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Abstract

Local genetic correlation quantifies the genetic similarity of complex traits in specific
genomic regions. However, accurate estimation of local genetic correlation remains
challenging, due to linkage disequilibrium in local genomic regions and sample
overlap across studies. We introduce SUPERGNOVA, a statistical framework to
estimate local genetic correlations using summary statistics from genome-wide
association studies. We demonstrate that SUPERGNOVA outperforms existing
methods through simulations and analyses of 30 complex traits. In particular, we
show that the positive yet paradoxical genetic correlation between autism spectrum
disorder and cognitive performance could be explained by two etiologically distinct
genetic signatures with bidirectional local genetic correlations.

Keywords: GWAS, Local genetic covariance, Eigen decomposition, Autism spectrum
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Background
Genome-wide association study (GWAS) has achieved remarkable success in the past

15 years and has identified numerous single-nucleotide polymorphisms (SNPs) associ-

ated with complex human traits and diseases [1]. Increasingly accessible summary sta-

tistics from GWAS, in conjunction with advances in analytical methods that use

marginal association statistics as input, have circumvented logistical challenges in data

sharing and greatly accelerated research in complex trait genetics [2].

With these advancements, multi-trait modeling has undergone rapid developments,

leading to the emergence of numerous methods that study the shared genetic basis

across multiple phenotypes [3–8]. Among these methods, genetic correlation analysis

is a statistically powerful and biologically interpretable approach to quantifying the

overall genetic similarity of two traits [9–15]. It has gained popularity in the field, pro-

vided new insights into the shared genetics of many phenotypes [10, 16], and has a var-

iety of downstream applications [9]. Properly modeling genetic correlation could
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enhance statistical power in genetic association studies [3, 4], improve risk prediction

accuracy [17–19], and facilitate causal inference and mediation analysis [5, 7, 20–22]. A

number of methods have been developed for genetic correlation estimation. Built upon

the GREML approach [14, 23], cross-trait linkage disequilibrium (LD) score regression

(LDSC) was the first method that uses GWAS summary statistics alone as input [10,

24]. Methods have also been developed to estimate annotation-stratified [12] and trans-

ethnic [13] genetic correlation. Bioinformatics servers have been built to improve the

computation and visualization of genetic correlations [25].

Local genetic correlation analysis is another important approach to tackling the underlying

etiological mechanisms shared by multiple complex traits [11, 26]. Instead of estimating the

average correlation of genetic effects across the genome, local genetic correlation quantifies

the genetic similarity of two traits in specific genomic regions. This approach could reveal

local, heterogeneous architecture of etiological sharing and is critical for understanding the

heterogeneity in pleiotropic genetic effects. Existing methods have struggled to provide statisti-

cally principled and robust results due to technical challenges including extensive LD in local

chromosomal regions and pervasive sample overlap across GWASs.

Here, we introduce a novel statistical framework named SUPERGNOVA for local

genetic correlation estimation. Based on the GNOVA approach which was designed for

partitioning genetic correlation by functional annotation [12], SUPERGNOVA is a prin-

cipled framework for diverse types of genetic correlation analyses. Through extensive

simulations, we demonstrate that SUPERGNOVA provides statistically rigorous and

computationally efficient inference for both global and local genetic correlations and

substantially outperforms existing methods when applied to local genomic regions.

Additionally, our approach uses GWAS summary statistics alone as input and is robust

to overlapping GWAS samples even when the shared sample size is unknown. We ap-

plied SUPERGNOVA to 30 complex traits and report 150 pairs of phenotypes with sig-

nificant local genetic correlations. In particular, we investigated an empirical paradox—

the robust, positive genetic correlation between autism spectrum disorder (ASD) and

cognitive ability, which contradicts the comorbidity between ASD and intellectual dis-

ability [27]. We demonstrate that multiple distinct etiologic pathways contribute to the

shared genetics between ASD and cognitive ability which could only be revealed by

genetic correlation analysis at a local scale.

Results
Overview of SUPERGNOVA analytical framework

Genetic covariance (correlation) is defined as the covariance (correlation) of genetic ef-

fects on two traits. It is commonly used as an informative metric to quantify the shared

genetic basis between traits. Given the marginal association statistics from two GWASs

(i.e., z scores z1 and z2), genetic covariance ρ between two traits can be estimated by

minimizing the “distance” between the empirical covariance of z scores, i.e., dCovðz1; z2Þ
¼ 1

2 ðz1zT2 þ z2zT1 Þ, and the theoretical covariance

Cov z1; z2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρ

m
V 2 þ nsρtffiffiffiffiffiffiffiffiffiffi

n1n2
p V ð1Þ
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where m is the number of SNPs, n1 and n2 are the sample sizes of two GWASs, ns is

the number of individuals included in both studies, V is the LD matrix, and ρt = ρ + ρe
is the sum of genetic covariance (i.e., ρ) and the covariance of non-genetic effects (i.e.,

ρe) on the two traits among shared individuals. Derivation of the theoretical covariance

and other statistical details are reported in the Additional file 1: Supplementary Note.

In the “Methods” section, we show that with different definitions of “distance”, existing

methods such as LDSC [10] and GNOVA [12] are special cases of this unified

framework.

Local genetic covariance (correlation) can be defined in a similar way by focusing

only on SNPs in a pre-specified genomic region (the “Methods” section). Despite the

conceptual similarity between global and local genetic correlation, local z scores from

each GWAS can be highly correlated due to the extensive LD in local regions. Hence,

most methods developed for global genetic correlation cannot be directly applied to es-

timate local correlations. In addition, ubiquitous sample overlap across GWASs intro-

duces additional correlations among association statistics from different studies, which

further complicates the estimation of genetic correlation. SUPERGNOVA resolves

these statistical challenges by decorrelating local z scores with eigenvectors of the local

LD matrix (Fig. 1). In practice, LD can be estimated from an external reference panel

(e.g., 1000 Genomes Project [28]) and the independent LD blocks are determined by

the LD patterns. For example, in our applications, we used LDetect [29] to partition the

genome. Due to the noise in LD estimation, we only use the first Ki eigenvectors to

transform and decorrelate association statistics in any given region i where Ki can be

determined adaptively in SUPERGNOVA. After decorrelation, local genetic covariance

ρi is estimated through a weighted least squares regression in each region. In contrast,

LDSC directly applies weighted least squares on the correlated products of z scores. In

the Additional file 1: Supplementary Note, we show that when the per-SNP heritability

is small, SUPERGNOVA is equivalent to GNOVA which is a method that has been

proven to achieve theoretical optimality compared to LDSC [12]. Another technical

Fig. 1 SUPERGNOVA workflow. Details on the statistical framework are described in the “Methods” section.
wi denotes the diagonal elements of Σi, which are also the eigenvalues of each local LD matrix. Notation, ∘
in the last step indicates the element-wise product
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challenge is that numerically unstable estimates of local heritability will lead to extreme

variability in the estimates of local genetic correlation (Additional file 1: Supplementary

Note; Additional file 2: Supplementary Figure 1). Therefore, we base our inference on

local genetic covariance which is statistically equivalent. We discuss more statistical de-

tails in the “Methods” section.

Simulations

We performed simulations to assess the performance of SUPERGNOVA for both glo-

bal and local genetic correlation analyses. We compared SUPERGNOVA with multiple

state-of-the-art methods in six different simulation settings and repeated each setting

100 times. We used real genotype data from the Wellcome Trust Case Control Consor-

tium (WTCCC) to simulate quantitative traits. After quality control, 15,918 samples

and 287,539 SNPs remained in the dataset. We equally divided 15,918 samples into two

subsets which we denote as set 1 and set 2. To assess the robustness of our approach

to sample overlap between GWASs, we generated another dataset by combining 3979

samples from set 1 and 3980 samples from set 2. We refer to it as set 3. This results in

a 50% sample overlap between set 1 and set 3. Detailed simulation settings and quality

control procedures are described in the “Methods” section.

We compared the performance of LDSC, GNOVA, and SUPERGNOVA on global

genetic covariance estimation. We set the heritability to be fixed at 0.5 and the genetic

covariance to range from 0 to 0.25. The covariance of non-genetic effects was 0.2 for

the overlapped samples. The effect sizes of SNPs were generated from a multivariate

normal distribution. Both SUPERGNOVA and GNOVA showed superior statistical

power compared to LDSC in all settings (Fig. 2A–C). No method showed inflated type

I error rates when the true covariance was 0. All three approaches provided unbiased

estimates for global genetic covariance but LDSC estimates had substantially larger

variance compared to GNOVA and SUPERGNOVA (Additional file 2: Supplementary

Figures 2-4).

