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Abstract

Background: The human genome encodes over 14,000 pseudogenes that are
evolutionary relics of protein-coding genes and commonly considered as
nonfunctional. Emerging evidence suggests that some pseudogenes may exert
important functions. However, to what extent human pseudogenes are functionally
relevant remains unclear. There has been no large-scale characterization of
pseudogene function because of technical challenges, including high sequence
similarity between pseudogene and parent genes, and poor annotation of
transcription start sites.

Results: To overcome these technical obstacles, we develop an integrated
computational pipeline to design the first genome-wide library of CRISPR
interference (CRISPRi) single-guide RNAs (sgRNAs) that target human pseudogene
promoter-proximal regions. We perform the first pseudogene-focused CRISPRi screen
in luminal A breast cancer cells and reveal approximately 70 pseudogenes that affect
breast cancer cell fitness. Among the top hits, we identify a cancer-testis unitary
pseudogene, MGAT4EP, that is predominantly localized in the nucleus and interacts
with FOXA1, a key regulator in luminal A breast cancer. By enhancing the promoter
binding of FOXA1, MGAT4EP upregulates the expression of oncogenic transcription
factor FOXM1. Integrative analyses of multi-omic data from the Cancer Genome Atlas
(TCGA) reveal many unitary pseudogenes whose expressions are significantly
dysregulated and/or associated with overall/relapse-free survival of patients in
diverse cancer types.

Conclusions: Our study represents the first large-scale study characterizing
pseudogene function. Our findings suggest the importance of nuclear function of
unitary pseudogenes and underscore their underappreciated roles in human
diseases. The functional genomic resources developed here will greatly facilitate the
study of human pseudogene function.
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Introduction
Pseudogenes are defined as dysfunctional copies of protein-coding genes that have lost

their coding potential due to the accumulation of disruptive mutations such as prema-

ture stop codons and frame-shift insertions/deletions [1, 2]. The corresponding

protein-coding paralogs of pseudogenes are referred to as parent genes. Pseudogenes

are evolutionary relics present in the genomes of a wide variety of species, including

bacteria, plant, and metazoans [3, 4]. They are often lineage-specific throughout the

evolution, and mammalian genomes contain much more pseudogenes than other meta-

zoan species [4]. Based on their generation mechanism during the course of evolution,

pseudogenes can be categorized into three major classes: (1) unprocessed (also referred

to as duplicated) pseudogenes, derived from duplication of protein-coding genes; (2)

processed pseudogenes, generated by retrotransposition of mRNA transcribed from

protein-coding genes back into the genome; and (3) unitary pseudogenes, which arise

through mutations in previously functional protein-coding genes without gene duplica-

tion. Unitary pseudogenes have no functional protein-coding gene counterparts in the

same genome, but only have functional coding orthologs in the genome of other organ-

isms [5]. Different species are often enriched for different classes of pseudogenes. For

example, in metazoans, the mammalian genomes are dominant by processed pseudo-

genes [4], while worm, fly, and zebrafish genomes are enriched for unprocessed pseu-

dogenes [4].

Pseudogenes have long been considered as nonfunctional genomic elements. How-

ever, recent studies revealed multiple examples of pseudogenes that can exert import-

ant regulatory function at the RNA level [6–10], through two major mechanisms. One

mechanism is via a production of small RNAs such as small interference RNA (siRNA)

[9, 10], whereby pseudogene-derived small RNAs can exert regulatory functions. The

other mechanism is via sponge RNA [11] or competing endogenous RNA (ceRNA) [12]

regulation, in which pseudogenes cross-regulate the expression of their parent genes or

other protein-coding genes by competing for binding of the same set of microRNAs

(miRNAs) [6–8]. The ceRNA regulation remains controversial as a general mechanism

of gene regulation under physiological conditions [13–15], because growing evidence

suggests that many active miRNAs are probably not susceptible to ceRNA competition

and ceRNA regulation may be highly context-specific [14, 15]. Many pseudogenes

showed dysregulated [16] or subtype-specific expression [17] in cancer, suggesting their

important role in the etiology of complex diseases.

Despite an increasing appreciation of the functional significance of pseudogenes, it

remains a technical challenge to interrogate their functions at a large-scale because

pseudogenes usually share high sequence similarity with their parent genes, except for

unitary pseudogenes. This high sequence homology makes it difficult to use traditional

loss-of-function approaches such as RNA interference (RNAi) or locked nucleic acid

(LNA) to target pseudogene transcripts while leaving the transcripts of their parent

genes intact. To date, there has been no systematic large-scale effort to characterize

pseudogene function. As a result, function of the vast majority pseudogenes remains

unknown, except for only a handful of cases.

To fill this gap, we leveraged the recently emerged genetic perturbation technique,

CRISPR (clustered regularly interspaced short palindromic repeat) interference (CRIS-

PRi) [18–20] and developed an integrated computational pipeline to design CRISPRi
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single-guide RNAs (sgRNAs) that target pseudogene promoters, which are often readily

distinguishable from that of their parent genes, allowing for a systematic interrogation

of pseudogene function in human cells. Different from the gene knockout with wild-

type CRISPR/Cas9, CRISPRi uses a catalytically inactive Cas9 (dCas9) fused with a tran-

scriptional repressor, targeted through sgRNAs, to specific genomic loci in the

promoter-proximal regions to repress gene expression [19]. The majority of human

pseudogenes are processed pseudogenes. The promoter sequences of processed pseu-

dogenes and their parent genes are generally more divergent than their transcript se-

quences because processed pseudogenes usually lack 5′ promoter sequence of their

parent genes. Compared with the RNAi/LNA-based method, CRISPRi offers a unique

advantage to specifically inhibit the expression of pseudogenes, without directly inter-

fering parent gene transcription. In addition, unlike RNAi that tends to be less effective

for silencing nuclear RNAs, CRISPRi modulates gene expression at the transcriptional

level and can thus suppress pseudogene expression regardless of RNA sub-cellular

localization. Leveraging this CRISPRi sgRNA library specially designed for human pseu-

dogenes, we performed to date the first pseudogene-focused pooled CRISPRi screen in

luminal A breast cancer cells to systematically identify human pseudogenes that are

critical for breast cancer cell fitness.

Results
An integrated computational pipeline for designing CRISPRi sgRNAs that target human

pseudogenes

We developed an integrated computational pipeline to design a CRISPRi sgRNA library

for the annotated human pseudogenes. As the effectiveness of CRISPRi-based tran-

scriptional repression relies heavily on the precise recruitment of the effector complex

to the target gene transcription start site (TSS) [19], an accurate annotation of the TSSs

of individual genes is essential to the success of designing effective sgRNAs. However,

the TSSs of pseudogenes are relatively poorly annotated in comparison with that of

protein-coding genes. To address this issue, we first integrated the FANTOM5 cap ana-

lysis of gene expression (CAGE) [21] data with GENCODE V22 transcriptome annota-

tion to define the TSSs on a transcriptome-wide level, including the pseudogenes (Fig.

1A and “Methods”), as described previously [22]. A total of 97,074 CAGE clusters were

assigned as the TSSs of transcripts in GENCODE V22. Next, we used the algorithm Se-

quence Scan for CRISPR (SSC) [23] to scan for sgRNA targets based on the genomic

sequence within a 500-bp window centered on each TSS. After filtering out sgRNA se-

quences of low quality from the initial 770,965 sgRNAs, we selected 359,082 uniquely

mapped sgRNAs that target the TSS-proximal regions of 42,609 genes. There was a

total of 57,031 uniquely mapped sgRNAs that target TSS-proximal regions of 7762

pseudogenes (Additional File 1: Table S1).

As a proof-of-principle systematic study of human pseudogene function with the de-

signed CRISPRi sgRNAs, we focused on breast cancer, which is the most commonly di-

agnosed cancer and the leading cause of cancer death in women worldwide and has

well-defined molecular subtypes [24]. Luminal A is the most common subtype and

triple negative/basal-like is a more aggressive subtype in breast cancer. To generate a

CRISPRi sgRNA library that target the expressed pseudogenes in MCF7 and MDA-
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MB-231 cell lines, the two breast cancer cell line models representing luminal A and

triple negative/basal-like breast cancer, we used the RNA-seq data from The Cancer

Cell Line Encyclopedia (CCLE) [25] to filter out the lowly expressed pseudogenes

(FPKM < 0.5 in both breast cancer cell lines). We also filtered out the pseudogenes

with less than three designed sgRNAs. After filtering, there were 5703 designed sgRNAs

corresponding to 850 pseudogenes, with the median number of 6 sgRNAs per

pseudogene (Additional File 1: Table S1; Additional File 2: Fig. S1A). Further-

more, to interrogate the function of both parent genes (if available) and pseudo-

genes in the same screen, sgRNAs targeting high-confidence parent genes [26]

(Fig. 1A) that passed the same filters as for pseudogenes were included in the li-

brary, resulting in 3727 sgRNAs that target 380 parent genes (“Methods,” Add-

itional File 1: Table S1). In addition to 9430 gene-specific CRISPRi sgRNAs

targeting pseudogenes and parent genes, we included 568 sgRNAs targeting 71

core fitness genes as positive controls, and 267 sgRNAs targeting AAVS1 and 83

non-targeting sgRNAs as negative controls, as described previously [27] (Fig. 1B,

Additional File 1: Table S1). The pseudogenes in our screen covered all three

major classes of pseudogenes, including processed (n = 642), unprocessed (n =

185), and unitary pseudogenes (n = 17), as well as non-classified/misc (n = 6)

pseudogenes (Fig. 1C). For the majority of parent genes that were included, there

were no more than two corresponding pseudogenes with targeting sgRNAs in the

library (Fig. 1D).

