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Abstract

Polygenic risk scores (PRSs) have wide applications in human genetics research, but
often include tuning parameters which are difficult to optimize in practice due to
limited access to individual-level data. Here, we introduce PUMAS, a novel method
to fine-tune PRS models using summary statistics from genome-wide association
studies (GWASs). Through extensive simulations, external validations, and analysis of
65 traits, we demonstrate that PUMAS can perform various model-tuning procedures
using GWAS summary statistics and effectively benchmark and optimize PRS models
under diverse genetic architecture. Furthermore, we show that fine-tuned PRSs will
significantly improve statistical power in downstream association analysis.
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Background
Accurate prediction of complex traits with genetic data is a major goal in human gen-

etics research and precision medicine [1]. In the past decade, advancements in geno-

typing and imputation techniques have greatly accelerated discoveries in genome-wide

association studies (GWASs) for numerous complex diseases and traits [2]. These data

have also enabled statistical learning applications that leverage genome-wide data in

genetic risk prediction [3–8]. However, despite these advances, it remains challenging

to access, store, and process individual-level genetic data at a large scale due to privacy

concerns and high computational burden. With increasingly accessible GWAS sum-

mary statistics for a variety of complex traits [9], polygenic risk scores (PRSs) that use

marginal association statistics as input enjoy great popularity and have had success in

diverse applications [10–12].

With great popularity, there also come great challenges. Prediction accuracy of PRS

remains moderate for most phenotypes [13]. Methods have been developed to improve

PRS performance by explicitly modeling linkage disequilibrium (LD) [14], incorporat-

ing functional annotations and pleiotropy [15, 16], and improving effect estimates

through statistical shrinkage [17]. Notably, most PRS models have tuning parameters,

including the p-value threshold in traditional PRS, the penalty strength in penalized
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regression models, and the proportion of causal variants in LDpred [14]. Tuning

parameters are very common in predictive modeling. When properly selected, these

parameters add flexibility to the model and improve prediction accuracy. This is a well-

understood problem with a rich literature—a well-known solution is cross-validation

[18]. However, most model-tuning methods require individual-level genetic data either

as the training dataset or as a validation dataset independent from both the input

GWAS and the testing samples. In practice, these data rarely exist, especially when PRS

is generated using GWAS summary statistics in the public domain. This has created a

significant gap between current conventions in PRS construction and optimal method-

ologies. Without a method to fine-tune models using summary statistics, it is challen-

ging to benchmark and optimize PRS, thus limiting its clinical utility.

We introduce PUMAS (Parameter-tuning Using Marginal Association Statistics), a

novel method to fine-tune PRS models using GWAS summary data. As a general

framework, PUMAS can conduct a variety of model-tuning procedures on PRS, includ-

ing training-testing data split, cross-validation, and repeated learning. Through exten-

sive simulations on realistic genetic architecture, we demonstrate that the performance

of PUMAS is as good as methods based on individual-level data. Additionally, we apply

PUMAS to GWAS traits with distinct types of genetic architecture and validate our re-

sults using well-powered external datasets. Furthermore, we systematically benchmark

and optimize PRS for numerous diseases and traits and showcase the immediate bene-

fits of fine-tuned PRSs in downstream applications.

Results
Method overview

Here, we outline the PUMAS framework. Detailed derivations and technical discussions

are included in the “Methods” section. There are two key steps in our proposed model-

tuning framework (Fig. 1). First, we sample marginal association statistics for a subset

of individuals based on the complete GWAS summary data (Eqs. (7) and (12), the

“Methods” section). Using this approach, we can generate summary statistics for inde-

pendent training and validation sets without actually partitioning the samples. Second,

we propose an approach to evaluate the predictive performance (e.g., predictive R2) of

PRS using summary statistics in the validation set so that we can select the best model

based on its superior performance (Eq. (20), the “Methods” section). These two steps

together make it possible to select the best-performing model with only one set of

GWAS summary statistics as input.

Simulation results

We conducted simulations using genotype data from the Wellcome Trust Case Control

Consortium (WTCCC) to investigate if PUMAS can achieve similar performance com-

pared to classic model-tuning procedures. A total of 15,567 individuals and 322,235

genetic variants were included in the simulation after quality control. We simulated

phenotype data with a heritability of 0.5, varying assumptions on SNP effects and pro-

portion of causal variants (the “Methods” section). We used these data to calculate

marginal association statistics and ranked SNPs based on association p-values. Next, we

applied PUMAS to perform 4-fold repeated learning on marginal association statistics
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and selected the optimal number of SNPs to include in the prediction model by maxi-

mizing the average R2 across folds. Additionally, we implemented a traditional repeated

learning approach with the same simulated individual-level data as a reference. Details

about our implementation of PUMAS and repeated learning are described in the

“Methods” section. Overall, these two approaches yielded equivalent results on both

quantitative and binary traits (Fig. 2 and Additional file 1: Fig. S1-S9; Additional file 2

and 3: Table. S1-S2). Across all simulation settings, our summary statistics-based ap-

proach showed nearly identical results compared to a state-of-the-art model-tuning ap-

proach based on individual-level data and could effectively select the optimal tuning

parameter (i.e., number of SNPs in the PRS).