Next, we compared ρ-HESS and SUPERGNOVA on their performance of estimating

local genetic covariance. We used 395 SNPs from a genomic region of about 3.3Mb on

chromosome 2 as the local region of interest. The remaining SNPs on chromosome 2

(23,839 SNPs) were used as the “background SNPs” in the analysis. We set the covari-

ance in the small local region to be from 0 to 0.005. Outside of this region on chromo-

some 2, covariance was fixed as 0. The total heritability was set to be 0.5 and was

equally distributed among all SNPs on chromosome 2 (24,234 SNPs). Both SUPER-

GNOVA and ρ-HESS assume the SNPs in different regions to be independent. How-

ever, in practice, there can be weak LD between nearby regions which could bias the

estimates towards the average genetic covariance of adjacent regions. When there is no

overlapping sample between two studies, SUPERGNOVA estimates showed lower bias,

well-controlled type I error, and good statistical power. On the other hand, ρ-HESS

consistently underestimated local genetic covariance and had lower statistical power

(Fig. 2D; Additional file 2: Supplementary Figure 5).

We repeated these simulations in set 1 and set 3 with a 50% sample overlap.

SUPERGNOVA estimates of local genetic covariance remained less biased with

well-controlled type I error (Additional file 2: Supplementary Figure 6). Compared
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to ρ-HESS, SUPERGNOVA showed superior statistical power (Fig. 2E). ρ-HESS

underestimated local genetic covariance even though we provided the correct sam-

ple size for shared samples (Additional file 2: Supplementary Figure 6). We also

performed simulations under a complete sample overlap by simulating two traits

on set 1. SUPERGNOVA still achieved less biased estimation and valid inference

(Fig. 2F; Additional file 2: Supplementary Figure 7). ρ-HESS lacked statistical power

in all settings. Additionally, when provided with inaccurate values of the overlap-

ping sample, ρ-HESS showed even lower statistical power (Additional file 2: Sup-

plementary Figure 8-9). We note that SUPERGNOVA does not need the shared

sample size or phenotypic correlation as input.

Finally, we repeated the simulations on densely imputed genotype data from the UK

Biobank (UKBB) and further evaluated the robustness of SUPERGNOVA under a set of

mis-specified models, including models with sparse genetic architecture and effects

dependent on minor allele frequencies (MAF) and LD. We also assessed how the size

of local genomic regions affects the performance of SUPERGNOVA and the type-I in-

flation of LDSC on local genetic covariance estimation. These additional simulations

showed highly consistent results. We describe the settings and results of these simula-

tions in the Additional file 1: Supplementary Note and Additional file 2: Supplementary

Figures 10-15.

Fig. 2 Simulation results. A–C compare the type-I error and statistical power of SUPERGNOVA, GNOVA, and
LDSC in global genetic covariance estimation. We use the proportion of p values that are less than 0.05 to
estimate type I error or statistical power when true parameters are zero or nonzero, respectively. A Two
GWASs were simulated on two non-overlapping datasets (set 1 and set 2). B GWASs were simulated on
two datasets with a 50% sample overlap (set 1 and set 3). C Two GWASs were both simulated on the same
dataset (set 1) with a 100% sample overlap. D–F compare SUPERGNOVA and ρ-HESS on local genetic
covariance estimation using GWASs D without sample overlap (set 1 and set 2), E with a partial sample
overlap (set 1 and set 3), and F with a complete sample overlap (set 1 only)
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Global and local genetic correlations among 30 complex traits

We applied SUPERGNOVA to estimate local and global genetic correlations among 30

phenotypes (Additional file 3: Supplementary Table 1). We partitioned the genome into

2353 approximately independent regions (about 1.6 centimorgan on average) using

LDetect [29], with LD estimated from the 1000 Genomes Project phase III samples of

European ancestry [28]. One hundred twenty-seven pairs of traits were globally corre-

lated (p < 0.05/435 = 1.1e−4; Additional file 2: Supplementary Figure 16) and 150 pairs

of traits were locally correlated in 109 different regions under Bonferroni correction (p

< 0.05/1,006,072 = 5.0e−8; Fig. 3A; Additional file 3: Supplementary Tables 2-3). All

significant regions had at least one SNP with p < 1e−4 in both GWASs.

The sums of local covariance across 2353 regions were highly concordant with the

estimated global genetic covariance (Fig. 3B; R2 = 0.99), but local genetic covariance re-

vealed diverse architecture of genetic sharing locally. We estimated the proportion of

correlated regions for each pair of traits using ashr [30] (the “Methods” section; Fig.

3A; Additional file 3: Supplementary Table 4). The proportion of correlated regions

predicted global genetic correlation in general, with some notable outlier trait pairs

(Fig. 3C). Two subtypes of inflammatory bowel disease (IBD), Crohn's disease and ul-

cerative colitis (UC), had strong pairwise global correlations but relatively sparse local

Fig. 3 Global and local genetic correlations among 30 complex traits. A Estimates of global genetic
correlations (upper triangle) and estimated proportions of correlated regions among 435 trait pairs (lower
triangle). Asterisks in the upper triangle highlight significant genetic correlations after Bonferroni correction
for 435 pairs. Asterisks in the lower triangle indicate at least one significantly correlated region between the
traits after Bonferroni correction for all 1,006,072 regions in 435 trait pairs. We grouped traits with
hierarchical clustering applied to global genetic correlations. We summarized detailed information about
each trait, including abbreviations, in Additional file 3: Supplementary Table 1. B Global genetic covariance
estimates were highly concordant with the sums of local genetic covariance. Each point represents a trait
pair. Color and shape of each data point denote the significance status in global and local correlation
analyses. C Volcano plot comparing the global genetic correlation and proportion of correlated local
regions. Each point represents a trait pair. Color of each data point represents the significance and direction
of global correlation. Trait pairs discussed in the main text are labeled in the plot
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genetic correlations (Additional file 2: Supplementary Figure 17). In fact, all 8 identified

regions were positively correlated among Crohn’s disease, UC, and IBD and harbored

genome-wide significant loci reported in the GWAS on IBD [31], suggesting that a lim-

ited fraction of the genome contribute to different subtypes of IBD with strong and

concordant effects. In contrast, SNPs in 93% of regions had correlated effects between

cognitive performance (CP) and educational attainment (EA; global genetic correlation

= 0.63; p = 6.1e−115), the highest among all trait pairs. Seventy-nine percent of regions

showed correlated effects between body mass index (BMI) and high-density lipoprotein

(HDL) cholesterol (global genetic correlation = − 0.43; p = 3.6e−41), the highest among

negatively correlated traits. These results suggest extensive and “omnigenic” genetic

sharing between these traits, which is also reflected in the substantial shift in the distri-

bution of local genetic covariances (Additional file 2: Supplementary Figure 17). Bidir-

ectional correlations were also observed in several trait pairs, including ASD and CP

[32] (Additional file 2: Supplementary Figure 17; global correlation = 0.15; 15% of re-

gions were correlated). Across all trait pairs, we observed a modest association between

the sample size of traits and the proportion of correlated regions (Additional file 2:

Supplementary Figure 18).

We identified significant local genetic covariance for 86 trait pairs that were not sig-

nificantly correlated in the global analysis (Additional file 2: Supplementary Figure 19;

Additional file 3: Supplementary Table 2-3), including HDL cholesterol and low-

density lipoprotein (LDL) cholesterol [11], CP and major depressive disorder (MDD),

obsessive-compulsive disorder (OCD) and anxiety disorder (AXD), and ASD and bipo-

lar disorder (BD).

Our analyses also implicated several genomic regions showing correlated genetic ef-

fects on more than two traits. The BDNF locus on chromosome 11 (hg19 coordinate:

27,019,873–28,741,185) is known to control the development of neurons and synapses

and is vital to learning, memory, and vulnerability to stress [33–36]. We identified sig-

nificant genetic covariance at this locus between 6 trait pairs among schizophrenia

(SCZ), EA, smoking initiation (SmkInit), drinks per week (DrnkWk), and attention def-

icit/hyperactivity disorder (ADHD) (Additional file 2: Supplementary Figure 20-21).

Another locus on chromosome 11 (111,985,737–113,103,996) was identified among 7

neuropsychiatric traits: anorexia nervosa (AN), BD, MDD, CP, SCZ, SmkInit, and neur-

oticism (NSM) (Additional file 2: Supplementary Figure 22-23). NCAM1 at this locus is

involved in development and maintenance of the nervous system and is associated with

SCZ and comorbid alcohol and drug dependence [37–39]. These hub regions with per-

vasive correlations among psychiatric disorders hint at key regulators in the nervous

system and provide guidance to functional genomic studies that interrogate the mecha-

nisms of pleiotropic effects [40].