Fig. 1 An integrated computational pipeline for designing CRISPRi sgRNA library to screen for functional
human pseudogenes and parent genes. A A workflow of the sgRNA library design for pseudogene-focused
CRISPRi screen. B The number of sgRNAs targeting pseudogene, parent genes, and positive and negative
control sgRNAs that were included in the screen. C The pie chart showing the percentage of different types
of pseuodgenes included in the screen. D The distribution of the number of pseudogenes per parent gene
that were included in the screen
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A CRISPRi screen identifies functional human pseudogenes of different categories

To identify the pseudogenes that critically contribute to luminal A breast cancer cell

growth and/or survival (fitness), we conducted a pooled CRISPRi screen (Fig. 2A and

“Methods”). We conducted the screen in MCF7 cell line that stably express the strepto-

coccus pyogenes (Sp) dCas9-KRAB fusion protein [20] in triplicates, in a similar way to

the CRISPR-Cas9 or CRISPRi screen performed previously [20, 28]. Briefly, the oligo-

nucleotides containing both sgRNAs and flanking linker sequences were synthesized as

a pooled library and the resultant library was amplified and cloned into the lentiviral

vectors. Cells transduced with the lentiviral vectors encoding sgRNA library were se-

lected with puromycin (puro). The puro-selected cells were then split into three repli-

cates and passaged for 21 days. We collected individual replicates on day 0 (D0) and

day 21 (D21). The abundance change of individual sgRNAs between the initial and final

cell populations were quantified by next-generation sequencing to identify the genes

that are important for cell fitness. The sgRNA abundance from the three replicates

showed a significant correlation (p < 2.2 × 10−16) with each other on day 0 and day 21

(Additional File 2: Fig. S1B). As expected for the working positive controls, we observed

a notable depletion in the abundance of the sgRNAs targeting positive control core

Fig. 2 CRISPRi screen reveals functional human pseudogenes. A Schema depicting the workflow for
construction of lentiviral vectors encoding sgRNA library and experimental design of CRISPRi screens. B The
scatter plot showing the log2 Fold-Change (FC) and the statistical significance (− log10P value) of sgRNA
abundance difference between day 21 and day 0 for the negatively selected pseudogenes (log2 FC < 0),
and the pie chart showing the percentage of unitary, processed, and unprocessed pseudogenes among all
pseudogenes hits in MCF7 cells. The dots corresponding to the pseudogene hits are shown in red. The
examples of pseudogene hits MGAT4EP, DDX12P, TUBBP5, and PRELID1P1 are highlighted in different
colors. C The scatter plot showing the log2FC and the statistical significance (− log10P value) of sgRNA
abundance difference between day 21 and day 0 for the negatively selected parent genes (log2FC < 0). The
dots corresponding to the parent gene hits are shown in red. The examples of parent gene hits RPL27A,
MRPS31, EIF3E, and LHDA are shown in different colors. D The scatter plot showing the log2FC of sgRNA
abundance difference between day 21 and day 0 for pseudogenes and their corresponding parent genes.
The dots corresponding to the pseudogene hits, whose parent gene does not pass the statistical
significance threshold, are shown in red. The examples of these pseudogene hits PSPHP1, COX20P1, and
CD99P1 are shown in different colors
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essential genes (Additional File 2: Fig. S1C and D) in final cell populations (D21) com-

pared with the initial ones (D0). Interestingly, the sgRNAs targeting parent genes also

showed a general decrease in abundance in final cell populations (Additional File 2: Fig.

S1C and D), suggesting that many of them are essential to cell fitness. Moreover, we

used the parent genes included in our library that were previously identified as essential

genes in MCF7 cells by CRISPR-Cas9 knockout screens [29] to serve as independent

positive controls. As expected, the sgRNAs that target the essential parent genes previ-

ously identified by CRISPR-Cas9 knockout screens showed a statistically significant lar-

ger fold change of decrease between D21 and D0, compared with the ones targeting all

parent genes (Mann-Whitney U test, p < 1.21 × 10−4, Additional File 2: Fig. S1D). Simi-

lar result was observed in the gene-level histograms where the fold change of each gene

was represented by the 2nd largest fold change of its corresponding sgRNAs, based on

the output of MAGeCK program [30] (Additional File 2: Fig. S1E).

To identify the genes that are essential to cell fitness, we used MAGeCK [30] to as-

sess the statistical significance of the level of sgRNA depletion and identify the genes

that were under significantly negative selection in the screens (p < 0.05, FDR < 0.25

and log2Fold-Change≤-log2(1.5), “Methods”). Bidirectional promoters are an important

source of off-target effect for CRISPRi and can result in false positives in cell fitness

screens [27]. To control for the false positives caused by bidirectional promoters, we

excluded the negatively selected genes from screen hits, if their TSSs were within 1 kb

from the TSSs of another gene based on GENCODE V22 annotation (“Methods,” Add-

itional File 3: Table S2). We used 1 kb as a cutoff, based on our previous finding that

genes located up to 1 kb from an essential gene are more likely to be scored as an es-

sential one in a fitness screen, due to CRISPRi off-target effect [27]. After filtering out

the potential false positives due to bidirectional promoters, we identified 69 pseudogene

hits (out of 850 pseudogenes) that were negatively selected in MCF7 cells (Fig. 2B). In

contrast, we did not find any significant positively selected genes in the screen (p <

0.05, FDR < 0.25 and log2Fold-Change≥log2(1.5), Additional File 3: Table S2). The

negatively selected pseudogene hits contained all three major classes of pseudogenes

(Fig. 2B). In addition, we identified 69 parent gene hits (out of 380 parent genes) that

were negatively selected (Fig. 2C). Interestingly, we found that the negatively selected

parent genes showed a larger magnitude of sgRNA depletion than their corresponding

pseudogenes (paired t-test, p < 3.03 × 10−52, Fig. 2D), suggesting that in general, parent

genes are functionally more important for cell fitness than their pseudogene counter-

part. However, a small fraction of pseudogenes showed a larger magnitude of sgRNA

depletion than their corresponding parent genes, suggesting that the function of these

pseudogenes might be less dependent on their parent genes (Fig. 2D).

To investigate the effect of potential off-targeting sgRNAs on the screen results, we

used Cas-OFFinder [31] to predict the putative off-target sites of individual sgRNAs in

the human genome (“Methods”). Because the off-target effect is much weaker when

there are > 1 nucleotides (nt) of mismatches [32] or there is any RNA/DNA bulge [33]

in the potential off-target sites, we focused on the predicted off-target sites with 1-nt

mismatch from a given sgRNA sequence. We found that most sgRNAs targeting

pseudogene/parent gene were associated with no or very small number (≤ 1) of pre-

dicted off-target sites in the human genome (Additional File 2: Fig. S1F). Moreover, the

number of predicted genomic off-target sites associated with off-targeting sgRNAs did
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not show significant difference between pseudogene/parent gene hits and non-hits

(Mann-Whitney U test, p ≥ 0.18, Additional File 2: Fig. S1G). Importantly, we found

that the pseudogene/parent gene hits did not have a significantly larger proportion of

off-targeting sgRNAs with a large number (≥ 10) of off-target sites, compared with the

other pseudogenes/parent genes (Fisher’s exact test, p > 0.32). Collectively, these results

suggest that in overall, the potential off-targeting sgRNAs may have little impact on dif-

ferentiating the screen hits from the other genes and thus the results of our CRISPRi

screens. Aside from the global analysis of potential off-target effect, we further investi-

gated whether the pseudogene hits identified from our screen could be confounded by

the potential off-targeting sgRNAs from its corresponding parent genes or vice versa.

We found that out of the 69 pseudogene and 69 parent gene hits, 15 pseudogenes and

their corresponding parent genes were both identified as hits. Among a total of 30 (15

pseudogene and 15 parent gene) hits, we found 6 of them have one and the only one

significant negatively selected sgRNA (p < 0.05, log2Fold-Change≤-log2(1.5)) that har-

bors a predicted off-target site within [− 2 kb,+ 1 kb] from the TSS of its corresponding

pseudogene/parent gene (“Methods,” Additional File 3: Table S2). After removing the

only one putative functional off-targeting sgRNA for all six pseudogene/parent gene

hits, four of them still had at least two significant negatively selected sgRNAs and two

of them had one significant negatively selected sgRNA. These results indicate that the

vast majority of the pseudogene/parent gene hits are not confounded by the predicted

off-targeting sgRNAs from their corresponding pseudogenes/parent genes.

