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Abstract

A pressing challenge in single-cell transcriptomics is to benchmark experimental
protocols and computational methods. A solution is to use computational simulators,
but existing simulators cannot simultaneously achieve three goals: preserving genes,
capturing gene correlations, and generating any number of cells with varying
sequencing depths. To fill this gap, we propose scDesign2, a transparent simulator that
achieves all three goals and generates high-fidelity synthetic data for multiple
single-cell gene expression count-based technologies. In particular, scDesign2 is
advantageous in its transparent use of probabilistic models and its ability to capture
gene correlations via copulas.

Introduction
The recent development of single-cell RNA-seq (scRNA-seq) technologies has revolu-
tionized transcriptomic studies by revealing the genome-wide gene expression levels
within individual cells [1, 2]. In contrast to bulk RNA sequencing [3], scRNA-seq technol-
ogy captures cell-specific transcriptome landscapes, which can reveal crucial information
about cell-to-cell heterogeneity across different tissues, organs, and systems and enable
the discovery of novel cell types and new transient cell states [4–9]. Already, scRNA-
seq technologies have led to breakthroughs in understanding biological processes such as
stem cell differentiation and embryogenesis [10, 11], neurological disorders [12, 13], and
tumorigenesis [14, 15].
Since the first scRNA-seq study was published in 2009 [16], many experimental pro-

tocols have been developed [17–19]. Broadly speaking, the existing protocols fall into
two categories: tag-based and full-length [20]. Tag-based protocols (e.g., 10x Genomics
[21], CEL-Seq2 [22], Drop-seq [23], and Seq-Well [24]) only capture and sequence one
end of RNA transcripts, while full-length protocols (e.g., Smart-Seq2 [25], Fluidigm
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C1 [26], and MATQ-seq [27]) sequence fragments of full-length RNA transcripts [19,
28]. Typically, compared to full-length protocols (given the sequencing depth), tag-
based protocols sequence more cells but have fewer transcripts captured per cell [29].
In addition to this cell-number vs. per-cell-depth trade-off, tag-based protocols use
unique molecular identifiers (UMIs) to remove polymerase chain reaction (PCR) ampli-
fication biases [30], while full-length protocols do not have this advantage and can
only output reads without UMIs. Therefore, these protocols have different advantages
in throughput (number of cells and number of genes captured) and accuracy (num-
ber of non-biological zeros and PCR biases) [19, 31, 32]. Moreover, when designing
experiments, researchers often face the practical issue of having a limited budget. In
this case, they need guidance to choose either sequencing more cells with fewer reads
(or UMIs) in each cell, or sequencing fewer cells with more reads (or UMIs) in each
cell [33–35].
In addition to selecting experimental protocols before conducting scRNA-seq experi-

ments, a common challenge after collecting scRNA-seq data is to choose among themany
available data analysis methods in an unbiased manner. For example, many algorithms
have been developed for missing gene expression imputation [36, 37], dimensionality
reduction [38–40], cell clustering [41–44], rare cell type detection [45–47], differentially
expressed gene identification [48–52], and trajectory inference [53–57]. Even though sev-
eral benchmark and comparative studies have been carried out for common analysis tasks
[58–63], most of them have only evaluated a subset of available computational meth-
ods using data from limited experimental protocols. Hence, they cannot meet the diverse
needs of ongoing and future analyses of scRNA-seq data. In short, single-cell researchers
lack a systematic and flexible approach to select appropriate computational methods for
specific data analysis needs.
One solution to the above two issues is to use in silico synthetic datasets, which carry

ground truths (cell types, cell trajectories, differentially expressed genes, etc.) and do
not induce extra experimental costs. Below, we summarize six properties that an ideal
simulator should embrace.
1. The simulator can be trained by real data so that it is adaptive to various

experimental protocols and biological conditions.
2. The simulator can preserve genes so that its synthetic cells contain expression

levels of real genes. The simulator should retain every gene’s distribution of
expression levels in its synthetic data without deleting genes in real data. This
property is essential for benchmarking differential gene expression analysis.

3. The simulator can capture gene correlations so that its synthetic data maintain a
similar gene correlation structure to that in real data. This property relies on the
last property and is essential for benchmarking multi-gene analyses such as cell
dimensionality reduction (e.g., principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE) [64, 65], and uniform manifold
approximation and projection (UMAP) [66, 67]), cell clustering, rare cell type
detection, and cell trajectory inference.

4. The simulator can generate synthetic data with both varying cell number and
sequencing depth, under the same biological condition of training data. This
property is essential for guiding experimental design and benchmarking robustness
of computational methods.
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5. The simulator is transparent so that its model parameters can be easily understood
and adjusted. For example, key statistical properties, such as every gene’s
expression mean, variance, zero proportions, and every gene pair’s expression
correlation, can be easily accessed from the model. This property is essential for
model diagnostics and customized simulation. Specifically, with a transparent
model, whenever the synthetic data do not resemble the real data, computational
researchers can easily access how well the model fits to each gene’s marginal
distribution and what genes’ correlations are well captured or missed. Moreover, a
transparent model offers users an opportunity to generate data from their specified
parameter values, e.g., gene expression means.

6. The simulator is computationally and sample efficient so that its training does not
require expensive hardware, take excessive computational time, or rely on an
enormous number of real cells to achieve good training. This property is essential
for the simulator to be user-friendly and adaptive to full-length protocols that
generate hundreds to thousands of cells, e.g., Fluidigm C1 and Smart-Seq2.

