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Abstract

Long-read RNA sequencing (RNA-seq) technologies can sequence full-length
transcripts, facilitating the exploration of isoform-specific gene expression over short-
read RNA-seq. We present LIQA to quantify isoform expression and detect differential
alternative splicing (DAS) events using long-read direct mRNA sequencing or cDNA
sequencing data. LIQA incorporates base pair quality score and isoform-specific read
length information in a survival model to assign different weights across reads, and
uses an expectation-maximization algorithm for parameter estimation. We apply
LIQA to long-read RNA-seq data from the Universal Human Reference, acute myeloid
leukemia, and esophageal squamous epithelial cells and demonstrate its high
accuracy in profiling alternative splicing events.

Introduction
RNA splicing is a major mechanism for generating transcriptomic variations, and mis-

regulation of splicing is associated with a large array of human diseases caused by

hereditary and somatic mutations [1–5]. Over the past decade, RNA sequencing

(RNA-seq) has revolutionized transcriptomics studies and facilitated the

characterization and understanding of transcriptomic variations in an unbiased fashion.

With RNA-seq, we can quantitatively measure isoform-specific gene expression, dis-

cover novel and unique transcript isoform signature, and detect differential alternative

splicing (DAS) events [6–8]. Until now, short-read RNA-seq has been the method of

choice for transcriptomics studies due to its high coverage and single-nucleotide reso-

lution [8]. However, due to limited read length, it is difficult to accurately characterize

transcripts using short reads, as 81% of isoforms have length greater than 500 bp in

the GENCODE annotation (median = 1543 bp and mean = 2121 bp). This fragmented

sequencing of the RNA/cDNA molecules results in biases and has become a barrier for

short reads to be correctly mapped to the reference genome, which is crucial for gene

or isoform expression estimation and novel or unique isoform detection. As a conse-

quence, transcriptome profiling using short-read RNA-seq is highly biased by read

coverage heterogeneity across isoforms. To tackle these challenges, a number of com-

putational tools, including RSEM [9], eXpress [10], TIGAR 2[11], Salmon [12], Sailfish
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[13], Kallisto [14], Cufflinks [15], CEM [16], PennSeq [17], IsoEM [18], and RD [19],

have been developed to quantify isoform expression from short-read RNA-seq data, but

different bias correction algorithms can result in conflicting estimates [17]. Overall,

quantifying isoform expression using fragmented short reads remains challenging, espe-

cially at complex gene loci [20, 21].

In recent years, long-read RNA sequencing has gained popularity due to its potential

to overcome the above-mentioned issues when compared to short-read RNA-seq

[22, 23]. Previous studies have utilized both single-molecule long-read PacBio Iso-

Seq and synthetic long-read MOLECULO methods [24–27]. For Oxford Nanopore

sequencing, there are two types of RNA-seq technologies: direct mRNA sequencing

and cDNA sequencing. Recently, the Oxford Nanopore Technologies (ONT)

MinION has been used to analyze both full-length cDNA samples and mRNA sam-

ples derived from tissue cells [28]. Nanopore sequencing is able to generate reads

as long as 2 Mbp, which allows a large portion or the entire mRNA or cDNA

molecule to be sequenced. Compared to short reads, this advantage of long reads

greatly facilitates rare isoform discovery, isoform expression quantification, and

DAS event detection.

However, there are still a few unique challenges to analyze long-read RNA-seq data

because existing methods developed for Illumina short-read RNA-seq do not have opti-

mal performance when directly used on long-read RNA-seq. This is because parametric

bias correction of short-read approaches requires high read coverage and isoform-read

assignment is not robust to small range misalignment from long-read data [16, 18, 19,

29]. Methods designed specifically for isoform expression estimation in long-read

RNA-seq have only emerged recently. For example, Byrne et al. [30] demonstrated the

feasibility of quantifying complex isoform expression using Nanopore RNA-seq data.

Tang et al. [31] characterized mutated gene SF3B1 at isoform level in chronic lympho-

cytic leukemia cells by leveraging full-length transcript sequencing data generated by

Nanopore. While long-read RNA-seq has great potential, the isoform quantification

accuracy is still constrained by high error rates and sequencing biases [32], which has

yet to be thoroughly accounted for. Specifically, high sequencing error rates (~ 15%) of

Nanopore data can result in misalignment of sequencing reads, but current methods

assume equal weight for each single-molecule read without accounting for error rate

differences when estimating isoform expression. This may complicate isoform usage

quantification. In addition, potential read coverage biases are not explicitly taken into

account by existing long-read transcriptomic tools [32]. In Nanopore direct mRNA se-

quencing protocol, pore block and fragmentation can result in truncated reads, leading

to biased coverage toward the 3′ end of a transcript [32]. These biases are also shown

in data sequenced from cDNA. In the presence of such biases, the accuracy of isoform

expression quantification inference can be severely affected, leading to over estimation

of expression for isoforms with short length.

In this article, we present LIQA, a statistical method that allows each read to have its

own weight when quantifying isoform expression. Rather than counting single-

molecule reads equally, we give a different weight to each read to account for read-

specific error rate and alignment bias at the gene (Fig. 1). To evaluate the performance

of LIQA, we simulated long data with known ground truth and also sequenced two real

samples using Oxford Nanopore sequencing. Our results demonstrate that LIQA is an
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accurate approach for isoform expression quantification accounting for read coverage

bias and high error rate of long-read data.

Results
Overview of LIQA

Figure 1 shows the workflow of LIQA and highlights the read length bias correction

step. LIQA requires aligned long-read RNA-seq files in BAM or SAM format and iso-

form annotation file as input. For estimation steps, LIQA first feeds read alignment in-

formation to a complete likelihood function and corrects biases for each long read by

accounting for quality score and read coverage bias. Second, given that isoform origins

are unobserved for some reads, an expectation maximization (EM) algorithm is utilized

to achieve the optimal solution of isoform relative abundance estimation. The output

values of LIQA are isoform expression estimates. Moreover, LIQA can further detect

DAS events given estimated isoform expression values.

