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Abstract

Background: Spatiotemporal changes in the chromatin accessibility landscape are
essential to cell differentiation, development, health, and disease. The quest of
identifying regulatory elements in open chromatin regions across different tissues
and developmental stages is led by large international collaborative efforts mostly
focusing on model organisms, such as ENCODE. Recently, the Functional Annotation
of Animal Genomes (FAANG) has been established to unravel the regulatory
elements in non-model organisms, including cattle. Now, we can transition from
prediction to validation by experimentally identifying the regulatory elements in
tropical indicine cattle. The identification of regulatory elements, their annotation
and comparison with the taurine counterpart, holds high promise to link regulatory
regions to adaptability traits and improve animal productivity and welfare.

Results: We generate open chromatin profiles for liver, muscle, and hypothalamus of
indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif
enrichment and transcription factor binding sites, we identify potential master
regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and
SOX factors, respectively. Integration with transcriptomic data allows us to confirm
some of their target genes. Finally, by comparing our results with Bos taurus data we
identify potential indicine-specific open chromatin regions and overlaps with
indicine selective sweeps.

Conclusions: Our findings provide insights into the identification and analysis of
regulatory elements in non-model organisms, the evolution of regulatory elements
within two cattle subspecies as well as having an immediate impact on the animal
genetics community in particular for a relevant productive species such as tropical
cattle.
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Background
Chromatin is a complex of DNA and proteins (nucleosomes) found in the nucleus of

eukaryotic cells. The non-uniform topological organization of nucleosomes across the

genome, as well as their post-translational modifications, reflects a dynamic process

that controls chromatin accessibility, switching between transcriptionally active
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euchromatin and inactive heterochromatin [1]. The landscape of chromatin accessibility

regulates the degree to which nuclear macromolecules can bind the double helix, thus

affecting transcription, DNA repair, replication, and recombination [2]. Nucleosomes

are known to be depleted at regulatory loci, including enhancers, insulators, and tran-

scribed gene bodies, making binding sites available to transcription factors (TFs) and

the transcription machinery [3]. These epigenetic changes are instrumental to cell dif-

ferentiation, environmental signaling, and disease development. The quest of identifying

regulatory elements in open chromatin regions across different tissues and develop-

mental stages is led by large international consortia mostly focussing on model organ-

isms, such as the Encyclopedia of DNA Elements (ENCODE) in humans [4, 5], the

mouseENCODE for mouse [6] and the modENCODE for fruitfly and C. elegans [7, 8].

Recently, the Functional Annotation of Animal Genomes (FAANG [9]) and its coun-

terpart, Functional Annotation of All Salmonid Genomes (FAASG [10]), have been

established with the aim to unravel the regulatory elements in non-model organisms,

including chicken, pig, cattle, ovine, and aquaculture species. In this context, our group

has contributed the first draft of cattle and sheep functional regulatory regions based

on the identification of orthologous regulatory regions [11, 12] from human and mouse

[4, 6, 13]. However, particularly in cattle, the possibility of investigating chromatin ac-

cessibility sheds light on the expected differences between the two subspecies, Bos

taurus indicus and Bos taurus taurus [14, 15]. Indicine (or zebu) breeds (B. indicus) are

highly adapted to tropical environments, including resistance to disease and parasites,

heat stress, and severe drought conditions. Considering more than half of livestock

heads are found in tropical and subtropical environments [16], understanding and

selecting animals for adaptability traits is of high economic and welfare relevance. The

functional genomic basis of climatic adaptation in beef cattle is not well understood,

and resolving tissue-specific deployment of regulatory activity directed by small se-

quences is paramount.

In the quest of detecting chromatin accessibility, the Assay of Transposase Accessible

Chromatin sequencing (ATAC-seq) has become increasingly popular [1]. The libraries

for ATAC-seq are constructed by incorporating a hyperactive Tn5 transposase that

simultaneously cuts open chromatin on both ends, leaving a 9 bp staggered nick. Then,

high-throughput sequencing adapters are ligated to these regions [17]. PCR is used for

library construction, followed by paired-end next-generation sequencing. This simple

and fast protocol, paired with its high sensitivity and low requirement for starting cell

number, are the reasons for the popularity of this assay [1]. Recently, ATAC-seq data

has been used to annotate and compare domesticated farm animals, namely bovine (B.

taurus), chicken, goat, and pig [18, 19]. Here, we generated open chromatin profiles for

three tissues (liver, muscle, and hypothalamus) of tropical cattle (B. t. indicus) through

ATAC-seq. The liver was chosen for being a central organ of metabolism, including

bilirubin, bile acids, carbohydrates, lipids, xenobiotics, protein synthesis, and immunity

[20]. Similarly, the hypothalamus is a representative of the neuroendocrine system in-

volved in the regulation of several body processes, such as stress reaction, digestion, im-

munity, behavior, sexual behavior, and energy storage and expenditure. Finally, the

skeletal muscle was chosen for being the ultimate focus for beef cattle production.