PUMAS effectively fine-tunes PRS models based on genetic architecture

Next, we demonstrate our method’s performance using a gold-standard approach—we

apply PUMAS to the summary statistics from well-powered GWASs to select the opti-

mal p-value cutoffs in PRS models and validate their performance on large independent

Fig. 1 A workflow of model-tuning strategies. A Traditional approaches split individual-level data into training
and validation subsets to fine-tune prediction models. B Our method directly generates training and validation
summary statistics without using individual-level information and use simulated summary statistics as input to
select the best model
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cohorts. First, we applied PUMAS to a recent GWAS of educational attainment (EA)

conducted by the Social Science Genetic Association Consortium (N = 742,903) [19].

4775 samples with European ancestry in the National Longitudinal Study of Adolescent

to Adult Health (Add Health) [20] and 10,214 European samples in the Health and Re-

tirement Study (HRS) [21] were used as two independent validation sets to assess the

predictive performance of EA PRS. We used GWAS of Alzheimer’s disease (AD) as a

second example. We applied PUMAS to the stage-1 summary statistics from the 2013

study conducted by the International Genomics of Alzheimer’s Project (IGAP; N =

54,162) [22] to optimize PRS models for AD. These PRSs were then evaluated on

summary-level data of 7050 independent samples [23] from the Alzheimer’s Disease

Genetics Consortium (ADGC) and individual-level data of 355,583 samples in the UK

Biobank with a family history-based proxy phenotype for AD (the “Methods” section)

[24].

Our summary statistics-based analyses showed highly consistent results compared

with external validations (Fig. 3; Additional file 4: Table. S3). Our analysis clearly sug-

gested that a model with a large number of SNPs tends to be more predictive for EA, a

pattern validated in both Add Health and HRS cohorts. The EA PRS based on p-value

Fig. 2 Comparison of PUMAS and repeated learning. A, C Model tuning results based on PUMAS. B, D
Results of repeated learning with individual-level data as input. The proportion of causal variants was set to
be 0.001 in A and B and 0.1 in C and D. The X-axis shows the log-transformed p-value thresholds. The Y-
axis shows the predictive performance quantified by average R2 across four folds. Parameter α was set to be
0 in this simulation (the “Methods” section). Results for other settings are summarized in Additional file 1:
Fig. S1-S9
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cutoffs of 0.8, 0.8, and 0.7 were the most predictive models suggested by PUMAS, HRS,

and Add Health cohorts, respectively. Results on AD were also consistent between

PUMAS and external validations. The optimal p-value cutoffs suggested by PUMAS,

ADGC validation, and UK Biobank validation were 5e−6, 1e−9, and 1e−10, respectively.

PRS models based on p-value cutoffs more stringent than 1e−5 showed good predictive

performance in two validation sets for AD. Notably, as more SNPs are included in the

model, the predictive performance of PRS sharply declines. Our model-tuning results

based on GWAS summary statistics accurately predicted this pattern. Additionally,

since we used an AD-proxy phenotype in the UK Biobank, the reduced predictive R2 is

expected. But the trend of predictive performance remained consistent with the valid-

ation result in case-control data from the ADGC.

EA is known to be extremely polygenic—more than 1200 independent genetic associ-

ations have been identified for EA to date [19]. AD has a very different genetic architec-

ture compared to EA. The APOE locus has an unusually large effect on AD risk [25].

In addition to APOE, about 30 independent loci have been implicated in AD GWASs

[26]. Our method correctly suggested that the EA PRS would perform better if more

SNPs are in the model (87,985 SNPs were included) while a substantially sparser model

with 31 SNPs would yield better predictive performance for AD. These results show-

cased our method’s ability to adaptively choose the optimal tuning parameter for traits

with different patterns of genetic architecture. These results also highlighted the im-

portance of model tuning. An AD PRS based on an arbitrary p-value cutoff of 0.01 can

have a 5-fold reduction in predictive R2 compared to the fine-tuned PRS.

Some technical considerations

We discuss two unique technical issues that may arise in summary statistics-based model tun-

ing. First, sample sizes for different SNPs in a GWAS meta-analysis may vary due to technical

differences across cohorts. However, it is not uncommon for a GWAS to only report the max-

imum sample size. Here, we investigate the robustness of PUMAS when the sample size is

mis-specified. We use two GWAS datasets that provided accurate sample size for each SNP:

summary statistics for low-density lipoprotein (LDL) cholesterol from the Global Lipids Gen-

etics Consortium (GLGC; N = 188,577) [27] and the same EA GWAS summary statistics we

have described before. We compared PUMAS results based on four different approaches. The

first approach uses the accurate sample size reported in the summary statistics (“original”).