To evaluate the performance of LIQA, we compared it with existing long-read based

quantification algorithms, including FLAIR [31], Mandalorion [30], TALON [33], and

the Oxford Nanopore Pipeline (ONP; https://github.com/nanoporetech/pipeline-

transcriptome-de). These methods use long-read RNA-seq data to detect novel

Fig. 1 Framework of LIQA. A The flowchart to illustrate how LIQA works. The inputs to LIQA are long-read
RNA-seq data and isoform annotation file. LIQA models observed splicing information, high error rate of
data, and read length bias. The output of LIQA are isoform expression estimates and detected DAS events.
B Quantification of potential 3′ bias of long-read RNA-seq data. Complete (orange) and truncated (blue)
long reads are jointly modeled to correct read length bias by estimating read length distribution
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isoforms and quantify transcript expression by counting the number of reads, which

give equal weight for each read. To make the comparisons fair, we ran LIQA, FLAIR,

TALON, Mandalorion, and ONP in quantification mode only with isoform annotation

information provided by GENCODE. We benchmarked the performance of each

method on both simulated and real data. In addition, we simulated more data to evalu-

ate the performance of LIQA in detecting DAS events between conditions.

Nanopore RNA-seq data simulation

We conducted a simulation study to evaluate the performance of LIQA and compared

it with other state-of-the-art algorithms for isoform expression estimation and DAS de-

tection based on GENCODE v24 annotation. To simulate a realistic dataset with known

ground truth, we used NanoSim [34] to generate the ONT RNA-seq data. NanoSim is

a fast and scalable read simulator that captures the technology-specific features of

ONT data and allows for adjustment upon improvement of Nanopore sequencing tech-

nology. This simulator first characterizes Nanopore reads and models features of the li-

brary preparation protocols in silico for read simulation. The human genome sequence

(GRCh38), transcriptome sequence, and GTF annotation file were downloaded from

GENCODE. To make the simulated data close to real studies, we assigned abundance

values for each isoform obtained from a real human eye RNA-seq dataset. Using Nano-

Sim, we generated 5 million (5M) Nanopore reads. To evaluate the impact of sequen-

cing depth on isoform expression quantification, we down-sampled 3 million (3M), 1

million (1M), and 0.5 million (0.5M) reads for the simulated data, respectively. These

reads were aligned to the reference genome using minimap2 [35]. Then, we selected

genes with 2 or more isoforms (67.2%) to evaluate the performance of LIQA in isoform

expression quantification. For each isoform, we compared it with Mandalorion, FLAIR,

TALON, and ONP. All methods were run with the same set of simulated aligned data

in BAM format as input.

The characteristics of the simulated data are shown in Fig. 2A and Additional file 1:

Fig. S1(A). The median lengths of ONT reads in the 0.5M, 1M, 3M, and 5M datasets

are 896, 922, 1010, and 923 base pairs, respectively. Among the evaluated genes with

multiple isoforms (67.2%) based on GENCODE annotation, 13% have two isoforms,

14% have three isoforms, and 73% have four or more isoforms. The simulated isoforms

have a wide range of relative abundance (interquartile range = (0.002, 0.75), median =

0.041). In addition, by training the statistical model of NanoSim with a real long-read

RNA-seq dataset, the coverage plots of the simulated data capture the features of real

ONT RNA-seq data, demonstrating 3′ bias (Additional file 1: Fig. S1(B)). These simu-

lated data thus provide an ideal basis to evaluate the performance of LIQA as the

ground truth is known.

Gene or isoform expression quantification accuracy

For each simulated dataset, we computed a set of measurements to evaluate the estima-

tion accuracy of each method. First, we measured the similarity between the estimated

isoform relative abundance and the ground truth by calculating Spearman’s correlation.

Second, we measured the estimation accuracy by calculating the root mean squared

error (RMSE), defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g

P
i
ðθ̂g;i−θg;iÞ

2

n

r
, where the summation is taken over all genes
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and all isoforms within each gene and n is the total number of isoforms across all

genes. Both statistics were computed at three levels: global gene expression, global iso-

form expression, and within-gene isoform relative abundances.

Figure 2B,C (Additional file 1: Fig. S2) shows the summary statistics between esti-

mated and true values of isoform expression (global isoform expression and isoform

relative abundances) at different read coverages. Spearman’s correlation and RMSE

were calculated for all five methods. LIQA has higher Spearman’s correlation than

other methods for simulated datasets with low sequencing depth (0.5M) (Add-

itional file 1: Table S2). For simulated data with high sequencing depth (3M, 5M),

Spearman’s correlation differences between LIQA, FLAIR, and TALON are not signifi-

cant (Additional file 1: Table S2). Figure 2C gives summary statistics of relative abun-

dance estimates for the five methods. For relative abundance estimation, LIQA

outperforms FLAIR and TALON with 6.6% and 7% lower RMSE on average, respect-

ively. Comparison results at gene level reveal a similar pattern (Additional file 1: Fig.

S4, Table S5). The improved performance of LIQA is likely due to its use of the EM al-

gorithm, which assigns unequal weight to each read to better account for mapping un-

certainty and read mapping bias (Fig. 3C,D and Additional file 1: Table S6, Table S7).

In contrast, FLAIR, TALON, and Mandalorion provide discrete estimations by directly

counting the number of reads aligned to each corresponding gene or isoform. Due to

the limited read coverage of ONT RNA-seq data, it is not surprising that they yield

lower estimation accuracy.

