).

For nanopore sequencing, we used published high-coverage nanopore sequencing

datasets for the cell line NA19240 (~ 32× sequencing coverage) from the 1000 Ge-

nomes Project [56], and the cell line NA12878 (~ 26× sequencing coverage) from

Whole Human Genome Sequencing Project [57], and generated nanopore sequencing

datasets for K562 and APL with ~ 1–3× coverage. For DNA methylation ground truth,

we used the published NA12878 and K562 whole-genome bisulfite sequencing (WGBS)

datasets, and the NA19240 reduced representation bisulfite sequencing (RRBS) dataset

from the Encyclopedia of DNA Elements (ENCODE) [58]. We also generated WGBS

and oxidative bisulfite sequencing (oxBS-seq) data for APL. More details can be found

in “Methods.”

Per-read performance of 5mC prediction

Nanopore sequencing can detect cytosine-methylation state for individual molecules.

We assessed the per-read performance of the seven DNA-methylation-calling tools at

single-molecule, single-base resolution in singletons and non-singletons. We compared
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methylation calling performances on fully methylated or fully unmethylated CpGs using

BS-seq as ground truth across the four datasets (Additional file 2: Table S2). We di-

vided non-singletons into two sub-categories: (1) concordant non-singletons: non-

singletons contain CpGs that are either fully methylated or fully unmethylated, and (2)

discordant non-singletons: non-singletons that contains both fully methylated and fully

unmethylated CpGs. Nanopolish, Megalodon, DeepSignal, and Guppy outperformed

the other three tools on all datasets measured by F1-score, accuracy, and AUC (Fig. 3,

Additional file 1: Fig. S3, and Additional file 2: Table S3). Notably, all tools exhibited

lower F1 scores (less than 0.90, Fig. 3A) and accuracy (less than 0.93, Additional file 1:

Fig. S3B) at discordant non-singletons than at any of the other CpG contexts, consist-

ently across four datasets (Additional file 1: Fig. S3C). Also, all methods achieved higher

performance on concordant non-singletons than singletons. The observation may be

relevant to the fact that model-based methylation-calling tools (e.g., Nanopolish, Deep-

Signal, DeepMod, and METEORE) used “concordant” training data—completely meth-

ylated sequences and completely unmethylated sequences. Moreover, Nanopolish and

Tombo borrow the signals of neighboring CpG sites to call DNA methylation.

Different genomic contexts display different CpG densities and DNA methylation

levels [59]. Thus, to evaluate the impact of biologically relevant genomic contexts

on 5mC predictions, we considered promoters, exons, introns, intergenic regions

(referred as intergenic), CpG islands, shores, and shelves (Fig. 4A, Additional file 1:

Fig. S4A, Additional file 2: Table S3), regions with different CG densities (Fig. 4B,

Additional file 1: Fig. S4B), and different types of repetitive regions (Fig. 4C, Add-

itional file 1: Fig. S4C). All seven tools exhibited a lower F1 score (< 0.93) for

intergenic regions than for any other genic regions or CpG islands, shores, and

shelves (Fig. 4A). We next assessed if CG density impact the performance of 5mC

predictions using nanopore sequencing (Fig. 4B). Specifically, CG density is calcu-

lated by the percentage of G and C bases in 5-base windows. Tombo and

METEORE suffered from low accuracy predictions in all CG density regions, but

particularly so in low CG density regions. CG density significantly associated with

the performance of Nanopolish, Megalodon, DeepSignal, Guppy, and Tombo with

p value < 0.05 by the analysis of variance (ANOVA) test (Additional file 2: Table

S4). Moreover, we examined five categories of repetitive regions: short interspersed

nuclear element (SINE), long interspersed nuclear element (LINE), long terminal

repeat (LTR), DNA transposons, and others (Fig. 4C). Nanopolish, Megalodon,

DeepSignal, Guppy, and Tombo showed lower F1 scores for SINE and LTR regions

than for the other repetitive regions. Compared to the other tools, Nanopolish,

Megalodon, DeepSignal, and Guppy consistently exhibited higher overall F1 scores

on CpG sites across all datasets and across genic and intergenic regions, repetitive

regions, and regions with different CG densities (Fig. 4).

DeepMod ranked the lowest in F1 score, accuracy, and AUC, when applied to all four

human ONT datasets (Additional file 2: Table S3) across different genomic contexts

(Figs. 3 and 4), while it is comparable to the other six tools when using the 5mC posi-

tive control dataset from E. coli [38] (Additional file 2: Table S5), suggesting the im-

portance of evaluating the performance of these analytic tools using human ONT

datasets, since not all tools are compatible with genomes with higher complexity than

that of E. coli, such as the human genome.
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Fig. 3 Per-read performance of 5mC prediction at singletons and non-singletons. A F1 score across four datasets
based on singleton and non-singleton classification using BS-seq as ground truth. Singletons are CpG sites that
contain only one CpG up and down 10-base-pair (bp) regions; non-singletons are CpG sites with multiple CpG sites
up and down 10-bp regions; concordant non-singletons are non-singletons where all CpGs with a 10-bp region have
the same methylation state (i.e., all 100% or all 0% methylated); discordant non-singletons are non-singletons with
both fully methylated and fully unmethylated CpGs. B ROC curves for the NA19240 dataset on singletons, non-
singletons, concordant non-singletons, and discordant non-singletons
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To determine whether the performance of the tools at genomic regions in general is

impacted by the percentage of non-singletons in the regions, we assessed the percent-

age of singletons and non-singletons for each genomic context (Additional file 2: Table

S6). In addition, we tested the significance of the Pearson correlation coefficient be-

tween F1 score achieved by each tool and non-singleton percentage, and the

Fig. 4 Per-read performance of 5mC prediction in different genomic contexts. A F1 score across four datasets at genic
and intergenic regions, CpG islands, shores, and shelves. Promoter is 2000 bp up and down the transcription start site
(TSS). B F1 score across four datasets at regions of different CG densities (20%, 40%, 60%, 80%, 100%). C F1 score across
four datasets at repetitive regions. We consider short interspersed nuclear elements (SINE), long interspersed nuclear
elements (LINE), long terminal repeats (LTR), DNA transposons, and “Others” for other repetitive regions. A–C Evaluation
across four datasets using BS-seq as ground truth
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relationship was statistically significant (p value < 0.05, correlation coefficients range

from 0.286 to 0.423, Additional file 2: Table S7) for three tools, i.e., Nanopolish, Deep-

Signal, and Guppy. These observations suggest that the various 5mC prediction perfor-

mances across different genomic contexts are significantly influenced by the

distribution of singletons and non-singletons in three tools. In summary, Nanopolish,

Megalodon, DeepSignal, and Guppy outperformed the other tools in per-read perform-

ance of 5mC prediction across genomic contexts.

