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Abstract

Background: Spatial interactions and insulation of chromatin regions are associated
with transcriptional regulation. Domains of frequent chromatin contacts are
proposed as functional units, favoring and delimiting gene regulatory interactions.
However, contrasting evidence supports the association between chromatin domains
and transcription.

Result: Here, we assess gene co-regulation in chromatin domains across multiple
human cancers, which exhibit great transcriptional heterogeneity. Across all datasets,
gene co-regulation is observed only within a small yet significant number of
chromatin domains. We design an algorithmic approach to identify differentially
active domains (DADo) between two conditions and show that these provide
complementary information to differentially expressed genes. Domains comprising
co-regulated genes are enriched in the less active B sub-compartments and for
genes with similar function. Notably, differential activation of chromatin domains is
not associated with major changes of domain boundaries, but rather with changes
of sub-compartments and intra-domain contacts.

Conclusion: Overall, gene co-regulation is observed only in a minority of chromatin
domains, whose systematic identification will help unravel the relationship between
chromatin structure and transcription.
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Background
Chromosome conformation capture technologies have allowed exploring the three-

dimensional (3D) organization of the chromatin in the nucleus. These approaches

allow to quantify with what frequency two DNA loci are found in spatial proxim-

ity, independently of their contiguity along the genome sequence. In particular,

high-throughput chromosome conformation capture (Hi-C) generates genome-wide

maps of DNA contacts [1]. Computational analyses of these contact maps revealed
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structural features of genome organization, among which (sub-)megabase chromatin

domains characterized by frequent interactions within the domain and sparse inter-

actions among different domains [2, 3] and large-scale compartments and sub-

compartments [1, 4].

The formation of chromatin domains has been mostly attributed to two major mech-

anisms: chromatin loop extrusion mediated by cohesin and CTCF, and interactions

among regions decorated by the same histone post-translational modifications [5–7].

Loop extrusion mediated by the cohesin complex is deemed responsible for the forma-

tion of structural loops delimited by CTCF binding, and domains associated with these

loops have been called topologically associating domains (TADs). Different chromatin

compaction and histone modifications are associated instead with the segregation of

the chromatin in major compartments, in particular one characterized by high tran-

scriptional activity (A compartment) and one enriched for heterochromatin and tran-

scriptionally silenced regions (B compartment) [4, 8, 9]. However, chromatin epigenetic

states encompass more than two states and recent studies have proposed different

numbers of sub-compartments that better captured chromatin epigenetic features [4,

10]. Stretches of DNA assigned to the same compartment or sub-compartment have

been termed compartment domains [10–12]. Notably, although conceptually distinct,

TADs and compartment domains often overlap and/or have coincident boundaries

[13]. Importantly, both compartment domains and TADs have been shown to be pref-

erentially enriched for either active or inactive histone marks [2, 4, 11], and regulatory

interactions such as those between enhancers and gene promoters typically occur

within a domain rather than across different domains [14, 15]. Hence, it has been pro-

posed that these structural elements can act as functional units.

The relationship between chromatin domains and transcriptional activity is however

debated, and conflicting evidence has so far been reported. Disruption of domain

boundaries has been shown sufficient to generate spurious enhancer-promoter interac-

tions resulting in mis-regulated gene expression [16]. In particular, aberrant regulatory

interactions have been investigated in cancer in association with somatic mutations al-

tering the cell epigenome [17, 18] or chromosomal copy number changes leading to en-

hancer hijacking [19]. Even in the absence of altered domain boundaries, altered

histone modifications within chromatin domains can affect regulatory interactions [20].

At the same time, genome-wide loss of structural loops induced by genetic experiments

deleting CTCF [6] or cohesin [5] did not drive substantial transcriptional changes, cast-

ing doubts on the relevance of these loops in gene regulation. In a similar vein, compu-

tational analyses coupling gene expression and chromatin structure data reported in

multiple instances higher co-regulation among genes within the same domain than

among genes separated by a domain boundary [3, 17]. However, recent studies

highlighted lack of concordance between domains of co-expressed genes and chromatin

domains [21] or between chromatin contacts and gene expression [22].

These inconsistent results might arise from several factors. First, the association be-

tween gene expression and chromatin domains might be context dependent, e.g., more

evident for specific genes under a certain condition rather than a genome-wide

phenomenon. Second, Hi-C experiments are only available for a limited number of cell

types and, often, previous studies have used a reference model, whose domains are un-

likely to be universally conserved across tissues and species. Lastly, although genetic
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experiments offer the opportunity of measuring chromatin and expression changes in a

controlled system, these inevitably generate artificial conditions, which might be insuffi-

cient to simulate and stimulate the transcriptional diversity observed among cell types

and cell states.

To overcome these challenges, here we analyzed the association between gene co-

regulation and chromatin domains in a wide variety of conditions with tissue-matched

Hi-C experiments. We developed an algorithmic approach to (1) test under which condi-

tions gene co-regulation is associated with chromatin domains and (2) extract domains

exhibiting significant differential activity between two conditions. In particular, we focused

on comparing transcriptional activity between normal and cancer samples and among

cancer subtypes. These datasets allowed us to analyze large-scale cohorts characterized by

great transcriptional heterogeneity, which can be linked to specific molecular alterations

and disease manifestations. We integrated gene expression data from multiple human

cancer cohorts and Hi-C data from normal and cancer cell lines derived from the corre-

sponding tissues. Our results consistently showed that gene co-regulation occurs only in a

small, yet significant fraction of chromatin domains. These domains were enriched for less

efficiently transcribed genes in the B sub-compartments and members of the same gene

family. Importantly, by comparing Hi-C datasets from normal and tumor cells, we found

that differentially active domains frequently change sub-compartment and exhibited

intra-domain contact differences. Moreover, these domains provided complementary in-

formation to standard differential gene expression analyses. Hence, we expect that differ-

entially active domains alongside differentially expressed genes will provide a more

complete picture of transcriptional differences emerging in multiple biological contexts.

Results
The DADo algorithm

To systematically explore the extent of gene co-expression within chromatin domains,

we formulated the problem as a comparison between two conditions and assessed gene

expression differences between these two conditions within each domain (Fig. 1a). Do-

mains comprising co-regulated and differentially expressed genes are said to be differ-

entially active. Precisely, we designed a computational approach addressing two key

questions: (1) are gene expression changes between two conditions more concordant

within chromatin domains than expected? If so, (2) which domains exhibit significant

evidence of differential activity between the two conditions?