Local genetic covariance that did not achieve statistical significance may still be worth

follow-up investigations. Despite evidence on phenotypic correlations, previous studies

have suggested that Alzheimer’s disease (AD) is not genetically correlated with neuro-

psychiatric traits except education and cognition [16]. We identified suggestive local

correlations of AD with 7 neuropsychiatric traits: NSM (p = 1.2e−6), OCD (p = 3.0e

−6), CP (p = 3.4e−6), DrnkWk (p = 2.0e−5), MDD (p = 2.7e−5), and AN (p = 4.2e−4),

at the SPI1 locus (chr11: 46,876,411–48,200,127). We replicated the local correlations

with DrnkWk (p = 7.5e−2) and NSM (p = 1.4e−2) using an independent GWAS of AD
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family history (the “Methods” section; Additional file 3: Supplementary Tables 5-6).

The estimates for local genetic covariance were highly consistent between two analyses

(R2 = 0.84; Additional file 2: Supplementary Figure 24). The SPI1 locus has been con-

sistently identified in AD GWASs [41, 42]. A recent genome-wide survival study of AD

onset convincingly demonstrated that transcription factor (TF) PU.1 encoded by SPI1

is a key regulator for the development and function of myeloid cells and lower SPI1 ex-

pression delays the onset of AD by regulating gene expression in myeloid cells [43].

However, genetic covariance of AD with DrnkWk and NSM was not statistically signifi-

cant in TF binding sites of PU.1 in macrophages and monocytes (the “Methods” sec-

tion; Additional file 3: Supplementary Table 7). Transcriptome-wide association study

(TWAS) identified a number of PU.1-regulated genes associated with these phenotypes

in macrophages and monocytes (the “Methods” section; Additional file 3: Supplemen-

tary Tables 8-9), but all the genes shared by multiple traits are located at the SPI1 locus

(Additional file 2: Supplementary Figure 24). These results suggest that although the

SPI1 locus may have correlated roles in multiple psychiatric and neurodegenerative dis-

eases, PU.1 may modulate the risk of these diseases through regulating the transcrip-

tion of distinct susceptible genes in myeloid cells.

Dissecting the shared genetic basis of ASD and cognitive ability

We further demonstrate the power of SUPERGNOVA through an in-depth case study

of the shared genetics between ASD and cognitive ability (Additional file 2: Supplemen-

tary Figure 25). Paradoxically, previous studies based on multiple different approaches

have found a positive genetic correlation between ASD and CP [16, 44, 45]. We also

identified significant positive global genetic correlations between ASD and measures of

cognitive ability (Fig. 3), e.g., CP (standardized score on neuropsychological tests; cor-

relation = 0.15, p = 3.2e−8) and EA (years of schooling; correlation = 0.18, p = 3.8e

−14). Cognitive phenotypes in these GWASs have been previously described in detail

[46]. However, such a positive correlation contradicts the known comorbidity of intel-

lectual disability and ASD with regard to de novo variants of high penetrance [27, 47].

In addition, other neurodevelopmental disorders such as ADHD showed negative gen-

etic correlations with cognitive measures (correlation = − 0.29 and p = 2.9e−29 with

CP; correlation = − 0.41 and p = 2.0e−59 with EA), but the genetic correlation between

ASD and ADHD was positive (correlation = 0.28, p = 2.3e−9).

A total of 64 genomic regions with significant local genetic covariance were identified

among ADHD, ASD, and CP at a false discovery rate (FDR) cutoff of 0.1 (Additional

file 2: Supplementary Figure 26; Additional file 3: Supplementary Table 10). The local

covariances of CP with ASD and ADHD were bidirectional. No region with a negative

covariance between ASD and ADHD was identified. The paradox that ASD and ADHD

show opposite correlations with CP was not observed in any local region (Fig. 4A; Add-

itional file 3: Supplementary Table 11). Eighteen regions showed significant positive

correlations between ASD and CP, among which 3 regions were also significant and

positive between ADHD and ASD and 2 regions were significant and positive between

ADHD and CP. Similarly, we identified 32 regions with significant negative correlations

between ADHD and CP. Among these regions, 3 were positive between ADHD and

ASD and 3 were negative between ASD and CP. Three regions reached statistical
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significance in all three trait pairs. ASD and ADHD were positively correlated in all

three regions. ASD and ADHD were both positively correlated with CP in the regions

on chromosomes 4 (150,634,191–153,226,998) and 14 (36,683,516-38,481,516) (Add-

itional file 2: Supplementary Figures 27-28) and were both negatively correlated with

CP in the region on chromosome 7 (104,158,491–105,425,027) (Fig. 4B; Additional file

2: Supplementary Figure 29).

Fig. 4 Bidirectional local genetic covariance between ASD and CP. A Regions with significant local genetic
covariance among ADHD, ASD, and CP (FDR < 0.1). This plot uses bars to break down the Venn diagram of
overlapped regions in different categories. The five categories shown in the lower panel are correlated
regions of ADHD and CP (positive and negative), ASD and CP (positive and negative), and ASD and ADHD
(positive only). We use different colors (red, blue, and gray) to annotate region categories of positive,
negative, and mixed covariance directions. B LocusZoom plots for ASD and CP GWAS associations at the
KMT2E locus. ASD and CP are negatively correlated in the highlighted region. C LocusZoom plots for ASD
and CP at the POU3F2 locus. ASD and CP are positively correlated in the highlighted region. POU3F2 is 700
kb downstream of the GWAS association peak
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The locus on chromosome 7 (104,158,491–105,425,027) showed significant and nega-

tive correlations between CP and both neurodevelopmental disorders (Additional file 3:

Supplementary Table 11). We also identified a significant negative correlation of CP

and SCZ in this region (p = 1.8e−8; Additional file 2: Supplementary Figure 29; Add-

itional file 3: Supplementary Table 12). Among genes at this locus, PUS7 is associated

with intellectual disability and neurological defects [48]. De novo mutations in KMT2E

cause a spectrum of neurodevelopmental disorders including ASD [49]. An intronic

SNP in KMT2E, rs111931861, with a MAF of 0.034, reached genome-wide significance

in a recent ASD GWAS [44] (Fig. 4B). KMT2E was also implicated by a recent exome

sequencing study [50]. It is the only gene that reached genome-wide significance in

both GWAS and exome sequencing studies of ASD. TWAS did not identify any genes

associated with ADHD, ASD, SCZ, or CP in this region (the “Methods” section; Add-

itional file 3: Supplementary Tables 13). These results, coupled with the findings about

de novo and ultra-rare variants in KMT2E, suggest that common variants in this region

may be tagging protein-altering variants instead of regulatory variants for transcrip-

tional activities. A missense SNP in KMT2E, rs117986340, was nominally associated

with ASD (p = 5.7e−2) and ADHD (p = 4.4e−2) in GWAS (the “Methods” section;

Additional file 3: Supplementary Table 14) but this hypothesis needs to be investigated

in the future using sequencing data.

POU3F2 (also known as BRN2) is a key TF in the central nervous system and a mas-

ter regulator of gene expression changes in BD and SCZ [51, 52]. It is the first genome-

wide significant locus identified for EA [53]. It has also been identified in a recent

TWAS for ASD [54]. In our analysis, the POU3F2 locus on chromosome 6

(97,093,295-98,893,182) showed significant positive correlations between ASD and CP

(p = 1.8e−5; Fig. 4C) and among many neuropsychiatric phenotypes including AN, BD,

DrnkWk, EA, and SmkInit (Additional file 2: Supplementary Figures 30-31; Additional

file 3: Supplementary Table 12). In addition, genes in other regions showing nominal

negative correlations between ASD and CP were significantly enriched for POU3F2

protein-protein interactors (PPIs) (odds ratio = 24.8; p = 2.8e−3; the “Methods” sec-

tion). This is consistent with our recent finding that genes regulated by TF POU3F2

showed a 2.7-fold enrichment for loss-of-function de novo mutations in ASD probands

which are known to cause comorbid intellectual disability [54]. These results hint at a

pervasive, regulatory role of POU3F2 in cognitive ability and many neuropsychiatric

disorders [55, 56].

Regions showing opposite correlation directions between ASD and CP were enriched

for distinct mechanistic pathways (the “Methods” section; Fig. 5; Additional file 3: Sup-

plementary Tables 15-18). Genomic regions with negative correlations between ASD

and CP were significantly enriched for chromatin modifier genes (enrichment = 3.2; p

= 3.8e−4; Additional file 3: Supplementary Tables 15-16). De novo protein-truncating

mutations in these genes are known to cause ASD, intellectual disability, and a variety

of congenital anomalies [27, 57, 58]. Regions positively correlated between ASD and CP

were significantly enriched for postsynaptic density (PSD) proteins (enrichment = 1.8; p

= 3.5e−4; Additional file 3: Supplementary Tables 17-18). FMRP targets also showed a

significant enrichment in positively correlated regions (enrichment = 1.9; p value = 2.7e

−3; Additional file 3: Supplementary Table 17). The enrichment of FMRP targets in

negatively correlated regions was comparable but did not reach statistical significance
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after multiple testing correction (enrichment = 1.8; p value = 0.032; Additional file 3:

Supplementary Tables 15). PSD genes are known to be enriched for associations identi-

fied in ASD TWAS [54]. FMRP targets are enriched for both ASD heritability quanti-

fied using common variants [59] and de novo mutations of ASD [60, 61]. FMRP target

genes showed a 12.4-fold enrichment (p = 3.5e−15) in the 102 risk genes identified in

the latest exome sequencing study of ASD [50]. Notably, findings from exome-

sequencing studies (e.g., the 102 ASD genes [50]) and gene sets known to be enriched

for ultra-rare or de novo protein-truncating variants in ASD probands (e.g., chromatin

modifiers [27]) showed substantially stronger enrichment in the regions with negative

ASD-CP correlations than the regions with positive correlations (p = 0.034, the

“Methods” section; Additional file 3: Supplementary Tables 15-18).