Per-site performance of 5mC prediction

To assess the performance of the seven tools for CpG sites with a full range of methyla-

tion levels, we evaluated the Pearson correlation coefficient between DNA methylation

percentage from nanopore sequencing (read coverage ≥ 3) and from the corresponding

BS-seq data (coverage ≥ 5), both at single-base resolution. To obtain per-site DNA

methylation percentages, we either obtained DNA methylation reports directly from

each tool or followed the instruction of each tool to aggregate per-read 5mC predic-

tions or to obtain the fraction of methylated reads. We found that the 5mC percentage

predicted by Nanopolish, Megalodon, DeepSignal, and Guppy showed the highest cor-

relation (≥ 0.80) with all four datasets (Fig. 5A and Additional file 2: Table S8).

BS-seq of all datasets exhibited a bimodal distribution of DNA methylation (0 for

unmethylated, 1 for methylated), and the histogram of the DNA methylation output of

Nanopolish, Megalodon, DeepSignal, and Guppy also displayed a similar bimodal distri-

bution on NA19240 (Fig. 5A). Similar predicted methylation patterns and performance

of Nanopolish, Megalodon, and DeepSignal for NA12878 were observed by recent re-

search [43]. In contrast, the DNA methylation-level histogram of Tombo and

METEORE showed multiple peaks between 0 and 100% methylation levels, rather than

two peaks. Furthermore, the Pearson correlation between BS-seq and DeepMod was

close to zero for NA19240 data (Fig. 5A), confirming that DeepMod cannot effectively

predict methylation distribution at the human whole-genome level. Moreover, Nano-

polish, Megalodon, DeepSignal, and Guppy consistently produced the highest correl-

ation coefficients at all genic and intergenic regions, CG density regions, and repetitive

regions for NA19240 data (Additional file 1: Fig. S5A-B).

Furthermore, we found that the correlation among the top four performers, i.e.,

Guppy, Nanopolish, Megalodon, and DeepSignal, is greater than the correlation be-

tween BS-seq and nanopore sequencing data (Fig. 5A, Additional file 2: Table S8). We

hypothesize that the ability to distinguish 5hmC from 5mC by nanopore sequencing, at

least in part, contributes to the discrepancy between BS-seq and nanopore sequencing.

To test the hypothesis, we generated oxBS-seq for APL (See “Methods”) and detected

the 5hmC percentage for each CpG site by integrating matched APL oxBS-seq and

WGBS data by the MLML (maximum likelihood methylation levels) algorithm [60].

We compared the 5hmC percentage in CpGs exhibiting agreement (methylation level

difference < 5%) and discrepancy (methylation level difference > 40%) between WGBS

and nanopore sequencing for APL. The CpG sites exhibiting discrepancy showed a sig-

nificantly higher 5hmC level than those exhibiting agreement (p value < 0.0001, Wil-

coxon rank sum test, Additional file 1: Fig. S6A-D). These observations suggest that the
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Fig. 5 (See legend on next page.)
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ability to distinguish 5hmC from 5mC by nanopore sequencing enables a more accur-

ate 5mC detection than BS-seq.

To assess the impact of biological context on the methylation predictions, we ex-

plored the relationship between CpG methylation percentage and the distance to anno-

tated TSSs. As expected, CpG sites near TSSs tended to be unmethylated. Methylation

levels increased as the distance from the TSS increased. DNA methylation patterns de-

tected from nanopore sequencing via Nanopolish, DeepSignal, and Megalodon closely

resembled the pattern for the WGBS data (Fig. 5B, Additional file 1: Fig. S7A-B, and

Additional file 2: Table S9). Notably, Guppy displayed the lowest DNA methylation

levels at TSSs. Furthermore, methylated cytosines affect DNA-binding specificities of

hundreds of human transcription factors [61]. Binding sites of the transcription factor

CTCF are characterized by low DNA methylation levels [62]. CTCF plays a critical role

in long-range chromatin interactions, the formation and maintenance of topologically

associated domains, and transcription. Thus, we assessed the relationship between CpG

methylation percentage and the distance to the center of the CTCF binding peaks from

the ChIP-seq data of the matching cell lines (NA19240, NA12878, and K562). Indeed,

DNA methylation percentage was lowest at the center of the CTCF binding peaks, and

the ONT 5mC predictions by Nanopolish, Megalodon, DeepSignal, and Guppy closely

tracked the pattern of WGBS data (Fig. 5C, Additional file 1: Fig. S7C, and Additional

file 2: Table S9).

Overall, Nanopolish, Megalodon, DeepSignal, and Guppy had high correlations with

BS-seq, and they closely tracked the methylation patterns of BS-seq at the whole-

genome level. METEORE, which models 5mC by integrating the output of Megalodon

and DeepSignal, did not perform well in any evaluation criteria that we assessed. The

correlation coefficient of DNA methylation across CpG sites between the seven tools

and BS-seq is consistent with the read-level accuracy (Figs. 3 and 4).