To address the first question, we developed a score quantifying the concordance of

gene expression fold-changes observed for genes within the same domain, accounting

for both the sign and magnitude of the fold-changes. The fold-change concordance

score (FCC) of a domain t comprising n genes g = {g1, …, gn} is formally defined as:
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where LFC(g) is the logarithm in base 2 of the mRNA expression fold-change of gene g,

and δ(i, j) is the Kronecker delta function, which is equal to 1 if (i = j), and 0 otherwise.
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FCC scores are equal to 1 in case of full concordance, i.e., all genes in t change in the

same direction, are proximal to 0 when sign and magnitude of fold-changes exhibit no

concordance patterns, and assume values close to −1 when most genes have concord-

ant fold-changes, but the few that are discordant exhibit significantly higher absolute

fold-changes than the others (Additional file 1: Fig. S1a). Once FCC scores are com-

puted for all domains, they are ranked in descending order and the cumulative sum

curve of ranked FCC scores is compared to the one obtained after permuting gene-to-

domain assignments (Fig. 1b), with permutations occurring only within the same ex-

pression quintile. The ratio between the area under the curve (AUC) defined by the

observed FCC values and the AUC defined by random FCC values can then be used to

determine whether expression differences are more concordant within domains than

expected (i.e., AUC ratio > 1, Fig. 1b).

To address the second question, we designed a statistical approach to determine dif-

ferentially active domains (DADo). This approach integrates two tests to assess the

extent of differential expression and correlation of gene expression within a domain

Fig. 1 Gene co-regulation in chromatin domains. a–c Schematic of the DADo algorithm: a DADo integrates
Hi-C (top: example of Hi-C contact map) and gene expression data (bottom: toy barplot showing
concordant expression) to assess when genes (e.g., 1, 2, and 3) within a chromatin domain (black triangle in
the Hi-C map) exhibit coordinated expression differences between 2 conditions (e.g., A and B). b First, the
fold-change concordance (FCC) score is computed and the ratio between the observed (red) and expected
(gray) areas under the curve (AUC) are computed. c Next, the mean gene expression fold-change (FC) and
mean mRNA correlation among all genes in the domain are computed and used to determine differentially
active domains. d Heatmap representation of the density distribution of FCC scores (range: −1 to 1; X-axis)
for each of the 58 comparisons (Y-axis) made by matching 30 Hi-C and 12 mRNA expression datasets (left).
Barplot of the FCC AUC ratios for all comparison (right). Asterisk (*) indicates the top ranking dataset (lung
tissue—lung adenocarcinoma (LUAD)—EGFR-mutant vs. KRAS-mutant—see panel e). e Example of the FCC
distribution (left) and the cumulative sum curves (right) for the dataset with highest FCC AUC ratio (lung
tissue—LUAD—EGFR-mutant vs. KRAS-mutant). f For each dataset (X-axis), the percentage of chromatin
domains that are fully concordant (i.e., FCC = 1) is shown for the real data (red dots) and the randomized
data (gray dots). g Ratio of fully concordant domains comprising only 3 genes for the observed (red, left)
and average of permutation data (gray, right).
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(Fig. 1c). Precisely, first, we compute the mean gene expression fold-change of genes

within a given domain and derive an empirical p value for these fold-changes based on

gene-to-domain permutations. Next, we assess whether mRNA expression values for

genes within a given domain exhibit greater correlation among them than with neigh-

boring genes separated by a chromatin domain boundary (detailed procedures and null

models are described in the “Methods” section). Empirical p values obtained through

the two tests are combined using the Stouffer’s method and corrected for multiple test-

ing using the Benjamini-Hochberg procedure. Finally, the DADo algorithm returns a

list of significantly differentially active chromatin domains (adjusted p value ≤ 0.01) be-

tween the two compared conditions. This approach can be related to popular differen-

tial mRNA expression analyses, where, instead of a gene, the chromatin domain is the

unit of analysis.

Concordant expression changes in chromatin domains

Given contrasting evidence supporting concordant gene expression and gene expres-

sion changes within chromatin domains, we reasoned that this concordance might be

context dependent and not ubiquitously observed. To test this hypothesis, we decided

to apply our approach across multiple datasets and compare different conditions for

each dataset. We focused our analyses on cancer gene expression cohorts given the

availability of large sample cohorts that were uniformly processed and analyzed and

that exhibited high transcriptional heterogeneity across multiple conditions [23]. Specif-

ically, we selected 12 tumor types with more than 90 samples from The Cancer Gen-

ome Atlas (TCGA) data cohort (https://www.cancer.gov/tcga) (Additional file 2: Table

S1). To match each cohort with Hi-C data derived from the closest possible tissue or

cell line, we collected and analyzed 30 Hi-C datasets. Given the distinction between

compartment domains and TADs [13], here we used the Calder algorithm [10] to infer

compartment domains, and TopDom to infer TADs [24]. Overall, domains identified

by these tools were often coincident [10] and, as we will show, DADo analyses based

on either compartment domains or TADs led to largely similar results and conclusions.

Given the consistency observed among these tools, the results discussed in the follow-

ing will refer to chromatin domains identified by Calder, unless explicitly indicated.

When multiple Hi-C datasets were available for the same tumor type, we separately an-

alyzed domains inferred from each Hi-C dataset, so to be able to test the robustness of

our results. In total, we performed 58 analyses including comparisons between tumor

subtypes (e.g., lung tumors from smokers vs. never-smoking patients), normal and

tumor tissues (e.g., normal lung vs. lung tumor tissues), and tumors exhibiting or not a

specific somatic mutation (e.g., lung tumors harboring a KRAS mutation vs. lung tu-

mors wild-type for the KRAS gene) (Additional file 2: Table S1). In all comparisons,

only chromatin domains comprising at least 3 genes were retained.

Across all comparisons, we invariably found AUC ratios greater than 1 (Fig. 1d—bar-

plot), indicative of greater concordance of gene expression changes within domains

than expected by chance. Comparisons between the same pairs of conditions but using

domains inferred from different Hi-C datasets were always correlated both in terms of

domain adjusted p value (mean Pearson’s correlation = 0.73, Additional file 1: Fig. S1b)

and domain ranking (mean Pearson’s correlation = 0.75, Additional file 1: Fig. S1c),
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confirming the robustness of our results. Notably, in several cases, AUC ratio values

were only moderately above 1. The overall distributions of FCC values were character-

ized by two major peaks: one around 0 (lack of concordance) with a larger tail towards

positive values than what observed in the random distributions (Additional file 1: Fig.

S1d) and a second peak of values close to 1 (high concordance) (Fig. 1d—heatmap). A

representative example of this bimodal distribution was shown by the top ranking com-

parison, i.e., lung tumors driven by mutations of either the EGFR or the KRAS onco-

genes, which characterize two distinct genomic subtypes of lung adenocarcinoma [25]

(Fig. 1e). The discriminative factor between top and bottom ranking comparisons was

the number of chromatin domains exhibiting completely concordant expression

changes within their boundaries (FCC = 1, Additional file 1: Fig. S1e). Although these

were typically a minority, the percentage of domains with FCC = 1 (termed fully con-

cordant domains) was consistently higher than expected (Fig. 1f). Complete concord-

ance of gene expression changes is more likely to occur when only a few genes are

considered, e.g., gene pairs or triplets are expected to have concordant fold-changes

50% and 25% of the times, respectively. To test whether fully concordant domains in-

cluded a larger number of genes than expected, we compared the percentage of fully

concordant domains that were composed by 3 genes only (smallest possible size). This

percentage was significantly higher in the randomized datasets than in the real ones

(Fig. 1g). Overall, these results suggest that expression changes are more concordant

within chromatin domains than expected, but this concordance is not a genome-wide

phenomenon but rather restricted to a fraction of domains exhibiting high or even full

concordance.