Although many simulators have been developed for scRNA-seq data and various
methodological advances have been made [35, 39, 68–76], to the best of our knowledge,
none of them achieves all the six properties. We summarize 15 representative simulators
in Table 1. Except scGAN [72], these simulators all use probabilistic models or differential
equations that are transparent and easy to fit, thus satisfying properties 5 and 6. How-
ever, scDesign [35], three simulators in the splatter package (splat simple, splat, and
kersplat) [69], and SymSim [70] do not preserve genes, failing properties 2 and 3; ZINB-
WaVE1 [39, 69] and SPARSim [71] cannot vary cell number or sequencing depth, and
SPsimSeq [79] cannot vary sequencing depth, failing property 4; SERGIO [76] requires a
user-specified gene regulatory network as input and does not estimate gene correlations
from real data2, thus not achieving property 3. Although scGAN preserves genes and uses
a deep neural network to capture gene correlations, it cannot vary sequencing depth (not
satisfying property 4), and its black-box nature, requirement for GPU, and long compu-
tational time make it fail properties 5 and 6. Hence, a simulator that achieves all the six
properties is in demand.
Here, we propose scDesign2 as the first simulator that achieves all the six properties

and generates realistic synthetic data for multiple single-cell gene expression count-based
technologies. Inheriting its name from our previous simulator scDesign, scDesign2 has
achieved a significant methodological advance and become a transparent simulator that
reliably captures gene correlations. This advance is enabled by probabilistic modeling of
not only marginal distributions of individual genes but also the joint distribution of thou-
sands of genes. Thanks to its achievement of the six properties, scDesign2 will serve as a
powerful tool for guiding experimental design and benchmarking computational methods
in the single-cell transcriptomics field.

1ZINB-WaVE was not proposed as a simulator in its original publication [39] but was later implemented as a simulator
in the splatter package [69].
2A quote from the SERGIO paper [76]: “It is worth noting here that several existing single-cell expression simulators
employ a probabilistic model whose parameters are directly estimated from a real dataset and then sample synthetic data
from the model. This approach is not feasible in SERGIO since the true GRN underlying the real dataset is unknown and
notoriously hard to reconstruct, and the explicit use of a GRN is a crucial distinguishing feature of SERGIO. As such,
SERGIO uses a randomly generated GRN to first synthesize clean expression data and uses the real dataset only in the
second phase, to determine the extent of technical noise to add to the clean data.”
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Table 1 Summary of 16 simulators (including our proposed scDesign2) in six properties

Property 1 2 3 4 5 6

protocol
adaptive

gene
preserved

gene cor.
captured

cell num.
seq. dep.
flexible

transparent comp. and
sample
efficient

Simulator

dyngen [77] �– ✗ ✗ �– � �
Lun2 [78] �– � ✗ � � �
powsimR [75] � � ✗ � � �
PROSST [68] �– � ✗ �– � �
scDD [74] � ✗ ✗ �– � �
scDesign [35] � �– ✗ � � �
scGAN [72] � � �– �– ✗ ✗

splat simple [69] � ✗ ✗ ✗ � �
splat [69] � ✗ ✗ ✗ � �
kersplat [69] � ✗ �– ✗ � �
SPARSim [71] � � �– ✗ � �
SPsimSeq [79] � � � �–** � �
SymSim [70] � ✗ ✗ ✗ � �
ZINB-WaVE [39] � �– �– ✗ � �
SERGIO [76] � �– ✗∗ � � �
scDesign2 � � � � � �
Property 1: protocol adaptiveness
Property 2: gene preservation
Property 3: gene correlation capture
Property 4: flexible cell number and sequencing depth choices
Property 5: transparency
Property 6: computational and sample efficiency
For each simulator and each property, a checkmark, checkcross, or cross means that the simulator satisfies, partially satisfies, or
does not satisfy the property, respectively
*SERGIO requires a user-specified gene regulatory network, and it does not capture/estimate gene correlations from a real dataset
**SPsimSeq can vary cell number but not sequencing depth

Results
An overview of scDesign2

The statistical framework of scDesign2 consists of two steps: (1) model fitting and (2)
synthetic data generation (Fig. 1). In the model-fitting step, scDesign2 fits a multivariate
generative model to a real scRNA-seq dataset. If the dataset contains more than one cell
type (defined by marker genes or cell clustering; see the “Methods” section), then scDe-
sign2 divides the dataset into subsets, one per cell type, and fits a cell type-specific model
to each subset. In the data-generation step, scDesign2 generates synthetic scRNA-seq
data from the fitted model for each cell type.
The model-fitting step is composed of the following two sub-steps. First, scDesign2

fits a univariate count distribution to each gene’s counts in cells of the same type. Four
count distributions are considered: Poisson, zero-inflated Poisson (ZIP), negative bino-
mial (NB), and zero-inflated negative binomial (ZINB), with the former three as special
cases of the ZINB. All the four distributions have been widely used to model a gene’s read
or UMI counts in a homogeneous group of cells [39, 80–82]. From these four distribu-
tions, scDesign2 chooses one distribution for every gene in every cell type in a data-driven
way. Second, scDesign2 captures the correlations of thousands of genes (all the moder-
ately to highly expressed genes) by fitting a Gaussian copula in each cell type. We choose
the Gaussian copula for its easiness to fit and good transparency, and we find it capturing
gene correlations well (Fig. 2 and Additional file 1: Figures S1–S5).
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Fig. 1 An overview of scDesign2. The input for scDesign2 is a gene-by-cell count matrix with cells labeled as
cell types or clusters. For cells in each type or cluster, scDesign2 uses the copula framework to fit a joint
distribution of gene expression counts. Then, given user-specified sequencing depth and number of cells,
scDesign2 generates synthetic data for each cell type or cluster. The synthetic data can be used to guide
experimental design and evaluate computational methods

As a simulator that explicitly captures gene correlations, scDesign2 leverages a unique
advantage of the copula framework: the separate modeling of each gene’s marginal dis-
tribution and the correlation structure of thousands of genes together. This separation
and its resulting flexibility are critical for scDesign2 to model single-cell gene expres-
sion count data generated by various experimental protocols. Thanks to this flexibility,