Megalodon and DeepSignal predicted more CpG sites than did Nanopolish and Guppy at

the site level

Though CpG sites are the same for all the tools after the basecalling and alignment

step, the predicted number of CpG sites is different because each methylation-calling

tool has their own criteria to make confident methylation predictions. Therefore, we

next evaluated the number of CpG sites (read coverage ≥ 3) with 5mC predictions. The

UpSet diagram shows the number of overlapped sites among the tools (Fig. 6 and

(See figure on previous page.)
Fig. 5 Per-site performance of 5mC prediction. A Correlation plot showing Pearson correlation coefficients
of each methylation-calling tool with BS-Seq on NA19240. The white squares in the upper triangle show
Pearson correlation coefficients. Cross-platform (i.e., between BS-seq and nanopore sequencing) correlation
coefficients are in red while cross-tool (i.e., pair-wise comparison between each methylation-calling tool for
nanopore sequencing) correlation coefficients are in black. The density plots in the diagonal exhibit the
distributions of 5mC percentage. The blue squares in the lower triangle represent the 2D kernel density
plots for each pair of comparisons. B Relationship between CpG methylation percentage and distance to
annotated TSS in the NA19240 (left panel) and NA12878 (right panel) datasets. Distances are binned into
50-bp windows. C Relationship between CpG methylation percentage and distance to annotated CTCF
binding peaks in the NA19240 (left panel) and NA12878 (right panel) datasets. Distances are binned into
100-bp windows for NA19240 and 125-bp windows for NA12878. Negative distances are upstream and
positive distances are downstream of the B TSS or C CTCF binding peaks
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Additional file 1: Fig. S8). Compared to the other five tools, Megalodon and DeepSignal

covered more CpG sites on all four datasets. Of the predicted CpG sites in NA19240,

50% of the sites were predicted by all tools (Additional file 2: Table S10). Furthermore,

among all the CpG sites predicted collectively by the top four performers (i.e., Nano-

polish, Megalodon, DeepSignal, and Guppy), 92% and 85% of the sites were predicted

by all four tools for the NA19240 and NA12878 datasets, shown by the Venn diagrams

Fig. 6 The overlap of CpG sites predicted by methylation-calling tools. UpSet diagram shown at bottom of
each panel (A and B) is for the CpG sites of the top thirty sets of intersections detected by each methylation-
calling tool using (A) NA19240 and (B) NA12878 nanopore sequencing datasets. Venn diagram shown at the
top of each panel (A and B) is for CpG sites detected by the four best-performing methylation-calling tools
(Nanopolish, DeepSignal, Guppy, Megalodon), k is for thousand and M is for million. The numbers of CpGs in
each intersection of Venn diagram can be found in Additional file 2: Table S11. Bar plot shown at the lower
right of each panel (A and B) is for the total CpGs detected by each tool. For each methylation-calling tool,
only the CpG sites covered by ≥ 3 reads were considered
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(Fig. 6 and Additional file 2: Table S11). Megalodon and DeepSignal predicted the high-

est number of CpG sites, i.e., they each predicted 99% of the union of CpG sites using

the NA19240 dataset, while Nanopolish and Guppy predicted 93% and 95%, respect-

ively, of the union CpG sites in that dataset, due to the more stringent criterion of log-

likelihood ratio cutoffs [9, 32, 51, 63]. Thus, Megalodon and DeepSignal covered 6%

and 4% more CpG sites than did Nanopolish and Guppy, and the differences increase

greatly for lower sequencing-depth ONT datasets (APL and K562, Additional file 1:

Fig. S8A-B). In summary, among the top four performers, Megalodon and DeepSignal

predicted the largest number of CpG sites. Also, Tombo and DeepMod predicted the

fewest CpG sites.

Running time and memory usage on benchmark datasets

To evaluate the running time and peak memory of each methylation-calling tool, we

ran seven pipelines starting from the initial stage of taking input of raw fast5 files to

the final output of the read-level and genome-level prediction results using the same

high-performance computing (HPC) platform and environment for all seven tools (See

“Methods”). We then split the raw ONT data to parallelize methylation calling for each

tool. To minimize run time, a GPU and eight processors of hardware resources were al-

located to each job for the methylation-calling tools. The SLURM resource and job

management system effectively monitor the use of computing resources on HPC clus-

ters [64]. Therefore, for each tested dataset we ran all jobs managed by SLURM and

calculated the sums of CPU utilized times (hours), the max of job wall-clock times

(hours), and the peak memory use (GB) based on reported logs of SLURM jobs for each

pipeline (Fig. 7, Additional file 2: Table S12). We noted that only METEORE depends

on the 5mC prediction of other tools’ results (e.g., Megalodon and DeepSignal), and

thus the actual running time is the sum of the running times of METEORE, Megalo-

don, and DeepSignal. Guppy processed the fast5 raw signal file for NA19240 (~ 32×

coverage) in the shortest amount of CPU time (151 h), followed by Megalodon and

Nanopolish (698 and 703 h), while the CPU times for Tombo, DeepSignal, and Deep-

Mod for the same file were much longer than the time required by Guppy (42×, 150×,

and 186× longer, respectively). Furthermore, Guppy and Nanopolish exhibited the low-

est peak memory usage (~ 13 and 19 GB), while Megalodon exhibited the highest peak

memory usage (17× higher than that of Guppy). The same analysis of run time and

peak memory usage for the other three benchmark datasets confirmed the ranking for

these tools (Additional file 2: Table S12). In conclusion, Guppy and Nanopolish re-

quired both the least amount of CPU time and exhibited the lowest peak memory

usage. DeepSignal and Tombo consumed more CPU times, but low peak memory,

while Megalodon consumed large peak memory but short CPU time. METEORE and

DeepMod both require the highest peak memory and CPU running time.

Discussion
Robust detection of DNA methylation in the human genome is critical to improve our

understanding of the functional impacts of epigenetic modifications. Recently, ONT

nanopore-based sequencers have made possible direct DNA sequencing to generate

long reads at single-molecule, single-base resolution. ONT long-read sequencing
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facilitates linkage of base modifications to genetic variants, and to specific regions of

nucleic acids in the variants. Therefore, it allows exploration of epigenetic heterogeneity

at single-molecule resolution and can improve our ability to detect long-range epigen-

etic phasing.