Differentially active domains in cancer

The observed high concordance of gene expression changes within a limited yet greater

than expected number of chromatin domains prompted us to statistically assess which

domains are differentially active between two conditions. We applied the DADo algo-

rithm to each of the 58 comparisons and identified between 2 and 61 differentially ac-

tive domains in each comparison (adjusted p value ≤ 0.01—Additional File 3: Table S2

and Fig. 2a). To assess whether a similar number of domains would be obtained by sim-

ply selecting similarly sized genomic regions but crossing a domain boundary, we de-

signed domain partitions for each comparison by generating “artificial” boundaries

placed exactly in between two “real” boundaries (see the “Methods” section). On these

artificial domains, DADo returned a lower number of significant hits (Fig. 2b and Add-

itional file 1: Fig. S2a). These results further demonstrated that gene co-regulation

within chromatin domains is more frequent than expected, even accounting for gen-

omic distances among genes. We next assessed the relationship between differentially

active domains detected by our approach and differentially expressed genes [26]. Inter-

estingly, in each comparison, we found that a large fraction of significant domains did

not comprise genes among the top 100 differentially expressed (Fig. 2a—red bars), sug-

gesting that differentially active domains provide complementary information to stand-

ard gene differential expression analyses. In addition, whereas the percentage of

differentially expressed genes (adjusted p value ≤ 0.01) could vary significantly among

comparisons (from 0 to >75% of the analyzed genes), DADo returned an overall similar
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Fig. 2 Differentially active domains. a Number of differentially active domains identified (X-axis) for all
comparisons (Y-axis), ranked by decreasing number. For each comparison, we report the ID of the Hi-C
dataset, mRNA expression dataset, and conditions being compared. The fraction of domains comprising any
of the top 100 differentially expressed genes is shown in red (in gray otherwise). b Number of differentially
active domains (Y-axis) in the observed (blue, left) and random data (gray, right). c Percentage of
differentially expressed genes (Y-axis) and differentially active domains (X-axis) in each comparison. The size
of the dot is proportional to the number of samples available for the analysis and the color of the dot
indicates the category of comparison. d Percentage of differentially expressed genes (dashed-lines) and
differentially active domains (solid lines) across different levels of sub-sampling (X-axis) for 3 selected
datasets (color coded). e Domain mean gene expression fold-change (X-axis) and domain mean gene
expression correlation (Y-axis) for the comparison between KRAS-mutant and EGFR-mutant lung
adenocarcinoma (LUAD) (Hi-C data from the lung cancer cell line NCI-H460). Size of the dot is proportional
to significance of the chromatin domain, blue (red) indicates negative (positive) average fold-change.
Highlighted are two chromatin domains (CD) selected as a case study (chr10-CD16 and chr17-CD162).
f Boxplot comparison of mRNA expression values (log10) for the genes belonging to chr10-CD16. KRAS
mutant samples are color coded based on whether they also exhibit either NFE2L2 (NRF2) or KEAP1
mutations (yellow) or not (blue). EGFR mutant samples are in gray. g Top line represents the gene ranks
based on differential expression analysis. Bottom line represents rank of the domain obtained from DADo.
Genes from chr10-CD16 are shown in red. h Boxplot comparison of mRNA expression values (log10) for the
genes belonging chr17-CD162. EGFR mutant samples are in red KRAS mutant samples are in gray. i Top line
represents the gene ranks based on differential expression analysis. Bottom line represents rank of the
domain obtained from DADo. Genes chr17-CD162 are shown in red.
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number of significant hits (Fig. 2c) and was less affected by varying sample size than

standard differential gene expression analysis (Fig. 2d).

To assess the dependency of our results on the domain identification approach or

Hi-C data resolution (i.e., total number of reads), we re-analyzed all comparisons, either

using the TopDom algorithm [24] to call TADs, or using in all comparisons the same

set of domains identified in the GM12878 cell line, which was analyzed by Hi-C at the

highest resolution [4]. FCC AUC ratios derived using Calder or TopDom were highly

concordant (Additional file 1: Fig. S2b) and so were the chromatin domain significance

ranks returned by DADo (Additional file 1: Fig. S2c). Similarly, we obtained highly con-

cordant results using domains from the GM12878 cell line (Additional file 1: Fig.

S2d,e), indicating that our results are robust to changing domain caller or Hi-C data

resolution.

To examine in more detail the differentially active domains that we identified, we fo-

cused on the comparison between KRAS-driven and EGFR-driven lung adenocarcin-

oma, which exhibited the highest AUC ratio (Additional file 2: Table S1). Lung

adenocarcinoma expression data were matched with Hi-C data generated from a nor-

mal lung tissue (LG1 and LG2) and the NCI-H460 and A549 lung cancer cell lines.

Using NCI-H460 cells, we found 11 chromatin domains exhibiting concordant upregu-

lation in EGFR-driven tumors (Fig. 2e, adj. p value ≤ 0.01—red dots) and 7 domains

exhibiting concordant upregulation in KRAS-driven tumors (Fig. 2e, adj. p value ≤

0.01—blue dots). The most significant chromatin domain (CD16) included 3 members

of the Aldo-Keto Reductase (AKR) gene family (AKR1C1, AKR1C2, AKR1C3), located

on chromosome 10p15 (Fig. 2f). AKR genes are oxidoreductases induced by the nuclear

factor-erythroid 2-related factor 2 (NRF2, gene name: NFE2L2) and have been found

consistently upregulated in the lung and other cancer types, especially in correspond-

ence of mutations activating the NRF2 pathway [27]. NRF2 is over-activated in lung

cancer either through mutations of the NRF2 encoding gene, NFE2L2, or loss-of-

function mutations of KEAP1, whose protein product ubiquitinates and degrades NRF2

[25, 28, 29]. Mutations in either KEAP1 or NFE2L2 were found only in KRAS-driven

tumor in our cohort and were associated with upregulation of all 3 AKR genes (Fig. 2f).