Using several bioinformatics approaches, such as motif discovery, as well as publicly

available datasets, we aimed to functionally characterize regulatory elements in indicine
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tissues as well as their underlying regulatory code. That is the combination of transcrip-

tion factor binding sites (TFBS) that govern the spatiotemporal regulatory activity and

gene expression. This improved knowledge of regulatory annotation sheds high prom-

ise in linking sequence to phenotype and posing new questions on our current under-

standing of productive traits of agricultural relevance.

Results
Regulatory landscapes across three tissues in tropical cattle

To annotate regulatory elements in tropical cattle, we generated ATAC-seq data from

liver, hypothalamus, and muscle of three post-puberty Brahman heifers [21–23]. After

quality control, samples resulted in an average of 82,988,361 uniquely mapped reads

(Additional file 1), in agreement with the quality standards determined by ENCODE

ATAC-seq pipeline [24].

Open chromatin regions were identified through consensus peaks across biological

replicates in each tissue, resulting in 78,528 peaks for hypothalamus, 40,104 peaks for

muscle, and 22,291 peaks for liver (Additional files 2-4); covering 2.41%, 0.98%, and

0.52% of the genome, respectively (Additional file 5). The average peak length was 836

bp, 667 bp, and 635 bp for hypothalamus, muscle, and liver, respectively (Table 1).

A signal of good quality in ATAC-seq data is to present enrichment for transcription

start sites (TSS), which can be seen in Fig. 1A. However, open chromatin regions can be

mapped into different functional categories, including gene bodies, promoters, and distal

regulatory elements (Fig. 1B). Most of our called peaks fall within distal intergenic (41-

55%), followed by promoter regions (18–50%). A small percentage of peaks fall within

exons (0.8–3%) and untranslated regions (UTR, < 1%). Although peaks are assigned to the

most representative genomic feature to allow for easy comparison across tissues, often the

same peak can span multiple features, which was captured in Additional file 6. It is note-

worthy that samples with a lower number of peaks present a higher percentage of peaks

within Promoter/TSS regions. This behavior is also observed for the distribution of peaks

in terms of distance to the TSS of the nearest gene (Fig. 1C).

Genome-wide differences in chromatin accessibility profiles across tissues

The identified peaks were compared between tissues and tissue-specific peaks were de-

fined. Conversely, overlapping regions in all three tissues were considered constitutive.

We were able to identify 2213, 11,439, and 53,289 tissue-specific peaks for liver, muscle,

Table 1 Peak calling metrics

Total peaks
identified

Consensus peaks
(P < 0.01)

Average peak
length (bp)

Peaks on
chr1-29
and X

Proportion of
peaks near TSS
(±3Kb, %)

Hypothalamus 212,636,473 78,528 836 71,028 18.07

Liver 285,783,943 22,291 635 12,063 50.54

Muscle 248,240,326 40,104 667 30,483 30.95

Hypothalamus-specific - 53,289 630 53,103 9.08

Liver-specific - 2213 361 938 9.49

Muscle-specific - 11,439 474 10,976 7.56

Constitutive - 11,983 578 9803 59.37
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and hypothalamus, respectively, and 11,983 constitutive regions (Additional files 2-4,

7). For the four subsets, an enrichment around TSS can still be seen (Fig. 2A). How-

ever, while more than half of constitutive regions lie in promoter regions and gene bod-

ies, most tissue-specific peaks fall into intergenic and intronic regions (Fig. 2B).

Assigning peaks to genomic features invites relating those peaks to the nearest anno-

tated gene and, therefore, identifying key biological functions associated with open

chromatin regions (Fig. 2C, Additional file 8). Muscle-specific peaks were associated

mostly with terms related to muscle tissue development (Padj = 2.13E−06) and muscle

system process (Padj = 1.12E−05). Hypothalamus presented enrichment for terms re-

lated to cell communication such as cell surface receptor signaling pathway (Padj =

0.04) and for nervous system development (Padj = 0.04). Liver only presented enrich-

ment for positive chemotaxis (Padj = 1.10E−06) which might be related to the move-

ment of immune-competent cells characteristics of this tissue. Finally, constitutive

regions were mostly related to RNA processing (Padj = 5.93E−10), translation (Padj =

1.54E−06), and protein catabolic process (Padj = 1.14E−06).