ONT has released multiple commercialized platforms and pore-chemistry versions

(See timeline in Fig. 1A). In 2015, ONT released its first commercialized platform, Min-

ION™ [65, 66], a portable device enabling simultaneous sequencing using up to 512

pores, with the capacity to generate up to 30 GB of DNA data [67]. In 2017, ONT in-

troduced a scaled-up platform, GridION™, allowing analysis of up to five MinION flow

cells and generation of up to 100 GB of data per run [16]. In 2018, ONT introduced

the ultra-high-throughput platform PromethION™, with up to 48 flow cells [17], and

later offered PromethION24/48 for much larger-scale sequencing [14]. Nanopore se-

quencing is considered a paradigm shift among recent sequencing approaches, because

of its unique design enabling significant portability and relatively low cost [11, 68].

In the past, the advantages of long reads and real-time sequencing have made nano-

pore sequencing an effective tool to detect genomic and genetic aberrations such as

DNA structural variants and RNA alternative splicing events [69]. Nanopore sequen-

cing has demonstrated its powerful structural-variation-detection capacity in lung can-

cer [70, 71], leukemia [72], and neuron disorders [73–75], and it has been applied to

clinical samples for molecular etiology or diagnosis of diseases associated with genomic

variants [73–78]. Meanwhile, nanopore sequencing of splicing changes has been used

research on cancers including breast cancer [79], leukemia [80, 81], and brain tumors

[82]. Such research with nanopore sequencing has improved our understanding of evo-

lutionary processes in human diseases. Furthermore, nanopore sequencing has opened

new avenues for epigenetic research. For example, Miga et al. provide telomere-to-

telomere assembly and DNA methylation maps of the human X chromosome [83]

using nanopore sequencing, and Ewing et al. developed a long-read nanopore sequen-

cing software for transposable elements (TE) detection and characterized the TE DNA

Fig. 7 CPU utilized time and peak memory usage. We compared the peak memory usage and running
time of the seven tools on the single-read fast5 files of each dataset
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methylation patterns [84]. Recently, efforts have been made to combine nanopore se-

quencing and other methods to perform epigenomics profiling and chromosome struc-

ture exploration. For example, Wongsurawat et al. used nanopore Cas9-targeted

sequencing to simultaneously assess IDH mutation status and MGMT methylation

levels in both cell lines and fresh biopsies of diffuse glioma [85]. Lee et al. developed a

new nanopore sequencing-based method to simultaneously detect CpG methylation

and chromatin accessibility [86]. Also, several preprint papers report the use of nano-

pore sequencing to enhance the understanding of epigenetic heterogeneity and the

underlying molecular mechanisms [87–89].

Main advantages of nanopore sequencing include the ability to distinguish signals of

5hmC from that of 5mC and the allele-specific methylation (ASM). 5mC and 5hmC

affect the electronic currents differently in the pore when DNA passes through: 5mC

consistently increases the current relative to C, while 5hmC generally decreases the

current relative to C, which reveals the potential feasibility to discriminate 5hmC, 5mC,

and 5C by electric signal deviations [26, 30]. However, very few computational methods

are available that can predict 5hmC from nanopore reads. SignalAlign [39]—a three-

way (C, 5mC, or 5hmC) cytosine classifier trained by synthetic oligonucleotides—

achieved an accuracy of 79% for predicting cytosine with 5hmC, but the method is de-

veloped with nanopore chemical version R7.3 (the pore is out-of-date and no longer

available) and its repository has not been updated for over 4 years. We also noticed that

ONT recently published a “research release” on basecalling model trained in 5hmC and

5mC in all contexts in the Rerio repository [90], and Megalodon [36] will be able to

predict 5hmCs and 5mCs simultaneously. However, the 5hmC model is still under de-

velopment, and to date no data are available on its performance to predict 5hmC. In

the current study, we demonstrated that the ability to distinguish 5hmC from 5mC by

nanopore sequencing, at least partly contribute to the discrepancy between BS-seq and

nanopore sequencing, suggesting the great potential for simultaneous profiling of

5hmC and 5mC at single-base, single-molecule resolution by nanopore sequencing.

Furthermore, nanopore sequencing is ideal to detect and phase ASM, considering the

ability to detect multiple types of modifications (e.g., 5mC, 5hmC, 6 mA) from the same

DNA molecule in a long range, For example, Akbari et al. [43] have developed a soft-

ware to detect ASM in both human B-lymphocyte and B-lymphoblast cell lines using

nanopore sequencing data. When more computational tools emerge for simultaneous

prediction of multiple modifications (e.g., 5hmC and 5mC) from single read, these tools

will likely expand the ability of allele-specific modifications detection by nanopore

sequencing.

Previous benchmark work [38, 43] on methylation-calling tools for nanopore sequen-

cing either compared a limited number of tools or evaluated limited CpG sites. Akbari

et al. [43] focused primarily on methylation phasing using long reads and compared

only three tools, using one publicly available nanopore sequencing dataset (R9.4). Also,

only a few genomic contexts (genic regions and CpG islands) and per-site (i.e., single-

base resolution) were included in the evaluation of methylation calling performance.

Also, only a few genomic contexts (genic regions and CpG islands) and per site. Yuen

et al. [38] performed benchmarking evaluation on selected 100 CpGs from E. coli and

1743 CpGs from human genome using NA12878 Cas9-targeted nanopore sequencing.

Our current work is distinctive from the prior studies. First, we presented a systematic
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benchmark of all seven current available methylation-calling tools for nanopore se-

quencing data generated from human natural DNA at the whole-genome scale, not

using a limited number of CpG sites or a limited number of tools. A whole human-

genome scale comparison is critical. For example, while we confirmed that the per-

formance of DeepMod was comparable to that of other tools for the bacteria genome,

DeepMod performed poorly at the human whole-genome scale, which was not previ-

ously reported. Also, we showed that the performance of METEORE across the human

genome was worse than that of Nanopolish, Megalodon, DeepSignal, and Guppy at the

genome-wide scale across four datasets, which is distinctive from the evaluation by

Yuen et al. [38]. This is likely due to their small training dataset—100 CpG sites from