Fig. 2 Heatmaps of gene correlation matrices estimated from real data and synthetic data generated by
scDesign2, its variant without copula, ZINB-WaVE, and SPARSim. a, b Pearson correlation matrices. c, d
Kendall’s tau matrices. In a and c, training and test data contain goblet cells measured by 10x Genomics [83].
In b and d, training and test data contain cells of dendrocytes subtype 1 (DC1) measured by Smart-Seq2 [4].
For each cell type, the Pearson correlation matrices and Kendall’s tau matrices are shown for the 100 genes
with the highest mean expression values in the test data; the rows and columns (i.e., genes) of all the
matrices are ordered by the complete-linkage hierarchical clustering of genes (using Pearson correlation as
the similarity in a and b and Kendall’s tau in c and d) in the test data. We find that the correlation matrices
estimated from the sythetic data generated by scDesign2 most resemble those of training and test data
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scDesign2 can choose a count distribution from Poisson, ZIP, NB, and ZINB to fit each
gene’s expression counts and reveal biological insights of that gene’s expression pattern.

Synthetic data generated by scDesign2 most resemble real scRNA-seq data in

benchmarking against existing simulators

We benchmark scDesign2 against eight existing simulators—ZINB-WaVE, SPARSim,
scGAN, scDesign, three variants of splat in the splatter package (splat simple, splat,
and kersplat), and SymSim. We also compare scDesign2 with its own variant that only
uses genes’ marginal distributions and no copula (w/o copula). Among these ten sim-
ulators, only scDesign2, its w/o copula variant, ZINB-WaVE, SPARSim, and scGAN
preserve genes. We apply these ten simulators to four scRNA-seq datasets (in which cells
are labeled with curated cell types) generated by different experimental protocols (10x
Genomics [83], CEL-Seq2 [84], Fluidigm C1 [85], and Smart-Seq2 [4]). For each dataset,
we randomly split its cells into two halves, with one half (“training data”) to be used for
training every simulator on each cell type individually and the other half (“test data”) to
serve as the benchmark standard to be compared with the synthetic data generated by
each simulator.
We use three sets of benchmark analyses to compare synthetic data with the corre-

sponding test data. Here is an overview. First, we select three cell types from each dataset
(measured by each experimental protocol), obtaining a total of 12 cell type–protocol
combinations. For each combination, we evaluate eight key statistics: four gene-wise
(expression mean, variance, coefficient of variation (cv), and zero proportion), two cell-
wise (zero proportion and library size), and two gene-pair-wise (Pearson correlation and
Kendall’s tau). (Note that we include Kendall’s tau instead of Spearman’s rank correlation
as a rank-based correlation statistic because Kendall’s tau can account for ties.) For each
statistic, we compare its empirical distribution—across genes (for gene-wise statistics),
across cells (for cell-wise statistics), or across gene-pairs (for gene-pair-wise statistics)—
in the test data with that in the synthetic data generated by each simulator. For the four
gene-wise and two gene-pair-wise statistics, we also directly compare their values in the
test data with those in the synthetic data generated by scDesign2, ZINB-WaVE, SPAR-
Sim, and scGAN—the four simulators that preserve genes. We cannot do this for the
other simulators, because the values of these gene-related statistics are not comparable if
the genes are not preserved. The results are summarized in Fig. 3 and Additional file 1:
Figures S6–S28. Second, for each of the 12 cell type–protocol combinations, we compare
the gene correlation matrix estimated from the test data with that from the synthetic data
generated by each simulator that preserves genes. We exclude the simulators that do not
preserve genes because the gene expression matrices estimated from their synthetic data
do not align with those from real data (i.e., the genes of the synthetic data matrix cannot
be matched one-to-one to the genes of the training data matrix). The results are summa-
rized in Fig. 2 and Additional file 1: Figures S1–S5. Third, for each of the four protocols,
we use 2D visualization—t-SNE and PCA—to compare cells of multiple types in the test
data and the synthetic data generated by each simulator that preserves genes. Again, we
exclude the simulators that do not preserve genes because their synthetic cells cannot be
combined with real cells for joint visualization (dimesionality reduction requires all cells
to have the same original dimensions, i.e., genes). The results are summarized in Fig. 4
and Additional file 1: Figures S29–S31.
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Fig. 3 Benchmarking scDesign2 against its variant without copula and eight existing scRNA-seq simulators
for generating goblet cells measured by 10x Genomics. a Distributions of eight summary statistics
(gene-wise expression mean, variance, coefficient of variation (cv), and zero proportion; cell-wise zero
proportion and library size; gene-pair-wise Pearson correlation and Kendall’s tau) are plotted based on the
real data (test data unused for training simulators) and the synthetic data generated by scDesign2, scDesign2
without copula (w/o copula), ZINB-WaVE, SPARSim, scGAN, scDesign, three variants of the splatter
package (splat simple, splat, and kersplat), and SymSim. b Ranking (with 1 being the best-performing
method) of scDesign2, ZINB-WaVE, SPARSim, and scGAN, the only four methods that preserve genes, in terms
of the mean-squared error (MSE) of each of six summary statistics (four gene-wise and two gene-pair-wise)
between the statistics’ values in the real data and the synthetic data generated by each simulator. Note that
the color scale shows the normalized MSE: for each statistic (column in the table), the normalized MSEs are
the MSEs divided by the largest MSE of that statistic. scDesign is ranked the top for three out of the six
statistics. For the two gene-pair-wise statistics, we focus on the top 500 highly expressed genes, because as
analyzed in the text, they are more meaningful, both biologically and statistically, than the correlations of the
lowly expressed genes. c, d Scatterplots of two example gene pairs—Xist vs. H2-Ab1 and Rpl7 vs. Xist—based
on the real data and the synthetic data generated by scDesign2, ZINB-WaVE, and SPARSim. The Kendall’s tau
values in the synthetic data generated by scDesign2 resemble most the values in the test data. e Smoothed
relationships between three pairs of gene-wise statistics (zero proportion vs. mean, variance vs. mean, and cv
vs. mean) across all genes (curves plotted by the R function geom_smooth()) in the real data and the
synthetic data generated by scDesign2 and the eight existing simulators (others). Note that ZINB-WaVE and
SymSim filter out certain genes when simulating new data; Pearson correlation and Kendall’s tau are only
calculated between the genes whose zero proportions are less than 50%; gene-wise mean and variance and
cell-wise library size are transformed to the log10(1 + x) scale (where x represents a statistic’s value)
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Fig. 4 Comparison of 10x Genomics data and synthetic data generated by scDesign2, its variant without
copula, ZINB-WaVE, and SPARSim in 2D visualization. a t-SNE plots and b principal component (PC) plots of
training data, test data, synthetic data generated by each simulator, and combinations of test data and each
synthetic dataset. Note that in b, the coordinates are defined by projection to the PC space of the test data.
Gene expression counts are transformed as log(1 + count) before dimensionality reduction. miLISI is short
for median integration local inverse Simpson’s index, a higher value of which indicates that the simulated
data mix better with the test data in the 2D visualization plot. By visually inspecting the patterns in these
plots as well as comparing the miLISI values, we find that the synthetic data generated by scDesign2 most
resemble the test data