Validating top pseudogene hits with an upregulated expression in breast cancer

To validate the top pseudogene hits from our screen that are relevant to breast cancer,

we focused on the pseudogenes, whose targeting sgRNAs showed the strongest growth

inhibitory effect in MCF7 cells and that were significantly upregulated in breast cancer

(Fig. 3A), compared with normal breast tissues (log2Fold-Change≥log2(1.5) and FDR <

0.05, “Methods”). We selected four candidates DDX12P, TUBBP5, MGAT4EP, and

PRELID1P1 that had at least 50% effective and negatively selected sgRNAs scored by

MAGeCK for functional validation. To determine the role of these four pseudogenes in

cancer cell fitness, we examined their loss-of-function phenotype in MCF7 cells with

CRISPRi-mediated gene silencing. For each pseudogene, we selected the top two

sgRNAs (> 55 bp apart from each other in the genome) that showed the strongest

growth inhibitory effect in CRISPRi screen for gene silencing (“Methods”). Real-time

quantitative reverse transcription PCR (qRT-PCR) experiments confirmed that the se-

lected gene-specific sgRNAs effectively reduced RNA level of the corresponding pseu-

dogenes in comparison with the non-targeting sgRNA (Fig. 3B, Additional File 4: Table

S3). The effective depletion of these pseudogenes by either of the two gene-specific

sgRNAs inhibited the growth of MCF7 cells (Fig. 3C–F) and impaired their clonogenic

capacity (Fig. 3G, H). To assess the robustness of our observations to the use of differ-

ent negative controls, we included two genome-targeting negative control sgRNAs with

one targeting the Adeno-Associated Virus Integration Site 1 (AAVS1) region (sg-

AAVS1) and the other targeting the genomic region distant from AAVS (sg-nAAVS1)

in the loss-of-function study (Additional File 4: Table S3). The sg-AAVS1 and sg-

nAAVS1 were selected from our CRISPRi sgRNA library and a CRISPR-Cas9 sgRNA
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library used in previous knockout screens [34], respectively, because they showed an in-

significant abundance change across conditions. Similar to the case of using a non-

targeting sgRNA as a negative control, gene-specific sgRNAs effectively reduced RNA

level of the corresponding pseudogenes compared with negative controls of genome-

targeting sgRNAs (Additional File 2: Fig. S2A). The effective depletion of these pseudo-

genes consistently impaired the clonogenic capacity of MCF7 cells and inhibited their

growth (Additional File 2: Fig. S2B and C) when the genome-targeting sgRNAs were

used as a negative control. Taken together, these results indicate that the loss-of-

function phenotypes we observed are robust to different negative controls. To rule out

the possibility that the observed loss-of-function phenotype for these pseudogenes are

caused by CRISPRi-mediated off-target effect, we further performed rescue experi-

ments, by overexpressing the corresponding cDNAs of these pseudogenes in the

Fig. 3 Validation of top pseudogene hits in MCF7 cells. A A bar graph shows the log2FC of sgRNA
abundance difference between day 21 and day 0 for the top-ranked (by log2FC) pseudogene hits in MCF7
cells that showed a significant upregulation in breast cancer compared with normal breast tissues based on
TCGA data. B qRT-PCR analysis of the RNA level of MGAT4EP, DDX12P, PRELID1P1, and TUBBP5 in MCF7-
dCas9 cells transduced with negative control non-targeting sgRNA (sg-NT) or gene-specific sgRNA. GAPDH
was used as an internal control. The growth of MCF7-dCas9 cells transduced with sg-NT or gene-specific
sgRNA for C MGAT4EP, D DDX12P, E PRELID1P1, and F TUBBP5 was monitored (OD450 absorbance for
WST-8 formazen) every 24 h with CCK-8 assay for 96 h. G The representative pictures of clonogenic growth
and H the bar graph quantifying the colonies formed by MCF7-dCas9 cells transduced with sg-NT or gene-
specific sgRNAs for MGAT4EP, DDX12P, PRELID1P1, and TUBBP5, after cells were cultured for 2 weeks. All
data are shown as mean ± standard deviation (SD), n = 3. The Student’s t test was used to assess the
statistical significance of difference in mean between two experimental groups (*p < 0.05; **p < 0.01; ns:
not significant, p ≥ 0.05)
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presence of CRISPRi-mediated knockdown. We found that cDNA expression was able

to rescue the CRISPRi-mediated loss-of-function phenotype in both cell growth and

clonogenic formation (Additional File 2: Fig. S2D and E). These results indicate that

the observed loss-of-function phenotypes for these four pseudogenes are not due to

off-target effect. In addition, we aligned the spacer sequences of the sgRNAs used in

the validation experiments against the promoter sequences of the corresponding parent

genes (if available) and chose the first PRELID1P1-targeting sgRNA (Additional File 4:

Table S3), which only has 1-nt mismatch to the promoter of its parent gene, to assess

its specificity in inhibiting pseudogene transcription. Importantly, we found CRISPRi-

mediated silencing by this sgRNA significantly reduced Pol II binding to the promoter

of PRELID1P1, but not to that of its parent gene PRELID1 (Additional File 2: Fig. S3A).

This result confirmed that our CRISPRi screen enabled transcriptionally inhibiting

pseudogene transcription without directly interfering with the transcription of its par-

ent gene, which is critical for systematically interrogating the function of pseudogenes

independent from their parent genes.

MGAT4EP is a cancer-testis unitary pseudogene that promotes the growth of breast

cancer cells

Among the four pseudogene hits that we validated, MGAT4EP showed a consistently

strong loss-of-function phenotype in both cell growth and clonogenic assay, and a lar-

ger fold change in expression between breast cancer and normal breast tissues. There-

fore, we focused on this unitary pseudogene for a detailed functional characterization.

Interestingly, MGAT4EP not only showed a significant upregulation in breast cancer

compared with normal breast tissue based on the Cancer Genome Atlas [35] (TCGA)

RNA-seq data [36], but also showed a much higher expression in testis than other nor-

mal tissues based on the RNA-seq data generated by the Genotype-Tissue Expression

(GTEx) project [37] (Additional File 2: Fig. S3B and C), indicating that MGAT4EP is a

cancer-testis unitary pseudogene. We further performed 5′ and 3′ RACE (rapid ampli-

fication of 5′/3′ complementary DNA ends), and confirmed that the experimentally de-

termined 5′ and 3′ end of MGAT4EP transcript (NR_038135.2) were consistent with

its original RefSeq annotation (Additional File 2: Fig. S3D).

Some of the human pseudogenes were found to undergo translation and might express

functional proteins [38]. To rule out the possibility that MGAT4EP encodes a protein/

micropeptide and has a coding-dependent function, we first analyzed the publically available

[39] and in-house ribosome profiling (ribo-seq) data (unpublished) in MCF7 cell line

(“Methods”) and found no ribo-seq reads that support the ribosome occupancy on MGA-

T4EP RNAs. Second, we predicted putative ORFs encoded by MGAT4EP using an ORF

prediction module that solely relies on the sequence information and is implemented in the

Ribo-TISH package [40] (“Methods”), and searched the publically available mass-

spectrometry (MS) data in MCF7 and T47D cells [41] for the MS/MS spectra that matched

the protein sequences corresponding to these putative ORFs (“Methods”). We found no MS

evidence of the protein products encoded by these putative ORFs. Finally, we performed an

in vitro translation assay (“Methods”) and found no evidence of any protein products gener-

ated by MGAT4EP translation (Additional File 2: Fig. S3E). These results indicate that

MGAT4EP does not encode a protein/micropeptide and it functions as an ncRNA.
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To validate the function of MGAT4EP using an alternative loss-of-function approach

to CRISPRi, we performed siRNA-mediated silencing of MGAT4EP to assess its effect

on cell growth (“Methods”). Consistent with the results obtained by CRISPRi method,

we found that the effective siRNA-mediated depletion of MGAT4EP (Additional File 2:

Fig. S3F) inhibited the growth of both MCF7 and T47D, the two independent luminal

A breast cancer cell lines (Additional File 2: Fig. S3G).

MGAT4EP is predominantly localized in the nucleus and interacts with transcription

factor FOXA1

An important mechanism, whereby many pseudogenes [6–8] exert their function, is

through competing for miRNA binding with its parent gene or other protein-coding genes,

the so-called sponge [11]/ceRNA [12, 42] mechanism. This mechanism is not specific to

pseudogenes that have parent genes with high sequence homology (i.e., processed/unpro-

cessed pseudogenes). A previous study [8] revealed that Pbcas4, a mouse unitary pseudo-

gene that does not have functional protein-coding counterparts in the mouse genome and

lost its protein-coding capability specifically during rodent evolution, can also serve as a

ceRNA with conserved miRNA target sites. A critical factor determining the efficacy of a

sponge/ceRNA regulation is the cytoplasmic localization of the involved RNAs [43] where

most miRNA-based regulation occurs. Because sub-cellular localization is important for dic-

tating mechanism of pseudogene function, we determined sub-cellular localization of MGA-

T4EP, using nuclear/cytoplasmic fractionation coupled with qRT-PCR. The good quality of

the nuclear/cytoplasmic fractionation was supported by the enrichment of nuclear/cytoplas-

mic protein (Additional File 2: Fig. S3H) and RNA controls (Fig. 4A) in their respective sub-

cellular compartments. Interestingly, we found that MGAT4EP was dominantly localized in

the nucleus (Fig. 4A), suggesting that it may exert a nuclear function, which is distinct from

a traditional sponge/ceRNA mechanism.

To infer its nuclear function and systematically identify the nuclear proteins that may

form physical interaction with MGAT4EP, we used an RNA pull-down method [44]

(“Methods”) based on in vitro transcription of 3′ end-biotin-labeled RNAs and affinity

purification of RNA-interacting nuclear proteins, followed by mass spectrometry (MS).

The antisense (AS) sequence of MAGAT4EP transcript (NR_038135.2) was used as a

negative control RNA in pull-down experiment, to filter out non-specific interactions

(Fig. 4B). We found that among the proteins specifically identified in MAGAT4EP pull-

down group (i.e., at least two unique MS-identified peptides in the MAGAT4EP group

and zero MS-identified peptide in the AS negative control group), eight transcription

factors/epigenetic regulators showed significant upregulation in the luminal A breast

cancer subtype compared with normal breast tissues (Additional File 2: Fig. S4A). Not-

ably, one of them is FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nu-

clear factor 3α), a transcription factor that impacts estrogen receptor signaling and is

key to mammary ductal development and progression of luminal A subtype breast can-

cer [45]. We confirmed by western blot analysis that FOXA1 was enriched by MAGA-

T4EP RNA pull-down (Fig. 4C). In contrast, SP1, a negative control protein that was

not identified by MS, was not detected (Fig. 4C). To identify the regions in the MGA-

T4EP RNA that was required for its interaction with FOXA1, we generated four serial

deletion mutants with the deletion of 1–700, 700–1400, 1400–2100, or 2100–2819 bps,
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respectively. The RNA pull-down of antisense, full-length, and serial deletion mutants

of MGAT4EP RNA followed by anti-FOXA1 western blotting showed that the deletion

of 1400–2100 bps of MGAT4EP abolished its interaction with FOXA1 (Fig. 4D), sug-

gesting that this region is critical for MGAT4EP-FOXA1 interaction. We further per-

formed RNA immunoprecipitation (RIP) coupled with qRT-PCR for MGAT4EP RNA

and two negative controls: GAPDH mRNA for cytoplasmic RNAs and MALAT1 for

nuclear RNAs, respectively. Indeed, FOXA1 was associated with MGAT4EP RNA, but

not the negative control of GAPDH mRNA and MALAT1 (Fig. 4E).