The second approach removes SNPs with sample size below the 30% quantile of its distribu-

tion and uses the accurate sample size for the remaining SNPs (“QCed”). The third and fourth

approaches apply the maximum or minimum sample size to all SNPs (“Uniform large/small

N”). For the “original” and “QCed” approaches where precise sample size is available for each

SNP, we assigned 25% of the minimal N value as the sample size for the validation dataset

and used the remaining samples of each SNP in the training subset. Overall, PUMAS results

showed consistent patterns under these four scenarios (Fig. 4A; Additional file 5: Table. S4).

Although the R2 estimates can inflate or deflate if the sample size is mis-specified, the optimal

p-value cutoffs selected by PUMAS remained stable. Thus, PUMAS can still select the best-

performing model even if accurate sample size information is unavailable. In practice, per-

forming quality control to remove SNPs with outlier sample size may make the R2 estimates

most interpretable.
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The second issue is to see if PUMAS can be applied to clumped GWAS sum-

mary statistics. In PRS applications, it is a common practice to clump the data by

removing SNPs in strong LD with the most significant SNP in a region. However,

since p-values based on the full sample have been used during LD clumping, dir-

ectly applying the same model-tuning methods to clumped data may lead to infor-

mation leak and overfitting. We applied PUMAS to clumped summary statistics of

the IGAP 2013 AD GWAS (Additional file 1: Fig. S10). The model-tuning results

in PUMAS were completely inconsistent with the optimal models in external valid-

ation (Fig. 4B; Additional file 6: Table. S5), confirming that PUMAS should not be

applied to clumped data. However, we note that the predictive curves were very

similar in external validations no matter if pruned or clumped data were used as

input. Therefore, in practice, it may be plausible to apply PUMAS to pruned

GWAS summary data and obtain the optimal p-value threshold. This way, p-values

based on the complete sample will not influence the model-tuning procedure.

Then, we can apply this selected p-value cutoff with clumped GWAS summary sta-

tistics to calculate PRS.

Fig. 3 Model-tuning performance on real GWAS data. A PUMAS performance on the EA training set. B
Prediction performance on two validation sets for EA. C PUMAS performance on the AD training set. D
Prediction performance on two validation sets for AD. The X-axis shows the log-transformed p-value cutoffs
in PRS which is the tuning parameter of interest. The Y-axis indicates predictive R2. EA educational
attainment, AD Alzheimer’s disease
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Benchmarking and optimizing PRS for 65 diseases and traits

Next, we apply PUMAS to provide an atlas of optimized PRSs for complex diseases

and traits (Fig. 5). In total, we analyzed 65 GWASs with available summary statis-

tics and documented each trait’s optimal p-value cutoff and predictive R2 (Add-

itional file 7: Table. S6). The average gain in predictive R2 with our method is

0.0106 (205.6% improvement) and 0.0034 (62.5% improvement) compared to PRSs

with p-value cutoffs of 0.01 and 1, respectively (Additional file 1: Fig. S11 and

Additional file 8: Table. S7). We annotated the traits into five categories: behav-

ioral/social, metabolic/cardiovascular, psychiatric/neurological, immune, and others.

Most behavioral/social traits and psychiatric/neurological disorders had optimal p-

value cutoffs between 0.1 and 1 which is consistent with their extreme polygenic

genetic architecture. The exceptions include alcoholism (drinks per week), smoking

behavior (cigarettes per day), and AD. PRSs with fewer SNPs showed superior per-

formance for these traits. Among immune diseases, systemic lupus erythematosus,

primary biliary cirrhosis, rheumatoid arthritis, multiple sclerosis, and eczema all fa-

vored a sparse model, while the optimal PRSs for inflammatory bowel diseases and

celiac disease had substantially more SNPs. We also note that molecular traits such

as blood lipids and 25-hydorxyvitamin D favored sparse PRS models, possibly due

to stronger genetic effects and more homogeneous genetic mechanisms. These re-

sults also shed light on the differences in the predictive power of diverse types of

diseases and traits. PRSs for height, systemic lupus erythematosus, inflammatory

bowel diseases, and schizophrenia showed substantially better predictive perform-

ance, while the R2 for most behavioral/social traits remained moderate despite the

large sample size in those studies. We also investigated the computational effi-

ciency of our approach in real GWAS applications. Using only one CPU, PUMAS

has an average computation time of 8.3 s and maximum of 38.23 s in the analyses

of 65 traits (Additional file 1: Fig. S12; Additional file 9: Table. S8), showing com-

putationally scalable performance.