Overall, we find that the synthetic data generated by scDesign2 most resemble the test
data for all four protocols. In our first set of analyses, we categorize the eight existing
simulators into two types: simulators that preserve genes (ZINB-WaVE, SPARSim, and
scGAN) and others. First, by comparing the distributions of eight key statistics between
test data and synthetic data, we find that the simulators capable of preserving genes have
overall better performance than other simulators, across cell types and protocols (Fig. 3a
and Additional file 1: Figures S6a–S16a).
Second, we further benchmark the gene-preserving simulators by directly comparing

their synthetic data and test data in terms of the gene-wise and gene-pair-wise statis-
tics’ values. Note that we cannot compare these statistics’ values for simulators that do
not preserve genes because the “genes” in those simulators’ synthetic data cannot be
matched to any genes in real data. In detail, we calculate the mean-squared errors (MSEs)
of the four gene-wise statistics and the two gene-pair-wise statistics between test data and
synthetic data generated by scDesign2, ZINB-WaVE, SPARSim, and scGAN. Figure 3b
shows that scGAN, a deep-learning-based method, consistently has the worst MSEs for
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all the six statistics. Due to its long computational time3, difficult implementation, and
unsatisfactory performance, we exclude it from the following comparisons.
Out of 48 comparisons of gene-wise statistics (4 statistics times 12 cell type–protocol

combinations), scDesign2 achieves the best MSEs in 37 comparisons and demon-
strates a clear advantage over ZINB-WaVE and SPARSim (Fig. 3b and Additional file 1:
Figures S6b–S16b). Out of 24 comparisons of gene-pair-wise statistics (2 correlation
statistics times 12 cell type–protocol combinations) based on the 500 most highly
expressed genes (in terms of their mean expression levels across cells) in each cell type–
protocol combination, scDesign2 achieves the best MSEs in 15 comparisons (Fig. 3b and
Additional file 1: Figures S6b–S16b). We highlight the highly expressed genes because
their Pearson correlations and Kendall’s tau values are more biologically meaningful;
in all cell type–protocol combinations, the top 500 highly expressed genes, ranked by
either mean expression levels or non-zero proportions across cells, explain at least 50%
of reads or UMIs (Additional file 1: Figures S17c–S28c), confirming that these genes play
dominant roles in transcriptional programs in cells. In addition, we include the compar-
ison results based on more genes in Additional file 1: Figures S17d&e–S28d&e, which
show that, as more lowly expressed genes are included, the MSEs of all these simulators
decrease and become less distinguishable (because lowly expressed gene pairs have cor-
relations close to zero in test data and all synthetic data), making the comparison less
meaningful.
Third, we examine correlations of individual gene pairs and observe that scDesign2 can

preserve strong negative gene correlations missed by ZINB-WaVE and SPARSim, which
wrongly capture these correlations as weak or even positive (Fig. 3c-d and Additional
file 1: Figures S6c-d–S16c-d). This observation is further confirmed by our second set of
analyses below. Furthermore, we compare the relationships of three pairs of gene-wise
statistics (zero proportion vs. mean, variance vs. mean, and cv vs. mean) between test
data and synthetic data generated by each simulator, and we find that scDesign2 better
captures the relationships than existing simulators do across cell types and experimental
protocols (Fig. 3e and Additional file 1: Figures S6e–S16e).
In our second set of analyses, we compare gene correlation matrices in terms of both

Pearson correlation and Kendall’s tau between test data and synthetic data generated
by scDesign2, ZINB-WaVE, and SPARSim. Heatmap visualization shows that scDe-
sign2 captures gene correlations most accurately and consistently across cell types and
experimental protocols (Fig. 2 and Additional file 1: Figures S1–S5). Notably, for highly
expressed genes in Smart-Seq2 data, ZINB-WaVE and SPARSim miss almost all the gene
correlations, while scDesign2 well preserves positive and negative gene correlations in its
synthetic data (Fig. 2b, d and Additional file 1: Figure S5b & d).
In our third set of analyses, we use 2D visualization to compare cells in test data and

those in synthetic data generated by scDesign2, ZINB-WaVE, and SPARSim. Both t-SNE
and PCA 2D plots show that cells in synthetic data generated by scDesign2most resemble
cells in test data (Fig. 4 and Additional file 1: Figures S29–S31). In particular, by overlaying
real and synthetic cells in the same 2D plot, we find synthetic cells generated by scDesign2
least distinguishable from real cells. On the contrary, synthetic cells generated by ZINB-
WaVE and SPARSim exhibit spurious patterns unseen in real cells.