MGAT4EP upregulates the expression of FOXM1, a direct target of FOXA1, by enhancing

FOXA1 binding to its promoter

To identify common protein-coding gene targets that are co-regulated by MGAT4EP

and FOXA1 and are important for mediating their tumor-promoting function in

Fig. 4 MGAT4EP is predominantly localized in the nucleus and interacts with transcription factor FOXA1. A The
RNA level of MGAT4EP in nuclear and the cytoplasmic fraction of MCF7 and T47D cells was measured by qRT-
PCR. MALAT1 RNA and GAPDH mRNA was used a positive control for nuclear and cytoplasmic fraction,
respectively. B The proteins retrieved by RNA pull-down with MGAT4EP RNA and negative control antisense
RNA (AS) were visualized by silver staining and subject to mass spectrometry (MS) analysis. C RNA pull-down
coupled with western blot validated the interaction between MGAT4EP and FOXA1 that was identified from
MS analysis. SP1 that was not found in MS analysis was used as a negative control. D RNA pull-down of the
antisense, full-length, and serial deletion mutants of MGAT4EP RNA followed by anti-FOXA1/anti-SP1 western
blotting. The four serial deletion mutants of MGAT4EP RNA were generated by deleting 1–700, 700–1400,
1400–2100, or 2100–2819 bps, respectively. E RIP-qPCR analysis with anti-FOXA1 or anti-IgG antibody validated
the association of FOXA1 with MGAT4EP RNA, where MALAT1 and GAPDH RNA were used as negative controls.
All data are shown as mean ± SD, n = 3. The Student’s t test was used to assess the statistical significance of
difference in mean between two experimental groups (*p < 0.05; **p < 0.01; ns: not significant, p ≥ 0.05)
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luminal A breast cancer cells, we performed an integrated analysis of the RNA-seq data

generated from cells with/without sgRNA-mediated MGAT4EP depletion, FOXA1

ChIP-seq data in luminal A breast cancer cell lines [46], and TCGA breast cancer data

[36] (Fig. 5A). First, using our RNA-seq data, we identified 103 downregulated protein-

coding genes (log2Fold-Change≤ −log2(1.5) and FDR < 0.05) in MGAT4EP knockdown

Fig. 5 MGAT4EP upregulates the expression of FOXM1, a FOXA1 target, and enhances FOXA1 binding to its
promoter. A Schema depicting the workflow of identifying potential protein-coding gene targets that were
co-regulated by MGAT4EP and FOXA1 and were important for mediating their tumor-promoting function in
luminal A breast cancer. B QRT-PCR analysis of FOXM1 mRNA expression and C western blot for measuring
FOXM1 protein expression in MCF7 and T47D cells that were treated with negative control non-targeting
siRNA (si-NC) or MGAT4EP-targeting siRNAs. D qRT-PCR analysis of FOXM1 mRNA expression and E western
blot for measuring FOXM1 protein expression in MCF7 cells and T47D cells that were treated with si-NC or
FOXA1-targeting siRNAs. F The signal track of FOXA1 ChIP-seq and the corresponding input in MCF7 and
T47D cells. The identified ChIP-seq peaks were drawn as horizontal lines above the signal track. G ChIP-
qPCR analysis was performed with anti-FOXA1 or anti-IgG antibody in MCF7 and T47D cells to confirm the
enrichment of DNA fragments covering the FOXA1 ChIP-seq peak in the FOXM1 promoter. The effect of si-
NC or MGAT4EP-targeting siRNAs on the binding of FOXA1 to the same region was assessed by ChIP-qPCR.
H Western blot for measuring FOXM1 protein expression in MCF7 cells and T47D cells that were transduced
with negative control non-targeting shRNA (sh-NC) or FOXM1-targeting shRNAs. I The growth of MCF7 and
T47D cells transduced with sh-NC or FOXM1-targeting shRNAs was monitored (OD450 absorbance for WST-
8 formazen) every 24 h with CCK-8 assay for 96 h. All data are shown as mean ± SD, n = 3. The Student’s t
test was used to assess the statistical significance of difference in mean between two experimental groups
(*p < 0.05; **p < 0.01; ns: not significant, p ≥ 0.05)
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cells (Additional File 5: Table S4; Additional File 2: Fig. S4B). Next, using publicly avail-

able FOXA1 ChIP-seq data in MCF7 and T47D cells [46], we identified 5310 protein-

coding genes that harbored at least one FOXA1 binding site in their promoter-

proximal regions (− 1.5 kb, 0.5 kb) in either cell line. In total, 19 protein-coding genes

showed downregulation upon MGAT4EP knockdown and harbored at least one

FOXA1 binding site in their promoter regions, thereby representing potential common

targets co-regulated by MGAT4EP and FOXA1. Finally, through an analysis of TCGA

data, we found that four of the 19 candidates, including FOXM1, MALRD1, RMI2, and

TGFB3, showed a significant upregulation in the luminal A breast cancer compared

with normal breast tissues (log2Fold-Change≥1 and FDR < 0.05). Given that FOXM1 is

an established oncogenic transcription factor [47] which is upregulated in a variety of

human cancers, we focused on characterizing the mechanism, whereby MGAT4EP/

FOXA1 axis regulates its expression.

Both FOXA1 and FOXM1 showed a significant upregulation in luminal A breast cancer

subtype compared with normal breast tissues (Additional File 2: Fig. S4C). To validate the

regulation of FOXM1 expression by MGAT4EP, we assessed the effect of sgRNA-

mediated depletion of MGAT4EP on FOXM1 expression and found that sgRNA-

mediated knockdown of MGAT4EP significantly reduced FOXM1 expression at both

RNA and protein level in MCF7 cells (Additional File 2: Fig. S4D and E). Consistent with

the results from CRISPRi-based silencing, siRNA-mediated depletion of MGAT4EP re-

duced FOXM1 expression at both RNA and protein level in MCF7 and T47D cells (Fig.

5B, C). In addition, effective siRNA-mediated depletion of FOXA1 markedly reduced

FOXM1 expression at RNA and protein level in MCF7 and T47D cells (Fig. 5D, E). These

results confirmed that FOXM1 as a common downstream target of FOXA1 and MGA-

T4EP. We also found that siRNA-mediated depletion of MGAT4EP did not affect the

protein level of FOXA1 (Additional File 2: Fig. S4F), indicating that MGAT4EP did not

regulate FOXM1 expression by impacting the FOXA1 protein level. Given the previous

findings that long noncoding RNAs (lncRNAs) can promote the recruitment of epigenetic

modifiers to specific genomic locations [48], we hypothesized that unitary pseudogene

MGAT4EP may regulate FOXM1 expression by enhancing FOXA1 binding to its pro-

moter region. To test this hypothesis, we evaluated the effect of siRNA-mediated deple-

tion of MGAT4EP on FOXA1 binding to the promoter region of FOXM1 by ChIP-qPCR.

Based on the FOXA1 binding site in the FOXM1 promoter that was identified using pub-

licly available ChIP-seq data [46] (Fig. 5F), we found that FOXA1 bound to FOXM1 pro-

moter and its binding was indeed impaired upon siRNA-mediated depletion of

MGAT4EP (Fig. 5G). To determine the role of FOXM1 in luminal A breast cancer cells,

we examined its loss-of-function phenotype in MCF7 and T47D cells with short hairpin

RNA (shRNA)-mediated gene silencing. Consistent with the oncogenic role of FOXM1 in

other cancers, the effective depletion of FOXM1 (Fig. 5H) by either gene-specific shRNA

inhibited the growth of MCF7 and T47D cells (Fig. 5I) and impaired their clonogenic cap-

acity (Additional File 2: Fig. S4G).

Many unitary pseudogenes show clinically relevant expression patterns in human cancer

Unitary pseudogenes are a special class of pseudogenes that derive from acquisition of

disrupting mutations in functional protein-coding genes, without duplication or
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retrotransposition events. They do not have functional protein-coding gene counter-

parts in the same genome. With the discovery of MGAT4EP, a novel functional

cancer-testis unitary pseudogene, we further investigated among 170 annotated unitary

pseudogenes (GENCODE V22), whether there are other unitary pseudogenes, the ex-

pression of which is elevated in tumor compared with the corresponding normal tissues

and/or is associated with clinical outcomes including patient overall survival (OS) and/

or relapse-free survival (RFS) across different types of cancers, via integrative analyses

of TCGA data. Interestingly, the majority of unitary pseudogenes showed a significant

differential expression (|log2Fold-Change| ≥ log2(1.5), p < 0.05 and FDR < 0.25) be-

tween tumors and the corresponding normal tissues (Fig. 6A and Additional File 6:

Table S5), with 132 unitary pseudogenes showing a significant up-/downregulation in

at least three cancer types. In addition, the expressions of 111 and 34 unitary pseudo-

genes were associated with OS and/or RFS of patients (Fig. 6B, C and Additional File 6:

Table S5) respectively in at least two cancer types, based on multivariate Cox propor-

tional hazards regression analysis (p < 0.05 and FDR < 0.25).