Fig. 4 Technical issues involving sample size and LD clumping. A PUMAS results on LDL cholesterol and EA
with various sample size specifications. The two gray dashed lines represent the optimal p-value cutoffs
selected by the “QCed” setting for LDL and EA, respectively. B Predictive performance on external validation
for AD PRS based on pruned and clumped summary statistics. Two gray dashed lines mark the optimal p-
value cutoffs inferred by PUMAS on pruned and clumped summary statistics. LDL low-density lipoprotein,
EA educational attainment, AD Alzheimer’s disease
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Identifying neuroimaging associations for AD

Finally, we demonstrate that fine-tuned PRS will lead to power gain in association ana-

lysis. We generated PRSs for 211 neuroimaging traits based on two recent studies con-

ducted using samples from the UK Biobank (N = 17,706 and 19,629 for diffusion

tensor imaging traits and regional volume phenotypes, respectively) [28, 29]. We opti-

mized PRS for each imaging trait using PUMAS (Additional file 10: Table. S9). For

comparison, we also generated PRSs for all traits using an arbitrary p-value cutoff of

0.01. We applied the BADGERS [30] approach to test associations between 211 neuro-

imaging trait PRSs with AD in two large, independent AD datasets: the 2019 IGAP

GWAS for AD (N = 63,926) [26] and the UK Biobank-based GWAS with a proxy

phenotype for AD (N = 318,773) [24, 26]. Samples used in the neuroimaging GWAS

were removed from the AD-proxy GWAS to avoid overfitting of PRS models (the

“Methods” section; Additional file 1: Fig. S13 and Additional file 11: Table. S10). Asso-

ciation results in two AD datasets were meta-analyzed to improve statistical power.

The complete association results of 211 neuroimaging traits with AD are summarized

in Additional file 12: Table. S11. Using fine-tuned PRSs, we identified 2 significant asso-

ciations with AD under a stringent Bonferroni correction for multiple testing: fornix

(cres)/stria terminalis mode of anisotropy (p = 1.7E−05) and axial diffusivities (p = 2.7E

−05) whereby genetic risk for worse white matter integrity in the fornix was associated

with risk of AD. No significant associations were identified using PRSs with an arbitrary

Fig. 5 An atlas of optimized PRSs for complex diseases and traits. 45 diseases/traits with optimized R2 >
0.005 are included in the figure. Each circle represents a disease or trait. The size of circles indicates the
sample size of the study; colors mark the five trait categories. The X-axis indicates the negative log-
transformed p-value cutoff in PRS which is also the tuning parameter of interest. The Y-axis indicates the
optimal R2. Information on all diseases and traits is summarized in Additional file 7: Table. S6
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p-value cutoff (Fig. 6A). Association p-values based on optimized PRSs were signifi-

cantly lower than those based on arbitrary PRSs (p = 0.03; two-sample Kolmogorov-

Smirnov test). Additionally, effect size estimates for top associations were consistent in

two independent AD GWASs (Fig. 6B). Although the effect sizes in two AD studies

were not at the same scale due to the difference in AD phenotype definition, effect esti-

mates showed strong concordance between two independent analyses (correlation =

0.84). The fornix is a critical white matter tract projecting from the medial temporal

lobe where pathology begins in AD; thus, it is unsurprising that microstructural

changes in the fornix measured with diffusion tensor imaging are observed in mild cog-

nitive impairment and AD [31–33]. Furthermore, as a negative control, we applied the

same analysis to a well-powered breast cancer GWAS (N = 228,951) [34]. Results for

fine-tuned PRSs and arbitrary PRSs were consistent with the expectation under the null

(Additional file 1: Fig. S14). No significant associations were identified. These findings

demonstrated that our model-tuning approach can increase the statistical power in PRS

association analysis.

Discussion
Fine-tuning PRS models with GWAS summary statistics has long been considered an

impossible task. In this work, we introduced a statistical framework to solve this chal-

lenging problem. First, using GWAS summary data as input, PUMAS simulates training

and validation summary statistics without accessing individual-level information. Then,

PUMAS evaluates and optimizes PRS models on the simulated validation summary sta-

tistics. Both steps in the PUMAS framework are statistically rigorous, computationally

efficient, and highly novel. Through simulations and analysis of real GWAS data with

diverse genetic architecture, we demonstrated that PUMAS can effectively conduct so-

phisticated model-tuning tasks using GWAS summary statistics. We also showed that

Fig. 6 Identifying neuroimaging trait PRSs associated with AD. A QQ plot for the associations between 211
neuroimaging trait PRSs and AD. p-values were based on the meta-analysis of IGAP 2019 GWAS and the UK
Biobank with a proxy AD phenotype. B Effect size estimates for top associations. Imaging trait PRSs that
reached a p-value < 0.01 in the meta-analysis are shown in the plot. X-axis: effect sizes of imaging trait PRSs
on the AD-proxy phenotype in the UK Biobank; Y-axis: effect sizes on AD in the IGAP 2019 GWAS. Imaging
traits whose p-value achieved Bonferroni-corrected significance in the meta-analysis are highlighted in red.
The dashed lines represent the standard error of effect size estimates
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optimizing PRSs improves the statistical power in downstream association analysis and

identified neuroimaging traits significantly associated with AD.

This work will bring multiple advances to the field. First, it is no longer necessary to

leave one dataset out in the GWAS for model-tuning purpose. With PUMAS, re-

searchers can safely use effect size estimates from the largest available GWAS for PRS

model training, which will lead to improved prediction accuracy. Second, when an in-

dependent validation set is not available, most studies in the literature select tuning pa-

rameters using one of the two strategies. Some studies fine-tune PRSs on testing

samples that are used again in downstream applications, creating an overfitting prob-

lem, while other studies use a subset of testing samples to tune the model, reducing the

sample size and power in the testing data. PUMAS allows researchers to apply fine-

tuned PRS models to the full testing samples, thus avoiding overfitting and improving

statistical power. Third, selecting the optimal tuning parameter is not the only applica-

tion of PUMAS. Given a PRS model, our method allows researchers to calculate cross-

validated predictive accuracy, providing a systematic approach to benchmark model

performance without requiring external samples.