To evaluate the robustness of LIQA to a more complex isoform annotation, we ana-

lyzed 5M simulation dataset based on GENCODE v37 annotation. For major use

Fig. 2 Simulation study results. A Characteristics of simulated data with 5 M reads. Read length distribution
(left) and read count distribution by genes in log scale (right). B,C Summary statistics between true and
estimated isoform expressions using LIQA (blue), FLAIR (red), Mandalorion (gray), TALON (green), and Oxford
Nanopore Pipeline (ONP) (yellow) at different read coverages. B Spearman’s correlations (left) and RMSE
(right) between estimated and true TPM. C Spearman’s correlations (left) and RMSE (right) between
estimated and true relative abundance
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isoforms, as shown in Additional file 1: Fig. S4(D), LIQA still yields 7% higher Spear-

man correlation of TPM and relative abundance estimates than second best approach

FLAIR. For over-annotation, we simulated RNA-seq reads based on 66% of the GEN-

CODE v37 annotation. We then analyzed the simulated data with various methods

using 100% of the GENCODE annotation, corresponding to 50% more of the true an-

notation. Additional file 1: Fig. S4(E) shows the Spearman correlation results of over-

annotation. We find that the quantification accuracy of LIQA is nearly unchanged (1%

less). For under-annotation, we simulated RNA-seq reads based on 100% of the GEN-

CODE v37 annotation. We then analyzed the simulated data using 50% of the GEN-

CODE annotation, corresponding to 50% less of the true annotation. Additional file 1:

Fig. S4(E) shows Spearman’s correlation results of under-annotation. The estimation

accuracy is 10% lower when 50% less of the true annotation was used in the analysis.

Next, we evaluated the robustness of LIQA to 3′ read coverage bias (Fig. 3 and Add-

itional file 1: Fig. S3). First, we compared the accuracy statistics for 5′ terminal exon

and 3′ terminal exon of each isoform. Isoform expression with non-uniform read

coverage is more challenging to estimate because the 5′ end is less likely to be covered

by sequencing reads compared to 3′ end. Figure 3A shows the comparison of Spear-

man’s correlation for five methods with 0.5M read coverage. LIQA is more accurate

than the other four methods at 5′ terminal exon, especially when sequencing depth is

low (Additional file 1: Table S4). Spearman’s correlation coefficient of LIQA is 11%

higher than the second best performing method FLAIR for 5′ terminal exons, while

only 6% higher for 3′ exons. This improved performance of LIQA in terminal exon

quantification is also demonstrated by RMSE values. LIQA has 8–15% improve-

ment of RMSE values compared to other methods. Second, we considered the chi-

square statistics that measures the goodness of fit of coverage uniformity. Then,

we divided the isoforms into two categories based on median of the corresponding

measure (chi-square statistic > median, chi-square statistic < median) and summa-

rized Spearman’s correlation coefficient and RMSE for each group of isoforms. For

isoforms with more uniform read coverage, Spearman’s correlations of LIQA and

FLAIR are close. However, despite reduced Spearman’s correlation value, LIQA is

more accurate than the other four methods for isoforms with less uniform read

coverage (chi-square statistic > median) (Additional file 1: Table S4). The improve-

ment of LIQA compared to FLAIR is 5% higher for these isoforms. This is likely

because LIQA models potential truncated reads which result in 3′ coverage bias

when quantifying isoform expression.

Moreover, we assessed the impact of modeling read length bias and read quality

score on the accuracy of isoform expression estimation. Figure 3C,D shows the

comparison of isoform estimation accuracy using different models. For isoforms

with less uniform read coverage (chi-square statistics > median), model with read

length bias correction has 9% (full model vs read quality model) and 10% (read

length model vs baseline model) higher Spearman’s correlation. For genes with less

average read quality, model with read quality score has 6% higher Spearman’s cor-

relation. Overall, isoform estimation accuracy drops noticeably when using baseline

model (Additional file 1: Table S7). This comparison demonstrates the advantage

of LIQA in handling read length bias and 3′ bias correction over other

approaches.
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Fig. 3 Evaluation of robustness to read length bias and low read quality (A–D) and comparison of DAS
events detection (E, F) using LIQA (blue), FLAIR (red), Mandalorion (gray), TALON (green), and ONP (yellow).
A Spearman’s correlations between estimated and true TPM for 3′ and 5′ terminal exons. B Spearman’s
correlations between estimated and true TPM. Isoforms are stratified by the chi-squared goodness of fit
statistic for uniformity. The left panel is for those isoforms in which the read coverage distribution is less
uniform, and the right panel is for the remaining isoforms. C,D Spearman’s correlation comparison between
different models (full model, read length model, read quality model, and baseline model) based on
isoforms with chi-squared statistic more than the median (C) and isoforms with average read quality score
less than the median (D). E ROC curve and precision recall curve of different methods for DAS gene
detection. Threshold FDR < 0.05 is highlighted using black dot. F Scatter plot of true and estimated isoform
relative abundance from the first DAS simulation dataset. LIQA’s prediction and ground truth are marked for
each isoform
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Differential alternative splicing (DAS) detection

Next, we evaluated the performance of LIQA in DAS detection. More ONT RNA-seq

data across multiple samples (10 cases and 10 controls) were simulated for 10 times.

NanoSim generated 3 million reads based on the GENCODE annotation per sample.