3The training of scGAN takes 1–2 days (with NVIDIA GeFore GTX 2080 Ti GPU) on 255 cells and 15,926 genes, in
contrast to the other simulators that take at most minutes to train with CPU.
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To quantify the similarity between synthetic cells and real test cells, we use the median
integration local inverse Simpson’s index (miLISI) [86], whose value is between 1 and 2,
with a larger value indicating a greater similarity. Specifically, we compute an integration
local inverse Simpson’s index (iLISI) to represent the effective number of cell labels (with
1 meaning synthetic or real cells only, and 2 meaning equal numbers of synthetic and real
cells) in the local neighborhood of each (synthetic or real) cell; the closer iLISI is to 2,
the more equal presence synthetic and real cells have in the local neighborhood. Taking
the median of the iLISIs of all cells, we obtain the miLISI, which quantifies the overall
mixing of synthetic cells with real cells. Using the R package LISI [86], we calculate the
miLISI value for each of the overlaying 2D plots containing real and synthetic cells (Fig. 4
and Additional file 1: Figures S29–S31), and we find that scDesign2 consistently leads to
the highest miLISI value, with greater advantages in 2D t-SNE plots than 2D PCA plots.
Since 2D t-SNE projection preserves cell clusters better than 2D PCA does and is more
widely used for visualizing single-cell gene expression data, our results suggest that the
synthetic data by scDesign2 best capture the cluster structure in real cells. Together, the
miLISI values confirm the superb performance and the realistic nature of scDesign2.
These three sets of analyses also verify the advantage of using copula in scDesign2.

Compared with scDesign2, its w/o copula variant, as expected, cannot capture gene cor-
relations at all (Figs. 2 and 3a, Additional file 1: Figures S1–S5 and S6a–S16a). As a result,
the synthetic data generated by the w/o copula variant do not resemble the corresponding
real data in 2D visualization (Fig. 4 and Additional file 1: Figures S29–S31).
In addition to its realistic nature, scDesign2 also has two more unique advantages over

ZINB-WaVE and SPARSim. Unlike the other two simulators, scDesign2 only considers
genes as features and models their joint distribution, and it regards cells as observa-
tions instead of features. This formulation is aligned with the statistical thinking that
genes are fixed quantities, but cells are randomly sampled from a population of cells.
Thanks to this principled formulation, scDesign2 can generate synthetic cells of any
number, in contrast to ZINB-WaVE and SPARSim that can only generate the same num-
ber of synthetic cells as real cells. It is also worth noting that, although scDesign2 does
not explicitly model the distribution of cell library sizes, it recovers that distribution
rather faithfully (see the cell library size distributions in Fig. 3a and Additional file 1:
Figures S6a–S16a). This is achieved by modeling joint gene distributions and account-
ing for gene correlations through the use of copula. Compared to scGAN, the training of
scDesign2 is fast and does not rely on a large number of input real cells for good training
quality.

Refinement of scDesign2 training: calibration of cell types by ROGUE scores

For a dataset containing multiple cell types, scDesign2 needs to fit a model to each cell
type before generating synthetic data. To ensure the quality of its synthetic data, scDe-
sign2 must have one of its count models (ZINB model and its three simplified variants)
fit well to each gene’s real expression levels in each cell type; otherwise, the synthetic data
may not well mimic real data due to the poorness of model fitting. We observe this issue
in the 10x Genomics dataset (Fig. 4a), where some cell types such as transit-amplifying
early (TA.Early) cells and goblet cells are composed of discrete sub-clusters in 2D t-SNE
illustration. As a result, some genes’ expression levels within one of such cell types cannot
be fit well by scDesign2’s count models, leading to a discrepancy between synthetic data
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and real data (synthetic TA.Early and goblet cells do not appear to have cell sub-clusters
in 2D t-SNE illustration).
To address this issue, we calibrate each cell type using the ROGUE score [87], which

measures the homogeneity of that cell type, before training scDesign2. Concretely, we
first partition the cell type into sub-clusters using the Louvain clustering algorithm [88]
in the Seurat R package [42]. Employing varying resolution parameters in the Louvain
algorithm, we partition the cell type into a varying number of sub-clusters. Second, we cal-
culate the ROGUE score of every sub-cluster, and then, we compute the average ROGUE
score across sub-clusters for each number of sub-clusters, ranging from 1 to 6. Third, we
examine how the average ROGUE score increases as the number of sub-clusters increases
(Fig. 5a), together with 2D t-SNE visualization (Fig. 5b), to determine an appropriate num-
ber of sub-clusters, which is usually the “elbow point” where the average ROGUE score
saturates.
Applying this strategy to refining the six cell types in the 10x Genomics dataset, we

observe that, after being trained with the refined cell types, scDesign2 generates more
realistic synthetic data (Fig. 5c; the miLISI value increases from 1.596 to 1.779).