However, even in the absence of KEAP1 and NFE2L2 mutations, KRAS-driven tumors

exhibited concordant higher expression of all AKR genes within CD16 (Fig. 2f and

Additional file 1: Fig. S3a). These results suggest a broad extent of NRF2 activation in

KRAS-driven lung cancer, potentially associated with alternative mechanisms to known

oncogenic mutations of the NRF2 pathway. Interestingly, AKR genes were not among

the top differentially expressed genes between KRAS- and EGFR-driven lung tumors,

with only AKR1C1 barely passing the top-1000 cutoff (Fig. 2g). The second most sig-

nificant domain (CD162) comprised 6 Homeobox B (HoxB) transcription factor gene

family members, which were all upregulated in EGFR-driven tumors (Fig. 2h). HoxB

genes were again not among the top differentially expressed genes (Fig. 2i). HoxB genes

are transcription factors involved in development [30] and whose activation is regulated

by chromatin domain boundaries [31, 32]. Recently, Hox genes have been shown to

transcriptionally activate EGFR in drosophila [33] and breast cancer cells [34], although

their role in EGFR-driven lung tumors is largely uncharacterized. Among other signifi-

cant domains, we found several cancer-associated genes. These include the hepatocellu-

lar carcinoma-related protein 1 (HCRP1, gene name: VPS37A) and the
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phosphoinositide (PIP) phosphatase MTMR7, which were downregulated in EGFR-

mutated lung tumors, consistent with their ability to inhibit EGFR phosphorylation and

signaling [35–38], the hypoxia-associated genes NBN and OSGIN2 [39, 40], and the

tumor suppressive gene cluster TNSRSF10(A/B/C/D), which were downregulated to-

gether with RHOBTB2, another tumor suppressor gene [41, 42]. These results showed

that while standard differential expression analyses are designed to capture strong ex-

pression differences of individual genes treated as independent variables, differentially

active domains can reveal moderate but concordant expression differences of co-

regulated genes, potentially highlighting previously missed mechanisms of oncogene

regulation.

Intriguingly, among the 18 domains that were differentially active between EGFR-

and KRAS-mutated lung tumors, we found several domains comprising genes involved

in immune pathways (Additional file 3: Table S2). These domains included two HLA

class II gene clusters, CD1 dendritic cell marker genes (CD1A, CD1C, CD1E), inter-

feron alpha and beta receptor subunits (IFNAR1 and IFNAR2), and interferon-induced

proteins (IFIT1, IFIT2, IFIT3). All these domains were found downregulated in KRAS-

mutated lung tumors compared to EGFR-mutated cases. By retrieving tumor purity

scores computed by integrating independent lines of evidence [43], we found that in-

deed TCGA samples derived from KRAS-mutated lung tumors had higher purity scores

than EGFR-mutated tumors (Additional file 1: Fig. S3b). These results suggested that

expression differences within these chromatin domains might here be driven by a dif-

ferent extent of immune infiltration.

Upon exploring chromatin domains that scored as significant across multiple

comparisons, we found a subset of domains that was over-represented among sig-

nificant results, with some domains appearing as significant in up to 27 (~50%)

comparisons (Additional file 1: Fig. S4a). Gene set enrichment analysis revealed

that genes in these domains were largely associated to immune pathways and im-

mune cell markers (Fig. 3a and Additional file 4: Table S3). Next, we correlated ex-

pression of genes within each domain with purity scores retrieved for all TCGA

samples and, for each domain, we computed the mean correlation. Strikingly, nega-

tive correlations were highly enriched among differentially active domains (Fig. 3b)

indicating that gene expression in these domains was driven by immune infiltration

rather than cancer cell intrinsic expression differences. We flagged chromatin do-

mains with correlation in the lowest 5% of the overall distribution as activated in

immune cells (immune domains). Interestingly, although immune domains

accounted for less than 10% of all domains in each comparison, they frequently

represented between 20 and 60% of significant domains (Fig. 3c). These results in-

dicate that immune cell markers are frequently co-regulated genes more likely to

be found within a same domain than expected. To test whether the overall signifi-

cant co-regulation within chromatin domains that we previously observed (Fig.

1d—barplot) was exclusively due to immune domains, we re-analyzed all datasets

with DADo, after having excluded immune domains from the analysis. As ex-

pected, the new AUC ratio values were lower than those originally computed (Fig.

3d), although all of them remained greater than 1. Similarly, the numbers of sig-

nificant differentially active domains were now smaller in each comparison (Add-

itional file 1: Fig. S4b) but remain significantly higher than those obtained with
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random partitions (Fig. 3e and Additional file 1: Fig. S4c). Overall, co-regulation of

gene expression within chromatin domains is prominent among markers of im-

mune cell types and analyses of co-regulation within chromatin domains in cancer

are thus invariably affected by tumor purity. Nonetheless, independent of the ex-

tent of immune infiltration, differential activation of specific chromatin domains

was more frequent than expected.

Beyond immune cell pathways, we observed that several significant domains com-

prised genes belonging to a same family, consistent with these genes being frequently

co-regulated. Indeed, using gene family annotations for 941 gene families from the

HUGO Gene Nomenclature Committee (HGNC - https://www.genenames.org/), in

34.4% of significant domains a unique gene family was represented, as opposed to 4.8%

of non-significant domains (Fig. 4a). Concordantly, domains comprising genes from

more than 2 gene families were less represented among significant domains than

among non-significant ones (Fig. 4a). To test whether genes belonging to the same

family were overall more likely to be found in the same domain, we generated a gene

network for each gene family, where gene family members were connected if they were

found in the same domain. The numbers of edges in these networks were then com-

pared to the number of edges found in networks comprising the same number of genes,

but that were randomly sampled while preserving the same extent of gene proximity

along the DNA sequence (see the “Methods” section). Strikingly, comparisons for all

gene families showed that on average gene family networks had up to one order of

magnitude more edges than random gene networks (Fig. 4b). These results showed that

genes from a same gene family are significantly more likely to be found in the same

Fig. 3 Immune chromatin domains. a Gene ontology (GO) categories significantly enriched for genes in
domains that were found differentially active in multiple datasets (n > 7). b Distribution of the average
correlation of gene expression with tumor purity for all domains (gray) and differentially active domains
only (red). The dashed line indicates the 0.05-quantile of the distribution for all domains, used as a
threshold for the detection of immune domains. c Percentage of immune domains among all domains (Y-
axis) and among differentially active domains (X-axis). The dashed red line indicates the y=x line. Each dot is
a dataset, the color indicates the comparison category. d FCC AUC ratios obtained after removing immune
domains (barplot) versus FCC AUC ratio values obtained without filtering (dots). Color indicates the
comparison category. e Comparison of the number of differentially active domains in the observed and
random domain partitions after removing immune domains.
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chromatin domain than genes in different families, suggestive of an evolutionary associ-

ation between gene family formation and chromatin 3D structure.

Chromatin structural features of differentially active domains

To assess whether differential activity within chromatin domain is associated with dif-

ferent long-range as well as local chromatin interactions, we decided to focus on a sub-

set of comparisons between normal and tumor tissues (n = 7) for which tissue-matched

Hi-C datasets were available for both conditions (Fig. 5a).

First, we compared domain boundaries in Hi-C datasets from normal and tumor cells

and found that, on average, 79% of domain boundaries were shared among each pair of

matched datasets, compared to an average of 75% among all pairwise comparisons in

our collections of Hi-C datasets (n = 435). Even though the percentage of shared

boundaries was lower for differentially active domains than other domains, 76.5% vs.