Our proposed framework has some limitations. First, our analyses so far have only fo-

cused on a classic PRS model with pruned SNPs and a varying p-value cutoff that needs

to be tuned. Despite the simplicity, it remains one of the most widely used PRS models

in the field. However, more sophisticated PRS methods have emerged [35–39]. Future

work will focus on generalizing PUMAS to fine-tune parameters in other PRS models

and benchmarking the performance of all models for different traits. Second, although

we demonstrated that PUMAS can also select the optimal tuning parameters for PRS

of binary traits, the approximated R2 metric is less interpretable. A future direction is

to explore other metrics (e.g., AUC) to quantify prediction performance for binary

traits. Third, our method assumes that GWAS is performed on independent samples. It

is an open question whether PUMAS can be directly applied to family-based GWAS re-

sults [40–43].

Our results have provided strong evidence that it is possible to fine-tune PRS models

with GWAS summary data. This new approach, in conjunction with widely available

GWAS summary statistics, will have a long-lasting impact on future PRS model devel-

opment and genetic prediction applications.

Methods
Step 1: Subsampling GWAS association statistics

Step 1-a: Specify sampling distribution of summary statistics

We assume the quantitative trait Y follows a linear model:

Y ¼ Xβþ ϵ ð1Þ

where X = (X1,…, Xp) denotes the random vector of p SNP; β = (β1,…, βp)
T is a p-di-

mensional vector representing fixed SNP effect sizes; ϵ is the error term following a

normal distribution with zero mean. Let y and x = (x1,…, xp) denote the observed N × 1

phenotypic and N × p genotypic data of N independent individuals. For simplicity, we

assume y and xj’s are centered. The summary association statistics in GWAS are ob-

tained from the marginal linear regressions. Then, for j = 1, …, p, we can denote the re-

gression coefficients and their standard errors as follows:
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β̂ j ¼ xTj x j

� �−1
xTj y

� �
ð2Þ

SEðβ̂ jÞ ¼
ffiffiffiffiffiffiffiffiffiffibε j⊤bε j

q
ðN−1Þx⊤jx j

ð3Þ

where ϵj is the error term for the marginal linear regression of phenotype on the jth

SNP and bε j ¼ y−x jβ̂ j is the observed residual from the jth marginal regression. If we

have access to the full data set, most model-tuning approaches involve randomly sam-

pling a subset of N − n individuals as the training set, i.e., y(tr) and x(tr). Naturally, the

remaining subset of n individuals will be the validation dataset denoted as y(v) and x(v).

When only the summary statistics file based on the full dataset is provided, the trad-

itional model-tuning approaches cannot be implemented. Instead, we propose a

method to generate marginal summary statistics for the training and validating datasets

from summary statistics of the full dataset. By central limit theorem, as sample size

N→∞, we have

xTy∼N NE XTY
� �

;NVar XTY
� �� � ð4Þ

x trð ÞTy trð Þ∼N N−nð ÞE XTY
� �

; N−nð ÞVar XTY
� �� � ð5Þ

x vð ÞTy vð Þ∼N nE XTY
� �

; nVar XTY
� �� � ð6Þ

where xTy is the observed p × 1 summary statistics for N individuals and p genetic

markers that can be directly calculated or approximated from the full GWAS summary

statistics, and x(tr)⊤y(tr) and x(v)⊤y(v) represent summary statistics for two partitions of

full GWAS samples, which are the training set and validation set, respectively. In the

following derivation, we use superscripts (tr) and (v) to indicate whether any summary

statistics are computed from x(tr)⊤y(tr) or x(v)⊤y(v). It can be shown that

xðtrÞ
T

yðtrÞjxTy∼NððN−nÞ
N

xTy;
ðN−nÞ
N

ΣÞ ð7Þ

where · ∣ · denotes the conditional distribution and Σ is the observed covariance matrix

of x⊤y from the GWAS data. A detailed derivation of this conditional distribution is in-

cluded in Additional file 1. Note that until now our framework does not depend on the

assumption of linkage equilibrium.

