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Abstract

Precise splice junction calls are currently unavailable in scRNA-seq pipelines such as
the 10x Chromium platform but are critical for understanding single-cell biology.
Here, we introduce SICILIAN, a new method that assigns statistical confidence to
splice junctions from a spliced aligner to improve precision. SICILIAN is a general
method that can be applied to bulk or single-cell data, but has particular utility for
single-cell analysis due to that data’s unique challenges and opportunities for
discovery. SICILIAN’s precise splice detection achieves high accuracy on simulated
data, improves concordance between matched single-cell and bulk datasets, and
increases agreement between biological replicates. SICILIAN detects unannotated
splicing in single cells, enabling the discovery of novel splicing regulation through
single-cell analysis workflows.

Main text
Alternative splicing is essential for the specialized functions of eukaryotic cells, neces-

sary for development [1], and a greater contributor to genetic disease burden than mu-

tations [2]. Despite the importance of splicing and massive single-cell RNA-seq

(scRNA-seq) data generated, the extent to which the diversity of RNA splicing in single

cells is regulated and functional versus transcriptional noise remains contentious [3].

Current spliced aligners call many false-positive spliced junctions, partly because

they are computational procedures operating on noisy observations of expressed RNA.

The factors influencing this noise include sequence properties of the genome: repeti-

tive genomic sequence within and between genes, biochemical noise introduced during

library preparation which could cause mismatches, template switches, and technical

noise causing base call errors during sequencing [4]. Differences between the reference

and sequenced transcriptomes caused by polymorphisms and other genetic variations

yield further false positives during the process of alignment [5–8]. False-positive align-

ments are further exacerbated in scRNA-seq due to higher levels of biochemical noise

specific to single-cell preparations (i.e., higher prevalence of low-entropy-reads in

scRNA-Seq as discussed below) as well as statistical issues: false-positive splice junc-

tion calls are more prevalent in larger datasets. Together, these challenges combine to
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generate an ongoing debate regarding whether 10x Chromium (10x) can be used for re-

liable de novo splice junction detection [9, 10], despite the presence of a large number

of junctional reads in the datasets generated by this protocol (Fig. 1A).

The resolution and massive number of available scRNA-seq datasets hold great

promise for discovering regulatory and functional splicing biology, including (a)

Fig. 1 Overview of the SICILIAN statistical framework and its performance evaluation based on benchmarking
datasets. A High and variable fraction of junctional reads across diverse cell types in the HLCA dataset [11]. Each
violin plot shows the fraction of mapped reads in each cell (within a cell type) that are junctional. B SICILIAN
takes the alignment information file (usually in the form of a BAM file) from a spliced aligner such as STAR and
then deploys its statistical modeling to assign a statistical score to each junction. C SICILIAN utilizes the cell-
level statistical scores (empirical p values) for each junction across 10x samples to correct for increased false
discovery rates due to multiple hypothesis testing. The corrected score is called the “SICILIAN score” and can be
used to consistently call junctions across cells. (D) SICILIAN improves the concordance between detected
splicing junctions in single cells and bulk cell lines. (E) ROC curves by SICILIAN and read count criteria for four
simulated datasets [8, 12] (the top two based on data from [12] and the bottom two based on data from [8])
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identifying novel unannotated regulated alternative splicing in rare cell types present

even in well-annotated organisms such as human [13], (b) de novo prediction of dys-

regulated splicing in single-cell data from diseases such as in cancer or neurodegenera-

tive diseases, and (c) automatic high-quality junction prediction from poorly annotated

organisms such as new model organisms.

Typical workflows from commodity platforms such as 10x genomics (e.g., Cell Ranger

[14]) have preprocessing steps that remove all unannotated junctions before reporting

spliced alignments. Further, the vast majority of publications characterizing splicing in

single cells require ad hoc lower bounds on junction overlap or total number of support-

ing reads [15]. These approaches will miss and highlight the need for a statistically driven

method to discover novel regulation of splicing in single cells. There is thus a great bio-

logical need for a method that both reduces the false-positive identification of junctions

while having power to detect bona fide unannotated splicing (controlling false negatives).

Overall, existing approaches to splicing analysis in the scRNA-seq data either lack suffi-

cient sensitivity to identify splice junctions or specificity to identify false positives [8].