To make true DAS events more realistic, we sampled relative abundances of isoforms

from a Dirichlet distribution with mean and variance parameters estimated from a hu-

man eye RNA-seq dataset. Similarly, these simulated data were mapped to the hg38 hu-

man reference genome using minimap2. Isoform expression and usage difference

between conditions were quantified using LIQA, FLAIR, TALON, Mandalorion, and

ONP, respectively. We first compared the performance of DAS detection between these

methods using three summary statistics. After FDR control, we measured the recalls

(power) of our method by calculating the proportion of correctly predicted DAS events

among true DAS events. Second, we obtained precisions by calculating the proportion

of correctly predicted DAS events among predicted DAS events. Additionally, F1 score

( F1 score ¼ 2� precision∙recall
precisionþrecall ) was summarized to average the precision and recall

values. As shown in Additional file 1: Fig. S5(B), LIQA, FLAIR, and TALON are more

powerful than others for all three evaluation metrics. This is not surprising because

Mandalorion and ONP have lower accuracy in isoform expression estimation. For recall

value, FLAIR (mean = 0.809, SD = 0.041) gives better and more consistent performance

across 10 simulations than LIQA (mean = 0.776, SD = 0.058). However, in terms of pre-

cision value, LIQA (mean = 0.915, SD = 0.043) yields less false positives than FLAIR

(mean = 0.884, SD = 0.051). LIQA, FLAIR, and TALON had similar performance in de-

tecting DAS events based on F1 score. Furthermore, we generated ROC curve and pre-

cision recall curve to compare the performance between methods at different FDR

thresholds (Fig. 3E and Additional file 1: Fig. S6, S7). As shown in Fig. 3E, LIQA

achieved AUC = 0.94 after FDR control (FDR < 0.05). Given FDR threshold equals to

0.05, LIQA gave the best performance with precision = 0.98 and recall = 0.78. Compared

to LIQA, the second best performing method FLAIR yields 0.1%, 0.3%, and 3.5% less in

precision, recall, and AUC respectively. In addition, we examined isoform relative abun-

dance estimation accuracy from correct and incorrect detected DAS genes by LIQA

(Fig. 3F). After FDR control, we identified that 537 out of 2465 genes are significantly

differential spliced, which 431 are true positives and 1836 are true negatives. For these

correctly predicted genes, true isoform relative abundance is highly correlated with

LIQA’s estimates (Spearman’s correlation = 0.91). For false positive and negative genes,

Spearman’s correlation is 38% lower compared to true positive and negative. This is

not surprising because accurate estimation of isoform expression level leverages the

power of regression model in detecting DAS events.

Application to the Universal Human Reference (UHR) RNA-seq data

As NanoSim generates ONT RNA-seq data based on trained parametric statistical

model, we recognized that simulated data is hardly a full representation of reality. To

evaluate the performance of LIQA in a real setting, we sequenced the Universal Human

Reference sample with Nanopore Direct mRNA sequencing (Additional file 1: Fig. S12).

Then, the resulting ONT-RNA-seq data were analyzed using all five long-read-based

methods (LIQA, FLAIR, Mandalorion, TALON, ONP). As quantitative real-time
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polymerase chain reaction (qRT-PCR) is considered as the most reliable technology for

measuring true isoform abundance, we downloaded the qRT-PCR measurements from

the MAQC project under Gene Expression Omnibus with accession number GSE5350.

As part of the MAQC project, the expression levels of 894 isoforms were measured by

TaqMan Gene Expression Assay based qRT-PCR. Additionally, we downloaded the

UHR short-read RNA-seq data generated using the Illumina platform. This dataset was

analyzed using Cufflinks [15], CEM [16], Salmon [36], and Kallisto [14] to compare the

performance in isoform quantification between long reads and short reads. Specifically,

we mapped ONT and Illumina sequenced reads to the reference genome using Mini-

map2 [35] and STAR [37], respectively, and applied each quantification method to the

RNA-seq data. qRT-PCR measurements were treated as gold standard to compare the

performance across methods. We note that 563 of the 894 transcripts with qRT-PCR

measurements are from genes with a single isoform. Estimation results from these

genes were served as positive controls (Additional file 1: Fig. S8(A)) because estimating

isoform-specific expression for these single-transcript genes is trivial. To compare the

performance across different methods, we considered those transcripts that are derived

from genes with two or more isoforms.

To assess the accuracy between estimates and qRT-PCR measurements, we summa-

rized similarity metrics (Spearman’s correlation and Pearson’s correlation) of the iso-

form abundance values in log scale. As shown in Fig. 4A,B, the estimation accuracy of

all methods is lower than simulated data, especially for those transcripts with qRT-PCR

measures close to 0. Nevertheless, we observed consistent results in terms of relative

performance of different methods with simulation data. LIQA is more accurate

than other methods with stronger linear relationship between logarithm estimates and

qRT-PCR measurements. However, many of the lowly to moderately expressed iso-

forms were underestimated using the other methods with their TPM values being com-

pacted toward 0. For ONT data, Spearman’s correlation of LIQA is 0.68, whereas the

corresponding values from second best method TALON is 0.62. For Illumina data, Cuf-

flinks seems to correlate with the qRT-PCR measurements better than others (Add-

itional file 1: Fig. S8(B)). The main reason for the better performance of LIQA is likely

due to quantifying isoform expression by accounting for isoform length bias and base

quality scores. Moreover, we randomly selected 3 genes and generated sashimi plots in

Fig. 4C to show the read coverage difference between direct mRNA sequencing and

Illumina data. Overall, read distribution of long-read data is less heterogeneous than

short-read. Specifically, for gene CAPNS1, there is clearly severe 5′ degradation in Illu-

mina data, but with full length and more even coverage across the transcripts for long-

read data. Terminal exons at 5′ end in red square are crucial informative regions for

splicing analysis, which enable us to differentiate read origin from different isoforms.

As shown in Fig. 4C, these exonic regions were captured by Nanopore reads but missed

by Illumina reads, which significantly facilitates isoform expression quantification using

long-read RNA-seq data. Similarly, sashimi coverage plots of other two genes showed

the same pattern, which demonstrates the advantage of long-read data over short-read

in alternative splicing study.

Moreover, we conducted additional analysis of another long-read data on UHR with

much higher coverage (5.6 million reads), generated on the PacBio sequencing platform

[38]. As shown in Additional file 1: Fig. S8(E), Pearson and Spearman’s correlations for
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each method are generally improved with increasing sequencing depth compared to

our Nanopore-based UHR dataset (Fig. 4B). For example, Spearman’s correlation of

FLAIR is increased by 0.28 (from 0.45 to 0.73), whereas the corresponding values of

LIQA are increased by 0.11. Nevertheless, LIQA still has the best performance among

all methods. Based on this real dataset with increasing sequencing depth, we found that

LIQA is more robust to low read coverage compared to FLAIR, which performs well

when sequencing depth is high. These observations from these two real UHR datasets

are consistent with the simulation-based datasets with different sequencing depths (0.5

M, 1M, 3M, 5M).