79% respectively (Fig. 5b), this decrease was modest and not significant based on ran-

dom re-sampling of the same number of domains (p = 0.11, Fig. 5c). Next, we com-

puted and compared chromatin compartments (A and B), sub-compartments (n = 8),

and compartment domain ranks using the Calder algorithm [10]. Specifically, Calder

assigns a “rank” varying between 0 (most inactive sub-compartment) and 1 (most active

sub-compartment) to each domain and genomic bin, and the rank difference between

matching bins or domains can be used to assess sub-compartment repositioning [10,

44]. Interestingly, we found that differentially active domains were 2-to-3 times more

likely to change compartment (A to B or B to A) than other domains (Fig. 5d) and this

was further highlighted by the distribution of compartment domain rank differences

that, for differentially active domains, exhibited a long tail of high absolute rank

differences (Fig. 5e), consistent with sub-compartment repositioning.

Upon extending the (sub-)compartment analysis to all Hi-C datasets, we found that

differentially active domains identified by DADo across all comparisons were over-

represented in the B compartment and sub-compartments (Fig. 5f-g). Indeed, although

most domains were in the A compartment, consistent with its greater gene density,

23% of differentially active domains were in the B compartment compared to only 9%

of all domains (Fig. 5f). This enrichment was largely due to a greater intra-domain gene

Fig. 4 Differentially active domains are enriched for gene families. a Fraction of domains comprising genes
annotated for a different number of gene families (1, 2, 3, >3) in non-significant (left) and significant (right)
differentially active domains. b Expected (Y-axis) vs. observed (X-axis) number of edges in gene family
networks (averaged by family: each dot corresponds to a family). Dashed red line indicates the y=x curve.
Scatterplot with all values is on the left, yellow-square inset is zoomed in on the right
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expression correlation for genes in the B sub-compartments (Fig. 5h—left), which also

exhibited lower mRNA expression on average (Fig. 5h—right). These results suggest

that co-regulation of genes within the same chromatin domain is more common among

lowly expressed or less efficiently transcribed genes. However, large datasets with

matched Hi-C and mRNA data will be needed to systematically test this hypothesis.

Lastly, we explored intra-domain contacts within differentially active domains be-

tween two conditions, and whether these changes were concordant with cell transcrip-

tional and epigenetic features. To this purpose, we selected the prostate cancer vs.

normal prostate case study, where matching Hi-C, mRNA, and chromatin immuno-

precipitation and sequencing (ChIP-seq) data were available for normal prostate

(RWPE1) and prostate cancer (22Rv1) cell lines. Specifically, we analyzed ChIP-seq data

for histone 3 lysine 27 acetylation (H3K27ac), an epigenetic marker associated with ac-

tive enhancers and actively transcribed promoters. DADo identified in total 16 differen-

tially active domains (adjusted p value < 0.01) between normal and tumor prostate

samples from TCGA (Fig. 6a). Among the 4 most significant domains, we found two

domains on chromosome 17 that were less than 7 Mb apart and changed in opposite

Fig. 5 Chromatin structural features of differentially active domains. a Schematic of the comparisons: 7
mRNA expression comparisons between normal and tumor samples from the same tissues were matched
with Hi-C datasets from normal and tumor cells of the corresponding tissue. DADo was run on chromatin
domains determined from both Hi-C datasets for a total of 14 comparisons. b Ratio of shared boundaries
between domains inferred from normal and tumor cells from the same tissue (green), only differentially
active domains determined from these comparisons (orange), and all chromatin domains inferred from all
Hi-C datasets that we analyzed (gray). c Distribution of the ratios of shared boundaries between domains
inferred from normal and tumor cell Hi-C datasets. The distribution was built by 1000 random sampling of
n = 446 domains. The observed ratio obtained for the 446 differentially active domains is shown by the red
dashed line (76.5%) obtaining an empirical p value = 0.11 from the expected distribution of ratios. d Fold-
changes between the number of significant differentially active domains changing from A to B (blue) or B
to A (red) compartment in the normal vs. tumor comparisons and non-significant domains, as determined
by DADo. e Distribution of the domain rank difference of matching chromatin domains in normal and
tumor Hi-C datasets for all chromatin domains (black line) and differentially active domains only (green
density distribution). f Percentages of all chromatin domains (top pie chart) and significant differentially
active domains (bottom pie chart) that are in the A (red) or B (blue) compartments. g Fold-changes
between the number of significant differentially active domains and non-significant domains, as determined
by DADo, that are in each of the 8 chromatin sub-compartments inferred by Calder. h Distributions of
mean intra-domain gene expression correlations (left) and mean intra-domain gene expression levels (right)
in each of the 8 chromatin sub-compartments inferred by Calder
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directions, hence providing the opportunity of assessing changes in intra-domain con-

tacts in a relatively small region with similar sequencing coverage. CD147 (chr17:

39,480,000-39,760,000) was more active in normal samples, whereas CD174 (chr17:

46,720,000-46,880,000) was more active in tumor samples. By comparing the observed

vs. expected contact frequencies in these regions, we found that CD147 and CD174 ex-

hibited different contact frequencies in RWPE1 and 22Rv1 cell lines, whereas neighbor-

ing regions were remarkably similar (Fig. 6b-c). In particular, we observed that intra-

domain contact frequencies were greater in the condition where the domain was more

active. To quantify this observation, we computed significant chromatin interactions

using the HiC-DC algorithm [45] and verified that CD147 exhibited more significant

interactions in RWPE1 (Fig. 6d—bottom) than in 22Rv1 cells (Fig. 6d—top), whereas

Fig. 6 Differentially active domains in normal vs. tumor prostate samples and cell lines. a Domain mean
gene expression fold-change (X-axis) and domain mean gene expression correlation (Y-axis) for the
comparison between prostate cancer and normal prostate tissue samples (Hi-C data from the lung cancer
cell line RWPE1). Size of the dot is proportional to significance of the chromatin domain, blue (red) indicates
negative (positive) average fold-change of significant domains. Highlighted are the top 4 chromatin
domains determined by DADo. b, c Observed vs. expected Hi-C contact maps for genomic regions in
chromosome 17 comprising the differentially active domain CD147 (b) and CD174 (c). The lower triangular
contact maps correspond to the RWPE1 cell line, and the upper triangular contact maps correspond to the
22Rv1 cell line. The contact maps corresponding to the two domains are zoomed at the bottom to
improve visibility. d, e Significant interactions estimated with the HiCDC algorithm in CD147 (d) and CD174
(e) in 22Rv1 (top) and RWPE1 (bottom) cell lines. HiC-DC p values < 0.1 (−log10(p) = 1) are color coded,
white cells correspond to HiCDC p values > 0.1. ChIP-seq tracks for H3K27ac are shown below each map.
f Gene expression values of the genes in CD147 (left) and CD174 (right) in RWPE1 (blue, 4 replicates) and
22Rv1 (red, 1 replicate). g Distribution of p values (-log10(p)) obtained from differential interactome analyses
of Hi-C contacts within differentially active domains, separately shown for domains that were found more
active in normal samples (blue) and in tumor samples (red). The sign of the −log10(p) values was set to
positive (negative) for interactions that were more frequent in the tumor (normal) Hi-C dataset
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CD174 had more significant interactions in 22Rv1 (Fig. 6e—top) than in RWPE1 (Fig.