Some examples of unitary pseudogenes, whose expression was significantly associated

with OS and/or RFS in the same cancer type or different cancer types, are of particular

interest. The first example is CMAHP (cytidine monophospho-N-acetylneuraminic acid

hydroxylase, pseudogene), a unitary pseudogene that encodes a dysfunctional version of

the cytidine monophospho-N-acetylneuraminic acid hydroxylase (Cmah) from other

mammals. The enzyme encoded by Cmah in non-human mammals hydroxylates N-

acetylneuraminic acid (Neu5Ac), producing N-glycolylneuraminic acid (Neu5Gc) [49].

Neu5Ac and Neu5Gc are two most common forms of sialic acid in many non-human

mammals. In contrast, Neu5Gc is not detectable in normal human tissues and is im-

munogenic in human [49]. Higher CMAHP expression was associated with better pa-

tient OS in lung adenocarcinoma (LUAD, log-rank test, p = 0.00142)) and cutaneous

melanoma (SKCM, log-rank test, p = 7.47 × 10−6), respectively (Fig. 6D). It was also sig-

nificantly downregulated in these two cancer types compared with the corresponding

normal tissues (data not shown), suggesting its tumor-suppressive role. The second ex-

ample is CPHL1P (ceruloplasmin And Hephaestin Like 1, pseudogene). Different from

CMAHP, higher expression of unitary pseudogene CPHL1P was associated with worse

patient OS (log-rank test, p = 4.98 × 10-6) in clear cell renal cell carcinoma (KIRC)

and worse patient RFS (log-rank test, p = 0.00245) in prostate cancer (PRAD), re-

spectively (Fig. 6E). It was also significantly upregulated in KIRC and PRAD com-

pared with the corresponding normal tissues (data not shown), suggesting its

tumor-promoting role. The third example is MYH16 (myosin heavy chain 16

pseudogene). Like MGAT4EP, MYH16 is a cancer-testis unitary pseudogene, which

was upregulated in solid tumors such as pancreatic adenocarcinoma (PAAD) and

showed a much higher expression in testis than other normal tissues (data not

shown). It encodes a deficient sarcomeric myosin heavy chain that is otherwise

expressed and functional in non-human primate masticatory muscles [50]. The

pseudogenization of the sarcomeric myosin heavy chain in human lineage was as-

sociated with the marked size reductions in individual muscle fibers and entire

masticatory muscles in human [50]. Interestingly, a higher MYH16 expression was

associated with both worse patient OS (log-rank test, p = 0.000454) and RFS (log-

rank test, p = 0.00363) in PAAD (Fig. 6F).
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Discussion
With the advancement of computational methods for cataloging pseudogenes in the

past decades, it is evident that pseudogenes are present in the genomes of both pro-

karyotic and eukaryotic species and are often lineage-specific [4]. Mammalian genomes

(e.g., mouse, macaque, and human) encode about ten times more pseudogenes than

those from non-mammalian metazoans (e.g., worm, fly, and zebrafish), suggesting that

pseudogenes play an important role in mammals [4]. Consistent with this observation,

Fig. 6 Integrative analyses of TCGA data reveal clinically relevant unitary pseudogenes in human cancer. A
The unitary pseudogenes with significant up-/downregulation in tumors vs. the corresponding normal
tissues in at least four cancer types, based on TCGA data are shown. The circle size is proportional to the
significance level and the log2(Fold-Change) between tumors and normal tissues is shown by color scale.
The unitary pseudogenes, whose expression was significantly B associated with patient OS in at least three
cancer types or C associated with patient RFS in at least two cancer types are shown. The circle size is
proportional to the significance level. The unitary pseudogenes, whose expression showed positive and
negative natural logarithm of hazard ratio (HR) in a given cancer type, is colored in red and blue,
respectively. D Higher CMAHP expression was associated with better patient OS in LUAD and SKCM,
respectively. E Higher expression of unitary pseudogene CPHL1P was associated with worse patient OS in
KIRC and worse patient RFS in PRAD, respectively. F Higher MYH16 expression was associated with both
worse patient OS and RFS in PAAD. The p values shown in the figures were calculated based on log-rank
test. The Kaplan-Meier survival curves are plotted as solid lines accompanied by 95% confidence interval
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recent studies revealed that a subset of pseudogenes in mammals exert important regu-

latory function [6–10]. However, function of the vast majority of pseudogenes are un-

known, due to a significant delay in the functional investigation of pseudogenes

compared with the fast pace of cataloging pseudogenes. Large-scale pooled screen with

RNAi-based technique has facilitated the discovery of protein-coding gene function,

but it is difficult to apply RNAi-based loss-of-function approaches to study pseudo-

genes because of a high sequence homology in transcript sequence between pseudo-

genes and their parent genes. To enable a large-scale interrogation of human

pseudogene function, we leveraged the CRISPRi functional genomics platform and de-

veloped an integrated computational pipeline that combines FANTOM5 CAGE data,

GENCODE transcriptome annotation, and a supervised algorithm, SCC [23], to design

effective sgRNAs to specifically repress the expression of individual pseudogenes at a

transcription level.

From the pseudogene-focused pooled CRISPRi screen in MCF7 cells, we identified 69

pseudogenes that were critical for cell fitness. In addition, parent genes generally

showed a stronger loss-of-function phenotype than their corresponding pseudogenes,

suggesting that in overall, parent genes may be functionally more important than their

pseudogene counterpart. Interestingly, upon silencing, a subset of pseudogenes showed

a stronger growth inhibitory effect than their parent genes. This finding suggested that

some pseudogenes might exert function through pathways independent of their parent

genes, which awaits further studies. Genome-wide CRISPR-Cas9 knockout screens

across a large panel of cancer cell line models reveal that many protein-coding genes

affects cell fitness in a cell-type/cell line-specific manner [29]. Therefore, it remains to

be determined the functional pseudogenes identified from our study in luminal A

breast cancer cells are commonly essential or specifically critical for the fitness of cer-

tain cell types/cell line models. Extending our proof-of-principle screens to a large

panel of cell line models to identify the common or context-specific functional pseudo-

genes will be an important next step. Our in silico analysis of potential CRISPRi off-

target effect suggests that the putative off-target effect might have little impact on

the results of our CRISPRi screens. One caveat of our analysis is that it was based

on the established knowledge about the off-target effect of CRISPR-Cas9 system

that involves genome cutting, whereas CRISPRi is based on catalytically inactive

Cas9 and does not involve genome cutting. Given our limited knowledge about

CRISPRi-mediated off-target effect, the predictive power of such in silico analysis

remains unclear. Therefore, it is critical to experimentally validate individual

pseudogene hits identified from CRISPRi screens, using function rescue experi-

ments and alternative loss-of-function approaches, as we did in the current study.

It will also be important to develop high-throughput assays similar to the ones

employed for CRISPR-Cas9 system to better understand, model, and predict

CRISPRi-mediated off-target effect on a genome scale.

Among the top pseudogene hits, we identified a unitary pseudogene that was domin-

antly expressed in testis among normal tissues and was hijacked by cancer cells, as part

of an oncogenic transcriptional regulatory circuitry that involved transcription factor

FOXA1 and FOXM1, to promote cancer cell fitness. This represents the first cancer-

testis unitary pseudogene that plays a tumor-promoting role, via a novel nuclear func-

tion different from traditional function mechanisms of pseudogene in cytoplasm.
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Unlike other classes of pseudogenes, unitary pseudogenes derive from the lineage-

specific acquisition of disrupting mutations in functional protein-coding genes, without

duplication or retrotransposition events. As a result, unitary pseudogenes do not have

functional protein-coding gene counterparts in the same genome, but only have func-

tional protein-coding orthologs in the genome of other organisms. Because an mRNA

may have protein- (coding-dependent) and RNA-mediated (coding-independent) func-

tion and unitary pseudogenes lose coding-dependent function of ancestor mRNAs, uni-

tary pseudogenes provide unique opportunities to study how pseudogene function

evolves from the RNA-mediated function of its ancestral orthologous mRNAs in other

organisms. A previous study [8] revealed that Pbcas4, a mouse unitary pseudogene that

lost its protein-coding capability during rodent evolution, can function as a ceRNA that

regulates the expression of other protein-coding genes. It does so by preserving the key

miRNA target sites from the 3′ UTR of its protein-coding ortholog BCAS4 in human

and regulates the expression a set of mouse protein-coding genes orthologous to the

ceRNA targets of BCAS4 in human. This example demonstrates a conserved unitary

pseudogene function that is inherited from the RNA-mediated function of its ancestral

ortholog mRNA. In contrast, our study revealed a distinct evolutionary scenario, where

the MGAT4EP showed a novel function in transcriptional regulation and dominant nu-

clear localization that was hijacked by cancer cells to increase cell fitness. Our finding

suggests that during evolution, a unitary pseudogene may acquire new RNA-based

function which is distinct from that of its ancestral ortholog mRNA. The evolutionary

mechanism of how MGAT4EP acquires novel nuclear function remains unclear and

thus warrants further investigation. It will be also important to determine in the future

studies, the prevalence of unitary pseudogenes exhibiting distinct versus conserved

RNA-based function from their ancestral mRNAs. Compared with other classes of

pseudogenes, the functional studies of unitary pseudogenes are rather limited. To fur-

ther explore the potential role of unitary pseudogenes in complex diseases such as can-

cer, we performed an integrative genomic analysis of TCGA data. Among 170

annotated unitary pseudogenes (GENCODE V22), we identified 132 of them that

showed significantly differential expression between cancers and the corresponding

normal tissues in at least three cancer types. Moreover, there were 111 and 34 unitary

pseudogens, the expression of which was found to be associated with OS or RFS of pa-

tient, in at least two cancer types. Thus, like MGAT4EP, many other clinically relevant

unitary pseudogenes may play an important role in human cancer, and further efforts

are needed to characterize their functions.