Step 1-b: Estimate covariance matrix of summary statistics

To subsample summary statistics, we now estimate the covariance matrix of x⊤y. Under

simple scenarios where the SNPs are independent (i.e., GWAS summary statistics is

pruned), Σ is a symmetric matrix whose diagonal and non-diagonal elements can be de-

noted as

Σ j ¼ β2jVarðX2
j Þ þ Eðϵ2j ÞEðX2

j Þ ð8Þ

Σ ji ¼ β jβiEðX2
j ÞEðX2

i Þ ð9Þ

For j = 1, …, p and i ≠ j. Here, Eðϵ2j Þ can be estimated by the mean squared error in

marginal regressions, which can be further approximated by N ½SEðbβ jÞ�
2
EðX2

j Þ . In
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addition, each SNP’s effect size (i.e., βj) is typically very small in GWAS and EðX2
j Þ only

depends on each SNP’s minor allele frequency (MAF) which is commonly provided in

GWAS summary statistics or can be estimated from a reference panel such as the 1000

Genomes Project [44]. Taken together, Σ can be estimated with

Σ̂ j ¼ N ½SEðβ̂ jÞσ̂2j �
2 ð10Þ

Σ̂ ji ¼ β̂ jβ̂iσ̂
2
j σ̂

2
i ð11Þ

where σ̂2j is an MAF-based estimator of EðX2
j Þ.

Step 1-c: Partition summary statistics for training and validation sets

After generating x(tr)⊤y(tr) terms as described above from the conditional distribution,

we can obtain the validating or testing summary statistics by

x vð ÞTy vð Þ ¼ xTy‐x trð ÞTy trð Þ ð12Þ

Consequently, subsampled GWAS summary statistics for the training set can be esti-

mated by

β̂ j
trð Þ¼ N−nð Þσ̂2j

h i−1
x trð ÞTy trð Þ ð13Þ

SE bβ j

trð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffi
N

N−n

r
SE bβ j

� �
ð14Þ

Step 2: Evaluate model performance using GWAS summary data

Step 2-a: Calculate PRS prediction accuracy with summary statistics

Being able to generate summary statistics for the training and validation datasets re-

solves a critical issue in model tuning. However, challenges remain in evaluating PRS

performance on the testing or validation set without individual-level data. Almost all

the PRS approaches in the literature use a linear prediction model as follows:

Ŷ ¼ Xw ð15Þ

where w⊤ = (w1,…,wp) is the weight for SNPs in PRS. In a traditional PRS, marginal re-

gression coefficients from GWAS are used as the weight values, i.e., w ¼ β̂ , while in

other PRS models the weight can be more sophisticated. Here, we demonstrate how to

calculate R2, a commonly used metric to quantify PRS predictive performance, from

subsampled GWAS summary data, but our method can be extended to other metrics

(e.g., AUC [45]) as well. R2 on the validation dataset (y(v), x(v)) can be calculated as

R2 ¼ ðPn
i¼1y

ðvÞ
i ŷðvÞi −n �yðvÞ �ŷðvÞÞ2Xn

i¼1

ðyðvÞi − �yðvÞÞ2
Xn

i¼1
ðŷðvÞi − �ŷðvÞÞ2

ð16Þ

where ŷðvÞ ¼ xðvÞw and ŷðvÞ is the sample mean of ŷðvÞ . If the SNPs are pruned, it can

be shown that the empirical variance of Ŷ can be approximated by
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1
n

Xn

i¼1
ðŷðvÞi − �ŷðvÞÞ2 ≈

Xp

j¼1
w2

j σ̂
2
j ð17Þ

Although empirical variance of Y does not affect model tuning, it affects the scale of

R2 and is thus critical for interpreting the results. This term can be approximated by

1
n

Xn

i¼1
ðyðvÞi − �yðvÞÞ2 ¼ β2j EðX2

j Þ þ Eðϵ2j Þ; ∀ j ð18Þ

Although Var(Y) is always greater than Eðϵ2j Þ for any j, the gap between these two is

negligible in real GWAS due to the small effect size of each individual SNP. Thus, a

simple estimator for Var(Y) can be

1
n

Xn

i¼1
ðyðvÞi − �yðvÞÞ2 ≈ max j½ 1N ε̂Tj ε̂ j� ≈ N max j½SEðβ̂ jÞ

2
σ̂2j � ð19Þ

Additionally, since we assumed data to be centered, the mean values in the numer-

ator can be dropped. Taken together, R2 can be estimated as

R2 ≈
ð1n
Pp

j¼1wjx
ðvÞT
j yðvÞÞ

2

N max j ½SEðβ̂ jÞ
2
σ̂2j �

Pp
j¼1w

2
j σ̂

2
j

ð20Þ

In practice, we use the 90% quantile of
ε̂⊤j ε̂ j

N−1 , j = 1, 2, …p, as a more robust estimator

for Var(Y).

Step 2-b: Model-tuning strategies

So far, we have introduced strategies to subsample association statistics on training and

validation sets and evaluate model performance using GWAS summary statistics. Com-

bining these two key steps, we will be able to perform model tuning using GWAS sum-

mary data. Suppose a PRS model uses GWAS marginal estimates β̂ as input and

generates SNP weights wjðβ̂; λÞ for each SNP. The goal is to find the optimal value of

tuning parameter λ that maximizes the predictive accuracy. In the simple setting we in-

troduced above, we will generate summary statistics for training and validation datasets.

After specifying a tuning parameter λ, SNP weights in PRS can be trained by applying

the model to the training summary statistics. Then, the prediction accuracy R2 on the

validation summary statistics will be a function of λ. Therefore, we can select λ so that

it maximizes model performance.