In this paper, we introduce SICILIAN (SIngle Cell precIse spLice estImAtioN), a stat-

istical wrapper for precise splice junction quantification in single cells. SICILIAN

deconvolves biochemical noise (generated during library preparation) and computa-

tional noise (generated by the spliced aligner while mapping reads to the genome), both

being highly prevalent in scRNA-seq and can lead to false-positive junctions. To iden-

tify spliced alignments that are erroneously reported by the aligner due to this com-

bined noise, SICILIAN employs generalized linear statistical modeling, with predictors

being various read mapping features. In this paper, we use STAR [16] as the spliced

aligner in SICILIAN, though the general statistical framework can be applied to refine

the splice junction calls from any spliced aligner generating a BAM file. SICILIAN can

be applied to both single-end (such as 10x) and paired-end data (such as Smart-seq 2).

When running on paired-end data, SICILIAN utilizes alignment features for both mate

reads (R1 and R2) in its model and extracts spliced junctions from both R1 and R2

alignments.

The SICILIAN algorithm has three main steps: (1) assign a statistical score to each junc-

tional read’s alignment to quantify the likelihood that the read alignment is truly from

RNA expression rather than artifacts; (2) aggregate read scores to summarize the likeli-

hood that a given junction is a true positive; and (3) report single-cell resolved junction

expression quantification, corrected for multiple hypotheses testing ( “Methods” section,

Fig. 1B,C).

The goal of step (1) above is to statistically evaluate the confidence of the alignment

for each junctional read. To do this, SICILIAN fits a penalized generalized linear model

[17] on the input RNA-seq data, where positive and negative training classes are de-

fined based on whether each junctional read also has a genomic alignment. Our ana-

lysis has shown that this definition for training data well approximates the alignment

profile of reads aligned to the false-positive and true-positive junctions (Additional file

1: Fig. S1, Fig. S2). Furthermore, training a new model for each input dataset allows

SICILIAN to adapt to batch effects. The model uses the following predictors: the num-

ber of alignments for the read, the number of bases in the longer and shorter read over-

hangs on each side of the junction, the alignment score adjusted by the read length, the

number of mismatches, the number of soft-clipped bases, and read entropy ( “Methods”
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section). These predictors have the power to distinguish reads aligned to false-positive

and true-positive junctions defined by ground truth from simulated datasets. The posi-

tive and negative training reads used for training the model can reliably model the gen-

eral profile of the true-positive and false-positive reads (Additional file 1: Fig. S1, Fig.

S2).

Read entropy, a quantitative measure of how repetitive a sequence is, is not generally

appreciated as an important variable in scRNA-seq reads even though it is characteris-

tic of technical artifacts [18], underlining its importance in the SICILIAN model. Read

sequence entropy is expected to be a highly informative predictor of false-positive

spliced alignments for two reasons: (1) reverse transcriptase or PCR enzymes are

known to generate sequences of low entropy (“PCR stutter”) [18], and PCR crossover is

common in these regions; (2) these low-entropy sequences typically map to many

places in the genome [19]. Also, the entropy could be more informative and variable in

scRNA-seq compared to bulk RNA-seq. For example, in the 10x data from a human

lung study [11] (HLCA data set), the average read entropy in 20% of cells is < 4 (Add-

itional file 1: Fig. S3A), which is much more than the fraction of low-entropy reads in

bulk RNA-seq datasets, where the entropy is < 4 in only 0.09% and 0.4% of reads in one

simulated8 and five bulk cell lines, respectively (Additional file 1: Fig. S3B,C).

In step (2), the statistical scores assigned to each junction’s aligned reads are aggregated

using a Bayesian hypothesis testing framework to obtain aggregated junction-level scores.

SICILIAN subsequently uses the distribution of aggregated scores for likely false-positive

junctions to predict an empirical p value for each junction. Finally, in step (3), SICILIAN

corrects for multiple hypotheses testing by taking the median of the empirical p-values for

each junction across samples and reports it as the final “SICILIAN score” for the junction

(Fig. 1C). User-defined thresholding on this score allows for a junction to be either called

or thrown out consistently across all samples. In this paper, we used a threshold of 0.15,

which was selected to maximize the sum of sensitivity and specificity on the benchmark-

ing datasets with known ground truth (“Methods” section).