We then assessed the enrichment of associations for other complex traits in genetic-

ally correlated regions between ASD and CP (the “Methods” section). Regions with

positive correlations between ASD and CP were significantly enriched for associations

for 10 traits documented in GWAS Catalog (p < 0.05/664 = 7.5e−5), including ex-

tremely high intelligence (odds ratio = 9.7; p = 3.5e−9), household income (odds ratio

= 52.6; adjusted p = 5.7e−9), and loneliness (odds ratio = 5.5; p = 4.1e−5) (Additional

file 2: Supplementary Figure 32; Additional file 3: Supplementary Table 19). Negatively

correlated regions were enriched for associations with a variety of neurodevelopmental

and psychiatric disorders including SCZ (odds ratio = 6.1; p = 2.2e−31), BD (odds ratio

= 13.3; p = 2.7e−24), and NSM (odds ratio = 10.0; p = 6.0e−12) (Additional file 2: Sup-

plementary Figure 32; Additional file 3: Supplementary Table 20). We also estimated

stratified genetic covariance of 28 other traits with ASD and CP in these identified re-

gions (Additional file 2: Supplementary Figure 33). EA, MDD, and rheumatoid arthritis

(RA) showed significant stratified covariance with ASD or CP (p < 0.05/112 = 4.5e−4)

in regions positively correlated between ASD and CP (Additional file 3: Supplementary

Table 21). On the other hand, ADHD, EA, and AXD showed significant stratified co-

variance with ASD or CP in regions showing significant negative correlations between

ASD and CP (Additional file 3: Supplementary Table 22). Overall, traits showed the

same directions of covariances with ASD and CP in regions with positive ASD-CP co-

variances, while they showed opposite directions of genetic covariances with ASD and

pLI > 0.9

FMRP targets

PSD

Embryonic

Chromatin modifiers

Essential

Mendelian disease

SFARI gene score 1 to 2

Satterstrom(2020)

3.23

0.89

1.37

1.78

0.89

1.15

1.17

4.22

3.67

0 1 2 3
−log10(P)

ASD_CP_NEG

1.06

0.84

1.2

1.86

1.26

1.16

1.76

1.79

0.69

0 1 2 3
−log10(P)

ASD_CP_POS

Fig. 5 Enrichment for gene sets in correlated regions between ASD and CP. Regions with opposite
correlations between ASD and CP were enriched for different mechanistic pathways. Fold enrichment
values are labeled next to each bar. The red dashed lines mark the p value cutoff of 0.05, and the black
dashed lines denote the p value thresholds after Bonferroni correction (p = 2.8e−3)
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CP in regions with negative ASD-CP covariances (Additional file 2: Supplementary Fig-

ure 33). In other words, no paradoxical covariances were present when we zoomed in

by ASD-CP correlated regions.

Genes in positively correlated regions of ASD and CP were expressed in a substan-

tially higher proportion of cells in fetal brains compared to background genes (p =

0.012; log-rank test) (the “Methods” section; Additional file 2: Supplementary Figure

34; Additional file 3: Supplementary Table 23) while the elevation of gene expression

rate in negatively correlated regions was not significant (p = 0.15, log-rank test). We

did not identify a significant difference in the expression rate between genes in the

ASD-CP positively correlated regions and genes in the ASD-CP negatively correlated

regions (p = 0.71, log-rank test). The average expression of both gene sets was signifi-

cantly higher than background genes across prenatal and postnatal stages (p = 9.7e

−525 and 2.5e−99 for genes in positively and negatively correlated regions, respectively)

(the “Methods” section; Additional file 2: Supplementary Figure 35). We also identified

significantly higher expression of genes in positively correlated regions than in nega-

tively correlated regions across developmental stages (p = 1.92e−61; Additional file 2:

Supplementary Figure 35). We did not identify differential expression between prenatal

and postnatal brains for either gene set (p = 0.83 and 0.81; the “Methods” section; Add-

itional file 3: Supplementary Table 24).

These results hinted that different pathways and biological processes were underlying

the positive and negative genetic correlation of ASD and cognitive ability. We further

investigated if these two sets of genetic components were associated with different clin-

ical symptoms and subtypes of ASD. We constructed two polygenic risk scores (PRSs)

of ASD based on independent SNPs from genomic regions with positive and negative

local correlations between ASD and CP, respectively, for 5469 ASD probands and 2132

healthy siblings in the Simons Foundation Powering Autism Research for Knowledge

(SPARK) cohort (the “Methods” section). We refer to these scores as PRS+ and PRS−.

Both PRS+ and PRS− are normally distributed in SPARK (Additional file 2: Supplemen-

tary Figure 36). PRS+ could significantly distinguish ASD probands and healthy siblings

(odds ratio = 1.08; p = 0.026) while the association between PRS- and ASD status was

not significant (odds ratio = 1.02; p = 0.71; the “Methods” section). One thousand eight

hundred three probands had both genotype data and intelligence quotient (IQ) infor-

mation. Probands with high PRS+ had higher IQ compared to probands with high

PRS-, with the average IQ changing sharply in the right tail of the PRS distribution,

from 93.8 and 94.7 (p = 0.64; two-sample t-test) in the 75% percentile to 101.7 and

84.0 (p = 0.046; two-sample t test) in the 99% percentile (Fig. 6A; Additional file 2: Sup-

plementary Figure 37). The proband subgroups above the 99% percentiles of PRS+ and

PRS- did not have overlapping samples. 10.5% of probands above the 99% percentile of

PRS+ and 31.6% of probands above the 99% percentile of PRS− had an IQ below 70

(Figs. 6A, B). Four probands above the 99% percentile of PRS- had relatively high PRS+

(greater than the 90% percentile of PRS+). All of them had IQ > 70 (Fig. 6B). No pro-

band in the 99% percentile group of PRS+ had high PRS− (greater than the 90% per-

centile of PRS−) (Fig. 6C).

Four thousand two hundred sixty-seven probands in SPARK had genotype data and

social communication questionnaire (SCQ) scores (the “Methods” section). We used

SCQ score as a proxy for ASD symptom severity. Probands with PRS− above the 99%
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percentile showed significantly elevated SCQ scores compared to other probands (p =

0.03; two-sample t test) (Additional file 3: Supplementary Table 25). Average SCQ

score rose from 22.4 in the 75% percentile to 24.4 in the 99% percentile (Additional file

2: Supplementary Figure 38). We did not identify a significant elevation in probands

with PRS+ above 99% percentile (p = 0.56). The repetitive behaviors scale-revised

(RBS-R) questionnaire was used to quantify repetitive behaviors, including self-injuries,

restricted behavior, compulsive behavior, stereotyped behavior, ritualistic behavior, and

sameness behavior [62]. We observed a significant increase of RBS-R scores in pro-

bands with PRS+ above the 99% percentile (p = 0.016; Additional file 2: Supplementary

Figure 38) but not in probands with PRS− above the 99% percentile (p = 0.4; Additional

file 3: Supplementary Table 25). We also investigated motor ability quantified by the

developmental coordination disorder questionnaire [63, 64] (DCDQ) in SPARK. We

observed a downward trend of DCDQ score (i.e., worse motor ability) as PRS increases

(Additional file 2: Supplementary Figure 38), but the changes were not statistically sig-

nificant (Additional file 3: Supplementary Table 25). Follow-up analyses examining

RBS-R and DCDQ subscales found that the pattern of results was not driven by any

one of the subdomains. Finally, we assessed the enrichment of ASD subtypes in PRS+

and PRS− 99% percentile groups. No subtype reached statistical significance (Add-

itional file 3: Supplementary Table 26), with Asperger’s disorder showing the strongest

yet modest enrichment (enrichment = 1.58; p = 0.082) in probands with PRS+ above

99% percentile (Additional file 2: Supplementary Figure 39). We note that these identi-

fied associations only achieved suggestive statistical evidence after accounting for mul-

tiple testing and need to be validated in the future using larger samples.