Motif discovery unravels master tissue-specific regulators

The 2213 liver-specific ATAC-seq peaks were converted into 546 human genome re-

gions which were enriched for master regulators of liver and hepatocyte differentiation,

namely hepatocyte nuclear factors HNF4A/G (normalized enrichment score—NES =

12.47), and HNF1A/B (NES = 10.59) (Fig. 3A, Additional file 9). The enrichment ana-

lysis of our liver-specific regions against a public TF ChIP-seq bound regions database

in human cell lines from ENCODE confirmed the experimental binding of HNF4G on

human HepG2 cells as the most enriched track (ENCFF001UGI, NES = 7.39), followed

by RXRA (ENCFF001UHJ, NES = 6.81) and HNF4A (ENCFF001UGH, NES = 6.79;

ENCFF001UGG, NES = 6.78). Using the same methodology, we confirmed our liver-

specific regions were enriched for open chromatin in hepatocyte cell lines from

Fig. 1 Comparison of ATAC-seq peaks across different tissues (considering chromosomes 1-29 and X). A
Profile of peaks relative to transcription start sites (TSS), considering a ± 3 kb region, for individual tissues
(top heatmap) and comparing tissue average profiles (bottom distribution). B Percentage of overlap
between peaks and genomic features. C Percentage of peaks upstream and downstream from the TSS of
their nearest genes
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ENCODE, namely H3K27ac in HEpG2 Hepatocellular carcinoma cell line (NES = 8.55)

and FAIRE-seq on HepG2 (ENCFF001UYN, NES = 8.55), thus strongly indicating our

regions are functionally active in hepatocytes. When we converted the predicted target

regions of HNF4 back to cattle coordinates and compared them with our open chroma-

tin regions in liver, we were able to annotate 27 possible binding sites, with scores (log

likelihood ratios) varying from 0.03 to 12.5 (Additional file 10). No exact score thresh-

old exists and therefore, we reported scores for all identified target regions. Neverthe-

less, the higher the score the better.

Fig. 2 Comparison between tissue-specific (TS) peaks and constitutive regions for muscle (MUS), liver (LIV),
and hypothalamus (HYP). A Profile of peaks relative to transcription start sites (TSS) considering a ± 3 kb
region—confidence intervals were estimated by bootstrap method (500 iterations) and is shown as the
shading that follows each curve. B Percentage of overlap between peaks and genomic features. C
Functional enrichment of top 10 gene ontology (GO) terms for genes associated to peaks
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Fig. 3 Top 5 iRegulon motif discovery results on liver-specific (A), muscle-specific (B), and hypothalamus-
specific (C) open chromatin regions
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Finally, we validated the predicted targets of HNF4 by testing their co-expression

based on RNA-seq data. From the 62 predicted HNF4 targets, 52 were considered

expressed in our liver data. In addition, except for HNF1B, all top TF enriched in liver

presented gene expression and were included in the co-expression analysis. From 52

expressed targets, 20 (38%) presented significant co-expression with HNF4 (Fig. 4, Add-

itional file 11). Also, HNF1A was the only top TF co-expressed with HNF4.

The 11,439 muscle-specific ATAC-seq peaks were converted into 10,067 human gen-

ome regions which were enriched for a family of master regulators of muscle differenti-

ation (Fig. 3B, Additional file 12), namely myocyte enhancer factor-2 (MEF2, NES =

11.71). To validate our predictions, we looked at the enrichment for ENCODE ChIP-seq

experiments which resulted in skeletal muscle cell lines both in male (E107-H3K4me1,

NES = 8.44; E107-H3K4me1-broadpeak, NES = 5.52) and female (E108-H3K27ac, NES =

7.50; E108-H3K4me1, NES = 7.04) and FAIRE-seq on the skeletal myoblasts cell line

LHCN-M2 (ENCFF001WPB, NES = 5.23) as the most enriched tracks. These results con-

firm our muscle-specific regions are indeed functionally active in muscle cells. By convert-

ing the predicted target regions of MEF2 back to cattle coordinates and comparing them

with our open chromatin regions in muscle, we identified 667 possible binding sites, with

scores varying from 3.25E−03 to 23.4 (Additional file 13).

The 53,289 hypothalamus-specific ATAC-seq peaks were converted into 48,067 hu-

man genome regions which were enriched for an important family of transcription fac-

tors for neuronal development (Fig. 3C, Additional file 14), namely SRY-related HMG

box genes (SOX, NES = 5.48). The SOX family can regulate several different aspects of

development in general, which explains the enrichment for FAIRE-seq for Foreskin

Melanocyte Primary Cells as the top enriched track (E059-DNase.hotspot.all.peaks-nar-

rowpeak NES = 6.98) and DNase-seq on human iPS (ENCFF001SPB, NES = 5.96) as

the third. Nevertheless, among the top 10 enriched tracks are ENCODE ChIP-seq re-

sults for Brain Inferior Temporal Lobe (E072-H3K27ac, NES = 5.97; E072-H3K4me1,

NES = 5.32), Brain Substantia Nigra (E074-H3K27ac, NES = 5.80; E074-H3K4me1,

Fig. 4 Liver-specific master regulator HNF4 and its predicted targets. Dotted edges represent predicted
targets, continuous edges and red borders represent targets with significant co-expression using
RNA-seq data
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NES = 5.62), and Brain Hippocampus Middle (E071-H3K4me1, NES = 5.41). SOX tar-

gets coordinate when compared with our cattle open chromatin regions in hypothal-

amus, represented 2166 possible binding sites, with scores varying from 4.05E−06 to

18.8 (Additional file 15).