We benchmarked SICILIAN using two different types of benchmarking data:

matched scRNA-seq and bulk data from five human lung adenocarcinoma cell lines

[20] and simulated data with known ground truth [8, 12]. We compared SICILIAN to

commonly used filtering criteria in the field: all junction calls based on STAR [16] raw

alignments, the junctions supported only by uniquely mapping reads [21], and calling

junctions based on read counts [22, 23].

SICILIAN increases the concordance of junction calls on matched single-cell and

bulk datasets [20] (Fig. 1D; Additional file 1: Fig. S4A). We define “concordance” to be

the fraction of junctions detected in the single cells from a cell line that are also present

in the bulk data from that cell line. SICILIAN increases the concordance between the

detected junctions from 10x and bulk RNA-seq regardless of the pairs’ cells of origin,

which is consistent with SICILIAN identifying and removing scRNA-seq-specific arti-

facts (i.e., false-positive junctions that are present in only scRNA-Seq data). SICILIAN

improves the concordance for all cell lines (Fig. 1D), e.g., for cell line HCC827, the con-

cordance based on raw STAR calls is 0.54, and SICILIAN increases it to 0.75, while

calling junctions based on a 10-read filter only increases the concordance to 0.66. Also,

considering junctions detected in the single-cell and bulk datasets of the same cell line
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as true positives, SICILIAN outperforms the read count criterion in terms of the AUC

value (Additional file 1: Fig. S4B).

As there is no single-cell dataset with fully-known ground truth and SICILIAN’s

modeling is general and can be applied to both bulk and scRNA-Seq, we resorted to

bulk-level simulated datasets and ran the identical SICILIAN model on them. SICILI

AN increases prediction accuracy on four bulk simulated datasets with known ground

truth [8, 12]. For these datasets, SICILIAN uniformly achieves AUCs of ~ 0.94, a signifi-

cant increase over the AUCs of 0.66–0.89 based on the read count criterion (Fig. 1E).

In addition to benchmarking datasets, we ran SICILIAN on 36,583 10x and 6,565

Smart-seq2 (SS2) cells from two individuals from the human lung cell atlas (HLCA)

[11] and 16,755 10x lung cells from two individuals from the mouse lemur cell atlas

(MLCA) [24]. Since there is no ground truth for real data, we use annotation status as

an approximate surrogate for ground truth. Knowing that many annotated junctions

have been manually curated or experimentally validated, we expect that an algorithm

with ability to correctly identify false positives should enrich for annotated junctions,

particularly for organisms with extensive annotation such as humans [25]. Because

transcript annotations are not part of the SICILIAN model, this serves as an orthogonal

measure for performance evaluation. SICILIAN modeling increases the proportion of

annotated to unannotated junctions in all four human and mouse lemur individuals

compared to the original STAR calls and read-count criterion (Fig. 2). In all 10x data-

sets from four human and mouse individuals, SICILIAN calls a higher proportion of

annotated junctions (83.6% of annotated junctions are called on average out of all an-

notated junctions) than unannotated junctions (29.2% of unannotated junctions are

called on average out of all unannotated junctions), and a higher proportion of anno-

tated junctional reads (87.6% of annotated junctional reads are called on average out of

all annotated junctional reads) than unannotated junctional reads (23.9% of unanno-

tated junctional reads are called on average out of all unannotated junctional reads), ex-

cluding junctions that only appear once in the dataset (Fig. 2A; Additional file 1: Fig.

S5). For many genes, including GDI1, GOT2, and CD14, SICILIAN removed all noisy

unannotated junctions and kept only annotated junctions although the algorithm was

agnostic to the annotation (Fig. 2B; Additional file 1: Fig. S6). Considering annotated

and unannotated junctions as surrogates for true-positive and false-positive junctions

in human lung data, SICILIAN achieves an AUC of 0.74, while that of the read-count-

based approach is 0.5 (Fig. 2C). Note that due to the power of scRNA-seq in capturing

cells from rare cell types, if there are unannotated junctions with low read counts in

these rare cell types, we would not be able to detect those junctions based on a read-

count criterion and need a better detection regime such as SICILIAN for calling them.