E. coli—and the performance of METEORE was evaluated based on less than 2000

CpG sites. Second, to compliment current publicly available benchmark datasets gener-

ated from human cell lines, we generated (1) two new nanopore sequencing datasets:

one is from a primary leukemia specimen, and one is a human leukemia cancer cell

line, and (2) WGBS and oxBS-seq datasets. The new datasets enable the evaluation of

these tools in a primary human specimen, not only in human cell lines, and thus will

provide guidance on the application of nanopore sequencing in clinical research. In

total, we used four human datasets with different coverages, which are large benchmark

datasets than the prior benchmark studies. Third, we evaluated the prediction robust-

ness not only at a per-site level, but also at a per-read level, and considered more di-

verse genomic contexts, e.g., singletons, discordant and concordant non-singletons,

genic and intergenic regions, various CG density regions, repetitive regions, and CTCF

binding regions. Fourth, we demonstrated that the 5hmC levels contribute to the dis-

crepancy between BS-seq and nanopore sequencing. Fifth, we also compared the num-

ber of CpGs predicted by each tool and the computational resources consumed by each

tool. For example, the raw fast5 data from a single nanopore sequencing library, e.g.,

NA12878, with ~ 26× coverage, can use over 30 TB of storage space and over hundreds

to thousands of CPU hours. Thus, the consumption of computational resources is es-

sential for guiding the design of data analyses on HPC and cloud computing platforms

for large-scale human nanopore sequencing data.

Conclusion
Oxford Nanopore long-read sequencing technology poses both opportunities and chal-

lenges for accurate methylation prediction and long-range epigenetic phasing. The past

few years have witnessed rapid development of both the sequencing technology and

analytical tools. For DNA methylation analysis, many algorithms are emerging for

nanopore sequencing data, and we comprehensively surveyed all current publicly avail-

able computational tools.

Based on our systematic comparison, we summarized the performances of seven tools

across all major evaluation criteria (Fig. 8). For each evaluation criterion, the tools were

classified as “good,” “intermediate,” or “poor” (in “Methods” and Additional file 2: Table

S13). We derived five key observations. First, the choice of methylation-calling tool crit-

ically affects the level of the F1 score, accuracy, and the AUC score at different genomic

regions. Overall, the top performers were Megalodon, Nanopolish, DeepSignal, and

Guppy. The consensus approach METEORE integrating other tools was reported to

have better performance than individual tools in 100 CpG sites of E. coli genome and
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10 regions from human genome, but at human-genome scale it was not as good as the

top four performers. DeepMod exhibited comparable performance for E. coli genome

but not in human genome in our benchmark analysis. Second, detection of 5mCs at re-

gions with discordant DNA methylation patterns, intergenic regions, low CG density

regions, and repetitive regions (i.e., SINE and LTR) showed room for improvement

across all tools. Therefore, penalized models, i.e., imposing an additional cost on the

models for making classification mistakes at these regions, or expand the training data-

sets on these more challenging regions, may enhance the robustness of methylation

calling for these biologically interesting regions. Third, Guppy and Nanopolish had the

Fig. 8. Summary of per-read and per-site performances across all major evaluation criteria. Summary of A
per-read performance (F1 score), B per-site performance (Pearson correlation coefficient), and resource
usage. Tools are ranked by their average performance across the criteria, with the numerical values of good
= 2, intermediate = 1, poor = 0. Details in evaluation criteria and cutoff values for performance categories
are available in the Methods and Additional file 2: Table S13
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lowest memory usage, while Guppy, Nanopolish, and Megalodon are faster than all

other tools. Fourth, we confirmed that the discrepancy in 5mC levels between the BS-

seq and nanopore sequencing data results in part from the 5hmC modifications. Unlike

nanopore sequencing, BS-seq cannot distinguish between 5mCs and 5hmCs, as bisulfite

treatment does not convert either modification. Fifth, Nanopolish and Guppy are fast,

but they detected, respectively, 6 and 4% fewer CpG sites than did DeepSignal and

Megalodon, due to the more stringent log-likelihood ratio cutoff used by Nanopolish

and Guppy for predicting non-singleton CpG sites. Thus, methylation calling using

nanopore sequencing will benefit from future endeavors to increase the accuracy of

challenging regions, the predicted CpG coverage, and high efficiency [91] in using com-

puting resources.

Therefore, we believe that our benchmarking of methylation-calling tools will guide

researchers in making well-considered and effective choices when designing an analytic

plan for epigenomic profiling using ONT sequencing, including Cas9-targeted nano-

pore sequencing data analysis. For users with limited computational resources, we rec-

ommend Guppy and Nanopolish for methylation analysis. Guppy requires minimum

CPU hours and peak memory as one of the top four performers because the base-

modification prediction is part of its basecalling. Nanopolish is the best option consid-

ering per-read and per-site performance criteria, as well as low CPU hours and peak

memory usage after basecalling. For users with the access to HPC resources or a larger

budget for cloud computing resources, Megalodon is the best option, considering its

performance in the more challenging areas including repetitive regions and discordant

non-singletons, also as it predicts more CpG sites compared to Nanopolish and Guppy.

Robust prediction of DNA methylation at different genomic contexts will help improve

our understanding of epigenetic mechanisms in gene regulation underlying many bio-

logical processes, including mammalian normal development, aging, and complex dis-

ease development.

Methods
Sample collection and processing

In the study, we used four independent human datasets: two normal B-lymphocyte cell

lines (NA19240 [56], NA12878 [57]), one primary acute promyelocytic leukemia clinical

specimen (APL), and one cancer cell line (K562).

The APL sample was obtained from the Stem Cell and Xenograft Core of the Univer-

sity of Pennsylvania. The Core maintains a tissue bank of cells from patients with

hematologic malignancies. This is Institutional Review Board (IRB)-approved research

(IRB protocol #703185). The patient sample was collected at the time of clinical presen-

tation and prior to therapy. The sample was collected as leukapheresis and viably fro-

zen using standard techniques. The de-identified specimen was then provided to the

Jackson Laboratory for Genomic Medicine (JAX-GM). Diagnosis of APL was confirmed

by fluorescence in situ hybridization (FISH) analysis for t(15;17).