Considering RNA-seq data in hypothalamus, from the 2241 predicted SOX targets,

1632 presented gene expression, including the top TFs with the only exception of

SOX3. From the expressed targets included in the co-expression analysis, 360 (22%)

presented significant results (Additional file 16, Additional file 17). Among those,

SOX8/9/10 were co-expressed with other members of SOX family, namely SOX1,

SOX2, SOX5, SOX6, SOX13, and SOX21.

Although publicly available data on open chromatin regions of B. taurus were gener-

ated using different sex and methods [19], it provides us with a unique opportunity to

identify possible indicine-specific regulatory regions. While we identified 78,528 peaks

for hypothalamus, 40,104 peaks for muscle and 22,291 peaks for liver in B. indicus, the

correspondent numbers in B. taurus data were 20,045, 77,378, and 58,853, respectively.

Indicine-specific peaks falling on chr1-29 and X totalized 54,971 for hypothalamus,

4216 for muscle, and 2217 for liver (Additional file 18). Clearly, the higher number of

peaks in hypothalamus identified in our study in comparison with the B. taurus data re-

sulted in an inflation of indicine-specific peaks in that tissue, and therefore, the results

need to be evaluated with caution. Apart from hypothalamus, indicine-specific peaks

seem to be depleted from TSS regions (Fig. 5A) and concentrated on distal intergenic

regions (Fig. 5B). Peaks in intergenic regions represented 57%, 63%, and 82% of

indicine-specific peaks in hypothalamus, muscle, and liver, respectively, followed by

24%, 17%, and 10% in introns. Indicine-specific peaks in promoter regions only

accounted for 12%, 12%, and 7%, respectively.

When we compared indicine-specific peaks with previously identified selective sweeps

for indicus cattle [25], we found 3, 6, and 31 peaks with an overlap in liver, muscle, and

hypothalamus, respectively (Additional file 19). Most of the overlapping peaks were lo-

cated on chromosome 5 and, in all tissues, they felt in distal intergenic regions with the

closest genes being MIR763 and LEMD3 (Fig. 5C). In addition, in hypothalamus the

peaks on chromosome 5 also were distal to HELB and IRAK3, and in the promoter re-

gion of TMBIM4 and LEMD3. Peaks in other chromosomes only appeared in hypothal-

amus including chr4, chr6, chr8, chr12, chr18, and chr22. Among those, we can

highlight the ones overlapping promoter regions of genes MEPE, FRY, and ZNF19.

Discussion
The vast non-coding portion of the bovine genome, the one that regulates epigenetics

changes, responds to environmental stimuli, and determines cell and tissue activity, is

only starting to be characterized [12, 18, 19]. This non-coding genome is the key to un-

derstanding the expected differences between B. indicus and B. taurus and uncover the

genetic basis of adaptability of indicine cattle to tropical and subtropical environments.

Here, we used ATAC-seq data from indicine tissues that are key to adaptability and

beef production (liver, muscle, and hypothalamus) not only to identify regulatory ele-

ments but to annotate their possible biding sites and targets in each tissue. We were

able to identify HNF4 as a key regulator in liver, MEF2 in muscle and SOX in hypothal-

amus, and support those results based on gene co-expression and publicly available
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ChIP-seq and FAIRE-seq data. In addition, we compared B. indicus and B. taurus data

and identified potential indicine-specific open chromatin regions, which mostly corres-

pond to distal regulatory elements.

The peaks detected in the ATAC-seq data are expected to correspond to regulatory

regions harboring functional combinations of regulatory elements, which dictate their

spatiotemporal function [26]. Unravelling this regulation is the key to understanding

the molecular mechanisms that control gene expression. For all our three tissues, most

peaks fall within intergenic and promoter regions. This distribution of genomic features

is in accordance with literature in human, mouse, and livestock species [18, 19], and

correspond to two main types of regulatory elements involved in transcriptional regula-

tion: promoters and enhancers. While promoters are located up to a few kilobases from

a TSS, enhancers can be located long distances upstream or downstream of a target

gene [27].