SICILIAN also increases the agreement of splicing calls between individuals. At almost all

fixed junction expression levels, SICILIAN makes more consistent decisions (either calls or re-

jects the junction in both individuals) than inconsistent decisions for both human and mouse

lemur, emphasizing the robustness of SICILIAN (Fig. 2D,E). It calls 117,684 shared junctions

between individuals in HLCA 10x, while a 10-read cutoff calls only 80,292 (Fig. 2D). SICILI

AN makes a consistent decision for 83.0% of junctions. Similarly, in MLCA, SICILIAN calls

36,446 shared junctions in both individuals, much higher than 17,798 that were called by a

10-read cutoff criterion, and makes a consistent decision about 69.9% of junctions.
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To further identify whether SICILIAN enriches for known junctions, we compared

the junctions called by SICILIAN in HLCA 10x with two of the most recent and precise

databases of human splice junctions: CHESS [25] and the Genotype-Tissue Expression

(GTEx) project [26]. Only 8% and 7% of raw STAR calls are present in CHESS and

GTEx, respectively, but SICILIAN increases these percentages to 48.8% and 45.4%, re-

spectively (Fig. 2F). We also looked at the junctions within each lung cell type and

found that the fraction of junctions that are not present in CHESS or GTEx varies

Fig. 2 Splice junction discovery in human lung (HLCA) and mouse lemur lung (MLCA) cells. A SICILIAN filters out a
higher proportion of unannotated junctions than annotated in all individuals from both human and mouse Lemur
datasets [only junctions with at least two reads in the given dataset are plotted]. B Splice junctions identified by SICILI
AN in gene GDI1 in human; annotated splicing was maintained and unannotated noisy junctions were all removed. C
Better discrimination between annotated and unannotated junctions in the HLCA dataset achieved by the SICILIAN
statistical criterion. D The number of junctions found in both human individuals that are called consistently by SICILI
AN is larger than the number that are called differently in almost every case, regardless of the number of junctional
reads. E The number of junctions called consistently between the two mouse lemur individuals is also larger than the
number called inconsistently at almost every read depth after SICILIAN filtering. F The fraction of HLCA junctions that
are found in CHESS and GTEx databases before and after applying SICILIAN to STAR raw calls. G The number of
mouse lemur junctions orthologous junctions (found by LiftOver from Mmur3 to hg38) that have been also detected
in the HLCA dataset. Junctions have been further classified based on their annotation status in the mouse lemur and
human transcriptomes
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substantially across different cell types, even those with similar sequencing depth,

indicating that the rate of novel splicing may vary between cell types (Additional

file 1: Fig. S7).

Finally, mouse lemur calls by SICILIAN are enriched for having annotated ortholo-

gous junctions (obtained via the LiftOver tool [27]) in the human transcriptome, which

is much more complete than the mouse lemur transcriptome [28] (“Methods” section).

Strikingly, more than 48.4% of lemur-unannotated junctions called by SICILIAN are

annotated in the human transcriptome, compared to only 11.2% of unfiltered STAR

calls, which supports the claim that SICILIAN filtering enriches for true-positive junc-

tions and highlights the power of SICILIAN for improving transcriptome annotation in

poorly studied organisms. We also compared the detected junctions in MLCA and

HLCA datasets: applying SICILIAN increases the fraction of junctions in mouse lemur

that have been also detected in HLCA from 15 to 54% (Fig. 2G).

Taken together, our results demonstrate that the SICILIAN method enables a new

level of precision in splice junction detection from single-cell platforms such as 10x

and SS2. SICILIAN allows automatic junction discovery even for poorly annotated spli-

cing programs such as rare cell types or in new model organisms. The conceptual

models used in SICILIAN are also applicable to other data types such as emerging

single-cell sequencing technologies and bulk sequencing, exemplified by the recent ap-

plication of SICILIAN for detecting SARS-COV-2 subgenomic RNAs in the swab sam-

ples taken from patients [19]. Additionally, we anticipate that this framework can be

expanded to detect nonlinear RNA variants such as gene fusions and circRNAs using

chimeric alignments reported by the aligner. Underlining the importance of unanno-

tated junction discovery, SICILIAN discovered new regulated splicing patterns in pri-

mary human samples that were impossible using annotations [29].

Methods
Alignment of scRNA-seq data

FASTQ files were aligned using STAR [16] (v 2.7.5.a) with default parameters except

for chimSegmentMin = 10 and chimJunctionOverhangMin = 10. Every non-chimeric

spliced alignment (defined as a read with an “N” in its CIGAR string) was parsed from

the STAR BAM file. By collapsing spliced alignments based on their mapping positions,

we obtained the “unfiltered STAR calls.” If a read had multiple spliced alignments, we

only included the spliced alignment with the lowest value of the HI BAM flag to avoid

double-counting reads. We also kept track of which reads had genomic alignments as

needed for selecting our training reads in statistical modeling. When input data is

paired-end, both BAM files corresponding to R1 and R2 reads were parsed for extract-

ing spliced alignments.