Conclusions
Our proof-of-principle study represents the first large-scale systematic effort for charac-

terizing pseudogene function. Given that the pseudogenes exist in the genome of a

wide variety of organisms, and the general utility of CPRISPRi technique in both pro-

karyotes and eukaryotes [18, 19], large-scale studies like the current one promise to

open new avenues for revealing the role of pseudogene in different biological contexts

across evolutionarily distant species. The combination of functional genomics studies

and detailed mechanistic ones may ultimately provide insight into how pseudogenes

have become an integrated functional component of cellular circuitry over the course

of evolution. Our findings suggest the importance of newly evolved nuclear function of
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unitary pseudogenes and underscore their underappreciated roles in human diseases.

Finally, the CRISPRi sgRNA library designed in the current study for inhibiting human

pseudogene expression will serve as a useful resource for facilitating the

characterization of human pseudogene function under different physiological and

pathological conditions.

Methods
TCGA and CCLE data analysis

The GENCODE V22 annotation was retrieved from https://www.gencodegenes.org/.

The RNA-seq data and clinical information for TCGA breast cancer cohort [36] were

downloaded from GDC Data Portal. The genes with deregulated expression between all

breast tumors/PAM50 breast cancer subtypes [24] and normal tissues were identified

using edgeR [51] (3.24.3) with the filters of |log2Fold-Change| ≥ log2(1.5) and FDR <

0.05, based on the uniquely mapped RNA-seq reads. The unitary pseudogenes showing

differential expression between tumor and normal tissues in different cancer types were

also identified using edgeR [51] (3.24.3) with the filters of |log2Fold-Change| ≥

log2(1.5), p < 0.05 and FDR < 0.25, based on summarized RNA-seq read count data

from TCGA. Only the unitary pseudogenes that are expressed in at least one cancer

type with the corresponding normal tissue in TCGA were included for differential ex-

pression analysis. The unitary pseudogenes whose expression showing significant cor-

relation with overall survival and/or relapse-free survival was identified using the

multivariate Cox proportional-hazards regression analysis that included both clinical

variables (i.e., age, gender, tumor stage, and/or grade) and pseudogene expression, with

the filters of p < 0.05 and FDR < 0.25. For individual unitary pseudogenes that passed

the statistical significance threshold of multivariate Cox model, the log-rank test and

the Kaplan-Meier method were used for analyzing their survival data. The CCLE breast

cancer cell line RNA-seq data was downloaded from GDC Data Portal. The raw se-

quencing reads were mapped to the hg38 genome and GENCODE V22 transcriptome

using HiSAT2 [52] with parameters “--no-discordant --no-mixed.” To quantify pseudo-

gene expression in cell lines, the uniquely mapped RNA-seq read counts were gener-

ated using featureCounts [53]. We defined a pseudogene version of FPKM as (gene-

level read count × 10−9)/(effective length × total read count), in which the effective

length of a gene was defined as its genomic length that is uniquely mappable with a de-

fined read length.

CRISPRi sgRNA library design and construction

FANTOM5 cap analysis of gene expression (CAGE) data was integrated with GEN-

CODE V22 transcriptome annotation to define the transcription starting sites (TSSs) of

protein-coding genes, lncRNAs, and pseudogenes, as described previously [22]. The

genomic sequences within the 500-base pair (bp) window centered on each TSS were

used for sgRNA design. The sgRNA design was performed using the Sequence Scan for

CRISPR (SSC) method, as described previously [27]. The designed sgRNAs that meet

one of the following criteria: (a) being mapped to multiple genomic regions; (b) with

any Ns or more than three consecutive T; (c) with extreme level of GC content (≥ 75%

or < 10%), were filtered out of the library. If several sgRNAs were within 4 bp from
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each other, only the one with the best SSC scores was kept. At gene level, up to 10 top-

ranked sgRNAs were selected from the corresponding CAGE-defined TSSs. If multiple

CAGE clusters were assigned to a given gene, the sgRNAs were preferably selected

from the CAGE clusters with higher transcription initiation evidence score (TIEScore)

[22]. The pseudogenes with FPKM ≥ 0.5 in either MCF7 or MDA231 cell line [25] and

having at least three designed sgRNAs (5703 sgRNAs targeting 850 pseudogenes) were

included in the CRISPRi screen. The parent genes [26] for the selected pseudo-

genes were included in the screen if they have at least three designed sgRNAs

(3727 sgRNAs targeting 380 parent genes). The 568 sgRNAs targeting 71 core es-

sential genes [27] were included as positive controls, and the 267 sgRNAs targeting

AAVS1 and 83 non-targeting sgRNAs were included as negative controls, respect-

ively. In addition to 10,348 sgRNAs designed for the screen in breast cancer cell

lines, 1567 sgRNAs used for another unpublished screen were included in the final

sgRNA library, which resulted in a total of 11,915 sgRNAs. The flanking linker se-

quences (5′ linker: CTTTATATATCTTGTGGAAAGGACGAAACACCG; 3′ linker:

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG) were added

to each designed sgRNA sequence for library construction. The oligonucleotides

containing both sgRNAs and flanking linker sequences were synthesized as a

pooled library using the CustmoArray 12K chips (CustmoArray, Inc). The array-

synthesized sgRNA library was amplified for 8 cycles (primer sequences in Add-

itional File 4: Table S3) with Q5 High-Fidelity DNA Polymerase (New England Bio-

labs #M0491S). The PCR product was purified from 2% agarose gel with QIAquick

Gel Extraction Kit (QIAGEN # 28704). Gibson assembly (Gibson Assembly® Master

Mix, New England Biolabs # E2611L) was used to assemble the amplified sgRNA

library into a BsmBI (Thermo Fisher # ER0452)-digested lentiGuide-Puro vector

(Addgene #52963). A total of 2 μl of 10–50 ng/μl product from Gibson assembly

reaction was added to one tube of 25 μl electrocompetent cells (Lucigen) on ice for

5 min (~ 3–4 reactions for one library). Electroporation was then conducted using

Micropulser Electroporator (Bio-Rad) by one-shot EC1 program. The transformed

electrocompetent cells were recovered in recovery media and was rotated at 250

rpm for 1 h at 37 °C. One milliliter of transformation was plated on each of pre-

made 24.5 cm2 bioassay plates (ampicillin) using a spreader. All plates were grown

inverted for 14 h at 32 °C. Finally, the colonies were scraped off and the plasmids

were extracted with NucleoBond Xtra Midi EF kit (Takara # 740422.50) for down-

stream virus production.

Cell culture

The MCF7 cell line with a stable expression of (Sp) dCas9-KRAB fusion protein

(MCF7-dCas9) was a gift from Dr. Howard Y. Chang’s laboratory at Stanford.

The MCF7, MCF7-dCas9, and 293FT cell lines were cultured in Dulbecco’s modi-

fied Eagle’s medium (DMEM, Hyclone #SH30022.01), supplemented with 10%

fetal bovine serum (FBS, Gibco #10437-028), and 1% penicillin/streptomycin

(Corning #30-002-CI). The authenticated MCF7 and 293FT cell lines were ob-

tained from Characterized Cell Line Core facility at MD Anderson Cancer Center

(MDACC). The T47D cell line was obtained from the ATCC and cultured in
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RPMI-1640 (Hyclone #SH30027.1) supplemented with 10% FBS (Gibco #10437-

028) and 1% penicillin/streptomycin (Corning # 30-002-CI). All cell lines were

cultured in an incubator (Thermo, HEARCELL VIOS 160i) with 5% CO2 at 37 °C.

CRISPRi screen and data analysis

Lentiviruses containing sgRNA library were generated by co-transfection of pCMV-VSV-G,

psPAX2, and sgRNA library plasmid into 293FT cells. The supernatant containing lentivi-

ruses was collected 48 h post-transfection. MCF7-dCas9 cells were plated into ten 10-cm

dishes and infected with lentiviruses containing the sgRNA library at an MOI of 0.2~0.3.

After cells were selected with puromycin (2 μg/ml) for 4 days, 4.8 × 107 cells were split into

three replicates. For each replicate, 1 × 107 were harvested to extract genomic DNA (D0)

using QIAamp DNA Mini Kit (QIAGEN), and 6 × 106 cells (~ 500× coverage for each

sgRNA per replicate) were passed every 3 days and cultured for 21 days. At day 21 (D21), 1 ×

107 cells were harvested for each replicate to extract genomic DNA. Two rounds of PCR

were employed to prepare the next-generation-sequencing (NGS)-ready sgRNA libraries with

the KAPA HiFi HotStart ReadyMix (Roche # KK2602). The first-round PCR was conducted

for 16 cycles, using 40 μg of input genomic DNA from each replicate at D0 or D21 as a tem-

plate. The PCR product of different samples was pooled and 20 μl of the mixed product was

used as a template for the second-round PCR, which was conducted for 12 cycles to incorp-

orate Illumina barcode sequences (Forward: AATGATACGGCGACCACCGAGATCTA

CAC<Illumina index 8-nt barcode > ACACTCTTTCCCTACACGACGCTCTTCCGATC

TTCTTGTGGAAAGGACGAAACACCG; Reverse: CAAGCAGAAGACGGCATACGAG

AT<Illumina index 8-nt barcode > GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT

CTCTACTATTCTTTCCCCTGCACTGTACC). The final PCR product was purified from

2% agarose gel with QIAquick Gel Extraction Kit. Concentration of different libraries was

measured using the Qubit dsDNA HS (High Sensitivity) Assay Kit (Thermo # Q32851) on a

Qubit Fluorometer (Thermo Fisher). The libraries were pooled with equal proportion for

NGS (single-end 75 bp) on an Illumina NextSeq 500 system. All primer sequences are listed

in Additional File 4: Table S3. The raw sequencing reads were mapped to sgRNA sequences

in the library, using Bowtie [54] (1.2.2) with parameters “--best --strata -a --norc -m 1 -5 20

-3 30.” Samtools [55] (1.2.0) was used to calculate the read count of individual sgRNAs.