The proportion of peaks falling in promoters and intergenic regions changes when

we look at tissue-specific peaks and constitutive regions. Although we can still see an

enrichment around TSS for all subsets, the percentage of tissue-specific peaks within

promoter regions drop dramatically (see Table 1), while for constitutive regions this

Fig. 5 Potential indicine-specific peaks in muscle (MUS), liver (LIV) and hypothalamus (HYP). A Profile of
peaks relative to transcription start sites (TSS) considering a ± 3 kb region—confidence intervals were
estimated by bootstrap method (500 iterations) and is shown as the shading that follows each curve. B
Percentage of overlap between peaks and genomic features. C Representation of bovine chromosome 5
and the location of indicine selective sweeps (green dots), peaks from all three tissues overlapping selective
sweeps (red dots), and genes in close proximity (blue dots)
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percentage increases. This behavior suggests tissue-specific functions are more

finely regulated by long-range regulatory elements, such as enhancers, silencers,

and insulators. Indeed, it has been reported before that major tissue differences

are due to changes in distal elements [4, 5, 28]. Conversely, constitutive regions

represent housekeeping functions, and therefore, promoter regions are expected

to be of open chromatin. In terms of transcriptional regulation, this distinction

between constitutive/housekeeping vs. regulated/regulatory/developmental genes

has proven to represent a real biological distinction rather than a human-defined

classification [29].

Liver presented the smallest number of identified peaks and, consequently, of tissue-

specific peaks. It also presented the highest proportion of tissue-specific peaks located

in distal intergenic regions. This could be the reason why only one gene ontology term

was enriched when considering the peaks nearest genes—positive chemotaxis. Chemo-

taxis refers to the directional migration of cells in response to a chemical stimulus,

which is part of normal function and health in humans, such as immune system cells

fighting injuries and infections, and tissue regeneration [30]. Liver is a frontline im-

mune organ, responsible for detecting and clearing bacteria, viruses, and macromole-

cules from the blood, and is populated with several immune-centric cell types,

including Kupfer cells, T cells, and NK cells [31]. In a healthy liver, metabolic functions

and tissue remodeling are both requisites to maintain homeostasis [32]. In this context,

hepatocyte nuclear factors (HNF) are transcription factors expressed predominately in

liver. They work synergistically to raise transcriptional levels of distinct sets of

hepatocyte-specific genes responsible for tissue development and metabolic homeosta-

sis, among other functions [33, 34]. In our study, HNF4 was identified as the key regu-

lator of liver-specific expression, but HNF1 also appear among the top TFs and both

present co-expression in our RNA-seq data. Although HNF4 isoforms comprise two

genes (HNF4A and HNF4G), a comparison of the DNA-binding domain of humans

showed high homology between them, suggesting both genes may have similar func-

tions in the transcriptional regulation of hepatic genes [35]. Importantly, in beef cattle,

HNF4G has already been pointed as a key regulator when considering 29 traits (includ-

ing meat quality, conformation, development, and metabolism) based on a marker-

derived gene network [36].

Genes associated with muscle-specific peaks were enriched mostly with muscle cell

development and MEF2 was pointed as a master regulator of muscle-specific open

chromatin regions. The myocyte enhancer factor 2 family of transcription factors is

comprised of variants A, B, C, and D with highly conserved protein domains across the

MEF2 family [37]. In our study, MEF2A appear as the top enriched feature, and al-

though it is expressed in various tissues/organs and plays crucial roles in multiple bio-

logical processes, it is widely present in muscle cells and involved in the development

and differentiation of vertebrate skeletal, cardiac, and smooth muscle during myogen-

esis [38]. In cattle, MEF2A is a positive regulator in skeletal muscle myoblast prolifera-

tion and differentiation [38, 39] and mutations in its promoter region are highly

associated with MEF2A mRNA expression in bulls, which in turn might be related to

differences in muscle development and growth traits [40]. As in liver, the enrichment

of open chromatin data in human cell lines specific to each tissue confirms the tissue

specificity of the peaks/targets, validating our master regulators.
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In cattle, hypothalamus is the least studied tissue of the three, probably due to diffi-

culties to access and correctly identify it. It is also the most complex tissue involved in

feedback loops related to the releasing of hormones, regulation of body temperature,

maintenance of daily physiological cycles, control of appetite, management of sexual

behavior, and regulation of emotional responses [41]. It has three main regions and our

open chromatin regions are expected to represent all those regions collectively. It is no

surprise then that hypothalamus presented the highest number of peaks and tissue-

specific peaks. Indeed, gene expression in hypothalamus when compared to liver and

muscle has shown to be higher in indicine cattle [42, 43]. Concordantly with its func-

tions, genes associated with hypothalamus-specific peaks were enriched for terms re-

lated to cell communication and nervous system development. Admittedly, our

definition of tissue-specific peaks is limited as we are only comparing three tissues and

hypothalamus-specific peaks could include open chromatin regions common to other

nervous system tissues. Nevertheless, our data points to the SRY-related HMG box

(SOX) genes as candidate master regulators of hypothalamus expression.