6e—bottom). Importantly, a higher number of significant interactions was consistent

with higher activity in the domain, as inferred by H3K27ac peaks (Fig. 6d–e, tracks

below triangular maps) and matching mRNA expression data in the cell lines (Fig. 6f).

To confirm these results beyond the CD147 and CD174 domains, we performed a dif-

ferential interactome analysis [20, 44] that detected significantly different contact fre-

quencies between the two prostate cell lines. Nicely, even though differential activity

was estimated from the comparison of TCGA human samples (Fig. 6a), we found that

domains that DADo found as more active in normal prostate samples also comprised a

greater fraction of significantly more frequent interactions in normal prostate cells

(RWPE1, Fig. 6g—blue curve). Conversely, domains that were more active in prostate

cancer samples comprised a greater fraction of significantly more frequent inter-

actions in prostate cancer cells (22Rv1, Fig. 6g—red curve). Overall, these results

showed that differentially active domains reflect different local intra-domain

interactions, which increase in frequency with increased H3K27ac and mRNA

expression levels.

Discussion
The possibility of unbiasedly exploring chromatin spatial interactions has provided a

new perspective to understand and investigate gene regulation in normal and malignant

cells. In cancer, for example, upregulation and downregulation of oncogenes and tu-

mors suppressors are respectively frequently observed. By exploring the chromatin 3D

structure of cancer cell lines, we and others have shown that oncogenic transcriptional

changes can be attributed to disrupted chromatin domain boundaries [17, 46] or chro-

matin domain inactivation [20], the latter driven by repressive histone marks altering

regulatory interactions between gene promoters. However, the relationship between

chromatin structure and transcriptional regulation remains unclear.

Here, through an unbiased analysis of transcriptional changes across multiple tissues

and tumor contexts, we showed that these are significantly associated with the chroma-

tin structure, although this association is evident only in a small subset of chromatin

domains, which varied among comparisons. What are the determinants of coordinate

regulation within a domain remains an open question. The moderate transcriptional

changes induced by genome wide loss of structural loops upon CTCF or cohesin deple-

tion indicate that this loss is not sufficient to broadly rewire regulatory interactions and

additional mechanisms are required [5, 6]. These likely include an active chromatin

state (i.e., presence of active histone marks) and transcription factor binding to enhan-

cer and/or promoter regions. Histone post-translational modifications are associated

with chromatin compartmentalization and formation of (sub-)compartment domains;

hence genome wide changes of histone marks might alter structure and transcription

in a more substantial manner than altered CTCF and cohesin binding [44]. It will be in-

teresting in the future to systematically explore the association between differentially

active domains and matching histone mark profiles and use targeted approaches such

as promoter-capture Hi-C or HiChIP to probe in more detail regulatory interactions in

these domains.
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This type of analyses is of particular interest in cancer, where histone modifications

are frequently altered as a consequence of somatic mutations and/or cell plasticity. In a

tumor, however, transcriptional signals often come from heterogeneous sub-

populations of both tumor and non-tumor cells [43]. In our analyses, we found that in-

filtration of immune cells was a major determinant of differential activity in chromatin

domains. Indeed, several immune cell markers formed co-regulated gene clusters often

found within the same chromatin domain. Beyond immune infiltration, gene co-

regulation and chromatin domain identification are likely to be affected by the in-

trinsic heterogeneity of tumors from different patients and tumor cells within the

same tumor. A limitation of our study is indeed the lack of multiple instances

where mRNA and Hi-C experiments were performed on the same sample. In par-

ticular, Hi-C analysis of multiple tumors of a given type would shed light on inter-

patient heterogeneity of chromatin structures and how does this relate to the

underlying genomic features of the disease. In addition, single-cell transcriptional

and structural data will be needed to overcome the limitations posed by intra-

tumor heterogeneity and understand to what extent transcriptional diversity is

accompanied by structural diversity.

Lastly, our results showed an unexpected association between differentially active

domains and B sub-compartments, which typically comprise genes with lower ex-

pression levels. This association was driven by an overall higher intra-domain gene

correlation in these sub-compartments compared to A sub-compartments (Fig. 5h).

These results suggest that gene co-regulation within chromatin domains is more

relevant among less efficiently transcribed genes, whereas genes that are highly

transcribed through strong activation of specific transcription factors are more

likely to be transcribed independently of chromatin domain organization. This was

especially evident for gene family members, where evidence of gene co-regulation

in our data was particularly strong. Gene families formed during evolution by gene

duplication events and often comprise gene clusters regulated through the same

promoter [47]. Moreover, recent findings showed that paralogues from same TADs

display higher correlation in gene expression patterns than those located in differ-

ent domains [48]. Interestingly, our results suggest that clusters of genes from a

same family are frequently within the same domain, more than expected by gen-

omic proximity alone. Whether this is evidence of evolutionary constraints imposed

by chromatin structural properties or, vice versa, it is gene evolution that deter-

mined chromatin conformation will need to be investigated.

Conclusion
Our analysis supports concordance between gene co-regulation and chromatin domains

in the context of cancer, driven by a subset of (almost) fully concordant domains. We

proposed a new algorithmic approach, DADo, to systematically identify differentially

active domains between two conditions. Overall, the identification of differentially ac-

tive domains from the analysis of Hi-C datasets in multiple biological contexts can pro-

vide complementary information to standard differential expression analysis and

ultimately inform on how coordinated regulation of specific gene sets determines cell

phenotypes.
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Methods
RNA-seq datasets

In this study, we used RNA-seq gene expression data generated by the TCGA Research

Network (https://www.cancer.gov/tcga). In total, we used 20 RNA-seq datasets corre-

sponding to a pair of conditions (Additional file 2: Table S1): 5 “normal vs. tumor”

(e.g., kidney tumor vs. healthy kidney tissue), 7 “wild-type (wt) vs. mutant (mut)” (e.g.,

liver hepatocellular carcinoma with vs. without CTNNB1 mutation) and 8 “subtypes”

(e.g., luminal vs. basal breast cancer). For the differential expression analyses, “normal-

ized results” (values divided by the 75-percentile and multiplied by 1000) of gene ex-

pression were used. These data were also used, after quantile normalization, for

computing pairwise correlations. For building classes of expression for the gene-to-

domain permutations as well as for plotting purposes, transcripts per million (TPM;

“scaled estimates” * 106) data were used. Only genes that had at least 80% of the sam-

ples with at least 5 reads were retained for downstream analyses.