Statistical detection of splice junctions in single-cell data

SICILIAN extracts all relevant information for the spliced alignments from the BAM

file and utilizes that information to build a statistical model to distinguish truly

expressed junctions from false positives due to biochemical and computational noise.

The statistical framework in SICILIAN can be divided into three main steps: (1) statis-

tical read alignment evaluation, (2) junction-level statistical evidence collection, and (3)
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multiple hypothesis testing correction (Fig. 1B). To build the model, SICILIAN takes

advantage of the information across thousands of likely false-positive and true-positive

read alignments to train a logistic regression model and thereby assigns a single statis-

tical score to each extracted spliced alignment. Therefore, for each sample that SICILI

AN is run on, a new model is built, allowing the model to specifically adapt to the ex-

perimental conditions of the given sequencing run. For the data analyzed in this paper,

each 10x lane (and SS2 cell) was modeled separately to allow the modeling of lane-

specific batch effects.

Statistical read alignment evaluation

To train the regression model, we define negative training reads as the junctional reads with

genomic (i.e., a contiguous mapping to a genomic region) alignment and positive training

reads as the junctional reads without a genomic alignment. Our choice of negative training

reads reflects the mapping profile of erroneous alignments as the vast majority of junctional

reads with genomic alignments are not due to the real splice junction expression, but rather

confounding factors such as genome homology and other biochemical and sequencing errors.

Our analysis on simulated data with known ground truth has shown that the mapping profiles

of negative and positive reads are highly similar to those of true-positive and false-positive

junctional reads (Additional file 1: Fig. S1, Fig. S2). Another advantage is that our selection cri-

terion for training reads is independent of the predictors in the regression (because whether a

spliced read also has a genomic alignment is not included as a feature in the model). There-

fore, the training reads would not give too much weight to any predictor in the fitted regres-

sion model. Each positive and negative training set can have at most 10,000 junctional reads,

chosen randomly among the set of reads satisfying the training reads criterion.

Let y be a binary variable, where y = 1 indicates a true spliced alignment and y = 0 in-

dicates a false alignment. We model p (y = 1), the likelihood of a true spliced align-

ment, with the logistic regression with penalized maximum likelihood [17]. The

predictors in the regression comprise: number of reported alignments for the read ob-

tained from the NH tag in the BAM file (NH), number of mismatches obtained from

the NM tag in BAM file (nmm), length-adjusted alignment score obtained by normaliz-

ing the alignment score from the AS tag to the read length (AS), length of the shorter

read overhang flanking the junction (overlap), length of the longer read overhang flank-

ing the junction (max_overlap), number of the soft-clipped bases given by the S seg-

ment of the CIGAR string (S), and entropy of the read sequence (entropy):

yi � GLMnet ASþNHþ nmmþ overlap� max overlapþ S þ entropyð Þ

When processing paired-end data (such as SS2), we utilize the same alignment fea-

tures in the model but now from both R1 and R2 reads:

yi � GLMnet ðASR1 þ ASR2 þNHR1 þNHR2 þ nmmR1 þ nmmR2 þ overlapR1 � max overlapR1 þ
overlapR2 � max overlapR2 þ SR1 þ SR2 þ entropyR1 þ entropyR2 þ location compatible þ strand compatibleÞ

Note that we use location_compatible and strand_compatible as binary predictors for

paired-end data to determine whether the mate reads are compatible with being gener-

ated from the same cDNA fragment, given that in paired-end reads one mate (R1)
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should map to the forward strand and the other mate (R2) should map to the reverse

strand. By adopting this regression model, SICILIAN evaluates spliced alignments for

all cells within a 10x sample, providing enough statistical evidence for identifying false-

positive and true-positive junctions even in the cells with low read coverage. We fitted

the regression using the GLMnet R package [17]. The fitted model is then applied to

each junctional read to estimate a read-level score p̂, the estimated likelihood that the

spliced alignment is true.