λ̂ ¼ argmaxλ R2 λð Þ� � ð21Þ

More generally, if the goal is to compare different models, both the summary statis-

tics subsampling and performance evaluation steps remain unchanged. In this case, R2

will be a function of the model and we can choose the best-performing model by opti-

mizing R2

m̂ ¼ arg maxm¼1;2…;M R2 modelmð Þ� � ð22Þ

Furthermore, this framework can be used to conduct various types of model-tuning

procedures. What we have laid out above is the simple training-validation data split

Zhao et al. Genome Biology          (2021) 22:257 Page 13 of 19



approach. If one is interested in applying repeated learning, they can simply repeat the

procedure (i.e., resampling training/validation datasets and evaluating R2 on the valid-

ation set) K times. The average R2 across K folds can be used to select the best model.

Similarly, if K-fold cross-validation needs to be implemented, we can first independ-

ently simulate K − 1 sets of training subsample x(tr, k)⊤y(tr, k) with sample size N
K . Then,

we can obtain the Kth subsample by

x K ;trð ÞT y K ;trð Þ ¼ xTy‐
XK−1

k¼1
x tr;kð ÞTy tr;kð Þ ð23Þ

Finally, rotate each one of the K subsamples as a validation sample and the rest as a

training sample, and use the average R2 to select the best model. Taken together,

PUMAS is a general framework that can perform a variety of model-tuning tasks.

Simulation settings

We conducted simulations using real genotype data from WTCCC. The WTCCC data-

set contains 15,918 samples with 393,273 genotyped SNPs across the whole genome.

We removed SNPs that are not available in 1000 Genomes Project Phase III European

samples from the simulations since 1000 Genomes data were used as the LD reference

panel. We excluded individuals with genotype missingness rate higher than 0.01 and re-

moved SNPs that satisfy any of the following conditions: (i) having minor allele fre-

quency less than 0.01, (ii) having missing rate higher than 0.01 among all subjects, and

(iii) having p-value from the Hardy-Weinberg equilibrium test lower than 1e−6. After

quality control, 322,235 variants and 15,567 samples remained in the analyses. We first

simulated effect sizes βj from a normal distribution Nð0; h2

MpÞ where h2 is the heritability

(fixed at 0.5), M is the total number of SNPs, and p is the proportion of causal variants.

We chose two values of p (i.e., 0.001 and 0.1) to represent sparser and more polygenic

genetic architecture. Following the LDAK paper [46], we then replaced the raw effect

sizes by β�j ¼ β j½2pjð1−pjÞ�α where α = − 2, − 1, 0, 1, 2 to better evaluate the perform-

ance of PUMAS under various genetic architecture. Thus, in total, we conducted simu-

lations under 10 different settings. In each setting, causal SNPs were randomly selected

across the genome and the effect sizes of non-causal SNPs were set to be 0. Using these

simulated effect sizes, we generated continuous trait values in GCTA [47]. We then

performed marginal linear regressions and obtained GWAS summary statistics using

PLINK [48]. These summary statistics were used as input for PUMAS.

We compared PUMAS with repeated learning (i.e., Monte Carlo cross-validation). In-

stead of partitioning N samples into k non-overlapping folds, which is what a k-fold

cross-validation does, repeated learning randomly selects Nðk−1Þ
k samples to form the

training dataset and evaluates the model performance on the remaining N
k samples. This

procedure is then repeated k times to obtain an averaged prediction accuracy (i.e., R2)

across k folds of analysis for each prediction model. Here, we implemented a 4-fold re-

peated learning approach. In each fold, we randomly select 75% of WTCCC samples

(i.e., 34 � 15567 ≈ 11675) to perform GWAS, and evaluate the predictive performance of

PRS on the remaining 25% of individuals (i.e., 15567 − 11675 = 3892). We repeated this

process 4 times and reported the average predictive R2 for each PRS model with differ-

ent p-value cutoffs. For comparison, we implemented PUMAS in a similar fashion.

Zhao et al. Genome Biology          (2021) 22:257 Page 14 of 19



Based on the GWAS summary data computed from all WTCCC samples, PUMAS gen-

erates a set of summary statistics for 75% of samples as the training data for PRS and

evaluates the predictive performance of PRS on the corresponding validation summary

statistics (i.e., summary statistics for the remaining 25% of samples). We repeated this

procedure 4 times and reported the average R2 for each PRS model. In this simulation,

we consider PRS models with p-value cutoffs ranging from 1e−5 to 1.

To show that PUMAS can be applied to binary traits, we conducted additional simu-

lations under settings described above. For each simulation setting, we kept the same

SNP effects, heritability, and proportion of causal variants. However, instead of generat-

ing quantitative phenotypes, we simulated binary phenotypes using a population preva-

lence of 50% and case-control ratio of 1:1 in GCTA [47]. We performed marginal

logistic regressions in PLINK to obtain GWAS summary statistics. Like the simulation

for quantitative traits, we compared the performance between PUMAS and 4-fold re-

peated learning using individual-level data for binary traits. We used the area under the

ROC curve (AUC) as the metric to assess prediction accuracy in repeated learning.