K562 was cultivated in Roswell Park Memorial Institute (RPMI) 1640 Medium

(Gibco, A10491-01) with 10% fetal bovine serum (FBS) (Gibco, 26140079). K562

medium was additionally supplemented with 1% Antibiotic-Antimycotic (Gibco,

15240062).
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Genome annotations download and preprocessing

We downloaded the following genome annotation files from the UCSC Genome

Browser: GRCh38/hg38 chromosome sizes; GRCh37/hg19 chromosome sizes; Repeat-

Marker annotations for hg38; hg38 CpG islands locations (cpgIslandExt.txt); hg38 GC

percent in 5-base windows (hg38.gc5Base.wigVarStep.gz). We downloaded the v26

comprehensive genes annotation file (gencode.v26.annotation.gtf.gz) from GENCODE.

All analyses were restricted to chromosomes 1-22, X, and Y. Promoters were gener-

ated by extending the region 2000 bp up and down from the TSS. Genes were sub-

tracted with the “gene” feature type, while exons were subtracted with the “exon”

feature type from the GENCODE v26 annotation genes file. Introns were generated by

taking the difference between the genes file and the exons file. Intergenic regions were

generated by taking the difference between the reference genome and all other gene

feature types (gene, CDS, promoter, intron) from the gene annotation file using bed-

tools subtract. CpG shores were generated by extending the region 2 kb up and down

from the hg38 CpG island location file and were subtracted the overlapped CpG

islands, while CpG shelves were generated from 2 to 4 kb from CpG islands and were

subtracted the overlapped CpG islands and shores. DNA repetitive regions were re-

stricted to classes SINE, LINE, LTR, DNA transposons, and others (i.e., all classes other

than SINE, LINE, LTR, and DNA transposons were combined into a single category

named “Others”).

BS-seq datasets and analysis

We generated WGBS and oxBS-seq for APL. DNA was extracted using the AllPrep

DNA/ RNA kit (Qiagen) following the manufacturer’s recommendation. Two 500 ng

fragments of DNA were sheared to 500 bp using a LE220 focused-ultrasonicator (Cov-

aris) and purified using 0.9X SPRI beads (Beckman Coulter). The libraries were pre-

pared using the KAPA Hyper Prep Kit for Illumina (Roche), and bisulfite conversion

was performed using the TrueMethyl Seq Kit (CEGX). Briefly, the fragmented DNA

was first spiked in with CEGX sequencing controls, followed by end-repair and A-

tailing, and then ligated with a SeqCap indexed adaptor (Roche). The sample destined

for oxBS-seq was first subjected to oxidation whereas the sample destined for the

WGBS library were mock-treated, and then followed by a bisulfite conversion. After

purification, the bisulfite-treated DNA was amplified with 15 cycles of PCR. The final li-

brary was quantified by real-time qPCR for an accurate concentration since proper

quantitation is needed for loading the library for next-generation sequencing. Libraries

were sequenced paired-end 2 × 150 bp on an Illumina HiSeq 2500 instrument.

We used the published WGBS data for K562 and NA12878, and the published RRBS

data for NA19240. The BS-seq data for NA19240 and APL were analyzed with Bismark

[92] with the human reference genome (GRCh38/hg38) to obtain the cytosine methyla-

tion frequency at each CpG site. Region-specific analysis and local smoothing for sam-

ples was performed using our in-house BS-seq pipeline (https://github.com/

TheJacksonLaboratory/BS-seq-pipleine). For NA12878 and K562, we obtained the BED

file directly from ENCODE. Specially, we took the union of CpG sites from two repli-

cates (WGBS or RRBS) as corresponding DNA methylation ground truth. Then, we se-

lected CpG sites with coverage ≥ 5 for per-read performance of 5mC prediction
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evaluation, where a CpG is either fully methylated with 100% methylation frequency is

or unmethylated with zero methylation frequency. In total, for WGBS, 15,371,020 high-

confidence CpG sites were selected for NA12878; 25,382,453 sites for K562, and

8,707,604 sites for APL. For RRBS, 251,145 sites were selected for NA19240 (Additional

file 2: Table S2). For each dataset, we took the intersections of fully methylated or

unmethylated CpG sites from BS-seq and those from all tools for per-read performance

evaluation.

We used the statistical method MLML [60] to simultaneously estimate 5mC and

5hmC levels at each CpG site from paired WGBS and oxBS-seq (coverage ≥ 1). Only

intersected CpG sites in both WGBS and oxBS-seq with zero conflict were considered

for further analysis. Specially, if the estimated methylation level falls out of the confi-

dence interval of binomial test calculated from input coverage and methylation level,

then such event is counted as one conflict; the site is not reliable if more conflicts hap-

pen on one site [93].

Nanopore sequencing datasets

We generated nanopore sequencing datasets for APL and K562 at JAX-GM. For APL

and K562, genomic libraries were prepared using the Rapid Sequencing Kit (SQK-

RAD004, ONT) according to the manufacturer’s recommendation. Briefly, 1200 ng

DNA was incubated with 2.5 μl of FRA at 30 °C for 1 min and 80 °C for 1 min. This

was followed by the addition of 3 μl of adaptor (RAP) to the reaction mix, and the mix-

ture was then incubated at 5 min at room temperature. The libraries were sequenced

on Flow Cell R9.4.1 (FLO-MIN106, ONT) on GridION (ONT) using MinKNOW soft-

ware for 48 h.

NA19240 was sequenced for the 1000 Genomes Project [56] and the sequencing

depth was ~ 32× coverage (the total number of bases sequenced divided by the total

number of genome bases). We obtained nanopore raw data and their library prepar-

ation details from the authors of [56]. HMW genomic DNA was extracted using the

phenol chloroform approach [94]. Libraries were prepared using the 1D Ligation Se-

quencing Kit (SQK-LSK108, ONT) according to the manufacturer’s recommendation.

The library was sequenced on Flow Cell R9.4.1 (FLO-MIN106, ONT) on a GridION

(ONT) using the MinKNOW software for 48 h.

NA12878 was sequenced with a reported median 26× coverage by the Whole Human

Genome Sequencing Project [57]. The NA12878 human genome was sequenced on the

ONT MinION with R9.4 chemistry (FLO-MIN106) using the 1D Ligation Sequencing

Kit (SQK-LSK108, ONT). We downloaded nanopore raw data from the GitHub reposi-

tory (https://github.com/nanopore-wgs-consortium/NA12878). We downloaded the E.

coli positive control dataset generated by Simpson et al. [9] on GitHub (https://github.

com/comprna/METEORE), which contains 50 single-read fast5 files.