Discussion
Owing to increasingly accessible GWAS summary statistics and advances in statistical

methods to directly model summary-level data, genetic correlation estimation, espe-

cially at the genome-wide scale, has become a routine procedure in post-GWAS ana-

lyses. These correlation estimates effectively summarize the complex etiologic sharing

of multiple traits into concise, robust, and interpretable values, which provided novel

Fig. 6 Phenotypic heterogeneity of ASD probands with high PRS+ and PRS−. A Average IQ is computed for
different groups defined by PRS. Each interval indicates standard error of the estimated mean. B PRS
percentiles and IQ of probands above the 99% percentile of PRS−. PRS− was calculated using six negatively
correlated regions between ASD and CP. The blue heatmap indicates the percentile of ASD PRS in each
contributed region for each proband. The percentiles of PRS+ values are shown in the red boxes. IQ is
shown as green bars. C PRS percentiles and IQ of probands above the 99% percentile of PRS+. PRS+ was
calculated using 18 positively correlated regions between ASD and CP and the per-locus percentiles are
shown in red. The percentiles of PRS+ are shown in blue and the green bars denote IQ
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insights into the shared genetic architecture of a spectrum of phenotypes. However,

genome-wide genetic correlations only reflect the average concordance of genetic

effects across the genome and often fail to reveal the local, heterogeneous pleiotropic

effects, especially when the underlying genetic basis involves multiple etiologic pathways.

To this end, methods that partition genetic covariance by functional annotation or

local genetic region have achieved some success [11, 12]. These methods generally

use more sophisticated statistical models and are more adaptive to diverse types of

shared genetic architecture. On the downside, it is statistically more challenging to

estimate all the parameters in these models using GWAS summary statistics alone.

The problem is further exacerbated by technical issues such as strong LD among

SNPs in local regions and sample overlap across different GWASs. Due to these

challenges, stratified genetic correlation analysis has not been as popular as its

genome-wide counterpart.

In this paper, we have introduced SUPERGNOVA, a unified framework for both

genome-wide and stratified genetic correlation analysis. Improved upon our previous

work [12], SUPERGNOVA directly addresses the technical challenges in local genetic

correlation inference while retaining the statistical optimality in analyses at the

genome-wide scale. Through extensive simulations, we demonstrated that SUPER-

GNOVA provides statistically robust and efficient estimates and substantially outper-

forms other methods in estimation accuracy and statistical power. Notably,

SUPERGNOVA uses GWAS summary statistics as the input and is robust to arbitrary

sample overlap between GWAS datasets.

Applied to 30 complex traits, SUPERGNOVA identified 150 trait pairs with signifi-

cant local genetic covariance, including 86 pairs without a significant global correlation.

We identified various patterns in the shared genetic architecture between traits, with

some traits (e.g., EA and CP) showing ubiquitous genetic covariance in a large fraction

of the genome and other traits (e.g., Crohn’s disease and UC) showing relatively sparse

genetic sharing with strong pleiotropic effects. Our analyses also implicated hub regions

in the genome that are significantly correlated across numerous neuropsychiatric phe-

notypes. These results can guide future modeling efforts on these traits as well as func-

tional genomic studies that interrogate key regions with pervasive regulatory roles

across many phenotypes.

ASD and cognitive ability showed significant, bidirectional local genetic correlations

in our analysis. We performed in-depth analyses to further dissect the shared genetics

of ASD and cognition. For many years, GWASs of ASD have failed to identify robust

associations that can be consistently replicated, most likely due to “omnigenicity” [65],

weak effect of common SNPs, and insufficient sample size. However, exome sequencing

studies for ASD have been fruitful in the past decade. Numerous consortium-scale

whole-exome and whole-genome sequencing studies have been conducted to assess the

roles of de novo mutations and very rare transmitted variants in ASD. These studies

have convincingly identified more than 100 risk genes harboring pathogenic rare or de

novo variants and implicated a number of etiologic pathways for ASD [27, 50, 66, 67].

Additionally, overwhelming evidence suggests that rare and de novo pathogenic vari-

ants in pathways such as chromatin modifiers and FMRP target genes contribute to the

comorbidity of ASD and intellectual disability [27], which shaped our understanding of

ASD genetics until very recently.
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In contrast, successful GWASs for ASD have just begun to emerge [44]. It was not-

able that risk genes implicated by common SNPs do not have an apparent overlap with

ASD genes identified in rare variant studies. Large well-powered GWASs, coupled with

methodological advances in multi-trait analysis, have led to exciting findings about the

shared genetic basis of ASD and other genetically correlated traits. However, a finding

that surprised many in the field was the highly significant genetic correlation between

ASD and higher IQ [16]. This genetic correlation was first identified using relatively

underpowered ASD GWAS [10], but have since been replicated in well-powered large

studies [16, 44]. A recent study further demonstrated that PRS of EA is over-

transmitted from healthy parents to ASD probands, including probands who have

pathogenic de novo mutations in known ASD genes, but not to the unaffected siblings

[45].

These findings seemed paradoxical—whole exome sequencing (WES) reveals that

shared genetic components contribute to ASD and intellectual disability while

GWAS suggests that shared genetics contribute to ASD and higher cognitive

ability. It raised two important questions. Why are ASD genes affected by common

SNPs different from genes harboring rare protein-altering variants? Why do

common and rare variants suggest opposite genetic relationships between ASD and

cognition?

We aimed to address these questions head-on using local genetic correlations. We

identified significant positive correlations of ASD and CP in 18 genomic regions but

also 6 regions showing significant negative correlations. Locally, we did not observe the

paradoxical correlation pattern seen in the global analysis, i.e., two positively correlated

neurodevelopmental disorders ASD and ADHD showing opposite correlations with

cognitive measures. Regions that were significantly correlated in all three trait pairs

(e.g., the KMT2E locus) all showed consistent local correlations between both ASD and

ADHD with CP. Of note, the set of regions negatively correlated between ASD and CP

had a 3.2-fold enrichment for chromatin modifier genes. Thus, a genetic signature with

consistent results between common and rare variants was hidden in plain sight. These

genes, affected by both rare protein-altering variants and common (possibly regulatory)

SNPs, may contribute to ASD with comorbid intellectual impairment in part through

dysregulating chromatin modification in the developing brain. The positive global cor-

relation between ASD and cognition was explained by a second genetic signature

driven by a different set of regions that showed positive local correlations and were sig-

nificantly enriched for PSD genes. When calculating the total genetic covariance be-

tween ASD and CP in the genome, negatively correlated regions were overwhelmed by

the positive covariance in regions involved in the second signature, thus showing a

positive global covariance. PRS based on these two signatures (PRS+ and PRS−) showed

distinct associations with ASD phenotypes in the SPARK cohort. Compared to PRS−,

PRS+ could better distinguish ASD cases from healthy controls. Both PRS+ and PRS−

were associated with IQ in ASD probands but with opposite directions. In addition,

PRS− significantly predicted overall ASD symptom severity while PRS+ significantly

predicted repetitive behaviors. We also observed an enrichment of Asperger’s disorder

in probands with high PRS+ (and a slight depletion in probands with high PRS−), but

these results only showed moderate statistical evidence and remain to be validated

using larger samples in the future.
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Our method still has some limitations. Although SUPERGNOVA can effectively esti-

mate local genetic covariance, local genetic correlation estimates are numerically un-

stable due to the non-negligible noise in the estimates of local heritability. Second, due

to the distal regulatory nature of common genetic variations, causal genes may not al-

ways be included in the pre-defined genetic region harboring GWAS associations. We

suggest researchers also investigate regions adjacent to the identified region when inter-

preting local correlation results from SUPERGNOVA. Also note that although local

genetic covariance highlights important genomic regions and hints at the involvement

of physically proximal genes, it cannot prioritize genes directly. Functional evidence

needs to be considered when linking the identified regions with genes. Third, the ana-

lyses we conducted in this paper were based on hypothesis-free scans in the genome

but it is not the only possible study design. Filtering candidate regions based on

strength of GWAS associations may reduce multiple testing burden and consequently

improve statistical power in SUPERGNOVA. Our implemented software allows users

to re-define their local region of interest if needed. Fourth, the performance of SUPER-

GNOVA can be affected under some settings of model misspecification. Whether the

current model assumptions can be relaxed remains to be studied in the future. Fifth,

the association results of PRS+/PRS− with clinical symptoms and ASD subtypes were

not statistically significant after Bonferroni correction. Replications in probands with

larger sample size will be implemented in the future. Finally, some other future direc-

tions include extending our method to estimate transethnic local genetic correlation

[13]. The local correlation estimates provided by SUPERGNOVA may also improve

other types of multi-trait analysis such as multi-trait association mapping [3] and gen-

omic structural equation modeling (GenomicSEM) [4]. We believe SUPERGNOVA

may play a critical role in accelerating the development of novel statistical genetics

tools in the future.