Specific sample annotation

Assignment of smoker and non-smoker patient status in lung adenocarcinoma was

based on the clinical data annotation available on the TCGA website (https://portal.

gdc.cancer.gov) and previously published data. To retrieve low and high infiltration

samples of skin cutaneous melanoma (SKCM), we performed a gene set variation ana-

lysis using the gsva function from the GSVA R package [49]. For this purpose, we used

the T cell infiltration signature, retrieving corresponding published lists of genes [50,

51]. Samples with a signature score lower than the first quartile of all scores were con-

sidered as lowly infiltrated, and those with a score higher than the third quartile as

highly infiltrated. Additional tumor subtype annotations were retrieved from the corre-

sponding TCGA publications.

Gene-level differential expression analysis and domain-level averaged LogFC

Differential expression analysis was conducted on R with the limma package [26] (lmFit

and eBayes functions). We retrieve the log2-fold-changes (logFC) and adjusted p values

of the genes from the table returned by the topTable function.

Generating Hi-C contact matrices

Hi-C intra-chromosomal contact matrices were either generated from raw fastq files or

dumped from processed hic files using Juicer [52]. The Knight-Ruiz (KR) method was

used for contact matrix normalization. In cases when KR normalization failed to con-

verge, the VR (vanilla coverage) normalization was applied. For all Hi-C datasets, we

generated contact matrices at 40 kb resolution. To eliminate technical noise, paired

rows and columns that have more than 99% contact values being empty were removed

for downstream analysis.

Compartment domain calling

Chromatin compartments, sub-compartments, and compartment domains have been

inferred using Calder [10]. In brief, Calder detects domains characterized by high intra-

domain correlations of chromosome-wide intra-chromosomal interactions. Domains
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identified by Calder are then hierarchically clustered based on inter-domain interac-

tions and independently of linear proximity (i.e., proximity along the genome se-

quence). Chromatin sub-compartments are then determined from this domain

hierarchy and can be analyzed at multiple levels of granularity. In principle, each in-

ternal node of the hierarchy can be thought as chromatin sub-compartment comprising

all domains descending from it. Hierarchy branches are internally re-ordered based on

gene density and without disrupting the clustering structure to match sub-

compartments among different chromosomes. In this study, we considered either the

top layer of the hierarchy, corresponding to the subdivision into A and B compartment,

and the third layer, which determines 8 sub-compartments (4 within the A compart-

ment: A.1.1, A.1.2, A.2.1, A.2.2 and 4 within the B compartment: B.1.1, B.1.2, B.2.1,

B.2.2). Finally, a normalized rank value is assigned to each domain as its rank within

the hierarchy sorted by increasing gene density normalized within the [0,1] interval. A

detailed description of the method is provided in [10].

Hi-C significant interactions

We used HiC-DC [45] to compute the statistical significance of chromatin interactions

at bin level (bin size = 20 kb) for RWPE1 and 22Rv1 cell lines. For HiC-DC parameters,

the degree of freedom in the hurdle negative binomial regression model was set as 6.

We determined the sample size parameter by trying 20 values in the [0.5,1] range with

equal distance and choosing the maximum value that did not resulted in optimization

failure in R. Other parameters of HiC-DC were set as default. We observed that inter-

action p values resulting from HiC-DC were systematically lower for Hi-C datasets with

higher number of overall contacts. To correct for this bias, we conducted

chromosome-wise sub-sampling of contacts, such that each chromosome had the same

number of contacts for RWPE1 and 22RV1.

Differential interactome analysis

Differential interactome analysis of a chromatin region of interest searches for interac-

tions (pixels in its contact map) with a significantly different contact frequency between

two conditions. For each pixel (bin1, bin2), we defined an interaction strength S as the

-log10-transformed HiC-DC p value. We then computed the difference of interaction

strength between two conditions as ΔS = S1–S2 and tested ΔS for significant deviation

from 0 with respect to a background distribution. We generated the background distri-

bution by computing ΔS for all pixels within a 2 Mb window across all chromosomes.

An empirical two-tailed p value was obtained from this background distribution as p =

P(|ΔS| > |ΔSbackground|). In each comparison, we also kept track of the “direction” of

the significant difference (−1 or 1), i.e., whether a given pixel was found more signifi-

cantly frequent in the condition 1 or condition 2.

Shared boundaries analysis

To determine the percentage of shared boundaries between two datasets, we tested if

for a boundary located in bin X in one dataset, we could find a corresponding boundary

in the other dataset within the bin interval [X-2, X+2] (i.e., tolerance radius = 2 bins or

80 kb). Given each boundary can determine either the start or end position of a
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domain, we separately computed the shared percentages of start and end boundaries.

The final percentage of shared boundaries was considered as the mean of the two

percentages.

The DADo algorithm

Data pre-processing

Our algorithm takes as inputs a list of chromatin domains (CDs), which can be either

compartment domains or TADs pre-computed with a separate tool, one matrix of gene

expression (genes x samples table), and sample annotations defining two conditions to

be compared. First, genes are assigned to CDs based on their transcription start sites

(TSS). If certain genomic regions are not covered by any CD and the TSS of a gene is

not located within a CD, but its end (3’UTR) is inside a CD, then the gene is assigned

to the CD that contain its end position. Gene coordinates are retrieved from the GFF

file for the GRCh37 human genome build downloaded from Ensembl. As an additional

filter, only domains containing at least 3 genes but not more genes than the 99th (data-

set-specific) percentile are retained for further analyses.

Step 1: FCC AUC ratio analysis The first step of the algorithm aims at quantifying

concordance of gene expression within chromatin domains across the entire genome.

To this end, we first calculate a domain-level metric, the fold-change concordance

(FCC) score, defined as in Eq. 1. The FCC score ranges between −1 (full discordance)

and 1 (full concordance). Next, to derive a genome-wide quantification of this concord-

ance (or lack thereof), domains are ranked by decreasing FCC and the cumulative sum

is calculated. A similar procedure is adopted for the random data, for each of the

100,000 permutations (see next section) and the 95th percentile value is retained in

order to derive a unique random cumulative sum curve. Finally, we calculate the ratio

between the areas under the curve (AUC) of the observed and the random cumulative

sum curves. The AUC is computed with the auc function of the flux R package

(https://rdrr.io/cran/flux/).

Step 2: Differentially active domains Once the genome-wide concordance has been

assessed, the next goal is to identify differentially active domains between 2 conditions.

DADo assesses gene co-regulation in a given domain by computing 2 scores for each

domain:

1) The mean gene expression fold-change (mFC) between the 2 conditions computed

over all genes within the domain;

2) The mean gene expression correlation (mCor) in the analyzed dataset computed

over all genes within the domain.

To compute mFC scores, DADo performs gene-level differential expression ana-

lysis with the limma R package (lmFit and eBayes functions) and retrieves log2-

fold-changes (logFC) as well as adjusted p values of the genes (topTable function).

Finally, for a given domain d, the logFCs of the genes in d are averaged to obtain

mFC.
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To compute mCor scores, for two given genes within a same domain, the Pearson’s

correlation of expression across all samples is used as a measure of co-expression. Cor-

relations among all pairs of genes in a given domain are then averaged to obtain mCor.