MAGeCK [30] (0.5.7) was used to identify the negatively or positively selected sgRNAs and

genes, from the sgRNA read count table, with the following parameters: --norm-method con-

trol --gene-lfc-method secondbest --control-sgrna negctrl.lst --normcounts-to-file --add-

itional-rra-parameters “--permutation 10000”. The filters of p < 0.05, FDR < 0.25, and

log2Fold-Change≤−log2(1.5) were used to define the negatively selected hits from the screen.

To control for the false positives caused by bidirectional promoters, we excluded the nega-

tively selected genes from screen hits, if their TSSs were within 1 kb from the TSSs of an-

other gene based on GENCODE V22 annotation. The TSS distance between two genes was

calculated as the minimum of the distances between the CAGE-based assigned TSSs, and

the distances between the annotated TSSs of two genes in GENCODE V22.

CRISPRi off-target effect analysis

Cas-OFFinder [31] was used to predict the putative genomic off-target sites for individ-

ual sgRNAs based on their sequences, with the parameters of PAM Type = SpCas9

Sun et al. Genome Biology          (2021) 22:240 Page 20 of 29



from Streptococcus pyogenes: 5′-NGG-3′, mismatch number = 1, DNA bulge size = 0,

RNA bulge size = 0. A sgRNA targeting pseudogene/parent gene is considered to have

a putative off-target effect on the corresponding parent gene/pseudogene if at least one

of its predicted off-target sites is within [− 2 kb, + 1 kb] from the TSS of its correspond-

ing parent gene/pseudogene.

Real-time quantitative reverse transcription PCR (qRT-PCR)

Total RNA was extracted from MCF7 and T47D cells using the RNeasy Mini kit

(QIAGEN #74104), according to the manufacturer’s manual. RNA concentration was

measured with a NanoDrop spectrophotometer, and 1 μg of total RNA was used for

the synthesis of cDNA using the iScript™ Reverse Transcription Supermix (Bio-Rad

#1708841). QRT-PCR was performed using SsoAdvanced Universal SYBR Green Super-

mix (Bio-Rad #1725274) in the CFX96 Touch Real-Time PCR Detection System (Bio-

Rad) according to the manufacturer’s manual. The sequence of primers used in this

study is listed in the Additional File 4: Table S3. Glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) was used as an internal control, and the fold change of pseudogene

or gene expression was calculated using the ΔΔCT method.

CRISPRi, RNAi-mediated gene silencing, and pseudogene cDNA overexpression

To validate pseudogene hits identified from the screen using CRISPRi-mediated gene

silencing, the top 2 sgRNAs showing the strongest growth inhibitory effect in the CRIS-

PRi screen were selected and cloned into lentiGuide-Puro vector. To produce

lentiviruses, HEK293T cells were co-transfected with pCMV-VSV-G, psPAX2, and

sgRNA-expressing lentiGuide-Puro plasmid using jetPRIME (Polyplus transfection

#114-15). A non-targeting sgRNA or genome-targeting sgRNA was used as a negative

control. Lentiviruses were collected 48 h after transfection and were then used to infect

cell lines with stable expression of (Sp) dCas9-KRAB fusion protein in the presence of

polybrene (Sigma #TR-1003) prior to puromycin selection for 4 days. Total RNA was

extracted using RNeasy Mini Kit (QIAGEN) from cells 10 days after lentiviral infection,

and qRT-qPCR was performed to determine the knockdown efficiency of individual

sgRNAs. For siRNA-mediated knockdown of protein-coding genes, one non-targeting

siRNA and two pre-designed on-targeting siRNAs (Sigma-Aldrich) were used. To

achieve effective siRNA-mediated knockdown of MGAT4EP transcript, which is pre-

dominantly localized in the nucleus, chemically modified gene-specific silencer select

siRNAs and non-targeting siRNAs (Thermo Fisher) were used. A total of 1.5 × 105 cells

were plated in each well of 6-well plates. In each well, 100 pmol siRNAs were trans-

fected into cells using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher

#13778150), and total RNA was extracted 48 h after transfection for qRT-PCR analysis

of knockdown efficiency. For pseudogene expression, full-length cDNA sequences of

MGAT4EP (NR_038135.2), DDX12P (NR_033399.1), PRELID1P1 (NC_000006.12), and

TUBBP5 (NR_027156.1) were synthesized (Twist Bioscience) and inserted into pTwist

CMV Puro vector (Twist Bioscience) between NotI and BamHI restriction enzymes

sites. The pseudogene expression plasmids were transfected into cells using the Lipo-

fectamine 3000 reagent (Invitrogen #L3000015). For shRNA-mediated knockdown, the

shRNA sequences were cloned into PLKO.1 TRC vector. To produce lentiviruses,
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HEK293T cells were co-transfected with pCMV-VSV-G, psPAX2, and shRNA-

expressing PLKO.1 TRC plasmid using jetPRIME. Lentiviruses were collected 48 h after

transfection and were then used for infecting MCF7 or T47D cell lines in the presence

of polybrene prior to puromycin selection for 2 days. Total RNA and protein were col-

lected 4 days after infection. QRT-PCR and western blot were used to determine the ef-

ficiency of shRNA-mediated knockdown at RNA and protein level, respectively. All

sgRNA, siRNA, and shRNA sequences are listed in the Additional file 4: Table S3.

Cell proliferation and clonogenic assays

To assess the growth inhibitory effect of gene-specific siRNA-mediated silencing, 96 h

after siRNA transfection, cells were trypsinized, resuspended, and seeded at 1000 cells

per well in a 96-well plate, where each treatment condition and time point was in tripli-

cate. From the following day (day 0) to 4 days afterwards, cell proliferation was assessed

using Cell Counting Kit-8 (CCK-8) assay (Dojindo Molecular Technologies #CK04-13).

Briefly, 10 μl CCK-8 solution was added into each well. Next, the OD450 absorbance

was measured after 2 h incubation at 37 °C. The CCK-8-based proliferation assay was

performed similarly for the cells transduced with shRNA/sgRNA, except that cells

transduced with shRNA/sgRNA were seeded after 4 or 8 days of puromycin selection.

Clonogenic assays were performed as follows. ShRNA/sgRNA-transduced cells were

seeded at 1000 cells per well in 6-well plates, with each treatment condition in tripli-

cate. Medium was changed every 4 days. After 2 weeks, cells were fixed with 100%

methanol and stained with 0.5% crystal violet in PBS. Plates were then washed with dis-

tilled water and photographed with ChemiDoc Touch Imaging Systems (Bio-Rad).

Nuclear and cytoplasmic fractionation

Nuclear and cytoplasmic RNAs of MCF7 and T47D cells were isolated using the

PARIS™ kit (Thermo Fisher # AM1921) according to the manufacturer’s manual.

Briefly, 5 × 106 cells were collected and washed with cold PBS and were then lysed with

500 μl ice-cold cell fractionation buffer on ice for 10 min. After centrifugation for 5 min

at 4 °C and 500×g. the supernatant containing cytoplasmic fraction and the nuclei pellet

were collected, respectively. The collected nuclei pellet was washed with ice-cold cell

fractionation buffer and repelleted by centrifugation for 1 min at 4 °C and 500×g,

followed by lysis with cell disruption buffer. The nuclear lysate or the cytoplasmic frac-

tion was mixed with an equal volume of 2× lysis/binding solution and 100% ethanol.

The mixture was then transferred to a filter cartridge for RNA purification. MALAT1

RNA and GAPDH mRNA were detected by qRT-PCR in isolated nuclear/cytoplasmic

RNAs, as a control for nuclear and cytoplasmic RNA, respectively. In addition, β-

tubulin and histone H3 protein were detected by western blotting in isolated nuclear/

cytoplasmic fractions, as a control for nuclear and cytoplasmic protein, respectively.

5′ and 3′ RACE

The 5′ and 3′ RACE experiments were conducted using the SMARTer® RACE 5′/3′

Kit (Clontech #634859). Briefly, the total RNA of MCF7 cells was extracted using the

RNeasy Mini kit (QIAGEN #74104) according to the manufacturer’s instruction. First-

strand cDNA was synthesized using 5′-CDS and 3′-CDS primer A and SMARTer II A
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oligonucleotide as described in the user’s manual. The touchdown nested PCR was

used to amplify cDNA ends. The PCR product was purified from 2% agarose gel with

NuceloSpin Gel and PCR Clean-Up Kit (supplied with the SMARTer® RACE 5′/3′ Kit)

and was then cloned into pRACE vector using In-Fusion HD Master Mix (both vector

and mix were provided as SMARTer RACE 5′/3′ Kit Components). Finally, the clones

containing the gene-specific inserts were sequenced.