Conclusions
Local genetic correlation analysis could reveal heterogeneous architecture of etiological

sharing between complex traits and is critical for understanding the genetic basis of

phenotypic correlations among traits. SUPERGNOVA provides a biologically motivated

and statistically principled analytical strategy to tackle etiologic sharing of complex

traits. A combination of global and local genetic correlation could provide new insights

into the shared genetic basis of many phenotypes. As a case study to illustrate the

power of SUPERGNOVA, we performed in-depth analyses to dissect the shared genet-

ics of ASD and cognitive abilities. Given the biological difference between two sets of

genomic regions with opposite correlations between ASD and CP, we concluded that

the “paradoxical” genetic correlation could be explained by genetic heterogeneity. We

believe SUPERGNOVA will have wide applications in complex trait genetics research.

Methods
Statistical model

We start with the statistical framework for global genetic covariance. Assume there are

two studies with sample sizes n1 and n2, respectively. Standardized trait values ϕ1 and

ϕ2 follow the linear models below:
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ϕ1 ¼ Xβþ ε

ϕ2 ¼ Yγ þ δ;

where X and Y are n1 ×m and n2 ×m standardized genotype matrices; m is the num-

ber of shared SNPs between the two studies; ϵ and δ are the noise terms; and β and γ

denote the genetic effects for ϕ1 and ϕ2. We adopt a model with random effects and

random design matrices [10, 12, 24] to define genetic covariance ρ. The combined ran-

dom vector of β and γ follows a multivariate normal distribution given by:

β
γ

� �
� N

0
⋮
0

24 35; h21
m

Im
ρ
m
Im

ρ
m
Im

h22
m

Im

2664
3775

0BB@
1CCA;

where h21 and h22 are the heritability of the two traits, respectively; Im is the identity

matrix of size m. In practice, two different GWASs may share a subset of samples.

Without loss of generality, we assume the first ns samples in each study are shared (ns ≤

n1 and ns ≤ n2). The non-genetic effects of the shared samples for the two traits are

correlated:

Cov εi1 ; δi2½ � ¼ ρe; 1≤ i1 ¼ i2≤ns
0; otherwise

�
Since trait values ϕ1 and ϕ2 are standardized, we have Varðεi1Þ ¼ 1−h21 and Varðδi2Þ

¼ 1−h22 for 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2.

In GWAS summary data, we can approximate z scores of SNP j for trait 1 and trait 2

by z1 j ≈ XT
∙ jϕ1=

ffiffiffiffiffi
n1

p
and z2 j ≈ YT

∙ jϕ2=
ffiffiffiffiffi
n2

p
. We use z1 and z2 to denote the vectors for

all SNPs’ z scores and use V to denote the LD matrix. Under a random design model,

CovðXi1 ∙Þ ¼ CovðY i2 ∙Þ ¼ V and the variance-covariance matrix of ðzT1 ; zT2 ÞT is given by

Var
z1
z2

� �� �
¼

n1h
2
1

m
V 2 þ V

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρ

m
V 2 þ nsρtffiffiffiffiffiffiffiffiffiffi

n1n2
p Vffiffiffiffiffiffiffiffiffiffi

n1n2
p

ρ
m

V 2 þ nsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p V
n2h

2
2

m
V 2 þ V

26664
37775; ð2Þ

where ρt is defined as the sum of genetic covariance and non-genetic effects covari-

ance, i.e., ρt = ρ + ρe. We provide detailed derivations of (2) in the Additional file 1: Sup-

plementary Note.

Results similar to (2) can be derived when one or both studies are case-control stud-

ies, where genetic covariance is on the observed scale. The observed scale genetic co-

variance is ρobs ¼ ρϕðτ1Þϕðτ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1−P1ÞP2ð1−P2Þ

p
=½K1ð1−K 1ÞK2ð1−K2Þ� when both

studies are case-control studies, where ρ is the liability scale genetic covariance, ϕ is

the standard normal density, τ1 and τ2, P1 and P2, and K1 and K2 are the liability

threshold, sample prevalence, and population prevalence of study 1 and study 2, re-

spectively. Details are provided in the Supplemental Note. Since the only distinction be-

tween observed and liability scale of genetic covariance is a positive constant, the

observed and liability scale of genetic covariance is equivalent in terms of statistical sig-

nificance and covariance direction between two traits.

Zhang et al. Genome Biology          (2021) 22:262 Page 17 of 30



Most existing genetic covariance methods are based on the idea of minimizing the

“distance” between the empirical covariance matrix dCovðz1; z2Þ ¼ 1
2 ðz1zT2 þ z2zT1 Þ and

the theoretical covariance in (1). For example, LDSC [10] regresses the diagonal ele-

ments of empirical z score covariance matrix on that of the theoretical covariance

matrix. GNOVA [12] applies the method of moments estimator that compares the

trace of the empirical and theoretical covariance matrices. Our new approach, SUPER-

GNOVA, is also based on this unified framework.

The statistical framework we introduced above can be easily generalized to local gen-

etic covariance. We assume ϕ1 and ϕ2 follow additive linear models:

ϕ1 ¼
XI
i¼1

Xiβi þ ε

ϕ2 ¼
XI
i¼1

Y iγi þ δ;

where Xi and Yi are the genotypes and βi and γi are the effect sizes of SNPs in region

i. In practice, I genomic regions can be mutually independent LD blocks defined by

LDetect [29]. Following the same derivations as shown above, the variance-covariance

matrix of local z scores z1i and z2i is

Var
z1i
z2i

� �� �
¼

n1h
2
1i

mi
V 2

i þ V i

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρi

mi
V 2

i þ
nsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p V iffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρi

mi
V 2

i þ
nsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p V i
n2h

2
2i

mi
V 2

i þ V i

26664
37775; ð3Þ

where Vi, h
2
∙i , ρi and mi are LD matrix, heritability, genetic covariance and number of

SNPs for region i, respectively. ρt here is defined as the sum of local genetic covariance

and non-genetic effects covariance, i.e., ρt ¼
PI
i¼1

ρi þ ρe . Similarly, the local genetic co-

variance is on observed scale when one or both studies are case-control studies. Details

about the construction of statistical model for local genetic covariance are provided in

Additional file 1: Supplementary Note.

Local genetic covariance estimation

Following (3), the covariance of z1i and z2i (i.e., z scores of trait 1 and trait 2 in region

i) is

Cov z1i; z2ið Þ ¼
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρi

mi
V 2

i þ
nsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p V i

Assume eigen decomposition of Vi is V i ¼ UiΣiUT
i , then we have

Cov UT
i z1i;U

T
i z2i

� 	 ¼ ffiffiffiffiffiffiffiffiffiffi
n1n2

p
ρi

mi
Σ2
i þ

nsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p Σi

where Σi ¼ diagðwi1;wi2;…;wimiÞ (wi1≥wi2≥…≥wimi ≥0 are the eigenvalues of Σi)

and Ui is the corresponding orthogonal matrix of eigenvectors. Denote ~z1i ¼ UT
i z1i and

~z2i ¼ UT
i z2i . For j = 1, 2, …, mi, the expected value and variance of ~z1ij~z2ij for the jth

eigenvalue wij are
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E ~z1ij~z2ij
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and

Var ~z1ij~z2ij
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� �
ð4Þ

where h21i and h22i can be estimated by the method of moments [68]. Derivations of

(3) and (4) are in the Additional file 1: Supplementary Note. Due to the noise in LD es-

timation, especially for the smaller eigenvalues, we only use the first Ki eigenvalues to

estimate ρi. The procedure to adaptively determine Ki is described in the following sec-

tion. In practice, the LD matrices are estimated from an external reference panel (e.g.,

the 1000 Genomes Project [28]) and the intercept of cross-trait LDSC [10] provides an

estimate of nsρt=
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
, denoted as dnsρt= ffiffiffiffiffiffiffiffiffiffi

n1n2
p

. For each genomic region, we can esti-

mate local genetic covariance and test the significance of ρ̂i using the weighted regres-

sion of ~z1ij~z2ij−ðdnsρt= ffiffiffiffiffiffiffiffiffiffi
n1n2

p Þwij, denoted by ηij, on the square of eigenvalue weighted by

the reciprocal of the variance in (4) which is approximated by ½ðn1h21i=miÞw2
ij þ wij�½ðn2

h22i=miÞw2
ij þ wij�. Since ~z1i1~z2i1;……;~z1iK i~z2iK i are independent for any region i, the the-

oretical variance of ρ̂i j ðdnsρt= ffiffiffiffiffiffiffiffiffiffi
n1n2

p Þ is analytically given by
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Here, we denote q2ij ¼ ½ðn1h21i=miÞw2
ij þ wij�½ðn2h22i=miÞw2