Finally, to investigate the accuracy of our approximation for the covariance of xTy,

we performed additional simulations in WTCCC. We implemented a total of 8 settings

with different sample sizes, heritability, and proportion of causal variants. We simulated

quantitative trait values and performed marginal linear regression to obtain GWAS

summary statistics. Then, we calculated and compared diagonal elements Σj and Σ̂ j ,

and off-diagonal elements Σji and Σ̂ji, respectively. Note that the theoretical values of el-

ements in the covariance matrix are shown in Eqs. (8–9), while the approximated

values are shown in Eqs. (10–11). We assessed the approximation of both diagonal and

off-diagonal elements. We found a very high correlation between Σ̂ j and Σj (greater

than 0.99 in all of 8 simulation settings) and negligible off-diagonal elements (Add-

itional file 1: Fig. S15; Additional file 13: Table. S12), which justifies our approximation

procedure.

GWAS data

GWAS summary statistics on EA was shared to us by Dr. Aysu Okbay. In this dataset,

samples from Add Health, HRS, 23&me, and Wisconsin Longitudinal Study were ex-

cluded (N = 742,903; number of SNPs = 10,824,042). Imputed genotype data for Add

Health (N = 9974; number of SNPs = 9,664,514) and HRS (N = 15,567; number of

SNPs = 18,144,468) were accessed through dbGap (phs001367 and phs000428) and the

EA phenotypes were defined following the SSGAC GWAS [19]. Both Add Health and

HRS genotype data were imputed using 1000 Genome Project data as reference. The

comprehensive data cleaning procedure is documented on the Add Health website at

https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/AH_GWAS_QC.

pdf. For HRS, SNPs with imputation quality score < 0.8 were removed from the dataset.

After matching samples with accessible phenotypic information, 4775 Add Health sam-

ples and 10,214 HRS samples with self-reported European ancestry were used to valid-

ate EA PRS. The IGAP 2013 AD GWAS (N = 54,162; number of SNPs = 7,055,881)

dataset was accessed through the IGAP website (http://web.pasteur-lille.fr/en/

recherche/u744/igap/igap_download.php). GWAS summary statistics (number of SNPs

= 9,037,014) for 7050 ADGC samples can be accessed through the NIAGADS database
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(NG00076). Predictive performance on ADGC samples was assessed using summary

statistics-based R2. Following a recent paper, we constructed the AD-proxy phenotype

in the UK Biobank based on each sample’s AD status, AD history of parents, whether

parents are still alive, and parental age (or age at death) [24]. Imputed genotype data (N

= 355,583; number of SNPs = 9,605,099) were accessed through the UKB. The UKB

genotype data was imputed to the Haplotype Reference Consortium reference. We re-

moved samples who are not of European ancestry and SNPs with minor allele fre-

quency < 0.01 or imputation R2 < 0.9. In addition, we applied PUMAS to benchmark

PRS performance on 65 GWASs. Details on these studies are summarized in Additional

files 7, 8, and 9: Table. S6-S8.

For all PUMAS analysis throughout the paper, we first extracted SNPs intersected

with the 1000 Genome Phase III data of European ancestry [44]. Then, we pruned

GWAS summary statistics by a LD-block window size of 100 variants, a step size of 5

variants to shift windows, and a pairwise LD (i.e., r2) threshold of 0.1 using PLINK [48].

We used samples of European ancestry in the 1000 Genome Project Phase III as the

reference panel to estimate LD. For GWASs that do not report MAF in the summary

statistics, we estimated MAF from 1000 Genome project European samples. In

addition, for the analysis of EA and AD, we also intersected GWAS summary statistics

with SNPs in the validation set before LD-pruning. A p-value grid was used to search

for the optimal p-value cutoff (Additional file 4: Table. S3).

Identifying neuroimaging traits associated with AD

GWAS results for imaging traits were accessed from https://med.sites.unc.edu/bigs2/

data/. The IGAP 2019 AD GWAS summary statistics was accessed via NIAGADS

(NG00075). We constructed the AD-proxy phenotype in the UK Biobank following a

recent paper [24]. To avoid sample overlap between GWASs, we inferred individuals in

the UK Biobank who have undergone brain MRI scans and removed them from the

AD-proxy GWAS. All individuals who have visited at least one of the UKB imaging

centers were removed from the analysis. 318,773 independent samples remained after

removing imaging samples from the data. We performed GWAS with the first 12 prin-

cipal components [49], age, sex, genotyping array, and assessment center as covariates.

To test if our approach to remove overlapping samples between neuroimaging GWAS

and the AD-proxy analysis was effective, we used cross-trait LD score regression to es-

timate the intercepts between 211 imaging traits and the AD-proxy GWAS (Additional

file 1: Fig. S13) [50]. BADGERS software was used to conduct the imaging trait PRS-

AD association analysis [30]. Meta-analysis was conducted using the sample size-

weighted approach [51].
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