Application to Nanopore cDNA sequencing data on a patient with acute myeloid

leukemia

AML is a type of blood cancer where abnormal myeloblasts are made by bone marrow

[39]. In this study, we sequenced peripheral blood from an acute myeloid leukemia

(AML) patient using GridION Nanopore sequencer with Guppy basecalling (https://

denbi-nanopore-training-course.readthedocs.io/en/latest/basecalling/basecalling.html).

In total, we generated 8,061,683 long reads with 6.6 GB bases (Additional file 1: Fig.

S13). We aligned the data against a reference genome (hg38) using minimap2 [35], and

63% long reads (73% bases) are mapped. Then, we analyzed this ONT RNA-seq data

with LIQA for genes with at least two isoforms.

Fig. 4 Results on UHR data generated by direct mRNA sequencing on the Nanopore platform. A Scatter
plots of estimated isoform-specific expression versus qRT-PCR measurements in log scale. Black line
represents the local polynomial regression line fitted with estimates and qRT-PCR in log scale. B Pearson’s
correlation coefficient (left) and Spearman’s correlation coefficient (right) between estimated isoform-
specific expression versus qRT-PCR measurements in log scale. C Examination of read coverage difference
between Illumina and Nanopore data at 3 genes. Informative exonic regions were in red square
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We considered two ways to benchmark the performance of LIQA. First, we used

PennSeq to analyze short-read sequencing data for the same AML sample and treated

the estimates as gold standard. This dataset included 440M short read with 150 bp in

length. Figure 5A shows the scatter plots of isoform relative abundance estimates be-

tween long- and short-read data. Spearman’s correlation coefficients were calculated.

We found that correlation was improved significantly for genes with at least 50 reads

compared to all genes without filtration. Then, we examined the major isoforms (with

the highest expression level in a gene) inferred by LIQA. As shown in Fig. 5B, long-

read and short-read shared consistent estimates for the major isoforms. This is not sur-

prising because major isoforms were more likely to be sequenced, leading to higher

read coverage at unique exonic regions. Second, we visually examined the read cover-

age plots at unique exonic regions with at least 100 reads to benchmark the perform-

ance of LIQA. We generated sashimi plots for two randomly selected genes, EOGT and

RRBP1 (Fig. 5C). For gene EOGT, the read coverage ratio between exons in red and

green squares suggests that isoforms NM_103826 and NM_001278689 expressed much

higher than NM_173654. This is consistent with LIQA’ estimates, with relative abun-

dance of NM_173654 less than 0.01. A similar pattern is observed for gene RRBP1,

where isoform NM_004587 (relative abundance estimates = 0.68) is the major isoform.

Results from this AML data demonstrate the robust performance of LIQA to 3′ cover-

age biases.

Application to PacBio data on esophageal squamous epithelial cell (ESCC)

Next, we evaluated the performance of LIQA in differential alternative splicing (DAS)

detection using an RNA-seq dataset generated from esophageal squamous epithelial cell

(ESCC) [40]. This dataset includes PacBio SMRT reads generated from normal immor-

talized and cancerous esophageal squamous epithelial cell lines. The RNA-seq data

were downloaded from Gene Expression Omnibus (PRJNA515570). We applied LIQA

to detect differential isoform usage between normal-like and cancer cells. Known spli-

cing differences in existing studies were treated as ground truth to evaluate LIQA’s per-

formance in characterizing isoform usage across samples. In addition, short-read data

from these two samples were sequenced using the Illumina platform, which allows us

to compare the consistency and accuracy of DAS detection between long-read and

short-read data.

Employing LIQA and PennDiff [41], PacBio, and Illumina data were analyzed to de-

tect DAS events, which are classified into different types, such as skipped exon (SE), al-

ternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), mutually exclusive exon

(MXE), and retained intron (RI). Our results showed that SE is the most frequent type

of event among detected DAS between normal-like and cancerous cells, followed by RI,

A5SS, and A3SS. MXE is the most infrequent splicing type. As shown in Fig. 6A, de-

tected DAS events by long- and short-read share strong association at both exon and

gene level (Cramer’s V > 0.5). Also, the concordance rate between long- and short-read

data is greater than 98%. Compared to short-read data, long-read data shows preference

in detecting more differential splicing events at both exon and gene level. This is not

surprising because read coverage heterogeneity, which might bias DAS detection, is al-

leviated in long-read data by capturing full-length transcript in each read.
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The expression of alternatively spliced isoforms from gene CDV3 shows difference in

cancerous ESCC cells compared to non-cancerous [42, 43]. Figure 6B provides the

sashimi plots of a DAS exon at gene CDV3 detected by LIQA, but was missed by Penn-

Diff using short-read data. From long-read data, it is clear that the relative expression

of exon in the red square is lower in cancerous cells than normal-like ESCC. However,

this event is missed by short-read data. The read coverage difference between normal-

like and cancerous ESCC in sashimi plots indicates the less usage of isoforms (NM_

001134422, NM_0011134423, NM_001282765) which include this exon in ESCC cells,

suggesting better performance of long-read data.