ij þ wij� . In weighted regres-

sion, ½ðn1h21i=miÞw2
ij þ wij�½ðn2h22i=miÞw2

ij þ wij� is treated as the reciprocal of the weight’s

square. So, the empirical variance of ρ̂i j ðdnsρt= ffiffiffiffiffiffiffiffiffiffi
n1n2

p Þ is analytically given by
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Derivations of (5) and (6) are in the Additional file 1: Supplementary Note. To com-

pensate for the variance introduced by LDSC in the estimation of nsρt=
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
, we ap-

proximate Var½E½ρ̂ijðdnsρt= ffiffiffiffiffiffiffiffiffiffi
n1n2

p Þ�� by

Var E ρ̂ij
dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �� �

≈
m2

i

n1n2
∙

XKi

j¼1

w3
ij=q

2
ij

XKi

j¼1

w4
ij=q

2
ij

0BBBBB@

1CCCCCA
2

∙Var
dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �

: ð7Þ

The derivation of (7) is in the Additional file 1: Supplementary Note. The estimation

of the last term in (7) Var½dnsρt= ffiffiffiffiffiffiffiffiffiffi
n1n2

p � is from LDSC. We use (6) to approximate E½
Var½ρ̂ijðdnsρt= ffiffiffiffiffiffiffiffiffiffi

n1n2
p Þ�� . By the law of total variance, we combine the results in (6) and

(7) to obtain Var½ρ̂i�:
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Var ρ̂i

 � ¼ Var E ρ̂ij

dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �� �

þ E Var ρ̂ij
dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �� �

:

Our statistical framework leverages the complete LD matrix to reduce information

loss in estimation and at the same time denoises the empirical LD by properly selecting

the optimal number of eigenvalues (determined by Ki ′ s) to include in the local

analysis.

Then, local genetic correlation is estimated by ρ̂i=
ffiffiffiffiffiffiffiffiffiffiffi
ĥ
2
1iĥ

2
2i

q
. We approximate the

standard error and the confidence interval of local genetic correlation estimation by the

Delta method. However, local genetic correlation estimates might be numerically un-

stable due to the noise in the estimates of local heritability, which is in the denominator

of the estimator of local genetic correlation. So, the estimates of genetic covariance of

SUPERGNOVA are more reliable. When estimating global genetic covariance, the

whole genome can be treated as a single region with non-zero submatrices only on the

diagonal of its LD matrix.

An adaptive procedure to determine Ki
Sample LD information is rarely available for published GWASs. Therefore, we use an

external reference panel to estimate LD. In practice, the number of SNPs is far greater

than the number of individuals in the reference panel. For example, in this paper, we

used 503 samples of European ancestry from the 1000 Genomes Project phase III as

the reference panel. The average number of SNPs in a local region is about 2000 for

common GWAS summary data. To achieve robust inference, we apply factor selection

and only use the first Ki eigenvectors and eigenvalues for region i. There are several

existing methods to perform factor selection [69–74]. The optimal Ki should lead to

powerful inference and properly controls the type I error. Here, we propose an adaptive

procedure to determine the value of optimal Ki. Under the optimal Ki, theoretical vari-

ance in (5) and empirical variance in (6) should be close. We know from (5) that theor-

etical variance decreases with the increase of Ki. However, the value of empirical

variance rapidly increases when the cutoff for the eigenvalues approaches towards zero

(Additional file 2: Supplementary Figure 40). We adaptively determine the optimal Ki

as follows. First, we set an upper bound for Ki. In our paper, the upper bound is 503

which is the number of samples in the reference panel. Then, for region i, we compute

the value of theoretical variance and empirical variance for Ki taking values from 10 to

the upper bound. We denote the maximum of theoretical variance and empirical vari-

ance for each Ki as

v Kið Þ ¼ max VarKi ρ̂ij
dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �

;dVarKi
ρ̂ij

dnsρtffiffiffiffiffiffiffiffiffiffi
n1n2

p
� �� �

:

The optimal Ki is determined by arg min
10≤Ki ≤ minðmi;503Þ

vðKiÞ . After Ki is decided, we use

weighted least square to obtain the estimate of genetic covariance.

Simulation settings

We used genotype data from WTCCC to conduct simulations. Samples were randomly

divided into two equal subgroups with 7959 individuals. We denote them as set 1 and
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set 2. We randomly sampled 3979 individuals from set 1 and 3980 individuals from set

2 to create set 3 which has a 50% sample overlap with set 1. Samples with European an-

cestry from the 1000 Genomes Project phase III [28] were used as the LD reference in

our simulations. We kept common SNPs with MAFs greater than 5% and removed all

SNPs with ambiguous alleles. After quality control, 287,539 SNPs remained in both

WTCCC and 1000 Genomes Project data.

We used LDetect [29] to partition the genome into 2197 LD blocks (~ 1.6 centi-

morgan in width on average). To estimate local genetic covariance, we selected the lar-

gest region partitioned by LDetect on chromosome 2 (176,998,822–180,334,969) to be

the local region of interest. There are 395 SNPs in this region in the genotype data

from WTCCC. The effects of SNPs on two simulated traits were only correlated in the

local region. The remaining 23,839 SNPs on chromosome 2 were used as background

SNPs whose genetic covariance was set as 0. The effect sizes of SNPs were generated

by a multivariate normal distribution and we applied Genome-wide Complex Trait

Analysis (GCTA) [75] to simulate ϕ1 and ϕ2. We used PLINK [76] to run GWAS and

obtain summary statistics of the two simulated traits. We repeated each simulation set-

ting 100 times. Detailed simulation settings are summarized below.

For simulations of global genetic covariance analysis, we set the heritability of two

traits to be 0.5 and set the genetic covariance to be 0, 0.05, 0.1, 0.15, 0.2, and 0.25, re-

spectively. We conducted three simulations, corresponding to different levels of sample

overlap.

1. Independent studies: we used set 1 and set 2 to simulate ϕ1 and ϕ2, respectively.

2. Partial sample overlap: ϕ1 and ϕ2 were simulated on set 1 and set 3. The

covariance of non-genetic effects on shared samples was set to be 0.2.

3. Complete sample overlap: ϕ1 and ϕ2 were both simulated on set 1. The covariance

of non-genetic effects on shared samples was set to be 0.2.

For simulations of local genetic covariance analysis, we set the heritability of two

traits to be 0.5. The total heritability is evenly distributed to all SNPs. The covariance

of the local genetic effects was set to be 0, 0.001, 0.002, 0.003, 0.004, and 0.005, respect-

ively. Similar to global analyses, we conducted three sets of simulations.

1. Independent studies: ϕ1 and ϕ2 were simulated on set 1 and set 2, respectively.

2. Partial sample overlap: we simulated ϕ1 and ϕ2 on set 1 and set 3. The covariance

of non-genetic effects was set to be 0.2.

3. Complete sample overlap: we simulated both ϕ1 and ϕ2 on set 1. The covariance of

non-genetic effects was set to be 0.2.

To compare the performance between SUPERGNOVA and ρ-HESS [11], we input

true sample overlap ns to ρ-HESS. We followed the instruction provided by ρ-HESS

software to estimate phenotypic correlation, which is another required input of ρ-HESS.

To evaluate the robustness of ρ-HESS against mis-specified overlapping sample size, we

provided the method with an overlapping sample size of 1000 as input in partial sample

overlap and complete sample overlap scenarios to estimate local genetic covariance.

The phenotypic correlation is also estimated according to the instruction of ρ-HESS.
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SUPERGNOVA and ρ-HESS are compared by proportion of replicates out of 100 that

have a p value less than 0.05. When the true genetic covariance is zero (i.e., null hy-

pothesis is true), this proportion is an estimation of type I error. When the true genetic

covariance is nonzero (i.e., alternative hypothesis is true), this proportion is an estima-

tion of statistical power at significance level of 0.05.

GWAS data

GWAS summary statistics of 29 complex traits included in our analyses are publicly

available. We obtained the summary statistics of a recent lung cancer GWAS directly

from the authors [77]. Details of the 30 GWASs are summarized in Additional file 3:

Supplementary Table 1. We used munge_sumstats.py script in LDSC to reformat these

data and removed strand-ambiguous SNPs from each dataset. For each trait pair, we

took the intersection of SNPs in two GWAS and the 1000 Genomes Project. We

matched the effect alleles after removing SNPs with MAF lower than 5%. We only in-

cluded the SNPs in autosomes and excluded the MHC region in all analyses.

We accessed samples from the SPARK study through the Simons Foundation Autism

Research Initiative (SFARI). Samples in the SPARK study were genotyped by the Illu-

mina Infinium Global Screening Array. Details on these samples have been previously

reported and are available on the SFARI website [78]. Following data processing pro-

cedure in Huang et al. [54], we performed pre-imputation quality control (QC) using

PLINK. The genotype data were phased and imputed to the HRC reference panel ver-

sion r1.1 2016 using the Michigan Imputation server [79].