Application 1: scDesign2 generates realistic synthetic data for other single-cell expression

count-based technologies

Beyond scRNA-seq data, we demonstrate that scDesign2 can also generate realistic syn-
thetic data for other single-cell count-based technologies that do not necessarily use
next-generation sequencing, as long as individual genes’ count distributions can be well
approximated by Poisson, ZIP, NB, or ZINB. For instance, single-cell spatial transcrip-
tomics technologies, usually based on fluorescence in situ hybridization (FISH), are
known to yield Poisson or NB distributed counts [89, 90]. The versatility of scDesign2 is
endowed by its data-driven way of selecting marginal distributions for individual genes,
regardless of each distribution being Poisson or NB, zero-inflated or not.
We demonstrate the accuracy of scDesign2 based on two single-cell spatial transcrip-

tome datasets: one dataset of cells in the mouse hypothalamic preoptic region measured
by multiplexed error robust fluorescence in situ hybridization (MERFISH) [91] and
another dataset of cells in the mouse hippocampal area CA1 measured by probabilistic
cell typing by in situ sequencing (pciSeq) [92], a newly developed spatial transcriptome
profiling technology. Both datasets contain labeled cell types. Due to the lack of simu-
lators specifically designed for single-cell spatial transcriptome data, we still benchmark
scDesign2 against its w/o copula variant, as well as ZINB-WaVE and SPARSim, the two
simulators that preserve genes. Note that for all the simulators considered, they only gen-
erate gene counts, not spatial coordinates, for synthetic cells. Similar to our previous
analysis, for each cell type in each dataset, we randomly split the cells into two halves,
with one half (“training data”) to be used for training every simulator and the other half
(“test data”) to serve as the benchmark standard to be compared with the synthetic data
generated by each simulator. Figure 6 and Additional file 1: Figure S32 demonstrate the
2D visualization of each real dataset, the corresponding synthetic data generated by each
simulator, as well as the combination of test data and each synthetic dataset. For both
technologies and in both t-SNE and PCA visualization, scDesign2 outperforms SPARSim
and ZINB-WaVE by generating synthetic data that most resemble the real data. In par-
ticular, scDesign2 consistently achieves the highest miLISI values in the 2D visualization
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Fig. 5 Application of ROGUE scores combined with dimensionality reduction plots to refine cell types before
training scDesign2. This refinement approach is demonstrated on the 10x Genomics dataset. a In each cell
type, the relationship between the average ROGUE score across sub-clusters and the number of sub-clusters.
Before a ROGUE score is calculated for each sub-cluster, the Louvain clustering algorithm is applied to each
cell type with a varying resolution parameter so that a varying number of sub-clusters is obtained. Based on
how the average ROGUE score saturates, a number of sub-clusters is selected and marked in red for each cell
type. b The t-SNE plots of each cell type with the sub-clusters, whose number is marked in a, labeled with
distinct colors. c The t-SNE plots of training data (top left), test data (bottom left), synthetic data of scDesign2
trained with the refined sub-clusters (middle left) or the original cell types (middle bottom), and combination
of test data with each set of synthetic data. Gene expression counts are transformed as log(1 + count)
before dimensionality reduction. We find that, after the cell type refinement, the simulated data of scDesign2
resemble the real data better, as indicated by the higher miLISI value
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Fig. 6 Comparison of MERFISH data and synthetic data generated by scDesign2, its variant without copula,
ZINB-WaVE, and SPARSim in 2D visualization. a t-SNE plots and b principal component (PC) plots of training
data, test data, synthetic data generated by each simulator, and combinations of test data and each synthetic
dataset. Note that in b, the coordinates are defined by projection to the PC space of the test data. Gene
expression counts are transformed as log(1 + count) before dimensionality reduction. miLISI is short for
median integration local inverse Simpson’s index, a higher value of which indicates that the simulated data
mix better with the test data in the 2D visualization plot. By visually inspecting the patterns in these plots as
well as comparing the miLISI values, we find that the synthetic data generated by scDesign2 most resemble
the test data

plots of combined data, indicating that the synthetic cells generated by scDesign2 are
least distinguishable from real cells. These results confirm the versatility and robustness
of scDesign2.

Application 2: scDesign2 guides experimental design and computational method

benchmarking in cell clustering

Cell clustering is a ubiquitous computational task in single-cell research. Here, we demon-
strate how scDesign2 can guide experimental design (i.e., deciding the optimal cell
number and sequencing depth) and benchmark computational methods for the cell
clustering task.
After training scDesign2 on each of the four scRNA-seq datasets generated by different

experimental protocols (10x Genomics [83], CEL-Seq2 [84], FluidigmC1 [85], and Smart-
Seq2 [4]), we apply the trained scDesign2 models to generate synthetic data under three
experimental design scenarios: (1) varying sequencing depths, where the total number of
reads (or UMIs) varies but the cell number is fixed; (2) varying cell numbers, where the
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number of sequenced cells varies but the sequencing depth is fixed; and (3) fixing the per-
cell average sequencing depth, where the both the number of sequenced cells and the total
sequencing depth vary, but the average number of reads (or UMIs) in each cell is fixed.
For each protocol, scDesign2 generates a synthetic dataset per sequencing depth and cell
number.
To guide the choices of sequencing depth and cell number based on clustering accuracy,

we apply two popular scRNA-seq cell clustering methods—Seurat (the kNN-Jaccard-
Louvain algorithm) [42, 88] and SC3 [41]—to the synthetic datasets and use the adjusted
mutual information (AMI) [93] and the adjusted Rand index (ARI) [94] as two cluster-
ing accuracy measures. Note that SC3 can be specified to output the same number of cell
clusters as the annotated cell types, while Seurat cannot due to the nature of the Louvain
algorithm it uses [88]. The results are summarized in Figs. 7, 8, and 9 and Additional file 1:
Figures S33–S41.
For the first, varying-sequencing-depth scenario, we expect the clustering accuracy to