Junction-level statistical evidence collection

The list of extracted junctions from the BAM file with their aligned reads is obtained

by collapsing the spliced alignments based on their mapping position. For each junction

with N aligned reads, the read-level scores are aggregated under a Bayesian hypothesis

testing framework to obtain an aggregated junction-level score:

P ¼ Πi∈N p̂i
Πi∈N p̂i þΠi∈Nð1−p̂iÞ

¼ 1

1þ exp
P

i∈N log ð
1−p̂i
p̂i

Þ

Since read-level scores are always between 0 and 1 and they are multiplied in the ag-

gregated score, the aggregated score is biased against junctions with more reads even

when their read alignments have high confidence. To correct for this bias, for each

number N of aligned reads, we build a null distribution of aggregated scores by ran-

domly sampling N reads across all read alignments. We then compute a junction cu-

mulative score Pcum for each aggregated score P by comparing it against the null

distribution. For junctions with N < 15 reads, we build the empirical null distribution

by computing 10,000 random aggregated scores; for junctions with N > 15 reads, we

use the central limit theorem to model the null distribution as a Gaussian distribution

and use it to compute the cumulative score Pcum.

To systematically estimating the SICILIAN’s false discovery rate, we further compute

an empirical p value (emp.p) for each junction. To do so, we use the distribution of the

cumulative scores Pcum for the junctions with at least 10% of their aligned reads having

genomic alignment as well. Since a spliced read with a genomic alignment is likely a

false positive due to artifacts, we use the splice junctions with a considerable fraction of

aligned reads with genomic alignment as likely artifactual junctions and use the distri-

bution of their cumulative scores Pcum as the null distribution to compute emp.p’s for

other junctions. When SICILIAN is applied to a single sample (one 10x sample or one

SS2 cell), emp.p is the SICILIAN’s final score for the junctions in the sample and junc-

tions with emp.p less than a certain threshold (e.g., 0.1) are called by SICILIAN.

Multiple hypothesis testing correction

When analyzing multiple 10x samples or SS2 cells (which is typical in single-cell stud-

ies), merely using empirical p-values for detecting junctions might result in an in-

creased false discovery rate due to multiple hypothesis testing, where each junction is

tested multiple times across the dataset. To address this issue, SICILIAN adopts a mul-

tiple hypothesis testing correction strategy where for each junction, it collects the em-

pirical p values (emp.p’s) across the samples from an individual and then computes its
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median (or the “SICILIAN score”) as a unified criterion to decide whether the junction

should be called across all 10x samples or SS2 cells (Fig. 1C). We took the median be-

cause as the number of random variables increases, their median converges to their ex-

pectation; therefore, the median can be used as a consistent statistical measure that

controls for multiple hypothesis tests of a junction being an artifact across samples.

With this approach, if a junction possesses a significant emp.p in one sample just by

chance but there is enough evidence in other samples that the junction is a false posi-

tive, SICILIAN would be able to correct the call by considering the junction’s emp.p’s

in other samples, which would lead to a large median and consequently the removal of

the junction. Using this system, each junction will be called consistently across all sam-

ples. For this paper, we used a cutoff of 0.15 for the SICILIAN score (or the median of

emp.p) as this value optimized the Youden's index (sensitivity + specificity −1) on the

benchmarking datasets with known ground truth.

For each sample in which junction i is originally present, the emp.p is only considered

in this step if it meets several criteria: the fraction of reads with a genomic alignment that

are also mapped to this junction in the sample is < 0.1, the reads mapping to the junction

in this sample have different starting points for their alignment (reads aligned to a junc-

tion have different overlaps), the average length of the longest stretch of either A’s, T’s,

G’s, or C’s in the reads mapping to the junction is less than 11, and the average entropy of

aligned reads to the junction is greater than 3. These filters are included because any of

these individual criteria provides significant evidence on its own that the junction is a false

positive. If a junction “fails” any of these criteria in one sample, the emp.p from that sam-

ple will not be included in the set of emp.p used to find the median.