Nanopore sequencing data preprocessing

Basecalling, the process of translating raw electrical signal of nanopore sequencing into

nucleotide sequence, is the initial step of nanopore data analysis. Both ONT and inde-

pendent researchers are actively developing different tools for the basecalling step. Spe-

cifically, ONT provides basecalling programs including official ONT community-only
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software (Albacore and Guppy) and open-source software (Flappie, Scrappie, Taiyaki,

Runnie, and Bonito [95]), the latter of which are under development with new algo-

rithms for basecalling. Among the basecalling programs, Albacore and Guppy are com-

patible with Oxford Nanopore R9.4 reads and offer the most stable performance [54].

Albacore [96] is a general-purpose base caller that runs on CPUs. Guppy [51] is a

neural network based basecaller with several bioinformatic post-processing features.

Guppy supports both CPUs and GPUs for improved basecalling run time, and it is

available on the ONT community site (https://community.nanoporetech.com). ONT

discontinued to develop Albacore due to the better performance of Guppy [54]. Be-

cause the state-of-art basecaller Guppy using the default high-accuracy (HAC) model

showed excellent performance among ONT basecalling tools [54], we used Guppy

(v4.2.2) with default model (dna_r9.4.1_450bps_hac.cfg) for basecalling for all nanopore

reads (fast5 files). The basecalled reads were then aligned to the human reference gen-

ome (GRCh38/hg38) for human datasets or aligned to the E. coli K12 MG1655 genome

for the E. coli dataset using minimap2 [53]. Specially, R9.4-series pore is the current

broadly used ONT flow cell and there is a slight difference between R9.4 and R9.4.1

flow cells, and all the models used in our work can work for both [97]. Moreover, for

cell line authentication of K562, we aligned the basecalled reads to the human reference

genome (GRCh37/hg19) using minimap2 [53] and Samtools [98] and compared the

aligned reads at the target regions with reported insertions/deletions (indels) derived

from the Cancer Cell Line Encyclopedia (CCLE) project [99] in genome browser IGV.

Methylation-calling tools for nanopore sequencing

We evaluated the performance of Nanopolish (v0.13.2), Megalodon (v2.2.9), DeepSignal

(v0.1.8), Guppy (v4.2.2), Tombo (v1.5.1), METEORE (v1.0.0), and DeepMod (v0.1.3) to

detect 5mCs. These seven tools differ in the underlying algorithms and the modifica-

tions they are trained to detect DNA methylation.

Nanopolish [9] calls 5mCs in a CpG context using a HMM to assign a log-likelihood

ratio (LLR) for each CpG site, where a positive log-likelihood ratio (LLR) indicates sup-

port for methylation. Nanopolish groups nearby CpG sites together and calls the cluster

jointly to assign the same methylation status to each site in the group. For example, on

a motif such as CGCGT, Nanopolish reports a LLR for the whole group, rather than a

separate LLR for the individual cytosine. We used 2.0 as the LLR threshold for methyla-

tion calling, as the Nanopolish authors suggest on the GitHub that the initial 2.5 shown

in the paper is overly conservative, and the default threshold was replaced with 2.0

from v0.12.0 [63]. Specifically, we first detected methylated CpGs (LLR > 2.0) and

unmethylated CpGs (LLR < -2.0) at the read level and removed ambiguous predictions

(− 2.0 ≤ LLR ≤ 2.0). Then we calculated per-site methylation frequency by the fraction

of reads classified as methylated.

Megalodon [36] is a new ONT-developed command line tool that can identify modi-

fied base using deep learning recurrent neural network (RNN) model by utilizing

Guppy (v ≥ 4.0) pre-trained models for basecalling on the backend. Megalodon predict

5mC at either the per-read or per-site level (by aggregating per-read results) based on

the log probability that the base is modified or unmodified. Guppy (v ≥ 4.0) backend

and pre-trained models is recommended for basecalling [36], and therefore, we fed
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Megalodon v2.2.9 with Guppy v4.2.2 with the latest “5mC in an all context” model

(res_dna_r941_min_modbases_5mC_v001.cfg) from Rerio [90], and chose the default

probability cutoff (0.8) to predict DNA methylation.

DeepSignal [35] proposed a RNN with a Bidirectional Long/Short-Term Memory

(BiLSTM) and Inception structure to detect the methylation state of target cytosine in

a CpG context. DeepSignal required an extra re-squiggle module of Tombo before

methylation calling. The methylation calling output of DeepSignal is a tab-delimited

text file at read level including two probability values for each base, one for methylated

(prob_1) and one for unmethylated (prob_0), as well as a binary call, i.e., unmethylated

(prob_1 > prob_0) or methylated (prob_1 ≤ prob_0) for each base. We predicted per-

read 5mC with the CpG model trained using HX1 R9.4 1D reads (model.CpG.R9.4_

1D.human_hx1.bn17.sn360.v0.1.7 + .tar.gz) provided by DeepSignal from the GitHub

repository at https://github.com/bioinfomaticsCSU/deepsignal and calculated the per-

site 5mC level using their official methylation frequency script.

Guppy is a ONT-developed basecaller [51] and is able to identify certain types of

modified basecalling (i.e., 5mC, 6 mA) from the raw signal data [32]. We first used a

Guppy methylation-calling model (dna_r9.4.1_450bps_modbases_dam-dcm-cpg_

hac.cfg) to estimate modified base probabilities with integer scores in the range [0,

256]. Then, we used ONT-developed fast5mod (v1.0.5) [55] default score cutoffs to

convert Guppy’s modified base probabilities into modified base predictions, and kept

the predictions in a CpG context. Specifically, fast5mod output per-site 5mC level by

the number of methylated (score > 128) reads were divided by the sum of methylated

reads and unmethylated (score < 64) reads.