Discussion
Accurate estimation of isoform-specific gene expression is a critical step for transcrip-

tome profiling. The emergence of long-read RNA-seq has made it possible to discover

complex novel isoforms and quantify isoform usage based on full-length sequenced

fragments without amplification bias. However, there are still issues for long-read data,

which if not taken into account, can affect the estimations. The major challenges in the

Fig. 5 Performance of LIQA using AML data. A Scatter plots of estimated isoform relative abundances using
long-read data (LIQA) versus short-read data (PennSeq) for all genes (left) and genes with at least 50 read
coverage (right). B Scatter plot of estimated isoform-specific expression using long-read data (LIQA) versus
short-read data (PennSeq) in log scale for all major isoforms. C Examination of isoform usage inferred by
LIQA. Sashimi plots of gene EOGT and RRBP1. Informative exonic regions were in green and red squares
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analysis of long-read RNA-seq data are the presence of high error rate and potential

coverage bias. In this article, we propose LIQA, a statistical method that allows read-

specific weight in estimating isoform-specific gene expression. The central idea of our

method is to extract error rate information and model non-uniformity read coverage

distribution of long-read data. LIQA is the first long-read transcriptomic tool that takes

these limitations of long-read RNA-seq data into account. Results of our simulation

study and analyses of real data demonstrated that LIQA is more effective in bias correc-

tion than the limited existing approaches (Additional file 1: Table S2, S3).

However, we note that there is still room to improve LIQA. LIQA is computationally

intensive because the approximation of nonparametric Kaplan-Meier estimator of func-

tion f(Lr) relies on empirical read length distribution and the parameters are estimated

using EM algorithm. Based on the analysis of the UHR and AML data, we found that

running LIQA is slower than FLAIR and Mandalorion (Additional file 1: Table S1).

Fig. 6 Performance of LIQA using ESCC data. A DAS detections between long- and short-read data.
Consistency of detected DAS events between long- and short-read data were quantified using Cramer’s V
and concordance rate. B Examination of AS exon usage inferred by LIQA (long read) but missed by
PennDiff (short read). Sashimi plots of gene CDV3. Informative exonic regions were red squares
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Currently, we are evaluating the impact of possible parametric functions such as expo-

nential or Weibull distributions for read distribution modeling. This will sacrifice the

robustness of isoform expression estimates but the running time can be significantly re-

duced. We believe it may be worth making this trade-off between computational effi-

ciency and estimation accuracy for LIQA.

We have benchmarked the performance of LIQA with the use of minimap2 for long-

read alignment, while there have been several approaches supporting RNA-seq long-

read alignment, such as STAR [37], GMAP [44], BLAT [45], BBMap (https://

sourceforge.net/projects/bbmap/), and GraphMap 2[46]. LIQA can take SAM or BAM

files generated from any listed aligner as input. Nevertheless, we recognize that it is im-

portant to evaluate whether LIQA’s superior performance is robust to different aligners.

Therefore, we plan to explore more long-read aligner options and settings to bench-

mark LIQA in the future.

As LIQA is EM algorithm-based, the robustness to parameter initialization is a

potential issue. Read-specific weight of LIQA extracts more information from ob-

served data than direct read count strategy as implemented in Mandalorion and

FLAIR. Especially, more read coverage is needed for stable approximation of func-

tion f(Lr). For genes with limited reads coverage (less than 5), the likelihood func-

tion of LIQA will be flattened, then optimal points are harder to be reached by

EM algorithm and estimates may be sensitive to initial values of parameter. There-

fore, the sensitivity of LIQA to parameter initialization should be further evaluated

and improved.

With full-length transcript sequencing, long-read RNA-seq data (ONT and PacBio)

are expected to facilitate transcriptomic studies by offering number of advantages over

short reads. For PacBio, HiFi reads are generated with circular consensus sequencing

(CCS) using single-molecule consensus, which increases their accuracy over traditional

multi-molecule consensus. Compared to Nanopore sequencing, this protocol yields

much lower per-base error rate compared to Nanopore sequencing, but potentially

shorter reads. Smaller read length may introduce much larger biases in 5′ or 3′ cover-

age ratio, which requires further adjustment for LIQA to derive more accurate isoform

expression estimates. LIQA has custom settings that allow users to flexibly adjust such

parameters to handle these platforms. Compared to PacBio (either with traditional li-

brary or HiFi library preparation protocols), ONT may be a more promising platform

in quantifying isoform expression while generating data with much higher error rate.

This is because ONT is currently more affordable with lower per-based cost of data

generation, and sequencing data with high read coverage can improve estimation accur-

acy of isoform usage. For ONT-RNA-seq, there are two types: direct mRNA sequencing

and cDNA sequencing. Compared to direct mRNA sequencing, cDNA sequencing al-

lows samples to be barcoded, amplified and requires less amounts of starting materials.

Our studies showed that the decrease of read coverage had less impact on LIQA com-

pared to other existing approaches.

In summary, long-read RNA-seq data offer advantages and can help us better under-

stand transcriptomic variations than short-read data. However, better utilizing inform-

ative single-molecule sequencing read is not straightforward. LIQA is a robust and

effective computational tool to estimate isoform-specific gene expression from long-

read RNA-seq data. With the increasing adoption of long-read RNA-seq in biomedical
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research, we believe LIQA will be well-suited for various transcriptomics studies and

offer additional insights beyond gene expression analysis in the future.

Methods and materials
Complete likelihood function of LIQA

Given a gene of interest, let R denote the set of reads that are mapped to the gene of

interest, and I denote the set of known isoforms. For a specific isoform i ∈ I, let θi de-

note its relative abundance, with 0 ≤ θi ≤ 1 and ∑i ∈ Iθi = 1 and li denote its length. For

each single-molecule long-read r, let Lr denote its length. The probability that a read

originates from isoform i is P(iso. = i) = θi. For read-isoform assignment, LIQA accounts

for incorrect alignment at splice site. We define parameter ZR,I as a ∣R ∣ × ∣ I∣, a

read-isoform compatibility matrix with ZR,I(r, i) = 1 if long-read r is generated from a

molecule that is originated from isoform i (number of mismatch base pairs < 20 bp in-

stead of exact match), and ZR,I(r, i) = 0 otherwise. For isoform quantification, our goal

is to estimate Θ = {θi, i ∈ I} based on RNA-seq long reads mapped to the gene.