The HMG box is a DNA-binding domain highly conserved throughout eukaryotic

species and the SOX family is divided into subgroups according to homology within

this domain and other structural motifs—SOX8, SOX9, and SOX10 are part of Sox

group [44]. Apart from SoxE group, SOX3 (SoxB1 group) and SOX6 (SoxD group) also

appear in the top 5 enriched transcription factors. Several SOX genes presented expres-

sion in hypothalamus and the co-expression of SOX8/9/10 with SOX1 and SOX2

(SoxB1 group); SOX5, SOX6, and SOX13 (SoxD group) and SOX21 (SoxB2 group)

show a coordinated activity of this family. SOX genes are related to several different as-

pects of development and while many are involved in sex determination, some are also

important in processes such as neuronal development. Within the tuberal hypothal-

amus, neural progenitors are known to give rise to supportive and active signaling cen-

tral nervous system glial cells. This process starts with progenitor cells expressing

SOX9 which further mature and start to express SOX10 [45]. As a parallel, in pituitary,

Sox2+/Sox9+ cells were demonstrated to be able to generate all hormone-producing

cell subtypes [46]. Altogether, SOX genes and in particular group SoxE are indicated as

a potential master regulator of hypothalamic gene expression.

Finally, the B. taurus vs B. indicus contrast has long been the subject of studies aimed

at characterizing signatures of selection [47]. Mutations affecting complex traits may be

subject to natural or artificial selection, which leaves a selection signature in the gen-

ome [48, 49]. However, while the cattle genome has been shaped significantly by hu-

man domestication [50], earlier work in cattle suggested few discernible signatures of

selection in the cattle genome sequence after strong artificial selection for complex

traits [51]. Nevertheless, the epigenome can be responsible for carrying some of the an-

swers for adaptation-related traits that differ across subspecies. In our study, indicine-

specific peaks were conspicuously lacking near TSS, which was less apparent for hypo-

thalamus due to the large difference in identified peaks between datasets. For all tissues,

most of the peaks were in intergenic regions, corresponding to enhancers, which is in

accordance with what was observed when comparing different species [18, 19]. For in-

stance, a comparison of cattle with pig and mouse showed as little as 17% and 6% over-

lap in intergenic open chromatin, respectively [19]. Enhancers are rapidly evolving

regulatory sequences, being a species-specific feature likely to impact differing
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phenotypes [52–55]. In the comparison between the subspecies indicus and taurus, this

enhancer-based regulation seems to be even more explicit. Therefore, we trust the

indicine-specific open chromatin regions reported here represent a rich source for min-

ing mutations likely to affect cattle adaptation to different climatic zones.

Because most of the indicine-specific peaks were located in intergenic locations, using

the nearest gene to draw possible biological functions could be misleading, as en-

hancers can regulate genes in long distances and even different chromosomes and not

necessarily the nearest gene [56]. However, testing the overlap between selective sweeps

in Bos indicus and indicine-specific peaks could demonstrate overlapping mechanisms

in the control of adaptive differences. Indeed, there was overlap, which mostly hap-

pened on chromosome 5. Importantly, hypothalamus peaks on chromosome 5 were

distal to HELB, a gene already shown to be related to differences between both cattle

subspecies [25].

Conclusions
A comparative analysis of the chromatin accessibility in muscle, liver, and hypothal-

amus of Bos indicus cattle revealed new insights into the tissue-specific regulation of

gene expression with an unprecedented level of accuracy. The integration of transcrip-

tomic data allowed us to indicate, more accurately, possible targets of master regulators

in each tissue, including a prediction of their biding sites. Furthermore, the indication

of indicine-specific open chromatin regions provides a promising avenue to exploit mo-

lecular mechanisms to artificial selection for traits of relevance to the adaptation to

tropical and subtropical climates.

Methods
Collection of tissue and generation of ATAC-seq libraries

Liver, hypothalamus, and muscle samples were collected from three unrelated, post-

pubertal Brahman heifers of similar age and weight as previously described [21–23].

Heifers used in this study were managed, handled, and euthanized as per approval of

the Animal Ethics Committee of the University of Queensland, Production and Com-

panion Animal group (certificate number QAAFI/279/12). After slaughter, tissue sam-

ples were collected as fast as possible and stored at − 80 °C.

ATAC-seq libraries were prepared from frozen tissues using the Omni-ATAC

method [57] with the following modifications. Frozen tissue (20 mg) was ground in li-

quid nitrogen using a mortar and pestle. The pulverized tissue was transferred to a pre-

chilled 2 ml Dounce homogenizer containing 1ml cold 1× homogenization buffer and

homogenized with the pestle until a uniform suspension was seen (10–20 strokes). The

homogenate was filtered with a 40-μM nylon cell strainer (BD Falcon) before layering

onto the iodixanol solution as described previously [57]. The ratio of nuclei to enzyme

concentration was optimized for each sample by performing transposition reactions

containing 50,000, 100,000, and 200,000 nuclei with 2.5 μl of tagment enzyme in 50 μl

of transposition mix [57]. The transposed DNA was amplified with custom primers as

previously described [58]. Amplified libraries were purified using Agencourt AMPure

XP beads (Beckman Coulter) and quality controlled using a Bioanalyser High Sensitivity

DNA Analysis kit (Agilent). ATAC-seq libraries were sequenced at IMB sequencing
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facility (University of Queensland) on an Illumina NextSeq 150 cycle (2X 75 bp). Three

biological replicates were performed per tissue. This dataset is publicly available at

NCBI Gene Expression Omnibus (GEO) under the accession number GSE182909 [59].