Ribo-seq and mass spectrometry data analysis for searching potential MGAT4EP-encoded

proteins/micropeptides

The ribo-seq data was analyzed as described previously [40]. Briefly, ribosome-

protected RNA fragment (RPF) reads were trimmed and the low-quality reads were fil-

tered by Sickle (http://github.com/ucdavis-bioinformatics/sickle). The RPF reads after

filtering were mapped to human rRNA sequences using bowtie and allowing for two

mismatches. The reads that were not mapped to human rRNA sequences were then

mapped to human genome (GRCh38) with GENCODE V22 annotation using STAR

(2.6.1b) [56]. The alignment was performed with the following parameters: “–outSA-

Mattributes All–outFilterMismatchNmax 2–alignEndsType EndToEnd–outFilterIn-

tronMotifs RemoveNoncanonicalUnannotated–alignIntronMax 20000–outMultim

apperOrder Random–outSAMmultNmax 1.” For MS data analysis, the customized pro-

tein sequence database was constructed by merging the non-redundant protein se-

quences from Uniprot (release 2019_06) (20431 reviewed human proteins), Ensembl

(GRCh38.79) (100778 human proteins), and NCBI RefSeq (GRCh38.v20200819)

(114963 human proteins), together with the protein sequences corresponding to the

putative ORFs (26 ORFs with ATG start codons and 48 ORFs with non-ATG start co-

dons) identified by an ORF prediction module (ribotish.zbio.orf.allorf) that solely relies

on the sequence information and is implemented in Ribo-TISH package [40], based on

the MGAT4EP sequence. The reverse sequences of the proteins in the database were

used for the target-decoy-based MS/MS spectrum search. The raw MS/MS data gener-

ated in MCF7 and T47D cells [41] were first converted into mzML files using MScon-

vert (ProteoWizard, version 3.0.20282) [57] and were then searched against our

customized protein databases, using MS-GF+ (v2020.08.05) [58]. The following parame-

ters were used for database searching: fixed modifications, Carbamidomethyl (C); vari-

able modifications, Oxidation (M); Precursor ion mass tolerance, 20 ppm; Range of

allowed isotope peak errors, “0,0”; Enzyme specificity, trypsin; maximum missed cleav-

ages. The target-decoy approach implemented in PGA [59] was used to estimate the

FDR with the module “separate FDR estimation.” All the results were filtered with 1%

FDR at a peptide level.

In vitro translation assay

The in vitro translation assays were performed by using TnT® T7 Quick Coupled Tran-

scription/Translation System (Promga, Cat.# L1170), according to the manufacturer’s

instructions. The DNA template of MGAT4EP for in vitro translation was prepared by

PCR amplification via adding T7 RNA polymerase promoter to the 5′ end of MGA-

T4EP full-length cDNA. The proteins generated from in vitro translation reactions
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were further detected using Transcend™ Colorimetric Translation Detection System

(Promega, Cat.#L5072) according to the manufacturer’s instructions.

RNA pull-down and RNA immunoprecipitation (RIP)

To isolate proteins that interact with MGAT4EP transcript (Refseq NR_038135.2), we

used Pierce™ Magnetic RNA-Protein Pull-Down Kit (Thermo Fisher #20164) and

adopted a published protocol, as described previously [44]. Briefly, the full-length

MGAT4EP cDNA sequence was PCR-amplified with an addition of T7 promoter se-

quence to its 5′ end (see primer sequences in Additional File 4: Table S3). T7 Ribo-

MAX™ Express Large-Scale RNA Production System (Promega #P1320) was used to

produce full-length, antisense, and deletion mutants of MGAT4EP RNAs by in vitro

transcription with the PCR-amplified T7-promoter-cDNA template, according to the

manufacturer’s instruction. Transcribed RNAs were purified using RNeasy Mini Kit

(QIAGEN) and desthiobiotin-labeled using Pierce RNA 3′ End Desthiobiotinylation Kit

(Thermo Fisher). A total of 50 pmol desthiobiotin-labeled RNA was incubated with

50 μl streptavidin magnetic beads for 30 min at room temperature with agitation. RLN

buffer and protein lysis buffer were used to prepare nuclear fraction extract from

MCF7 cell, as described previously [44]. The streptavidin magnetic beads were then

washed twice with an equal volume of 20 mM Tris buffer and incubated with prepared

nuclear fraction extract in protein-RNA binding buffer at 4 °C with agitation or rotation

for 1 h. After washing 4 times with wash buffer, the RNA-binding protein complexes

were eluted with elution buffer and analyzed with mass spectrometry or western blot.

The RIP assay was conducted following the manufacturer’s manual using the EZ-

Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore). Briefly, cells in

a 15-cm plate was washed with ice-cold PBS, scraped off from each plate, and collected

by centrifugation at 1500 rpm for 5min at 4 °C. Collected cell pellet was resuspended

in an equal pellet volume of complete RIP Lysis Buffer, incubated on ice for 5 min, and

stored at − 80 °C. Next, the magnetic beads were washed with RIP wash buffer and in-

cubated with antibodies for 30 min at room temperature with rotation. After incuba-

tion, the antibodies-beads complex was washed twice with RIP wash buffer. Once

thawed, the RIP lysate was centrifuged at 14,000 rpm for 10min at 4 °C. One hundred

microliters of the supernatant was mixed with antibody-beads complex in RIP immu-

noprecipitation buffer, and the mixture was incubated at 4 °C for 4 h with rotating. The

beads were washed 6 times with RIP wash buffer and then incubated with proteinase K

at 55 °C for 30 min with shaking to digest the protein. Finally, RNA was extracted with

phenol-chloroform for qRT-PCR analysis.

RNA-seq experiments in cell line and data analysis

Total RNA was prepared from MCF7 cells using RNeasy Mini Kit (QIAGEN) and was

treated with DNase I (QIAGEN #79254). Two micrograms of RNA was used for RNA-

seq library construction with TruSeq Stranded mRNA Library Prep kit (Illumina #

20020594). Sequencing of the library (75 bp single-end read) was conducted on an Illu-

mina NextSeq 500 System, at the Advanced Technology Genomics Core of MDACC.

The RNA-seq reads were trimmed for adaptor sequence and masked for low-

complexity and low-quality sequence. They were then mapped to the hg38 genome and
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GENCODE V22 transcriptome, using STAR (2.6.1b) [56] with parameters “--outSA-

Munmapped Within --outFilterType BySJout --twopassMode Basic --outSAMtype

BAM SortedByCoordinate.” The gene-level raw read counts were calculated using

htseq-count function of HTSeq (0.11.0) [60] with parameters “--stranded reverse --add-

itional-attr gene_name gene_type.” The normalization of raw read counts and differen-

tial gene expression between the treatment and control conditions were identified,

using DESeq2 (1.22.2) [61] (|log2Fold-Change| ≥ log21.5 and FDR < 0.05).

Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR)

ChIP assays were conducted using EZ-Magna ChIP™ A/G Chromatin Immunoprecipi-

tation Kit (Millipore # 17-10086), as described in the manufacturer’s manual. In brief,

MCF7 or T47D cells cultured in 10 cm dish were fixed with 1% formaldehyde for 10

min at room temperature. Reaction was quenched with 125 mM Glycine for 5 min. The

cells were scrapped and spun down by centrifugation (Thermo Scientific ST16R Refrig-

erated Centrifuge). After cell lysis, released nuclei were lysed and the resultant nuclear

lysate was subject to sonication with Bioruptor sonication device (Diagenode

#B01020001) for DNA fragmentation. The sonication was conducted using the follow-

ing conditions: 60 cycles of 30 s on and 30 s off at a high level. After sonication, the

supernatant was collected and divided into aliquots for immunoprecipitation (IP). Five

micrograms FOXA1, pol II or IgG antibody, and 20 μl A/G magnetic beads were incu-

bated with the collected supernatant for overnight at 4 °C (4) to capture crosslinked

protein/DNA complex, followed by pelleting magnetic beads with the magnetic separ-

ator. The crosslinked protein/DNA complex was then eluted from the magnetic beads

and crosslinks of protein/DNA complexes were reversed to free DNA. Finally, the

eluted DNA was purified and subject to qPCR analysis. All primer sequences and anti-

body information are listed in Additional File 4: Table S3.

ChIP-Seq data analysis

The FOXA1 ChIP-seq data in MCF7 (GSM798439, GSE32222) [46] and T47D

(GSM631473, GSE25710) cell lines were downloaded from GEO. Bowtie [54] (1.2.2)

was used to map the raw reads to the human hg38 genome with parameters “-S --best

–strata -a -m 1”. MACS2 [62] (2.1.1) was used to call peaks from mapped reads with

parameters “-g hs --call-summits -q 0.05.” The identified peaks were considered to be

associated with the promoter region (− 1.5 kb to + 500 bp of the TSS) of a given target,

if there is at least one bp overlap between the peak and the promoter region.

Western blot

Total protein extract was prepared from the cultured cell lines using RIPA lysis and ex-

traction buffer (Thermo Fisher #89900) supplemented with protease Inhibitor Cocktail

(Sigma #11697498001). The concentration of total protein was quantitated using the

Bradford dye-binding method (Bio-Rad # 5000006). Twenty micrograms of protein was

loaded and separated by 4–15% Mini-PROTEAN TGX precast polyacrylamide gel (Bio-

Rad #4561085), and then transferred to 0.22 μm polyvinylidene fluoride (PVDF) mem-

branes (Millipore # ISEQ00010). PVDF membranes were blocked with 5% non-fat milk

and incubated with specific antibodies for detecting different proteins (see detailed
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information about antibody information in Additional File 4: Table S3). After the blot

is incubated in ECL chromogenic substrate (Millipore # WBKLS0100), protein bands

were detected by ChemiDoc Touch Imaging System (Bio-Rad) and the signal was quan-

tified using Image lab software (Bio-Rad).

Statistical analysis

All the experimental data are presented as the mean ± standard deviations (SD), and

the two-tailed Student’s t test was used to assess the statistical significance between

two groups using GraphPad Prism 8.0.
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