Estimation of the proportion of correlated regions

We estimated the proportion of correlated regions with an R package called ashr [30]

after the estimation of local genetic covariance among the 30 phenotypes. The inputs

were estimates of local genetic covariance and its standard error. The unimodal prior

distribution was set to be “halfnormal” for all the results of pairs of traits. The method

applied a Bayesian framework to compute FDR for each genomic region. To estimate

the numbers of correlated regions for each pair of traits, we computed the sum of (1 –

FDR) given by ashr for each region.

Follow-up analyses in the SPI1 locus for AD and other neuropsychiatric traits

To replicate local genetic covariance identified at the SPI1 locus, we defined a new gen-

omic region centered at SPI1 with a 1-Mb span. We estimated the local genetic covari-

ance between AD (IGAP2019 [41]) and the other 29 traits for this region. For

replication, we implemented a GWAS for AD family history in the UKBB and esti-

mated the local genetic covariance of this GWAS with other traits. Details on the AD-

proxy GWAS have been previously reported [41, 80].

We obtained PU.1 binding sites as ChIP-seq peaks from the ReMap datasets [81]

(GEO: GSE31621; SPI1, blood monocyte and macrophage datasets [82]). Following

Huang et al. [43], we expanded each ChIP-seq peak by 150 kb up- and downstream to

define the transcription factor binding site annotation. We applied GNOVA [12] to es-

timate the genetic covariance between AD and 29 other traits in the PU.1 binding sites.

We trained elastic net gene expression imputation models [83, 84] using expression
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profiles adjusted by peer factors [85] and PCs and matched genotypes from 758 mono-

cyte and 599 macrophage samples in the Cardiogenics Consortium [86] imputed by

Michigan Imputation Server [79]. We downloaded Cardiogenics resources from Euro-

pean Genome-phenome Archive (EGA) platform. To investigate the regulatory rela-

tionship between PU.1 and the identified genes in myeloid cells, we used GREAT [87]

to map PU.1 each binding peak in macrophages and monocytes to the nearest gene.

Cross-tissue transcriptome-wide association analysis

To identify genes associated with ADHD, ASD, CP and SCZ in brain tissues in the

KMT2E region (chr7: 104158491–105425027), we implemented cross-tissue

transcriptome-wide association analysis using UTMOST [88]. We used gene expression

imputation models trained by genotype and normalized gene expression data from the

GTEx project [89–92] (version V8). We considered 13 brain tissues. For individual ex-

pression data, we regressed out the effects of confounding covariates including first five

genotype PCs, PEER factors optimized by sample sizes as in the GTEx V8 paper [92],

sequencing platforms, library construction protocol and donor sex. Cis-genotype data

was extracted for SNPs located within 1MB distance from the transcription starting

sites of all protein coding genes. Then, we trained expression imputation models based

on cis-genotypes for each gene in each tissue using 10-fold elastic net with alpha being

0.5. Models with credible imputation performances (FDR < 0.05) were used in later

analysis.

Functional annotation for variants in GWAS data

We used bedtools [93] to extract sequence from the KMT2E region. We then per-

formed gene annotations on each of the variants using ANNOVAR [94]. For exonic

and splicing variants, missense variants were represented by nonsynonymous single nu-

cleotide variants (SNVs) and loss-of-function variants were annotated as frameshift,

stopgain, or stoploss mutations by ANNOVAR. We took overlapped SNPs and

matched the effect alleles between ANNOVAR annotations and GWAS summary data

of ADHD, ASD, CP and SCZ respectively.

Gene set enrichment analysis

We used R package TxDb.Hsapiens.UCSC.hg19.knownGene to identify genes in the cor-

related regions between ASD and CP with nominal significant covariances (p < 0.01).

We only included protein-coding genes in our analysis, resulting in 317 positively cor-

related genes and 179 negatively correlated genes. We applied Enrichr [95, 96] to im-

plement enrichment analysis on GWAS catalog 2019 [97] (Additional file 3:

Supplementary Tables 19-20), and TF PPI [95]. We identified FMRP target genes, genes

encoding PSD proteins, gene preferentially expressed in human embryonic brains, es-

sential genes, chromatin modifier genes, genes with probability of loss-of-function in-

tolerance (pLI) > 0.9, and SFARI evidence score based on previous literature [54]. We

obtained a list of 102 genes identified by the refined transmitted and de novo associ-

ation (TADA) model [98] (FDR < 0.1) in the recent exome sequencing study on ASD

[50]. We performed hypergeometric test to assess the enrichment of ASD-CP positively

and negatively correlated genes in these gene sets. We performed permutation test to
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assess the differential enrichment across gene sets. We randomly assigned these genes

into positive or negative sets and computed the maximal chi-square statistics in the

102 ASD genes from Satterstrom et al. [50] and chromatin modifier genes [27]. We re-

peated the permutation 1000 times and quantified the empirical p value as the propor-

tion of permutations with shuffled test statistics greater than the test statistic observed

in real data.

Analysis of spatio-temporal RNA-seq data in brain tissues

We used single-cell RNA-seq data generated by the PsychENCODE Consortium

[99] in fetal brains to test the elevation of gene expression of ASD-CP correlated

genes in brain development. There were 762 cells collected from neocortical re-

gions of eight fetal brains from 5 to 20 PCW. We kept only protein-coding genes

which included 18,134 genes in this analysis. Three hundred ten of positively cor-

related and 175 of negatively correlated genes were overlapped with these genes.

Following Satterstrom et al. [50], for each time point, a gene was considered

expressed if at least one transcript mapped to this gene in 25% or more of cells

for at least one PCW period before. By definition, gene expression rate increased

with fetal development. We performed log-rank test to test the difference of gene

expression rate in developmental brain between positively or negatively correlated

genes and other genes.

We downloaded developmental bulk RNA-seq data from BrainSpan. Gene-level

RPKMs were used across 524 samples from 42 individuals in 26 brain regions [99].

We kept protein-coding genes in our analysis. Following Satterstrom et al. [50], we

removed samples with RNA integrity number (RIN) ≤ 7 and only used neocortical

regions—dorsolateral prefrontal cortex (DFC), ventrolateral prefrontal cortex (VFC),

medial prefrontal cortex (MFC), orbitofrontal cortex (OFC), primary motor cortex

(M1C), primary somatosensory cortex (S1C), primary association cortex (A1C), in-

ferior parietal cortex (IPC), superior temporal cortex (STC), inferior temporal cor-

tex (ITC), and primary visual cortex (V1C). Genes were defined as expressed if

their RPKMs were at least 0.5 in 80% samples from at least one neocortical region

at one major temporal epoch. Consequently, 14,803 genes were defined as

expressed in 325 samples from 8 post-conceptual weeks (PCW) to 40 years of age.

We then log-transformed RKPM (log2[RKPM+ 1]). We followed the definition of

developmental stages in Li et al. [99]. We performed t test to determine the differ-

ential expression among ASD-CP positively correlated genes, negatively correlated

genes, and background genes.

To study the relative prenatal and postnatal bias, we performed linear regression for

the transformed RKPM of each gene on a binary “prenatal” stage variable. Sex was in-

cluded as an adjustment variable. Genes were defined as prenatally (or postnatally)

biased if log2 fold change> 0.1 (or < − 0.1) and q value< 0.05 resulting in 5562 prenatally

biased genes and 5361 postnatally biased genes. We followed the definition of ASD-CP

positively and negatively correlated genes from gene set enrichment analysis. Chi-

squared test was performed to test if the distributions of prenatally and postnatally

biased genes in ASD-CP positively and negatively correlated regions were significantly

different from background genes.

Zhang et al. Genome Biology          (2021) 22:262 Page 24 of 30



PRS analysis in SPARK

We used the 18 positively correlated regions and 6 negatively correlated regions (FDR

< 0.1) between ASD and CP to construct PRS+ and PRS− of ASD. We clumped the

SNPs by PLINK [76]. We set the significance threshold for index SNPs as 1, LD thresh-

old for clumping as 0.1, and physical distance threshold for clumping as 250 kb. We

generated scores for 5469 ASD probands and 2132 healthy siblings in the SPARK co-

hort. We assessed associations between two PRSs and ASD using logistic regression.

We then investigated the association between the two PRSs and ASD phenotypes in

probands, including IQ, SCQ score, RBS-R score, DCDQ score, and subtypes of ASD.

For each phenotype, we used the maximum sample with both genotype and phenotype

data. Sample sizes for these phenotypes in SPARK are summarized in Additional file 3:

Supplementary Table 25. We performed two-sample t test for quantitative phenotypes

between probands with extreme PRS (top 1%) and other probands. We performed

hypergeometric test to test enrichment of subtypes in the extreme PRS group.
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