All assays were performed according to FAANG guidelines and recommendations,

available at http://www.faang.org. The detailed protocol used in ATAC-seq is available

a t h t tps : / /da ta . f aang .o rg/protoco l / samples /ROSLIN_SOP_ATAC_Seq_

DNAIsolationandTagmentation_Frozen_Muscle_Tissue_20200720.pdf.

Mapping and ATAC-seq peak calling

ATAC-seq data processing and alignment was completed using the Harvard pipeline

(https://informatics.fas.harvard.edu/atac-seq-guidelines.html). First, reads quality was

accessed using the tool FastQC (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). After checking no adapter contamination existed, sample reads were aligned to

the cattle reference genome (ARS-UCD1.2) using HISAT2 v2.1.0 with -k 10 to allow

for multiple alignments [60]. Summary mapping statistics were performed using Sam-

tools flagstat (v1.9) [61].

Peak calling was performed using the tool Genrich v0.6.1 (available at https://github.

com/jsh58/Genrich) including all biological replicates per tissue and parameters -j

(ATAC-seq mode) -r (remove PCR duplicates) -e MT (to exclude mitochondrial

chromosome) -p 0.01 (p value). Genrich analyzes reads that map to multiple locations

in the genome by adding a fractional count to each location, allowing for peak detec-

tion in regions that are otherwise inaccessible to the assay. Moreover, it calls peaks for

multiple biological replicates collectively by first analyzing the replicates separately and

then combining the multiple replicates’ p values at each genomic position using Fisher’s

method to identify significant consensus peaks per tissue.

Annotation of peaks and tissue specificity

After peak calling, peak location was accessed by the R package ChIPseeker [62] using

as reference the Bioconductor Bos taurus annotation libraries TxDb.Btaurus.UCSC.bos-

Tau9.refGene [63] and org. Bt.eg.db [64] (A detailed tutorial can be found at https://

www.bioconductor.org/packages/release/bioc/vignettes/ChIPseeker/inst/doc/

ChIPseeker.html). Briefly, the ChIPseeker covplot function was used to calculate and

visualize the coverage of peak regions over chromosomes. Then, the profile of peaks

binding to TSS regions was visualized by first defining the TSS regions as ± 3 kb of

TSS sites, and then aligning the peaks that were mapped to these regions using the

ChIPseeker getTagMatrix function and TxDb.Btaurus.UCSC.bosTau9.refGene database

as reference. Heatmaps of peak profile around TSS were produced using ChIPseeker

tagHeatmap function and peak distribution profiles were produced using ChIPseeker

plotAvProf which generate confidence intervals estimated by bootstrap method. Peak

annotation to functional categories was performed by ChIPseeker annotatePeak func-

tion, which reports the genomic region of the peak (following the priority order: Pro-

moter, 5′ UTR, 3′ UTR, Exon, Intron, Downstream, and Intergenic), the position and

strand of the nearest gene, and the distance to TSS of the nearest gene using the org.B-

t.eg.db database as a reference. ChIPseeker plotDistToTSS was used to calculate the
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percentage of peaks upstream and downstream from the TSS of the nearest genes and

visualize the distribution.

To compare the three tissues and identify tissue-specific peaks, we used bedtools

intersect -v (v. 2.29.2) [65] for each pairwise contrast. By looking at the results of the

multiple contrasts, we defined peaks exclusive to one tissue as tissue-specific. Then,

bedtools multiIntersectBed [65] was used to identify overlapping regions across the

three tissues. Although a perfect overlap of peaks from different tissues is unlikely, re-

gions of overlap can be of biological significance and will be referred to as constitutive

regions. Considering the annotated nearest gene of peaks/regions, we performed an en-

richment analysis of Gene Ontology (GO) terms using the function compareCluster

from R package clusterProfiler [66] using the following parameters: OrgDb = org.B-

t.eg.db, fun = “enrichGO,” ont = “ALL,” pAdjustMethod = “BH,” pvalueCutoff = 0.05.

Motif enrichment analysis

To identify enriched TFBSs within tissue-specific peaks, peaks coordinates in each tissue

were converted first to human hg38 coordinates using the liftOver tool [67] (minMatch =

0.1), and then to human hg19 coordinates (minMatch = 0.95). The hg19 orthologous re-

gions were used as input to the motif discovery tool i-cisTarget v6.0 [68] which contains

24,453 PWMs gathered from multiple databases (see:http://iregulon.aertslab.org/

collections.html#motifcolldesc). The i-cisTarget tool contains motif information across

seven species, including cow, and those motifs were previously scored for the enrichment

of homotypic clusters of PWM using a Hidden Markov Model from the tool Cluster-

Buster [69]. The seven species whole-genome rankings per motif were combined in a final

rank using order statistics to prioritize highly ranked regions per motif across species [70].