With the notation above, the complete data likelihood of the RNA-seq data can be

written as

L ~ΘjR;Z� � ¼
Y
r∈R

Y
r∈I

P read ¼ r; read len: ¼ Lr ; iso: ¼ ið Þð ÞZR;I r;ið Þ

¼
Y
r∈R

Y
i∈I

P read ¼ r; read len: ¼ Lrjiso: ¼ ið Þ � P iso: ¼ ið Þð ÞZR;I r;ið Þ

¼
Y
r∈R

Y
i∈I

P read ¼ r; read len: ¼ Lrjiso: ¼ ið Þ � θið ÞZR;I r;ið Þ

This formula is based on the fact that given the isoform origin, the probability of ob-

serving read alignment can be inferred. The conditional probability of read r derived

from isoform i with length Lr is

P read ¼ r; read len: ¼ Lr j iso: ¼ ið Þ ¼ q r; ið Þ∙ f Lrð j iso: ¼ iÞ

where q(r, i) is isoform-specific read quality score and f(Lr| iso. = i) is isoform-specific

read length probability. Essentially, we quantify isoform relative abundance with

weighted read assignment. To account for the error-prone manner of Nanopore se-

quencing data, we consider isoform-specific read quality score qðr; iÞ ¼ Qm
j¼1q jðx j; yð jÞÞ

where x is the sequence of the long-read r, y is the sequence of the corresponding iso-

form i in the reference genome, and qj(a, b) is the probability that we observe base a at

position j of the read given that the true base is b, which can be calculated as 1−

10−Q j=10, with Qj being the per-based Phred quality score at position j.

Estimation of isoform-specific read length probability f(Lr| iso. = i)

Because read length Lr is not fixed and short prone in Nanopore sequencing, we treat

it as a random variable with right skewed distribution density function f(∙). Given an

isoform, existing long-read methods assume fixed read length for all sequenced reads,

and this is equivalent to setting f(Lr) at 1. However, this assumption does not hold as

recent studies suggest that potential 3′ coverage bias exists in long-read RNA-seq data

[24, 32, 47]. To offer flexibility in modeling read length distribution, we employ a non-

parametric approach. For all long reads mapped to the genome, we categorize them
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into two groups: complete reads and truncated reads. Accounting for misalignment due

to high error rate, the read is treated as complete when the distance between its ending

alignment position and any known isoform 5′ end is less than a tolerance threshold

(default = 20 bp) (Fig. 1A). This indicates that this read is completely sequenced from a

known isoform. Otherwise, the read is considered as truncated. The presence of trun-

cated reads is due to incomplete sequencing or novel isoforms. As known annotated

isoforms are treated as gold standard during estimation, we assume true length of trun-

cated read is censored. Given the observed lengths of all complete and truncated reads,

we fit them into a survival model, a natural modeling approach for censored data (Add-

itional file 1: Fig. S9, S10, S11). Function F̂ðlÞ ¼ Pðread len: < lÞ can be estimated

based on Kaplan-Meier estimator [48], hence we have f ðlÞ ¼ F̂ðl þ 1Þ− F̂ðlÞ.
Given a gene of interest with I = {isoform i : 1 ≤ i ≤ I}, isoform-specific read length

probability f(Lr | iso. = i) can be written as

f Lr j iso: ¼ ið Þ ¼ f Lrð Þ∙P iso: ¼ i j Lrð Þ
P iso: ¼ ið Þ ¼

f Lrð Þ∙θi=
P

l j>Lrθ j

θi
¼ f Lrð ÞP

l j>Lrθ j

This isoform-specific read length probability f(Lr | iso. = i) captures the sequencing

biases due to fragmentation during library preparation or pore-blocking for nanopore

data.

Quantification of isoform expression level

Given that isoform indicators ZR,I(r, i) for some reads are not observed from read data,

Θ are estimated using EM algorithm. Then, we have isoform relative abundance θ̂i . In

addition to relative abundance, it is also important to quantify the absolute expression

level of an isoform. At gene level, we consider read per gene per 10 K reads (RPG 10 K)

as the standard for long-read RNA-seq data. RPG is defined as RPG =N/104 where N is

the number of reads mapped to the gene of interest. With this concept, we estimate

the expression level of a particular isoform by replacing N with estimated number of

long reads originated from isoform i (RPGi ¼ N ∙θ̂i=104).

Parameter estimation using the EM algorithm

The complete data likelihood is

L ΘjR;Zð Þ ¼
Y
r∈R

Y
i∈I

q r; ið Þ∙ f Lrð Þ∙θið ÞZR;I r;ið Þ

and the update procedure of the EM algorithm is as follows:

E-step: We calculate function

Q ΘjΘ tð Þ
� �

¼ EZR;I jΘ tð Þ logL ΘjRð Þ½ �
¼

X
r∈R

X
i∈I

EZR;I jΘ tð Þ ZR;I r; ið Þ� � � log q r; ið Þ f Lrð Þθið Þ

where EZR;I jΘðtÞ ½ZR;Iðr; iÞ� ¼ qðr;iÞ f ðLrÞθðtÞiX
u∈I

qðr;uÞ f ðLrÞθðtÞu

.

M-step: We maximize function Q(Θ|Θ(t)) and have
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θ tþ1ð Þ
i ¼

P
r∈REZR;I jΘ tð Þ ZR;I r; ið Þ� �

j R j

The EM algorithm consists of alternating between the E- and M-steps until conver-

gence. We start the algorithm with Θ(0) assuming all isoforms are equally expressed

and stop when the log likelihood is no longer increasing significantly.