Read sequence entropy

To further identify false positives by spliced aligner, the SICILIAN model also includes

the entropy [30] for the aligned reads, a quantitative measure of how repetitive a se-

quence is. For example, the entropy of sequence TCACTCTCCCACACTCTCTCTC

TCTCACACACACACACACACACACACACACACACACAC, which has many re-

peats of AC and TC is 2.1, while the entropy of sequence GAAAGTGTATAACT

ACAATCACCTAATGCCCACAAGGTACTCTGTGGATATCCCCTTGGA is 4.0. We

computed the entropy for a read sequence based on the distribution of overlapping 5-

mers in the sequence. For example, for ACTCCGAGTCCTCCG the list of 5-mers

would be: ACTCC, CTCCG, TCCGA, CCGAG, CGAGT, GAGTC, AGTCC, GTCCT,

TCCTC, CCTCC, and CTCCG. Let k1,...,kn be the set of unique 5-mers in the read se-

quence and for any ki, let N(ki) be the number of times that kmer ki appears in the read

sequence (for example, CTCCG appears twice in ACTCCGAGTCCTCCG). We define

the read entropy as
Pn

i¼1
− NðkiÞ

n log ðNðkiÞ
n Þ.

Mouse lemur liftover analysis

We used the UCSC LiftOver tool [27] (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to

convert the coordinates of the junctions detected by SICILIAN in MLCA from mouse

lemur (Mmur3) to human (hg38) genome assemblies and analyzed the annotation sta-

tus of the orthologous junctions in the human transcriptome. We used the
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recommended settings for LiftOver and analyzed only those junctions that have been

successfully and uniquely converted by the LiftOver tool.

Cloud-based implementation for SICILIAN

Given that the SICILIAN algorithm uses a number of tools (e.g., STAR aligner and

UMI-tools [31]) and Python and R packages, to alleviate the installation difficulties and

guarantee the reusability of our method, a reproducible workflow based on Common

Workflow Language (CWL) and docker containers has been created and can be

accessed on the Cancer Genomics Cloud [32]: https://cgc.sbgenomics.com/public/

apps#jordanski.milos/deepest-fusion/sicilian/ (Additional file 1: Fig. S8). In addition to

an immediate availability, the reproducible and ready-to-deploy implementation of SICI

LIAN on a cloud computational environment provides the opportunity to leverage the

enormous computational power in cloud environments to achieve scalability, one of

the main roadblocks in big data studies.

File downloads

– Human RefSeq hg38 annotation file was downloaded from: https://ftp.ncbi.nlm.nih.

gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/GCF_

000001405.39_GRCh38.p13_genomic.gtf.gz

– Mouse Lemur RefSeq Micmur3 assembly files were downloaded from: https://www.

ncbi.nlm.nih.gov/assembly/GCF_000165445.2/

– The list of GTEx splice junctions was downloaded from GTEx Portal: https://

storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_

v8_STARv2.5.3a_junctions.gct.gz

Availability of data and materials

The 10x benchmarking dataset [20] is available on the SRA database (GSM3618014).

The matched cell lines (HCC827, H1975, A549, H838, and H2228) for the benchmark-

ing 10x dataset were downloaded from the NCI Genomic Data Commons (GDC) Leg-

acy Archive (https://portal.gdc.cancer.gov/legacy-archive). The simulated benchmarking

datasets [8] were downloaded from ArrayExpress (accession number: E-MTAB-1728).

The HISAT simulated datasets [12] were downloaded from: http://www.ccb.jhu.edu/

software/hisat/downloads/hisat-suppl/reads_perfect.tar.gz and http://www.ccb.jhu.edu/

software/hisat/downloads/hisat-suppl/reads_mismatch.tar.gz. The human lung scRNA-

seq data used here was generated through the Human Lung Cell Atlas [11] project and

is accessible through European Genome-phenome Archive (accession number:

EGAS00001004344). The mouse lemur single-cell RNA-seq data used in this study was

generated as part of the Tabula Microcebus consortium and the fastq files were down-

loaded from: https://tabula-microcebus.ds.czbiohub.org. SICILIAN code is publicly

available under the GNU GPL-2.0 License and can be accessed via a GitHub repository:

https://github.com/salzmanlab/SICILIAN (DOI: https://doi.org/10.5281/zenodo.

5081832) [33]. All code used for benchmarking can be found at https://github.com/

salzmanlab/SICILIAN/tree/master/benchmarking. Also, a cloud-based implementation

of SICILIAN with a web-based user interface based on docker containers is publicly
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available through the NCI-funded Cancer Genomics Cloud platform: https://cgc.

sbgenomics.com/public/apps#jordanski.milos/deepest-fusion/sicilian/. All data was run

on the SICILIAN version corresponding to the commit on July 9, 2020, to the SICILI

AN GitHub repository with the exception of Smart-seq2 data which includes a paired-

end module introduced by the commit in October 2020.
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