improve as the sequencing depth increases, because a larger sequencing depth would bet-
ter reveal every cell’s transcriptome profile and thus lead to better clustering. Moreover,
we also expect there to be a saturation effect: the clustering accuracy no longer improves
much after the sequencing depth increases to a point, which we regard as the optimal
sequencing depth that balances clustering accuracy and budget. The results confirm our
expectation. For the two UMI-based protocols 10x Genomics and CEL-Seq2, we observe
the improvement and the saturation effect in clustering accuracy, based on both Seurat
and SC3, as the sequencing depth increases. In detail, the saturation for 10x Genomics
data occurs at 113.05millionUMIs for 3793 cells, while the real dataset has only 28.57mil-
lion UMIs (Fig. 7); the saturation for CEL-Seq2 data occurs at 42.72million UMIs for 2279
cells, while the real dataset contains 172.14 million UMIs (Additional file 1: Figure S33).
For the two non-UMI-based protocols Fluidigm C1 and Smart-Seq2, we observe the sat-
uration effect even at the lowest sequencing depth we consider, likely due to the fact that
these two protocols provide a deeper profiling of every cell than the UMI-based proto-
cols do. In detail, the saturation for Fluidigm C1 data occurs at 26.74 (based on Seurat) or
110.52 (based on SC3) million reads for 317 cells, while the real dataset contains 869.24
million reads (Additional file 1: Figure S36); the saturation for Smart-Seq2 data occurs at
33.68 million reads for 1078 cells, based on both Seurat and SC3, while the real dataset
contains 1074.97million reads (Additional file 1: Figure S39). The t-SNE visualization sup-
ports the observed trends of clustering accuracy. In each t-SNE plot that corresponds to
one sequencing depth and one set of cell clusters/types (by Seurat, SC3, or annotated cell
types), synthetic cells are labeled by their cell clusters/types; contrasting a t-SNE plot of
cell clusters with that showing cell types illustrates clustering accuracy (Fig. 7a and Addi-
tional file 1: Figures S33a, S36a, and S39a). In conclusion, for clustering purpose, we would
recommend increasing the 10x Genomics sequencing depth to 113.05 million UMIs, if
budget allows, and using SC3 for clustering; for CEL-Seq2, Fluidigm C1, and Smart-Seq2,
we would recommend decreasing the sequencing depths to 42.72 million UMIs, 110.52
million reads, and 33.68 million reads, respectively, to save budget and using either Seurat
or SC3 for clustering.
For the second, varying-cell-number scenario, we expect the clustering accuracy to

first increase and then decrease as the cell number increases. The reason is that good
clustering requires both a reasonable number of cells of each type and a clear-enough
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Fig. 7 scDesign2 guides the choice of sequencing depth in cell clustering. scDesign2 generates synthetic
10x Genomics data with fifteen sequencing depths. Two cell clustering methods—Seurat and SC3—are
applied to each synthetic dataset to partition cells into cell clusters. a t-SNE visualization of four synthetic
datasets, where cells are labeled by Seurat clusters (top), SC3 clusters (middle), and annotated cell types
(bottom). b Two clustering accuracy measures (AMI and ARI) vs. sequencing depth; left: Seurat; right: SC3. In
b, the results of the four sequencing depths in a are marked as dots and in the top, and the sequencing
depth of the real dataset [83] is marked as vertical dashed lines

gene expression profile (where enough genes are captured) of every cell, thus posing a
tradeoff—given the sequencing depth, the larger the cell number, the less clear each cell’s
profile would be. Hence, as the cell number increases from low, while every cell’s profile
is still clear, clustering accuracy increases; however, as the cell number reaches a point
where every cell type has more than enough cells, further increasing the cell number
would obscure every cell’s profile and deteriorate clustering accuracy. For the two UMI-
based protocols 10x Genomics and CEL-Seq2, our expectation is confirmed: we observe
an overall trend of clustering accuracy that first increases and then decreases (Fig. 8b and
Additional file 1: Figure S34b). In detail, for 10x Genomics data, both Seurat and SC3 have
their accuracy maximized at 948 cells. This optimality is supported by the t-SNE visual-
ization, which shows that the Seurat and SC3 cell clusters best agree with the annotated
cell types at this optimal cell number (Fig. 8a). Hence, the real data cell number 3793 is
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Fig. 8 scDesign2 guides the choice of cell number in cell clustering, in the case where the total sequencing
depth is kept as fixed. scDesign2 generates synthetic 10x Genomics data with twelve cell numbers. Two cell
clustering methods—Seurat and SC3—are applied to each synthetic dataset to partition cells into cell
clusters. a t-SNE visualization of four synthetic datasets, where cells are labeled by Seurat clusters (top), SC3
clusters (middle), and annotated cell types (bottom). b Two clustering accuracy measures (AMI and ARI) vs.
cell number; left: Seurat; right: SC3. In b, the results of the four cell numbers in a are marked as dots and in the
top, and the cell number of the real dataset [83] is marked as vertical dashed lines

not optimal for distinguishing the annotated cell types by Seurat or SC3. For CEL-Seq2
data, Seurat and SC3 have optimal accuracy at 2279 and 570 cells, respectively, also sup-
ported by the t-SNE visualization (Additional file 1: Figure S34a). This suggests that the
real data cell number 2279 can lead to optimal cell clustering by Seurat. In contrast, for
the two non-UMI-based protocols Fluidigm C1 and Smart-Seq2, we only observe a first-
increasing-and-then-saturated trend of clustering accuracy as the cell number increases,
without seeing the trend decreasing (except for SC3 on Smart-Seq2 data) (Additional
file 1: Figures S37b and S40b). A likely reason is that these two protocols can provide
a clear profile of every cell up to a large cell number around 10,000 given their deep
sequencing depths in real data (869.24 million reads in the Fluidigm C1 data and 1074.95
million reads in the Smart-Seq2 data). For both Seurat and SC3, the cell numbers at which
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Fig. 9 scDesign2 guides the choice of cell number in cell clustering, in the case where the average
sequencing depth is kept as fixed. scDesign2 generates synthetic 10x Genomics data with eleven cell
numbers. Two cell clustering methods—Seurat and SC3—are applied to each synthetic dataset to partition
cells into cell clusters. a t-SNE visualization of four synthetic datasets, where cells are labeled by Seurat
clusters (top), SC3 clusters (middle), and annotated cell types (bottom). b Two clustering accuracy measures
(AMI and ARI) vs. cell number; left: Seurat; right: SC3. In b, the results of the four cell numbers in a are marked
as dots and in the top, and the cell number of the real dataset [83] is marked as vertical dashed lines