Detection of differential alternative splicing (DAS) with LIQA

The relative abundance of an isoform takes values between 0 and 1. Therefore, we as-

sume it follows a beta distribution, which is well known as a flexible distribution in

modeling proportion because its density can have different shapes depending on the

values of the two parameters that characterize the distribution, i.e., θi~Beta(μi, ϕi). The

expected value and variance of θi are

E θið Þ ¼ μi

Var θið Þ ¼ μi 1−μið Þ
1þ ϕi

To detect splicing difference of isoform i between two groups of samples, we utilized

beta regression model with ϕi as precision parameter. We apply logit link function and

have the model

logit θið Þ ¼ β0 þ β1Z

where Z is the condition indicator (1 for case; 0 for control), β0 and β1 are coefficient

parameters.

Since the isoform relative abundances of isoforms within the same gene are corre-

lated, a robust and flexible model is needed when comparing them between conditions

at a gene level. To account for this, we utilize Gaussian copula regression model to test

splicing difference significance between conditions of correlated isoform relative abun-

dances. The separation of marginal distributions and correlation structure makes

Gaussian copula regression versatile in modeling non-normal dependent observations.

Therefore, the joint distribution of isoform relative abundances from the same gene is

given by

ΦI−1 Φ−1 F θ1jβ0; β1;φ1

� �� �
;…;Φ−1 F θI−1jβ0; βI−1;φI−1

� �� �jΓ� �

where φi is the dispersion parameter of the marginal generalized linear model for iso-

form i. ΦI − 1(| Γ) is the cumulative distribution function of multivariate normal random

variables with I − 1 dimensions and correlation matrix Γ. We choose to use exchange-

able correlation structure for Γ. Given regression models above, we can detect DAS

both for at the isoform level and at gene level. For isoform i, we test H0 : β1 = 0 vs H1 :

β1 ≠ 0 to determine splicing change between conditions. For gene g, we test H0 : β
1
1

¼ … ¼ βI−11 ¼ 0 vs H1 : β
i
1≠0 for any 1 ≤ i ≤ I − 1.

Nanopore direct mRNA sequencing of Universal Human Reference RNA-seq data

Universal human reference (UHR) RNA comprises of mixed RNA molecules by a di-

verse set of 10 cancer cell lines with equal quantities of DNase-treated RNA from

adenocarcinoma in mammary gland, hepatoblastoma in liver, adenocarcinoma in
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cervix, embryonal carcinoma in testis, glioblastoma in brain, melanoma, liposarcoma,

histocytic lymphoma in histocyte macrophage, lymphoblastic leukemia, and plasmacy-

toma in B lymphocyte. This reference sample from MicroArray Quality Control

(MAQC) [49–51] project has been utilized in many studies. For example, Gao et al.

[52] sequenced this UHR RNA sample and treated it as reference to measure the tech-

nical variations of scRNA-seq data. Also, the qRT-PCR measurements of gene or iso-

form expressions from this sample were used to benchmark and optimize

computational tools [17, 53–56]. In this study, we used GridION Nanopore technique

to sequence mRNA directly and used Guppy for base calling. In total, we generated

476,000 long reads with 557MB bases. We aligned the UHR RNA-seq data against a

reference genome (hg38) using minimap2 [35], and 95% long reads (89% of total bases)

are mapped, demonstrating very high sequencing and basecalling quality. qRT-PCR

measurements were downloaded and treated as ground truth to compare the perform-

ance between LIQA, FLAIR, Mandalorion, CEM, Cufflinks, and RD.

Chi-squared goodness of fit statistics of read coverage uniformity

Given an isoform of interest, let l denote the length and Oi denote observed read cover-

age count at base pair position i. Total sequencing depth of this isoform S ¼
X
1≤ i≤ l

Oi .

Under the uniform read coverage assumption, the expected read coverage count at

each base pair position Ei = S/l. We apply chi-squared goodness of fit statistics to meas-

ure the difference between observed read coverage and uniform read distribution. The

test statistics is

χ2 ¼
X
1≤ i≤ l

Oi−Eið Þ2
Ei

The degree of freedom is isoform length li − 1. The higher value of χ2 indicates that

observed read coverage deviates more from uniform read distribution. We calculated χ2

for each isoform, then divided them into two categories based on median of the corre-

sponding measure (less uniform: χ2 > median, more uniform χ2 < median) to evaluate

the impact of read coverage distribution on isoform expression quantification.

Statistical test to compare performance of different methods

We simulated ONT RNA-seq data 20 times to assess the statistical significance when

comparing the performance of different methods. Each dataset includes 5 million (5M)

reads. We also down-sampled 3 million (3M), 1 million (1M), and 0.5 million (0.5M)

reads for the simulated data to evaluate the impact of sequencing depth on perform-

ance improvement of LIQA. We ran all methods with the same set of simulated aligned

data in BAM format as input and calculated Spearman’s correlation of TPM and rela-

tive abundance between true and estimated values. Based on this metric from 20 simu-

lated datasets, we conducted pairwise comparison of performance difference between

all methods using paired Z-test. Mean difference, standard deviations, test statistics,

and P values were calculated. Moreover, we conducted likelihood ratio test to compare

different models of LIQA (full model, read length model, read quality model). Likeli-

hood ratio test statistic Q = − 2(logLB − log LA), where L is the optimized likelihood

function based on different models.
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Availability of data and materials

LIQA is freely available at https://github.com/WGLab/LIQA under GPLv3 license [57].

The direct mRNA sequencing data on UHR has been deposited and available at Gene

Expression Omnibus (PRJNA639366) [58]. The cDNA sequencing data on a patient

with cancer has been deposited and available at Gene Expression Omnibus

(PRJNA640456) [59]. The simulation data used in our study can be reproduced using

code provided in the LIQA software repository and NanoSim version 2.0.0. The

esophageal squamous epithelial cell PacBio RNA-seq data we applied is from Gene

Expression Omnibus (PRJNA515570) [40]. Source code used in the manuscript is

available via Zenodo with DOI 10.5281/zenodo.4795477 [60].
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