ONT-developed Tombo [20] performed a statistical test to identify modified nucleo-

tides without the need for the training data. Tombo computed per-read, per-site test

statistics by comparing the signal intensity difference between modified bases and un-

modified bases. We chose to use the recommended CpG motif-specific model with the

default threshold of (− 1.5, 2.5) for DNA where scores below − 1.5 were considered as

methylated and above 2.5 unmethylated, and scores between these thresholds did not

contribute to the per-site methylation.

DeepMod [34] designed a bidirectional RNN with an LSTM unit for genome-scale

detection of DNA modifications. The input is a reference genome and fast5 files with

raw signals basecalled by Guppy (v4.2.2). The output is a BED file with coverage, num-

ber of methylated reads, and methylation percentage information for genomic positions

of interest. Since a 5mCs in a CpG motif has a cluster effect in the human genome

[34], DeepMod provides a cluster model to generate a final output for site-level-

predicted methylation probability in the human genome. We performed DeepMod for

methylation calling with the RNN model (rnn_conmodC_P100wd21_f7ne1u0_4) and

cluster model (na12878_cluster_train_mod-keep_prob0.7-nb25-chr1) from the GitHub

repository at https://github.com/WGLab/DeepMod. Also, since DeepMod aggregated

methylation calling results into a per-site output BED file, we counted the number of

methylated callings and unmethylated callings from BED outputs to evaluate its read-

level performance.

METEORE [38] is a consensus approach combining the predictions from two or

more methylation-calling tools. Currently, neither METEORE regression pre-trained

models nor training datasets for regression models are available. METEORE random
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forest (RF) model combining Megalodon and DeepSignal achieved lower root mean

square error (RMSE) than other available METEORE models [38]. Thus, we used the

METEORE pre-trained RF model to combine the outputs from Megalodon and Deep-

Signal to predict methylation state at per-site level with a methylation probability

threshold of score 0.5, i.e., the site is called as unmethylated when the score ≤ 0.5, and

the site is called as methylated when the score > 0.5. After that, we used METEORE

script to calculate the methylation frequency at a site level.

The performances of these methods that use prior knowledge about the expected de-

viations in signal are highly dependent on the training data, which is typically com-

posed of a fully unmodified and a fully modified sample. Motifs that are not

represented in the training set or that contain mixtures of modified and unmodified

bases may lead to suboptimal performance.

Per-read performance evaluation

We designed the performance-evaluation process for 5mC predictions among seven

tools as follows. First, we identified those CpG sites shared by in BS-seq (coverage ≥ 5)

and predicted each nanopore sequencing methylation-calling tools (coverage ≥ 1). We

only kept CpG sites that showed 0 or 100% methylation levels by BS-seq (ground

truth), as we need to evaluate the per-read performance of these tools as classification

models. Second, we calculated the F1 score, accuracy, precision, and recall and assessed

the tradeoff between true-positive and false-positive rates of 5mC predictions by calcu-

lating the ROC curve by varying the threshold for methylation calling and reported the

AUC values as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

Accuracy = (TP + TN) / (TP + TN + FP + FN)

F1 Score = 2 × (Recall × Precision) / (Recall + Precision)

Here, TP means true positive, TN means true negative, FP means false positive, and

FN means false negative. We calculated F1 score for both 5mCs and 5Cs and used

macro F1 score, i.e., average F1 score of 5mC and 5C, as the overall F1 score for each

tool. AUC is a performance metric used to evaluate how well a classifier performs on

both methylated and unmethylated class predictions.

Per-site performance evaluation

First, we calculated Pearson correlation coefficients of methylation percentage for each

pair of tools (coverage ≥ 3) and between each tool and BS-seq (coverage ≥ 5) at whole-

genome level. Second, we computed the relationship between CpG methylation per-

centage with distance to TSS (bin size = 50 or 200 bp) and CTCF binding sites (bin size

= 100, 125, or 200 bp) using deepTools [100].

Memory usage and running time evaluation

We compared the memory usage and running time of the seven tools on the single-

read fast5 files of each dataset. All tools have support for multi-processors, and we
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compare the scalability of these tools on the same system configurations. We split the

ONT datasets for parallelization. All tools were carried out on the same computer clus-

ters with the following configurations: 32 cores; 300 GB RAM; 1 TB Data Direct Net-

works Gridscalar GS7k GPFS storage appliance. The HPC platform software and

hardware specifications are as follows: slurm manager version: 19.05.5, CPU: Intel(R)

Xeon(R) Gold 6136 CPU @ 3.00 GHz, GPU: Tesla V100-SXM2-32GB. Each job was al-

located eight processors, 300 GB memory, and one GPU hardware resource (GPU was

allocated for running Guppy, Megalodon, DeepSignal, and DeepMod). We extract run-

ning time (field name: CPU Utilized), job wall-clock time (field name: Job Wall-clock

time), and peak memory utilization (field name: Memory Utilized) from the SLURM

job log data. These results were used as the measurement of running time and memory

usage for hardware performance comparison and evaluation.

Nanome web application implementation

To facilitate the dissemination of DNA methylation calling results using nanopore se-

quencing from the current benchmark study, we present a web application named

nanome. Nanome is a user-friendly interactive nanopore sequencing methylation data-

base and is implemented with Shiny package from R programming language. The data-

base allows the users to select their features of interest, including chromosomes,

strands, datasets, singletons and non-singletons, genomic contexts, regions of various

CG density, and repeat regions. Nanome also provides methylation percentage and read

coverage at each genome site across different methylation calling tools and bisulfite se-

quencing. Nanome is available as a hosted web application that runs within a web

browser and can be accessed by https://nanome.jax.org.

Performance summary criteria

Figure 8 summarized the performance of each methylation-calling tool across the range

of evaluation metrics. We calculated the F1 scores, Pearson correlation coefficients,

CPU utilized time, and peak memory by the median value of each tool achieved across

the four datasets. The mean normalized CpG coverage (the number of CpGs divided by

the number of the union of CpGs of all tools) was calculated for the high-coverage

datasets NA19240 and NA12878. The performance for TSS and CTCF binding peaks

was measured by the sum of the absolute difference between WGBS and each tool for

NA12878. For each metric, the performance of each tool was considered either “good,”

“intermediate,” or “poor” (Additional file 2: Table S13).
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