For each metric, we separately evaluate statistical significance of each score by means

of empirical null models (see next section) hence obtaining, for each domain, two em-

pirical p values. These p values are combined into a single p value. Combined p values

are adjusted for multiple testing and a domain is called “differentially active” if its

adjusted combined p value is lower or equal to 0.01.

Gene expression fold-change statistical significance To assess the significance of the

mFC score, we re-compute this measure after 100,000 gene-to-domain permutations

generated following a procedure previously described [53]. Gene-to-domain assign-

ments were permuted within 5 equal-sized classes generated based on the expression

level. To account for gene length, scaled estimates of gene expression data (instead of

RSEM) were used to create the gene expression classes. An empirical p value was de-

rived as the number of permutations returning an absolute mFC value greater or equal

to the one observed divided by the total number of permutations (we add 1 to the nu-

merator and denominator to avoid p value = 0).

Gene expression correlation statistical significance To assess the statistical signifi-

cance of the mCor score, we re-computed this measure on randomized domain parti-

tions generated according to the following strategy:

� For a domain D comprising k genes, we selected k genes from the left-side and

right-side adjacent domains, starting from the closest ones to the domain

boundaries;

� Next, we computed the average of the pairwise Pearson’s correlations between each

gene in the domain D and each of the genes that were sampled from the adjacent

domains to obtain cross-boundary mCor values;

� Cross-boundary mCor values were computed for each domain and pooled for all

comparisons that we performed to build a unique distribution from ~100,000 mean

correlations;

� The empirical p value for a given domain mCor score was then computed as the

total number of cross-boundary mCor values greater or equal to the observed mCor

score divided by the total number of cross-boundary mCor scores (we add 1 to the

numerator and denominator to avoid p value = 0).

The mFC and mCor empirical p values were combined using the Stouffer’s method

(one-sided), and adjusted for multiple testing following the Benjamini-Hochberg’s

method (as implemented by the p.adjust R function). A chromatin domain was consid-

ered as differentially active (DA) if its combined p value ≤ 0.01.

Robustness of the analyses

To assess the robustness of our approach, we first repeated our analyses on the set of

TADs resulting from the TopDom TAD calling method implemented in an R package
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released at https://github.com/HenrikBengtsson/TopDom, with the parameter window.-

size=5. In addition, all comparisons were repeated using a unique set of domains that

were derived with Calder from the GM12878 Hi-C dataset, which has the highest data

resolution (4.9 billion of reads).

Effect of sample size on gene-level and domain-level analysis

To assess the effect of sample size on the detection of differentially expressed genes

and differentially active domains, we selected one dataset from each comparison type

and subsampled a certain number of samples (nSamp) while preserving the nSamp ra-

tio between the two conditions (nSamp condition 1/nSamp condition 2/subsampling

ratio): G401 - KICH normal vs. tumor (25/65/1, 20/52/0.8, 15/39/0.6, 10/26/0.4), SK-

MEL-5 - SKCM low inf. vs. high inf. (119/119/1, 100/100/0.84, 80/80/0.67, 60/60/0.50,

40/40/0.34, 20/20/0.17) HepG2 - LIHC CTNNB1wt vs. CTNNB1mut (256/92/1, 192/69/

0.75, 128/46/0.5, 64/23/0.25).

Enrichment analysis

Gene ontology enrichment analysis was performed using the enricher function from the

clusterProfiler R package [54] (with minGSSize=1 and maxGSSize=500). Gene sets of

biological processes were retrieved from the Molecular Signatures Database (MsigDB;

www.gsea-msigdb.org/gsea/msigdb; version 6.1.).

Conserved region analysis

Significantly differentially active domains were extracted from all datasets (adj. p value

≤ 0.01) and subjected to an all-versus-all matching. Only the matches with ≥ 80% base-

pair overlap were retained. Duplicated and nested sets of matching domains were dis-

carded. Conserved regions (starting at the smallest start and ending at the largest end

of the matching domains) with at least 3 genes at the intersection of the matching do-

mains were then retained. Finally, those with ≥ 80% of the intersect genes in common

were merged. The GenomicRanges R package [55] was used for this analysis (for the

genomic range matching). For the permuted data, we sampled for each dataset as many

not differentially active CDs (adj. p val. > 0.01) as differentially active CDs (adj. p val. ≤

0.01; 1000 permutations). Then, conservation analysis was conducted in the same way

as for the observed data. For the gene ontology enrichment analysis of the conserved

regions, we retain those that were conserved in at least 8 datasets.

Association with tumor purity

Sample purity was retrieved from ref. [43]. For each gene, we computed the Pear-

son’s correlation coefficient between gene expression (log10 TPM) and purity

across all samples. These values were then averaged at the domain level. We de-

fined as “immune domains” those domains with an average purity correlation

below or equal to the 0.05-quantile of the non-significantly differentially active do-

mains (here r = −0.27).
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Gene family data and family networks

Gene family data were downloaded from https://www.genenames.org/cgi-bin/

genefamilies/download-all/tsv (April 2018). If a gene was annotated with multiple fam-

ilies, the first-level (more general) was retained (e.g., “Collagens” for “Collagens|Colla-

gen proteoglycans”). To test whether genes from the same family were more likely to

be within the same domain than expected, for Hi-C each dataset, we built a network

for each gene family and connected genes if they were in the same domain (observed

number edges). The expected number genes in the same domain (expected number of

edges) were obtained by applying the same procedure after randomly sampling the

same number of genes (among those having a family annotation). Genes were sampled

by preserving the chromosome representation and by preserving gene contiguity: if k

genes from a given family were clustered at contiguous genomic positions, then the

same number of contiguous genes were randomly sampled (for each gene cluster). The

sampling of the cluster was repeated if 80% or more of the sampled genes belong to the

same family. Values were then aggregated by family and averaged over 100 permuta-

tions and across datasets and only domains where at least 50% of their genes were an-

notated for a given gene family were retained.

Cross-boundary domain partitions

To assess the relevance of domain boundaries in determining gene co-regulation within

a domain and differentially active domains, we generated “artificial” domain partitions

such that each artificial domain has start and end positions corresponding to the mid-

positions of the “real” CDs. In this way, each artificial domain traverses a real domain

boundary and comprise genomic regions from two adjacent real domains. We com-

puted these artificial partitions for all datasets and ran DADo on all comparisons to

compare the number of significant hits that we obtain with the real and artificial do-

mains. Since our analyses depend on the list of genes within a domain (rather than its

coordinates), we exclude from this analysis artificial domains where all genes come

from a unique real domain.

ChIP-seq data

We downloaded from ENCODE (https://www.encodeproject.org) the fold change over

control bigWig files (replicates 1,2) for the 22Rv1 (ENCFF282RLY) and the RWPE1

(ENCFF039XYU) cell lines. These files were then converted to bedGraph format with

the bigWigToBedGraph tool (downloaded from http://hgdownload.soe.ucsc.edu/

admin/exe/linux.x86_64/).
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