The user-defined regions are interrogated for motifs significantly enriched using the

cross-species final rank. In addition, it provides the identification of target regions for a

PWM by determining the optimal threshold through a receiver operating characteristic

curve which compares the enrichment of a PWM versus the enrichment across all 24,453

PWMs average. The Normalized Enrichment Score (NES) is the AUC score normalized

by subtracting the mean of all AUC overall motifs and dividing it by the standard devi-

ation. Finally, motifs referring to similar TFs are colour coded and master regulators for

each tissue can be determined. For each predicted TF, the top 10 PWMs are gathered to

determine which Human regions are predicted as targets.

In addition, i-cisTarget has a collection of 1331 TF ChIP-seq information and 2450

Histone modification tracks in human tissues and cell lines extracted from ENCODE

and RoadMap Epigenomics databases [13]. The user-defined regions are interrogated

for each track collection and tracks significantly enriched are identified by determining

the optimal threshold through a receiver operating characteristic curve. This analysis

compares the enrichment of a track of the collection versus the average enrichment

across the whole track collection and generates an NES.

Annotating the location of TF binding sites in the cattle genome

Human (hg19) regions predicted as targets for the top TF in liver, muscle, and hypothal-

amus were converted back to ARS-UCD1.2 coordinates using the liftOver tool as described

before [67]. Next, the overlap between these target regions and ATAC-seq peaks in each
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tissue was calculated using bedtools intersect (-wa -F 0.40) (v2.29.2) [65]. To score and lo-

cate the potential TFBSs per TF of interest, we downloaded the PWMs for the top 10

PWMs associated with a TF from the motif discovery analysis [68]. Peaks overlapping target

regions for a TF were converted to fasta and re-scanned for the homotypic cluster of PWMs

using the Hidden Markov Model from the tool Cluster-Buster (-m 0 -c 0) [69]. The homo-

typic cluster score, motif score, and predicted binding location were calculated to annotate

the active biding sites of the key transcription factor in each tissue.

Gene regulatory network

To validate the relationships between the master regulator of each tissue (top TF) and

its predicted targets at transcriptional level, we used the previously described RNA-seq

data of liver and hypothalamus to investigate gene co-expression [21–23]. In addition

to the three post-pubertal Brahman heifers used for ATAC-seq libraries, RNA-seq data

included three prepubertal Brahman heifers coming from the same original data so the

number of samples would enable a co-expression study. This dataset is publicly avail-

able at EMBL-EBI BioSamples repository (www.ebi.ac.uk/biosamples) under the sub-

mission identifiers GSB-113 and GSB-8708 [71]. RNA-seq reads were aligned to the

same cattle reference genome, and read counts were estimated using -tools [72]. The

EdgeR R package [73] was used to normalize the counts by TMM (trimmed mean of M

values) for each tissue, and only genes presenting at least 1 count per million reads

mapped (CPM) in at least half of the samples were considered for further analysis. For

each tissue, gene expression in log2CPM of the master regulator and its predicted tar-

gets were used to identify significant connections using the Partial Correlation and In-

formation Theory (PCIT) algorithm [74]. PCIT determinates significant correlations

between two genes after accounting for all the other genes under scrutiny.

Gene Regulatory Network visualization was performed using Cytoscape 3.6.0 [75]. Genes

having ATAC-seq peaks associated with binding for a TF were drawn in the network as po-

tential target genes and connections validated by co-expression were highlighted.

Identification of Bos indicus-specific open chromatin regions

To compare open chromatin regions between B. taurus and B. indicus and identify

indicine-specific regions, we used data from [19]. Briefly, the authors generated ATAC-seq

data from liver, muscle, and hypothalamus of two Hereford males and the identified peaks

per sample were available in their Additional File 2. Although there are differences in sex

and methods regarding library preparation, sequencing, and peak calling, both studies used

the same reference genome which provides us with a unique opportunity to compare re-

sults. As described by the authors, peaks called for individual biological replicates were com-

pared with bedtools intersect and then merge collapsed with bedtools merge (v2.29.2) [65].

To identify indicine-specific peaks, we compared indicus and taurus peaks in each tissue

using bedtools intersect -v. Peaks were then annotated to functional categories using ChIP-

seeker annotatePeak [62] as described before. Finally, we compared indicine-specific peaks

with regions of selective sweeps for indicine cattle, which were previously identified by our

group [25] and are publicly available as Table S5 (selective sweeps in Asian Indicine cattle

based on Fst and nucleotide diversity across Bos indicus and Bos taurus cattle, Padj < 0.05).

For this comparison, we used bedtools intersect -wa to identify overlaps.
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