their performance saturates are close to the cell numbers in real data: 317 cells in the Flu-
idigm C1 data and 1078 cells in the Smart-Seq2 data. In conclusion, we use scDesign2 to
find that the cell numbers are close to being optimal in the CEL-Seq2, Fluidigm C1, and
Smart-Seq2 datasets. For 10x Genomics, we would recommend decreasing the cell num-
ber to 948 cells (while keeping the sequencing depth at 28.58 million UMIs) to optimize
the clustering accuracy by either Seurat or SC3.
For the third, fixing-average-sequencing-depth scenario, we expect the clustering accu-

racy to improve as the cell number (and also the total sequencing depth) increases,
because more cells will make the identification of cell types easier. Moreover, we expect
there to be a saturation effect: the clustering accuracy no longer improves much after the
cell number increases to a point, which we regard as the optimal cell number that bal-
ances clustering accuracy and budget. The results confirm our expectation. In all four
protocols, we observe the expected trend of clustering accuracy for both Seurat and SC3,
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as well as the saturation effect, which is more obvious for Seurat. In detail, the satura-
tion for 10x Genomics data occurs at 948 cells (based on Seurat), or 3793 cells (based
on SC3), while the real dataset has 3793 cells (Fig. 9); the saturation for CEL-Seq2 data
occurs at 1140 cells, while the real dataset has 2279 cells (Figure S35); the saturation for
Fluidigm C1 data occurs at 317 cells (based on Seurat), which is the same cell number as
the real dataset, while the optimal clustering accuracy occurs at 1268 cells based on SC3
(Figure S38); the saturation for Smart-Seq2 data occurs at 4312 cells, while the real dataset
has 1078 cells (Figure S41). In conclusion, when the average read (or UMI) count per cell
is kept as fixed, for clustering purpose, we recommend keeping the cell number as in the
original design for 10x Genomics and using SC3 for clustering; for CEL-Seq2, we recom-
mend decreasing the cell number to 1140 to save budget and using Seurat for clustering;
for Fluidigm C1, if budget allows, we recommend increasing the cell number to 1268 and
using SC3 for clustering; for Smart-Seq2, if budget allows, we recommend increasing the
cell number to 4312 and using either Seurat or SC3 for clustering.
Beyond experimental design, scDesign2 also provides a comprehensive comparison

of Seurat and SC3 across sequencing depths and cell numbers. Overall, both methods
demonstrate superb accuracy in a wide range of sequencing depths and cell numbers for
every protocol. At close-to-optimal sequencing depths and cell numbers for eachmethod,
SC3 has better accuracy than Seurat. However, Seurat and SC3 have different robustness:
Seurat is a more robust method for 10x Genomics data when the sequencing depth is low
or the cell number is large (Figs. 7b, 8, and 9b), while SC3 is more robust when the cell
number is small for CEL-Seq2 (Additional file 1: Figures S34b–S35b), Fluidigm C1 (Addi-
tional file 1: Figures S37b–S38b), and Smart-Seq2 (Additional file 1: Figures S40b–S41b).
This finding is consistent with the fact that SC3 is an ensemblemethod that is more robust
against a small number of cells but cannot be easily scaled up when the cell number is too
large.

Application 3: scDesign2 guides experimental design and computational method

benchmarking in rare cell type detection

Rare cell type detection is another important application of scRNA-seq, whose high-
throughput profiling of cells opens an unprecedented opportunity to identify unknown
cell types that are often rare but critical. Here, we demonstrate how scDesign2 can guide
experimental design (i.e., deciding the optimal cell number and sequencing depth) and
benchmark computational methods for the rare cell type detection task.
From the 10x Genomics dataset of mouse intestine epithelial tissue [83], we select six

cell types—stem cells (Stem), goblet cells (Goblet), tuft cells (Tuft), early transit amplifying
cells (TA.Early), enterocyte progenitors (EP), and early enterocyte progenitors (EP.Early),
amongwhich Tuft is the rare cell type [95] and has a proportion less than 5% among the six
cell types. After training scDesign2 on this dataset, we use scDesign2 to generate synthetic
data under three experimental design scenarios: (1) varying sequencing depths, where
the total number of UMIs varies but the cell number is fixed; (2) varying cell numbers,
where the number of sequenced cells varies but the sequencing depth is fixed; and (3)
fixing the per-cell average sequencing depth, where both the number of sequenced cells
and the total sequencing depth vary, but the average number of reads (or UMIs) in each
cell is fixed. For every sequencing depth and cell number, scDesign2 generates a synthetic
dataset.
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To guide the choices of sequencing depth and cell number based on rare cell type
detection accuracy, we apply two popular methods—FiRE [47] and GiniClust2 [46]—to
the synthetic datasets and evaluate four accuracy measures: precision (the percentage
of truly rare cells among the detected rare cells), recall (the percentage of detected rare
cells among the truly rare cells), F1-score (the harmonic mean of the precision and
recall), and AUPRC (the area under the precision-recall curve). Since GiniClust2 does not
allow adjustment of its detection threshold, we cannot calculate its AUPRC. However, as
most users of FiRE would stick with its default threshold, the AUPRC measure is not as
informative as the other three measures from a user’s perspective.
For the first, varying-sequencing-depth scenario, we expect that the detection accu-

racy would improve as the sequencing depth increases and there would be a saturation
effect, similar to our expectation for cell clustering. The detection accuracy of FiRE and
GiniClust2 roughly confirms our expectation. Across twelve sequencing depths ranging
from 1.76 to 3612.4 million UMIs (with the cell number fixed as 3793, the number of
cells in real data), we observe an overall trend of increasing detection accuracy with few
exceptions (Fig. 10). For FiRE, its accuracy exhibits saturation after the sequencing depth
reaches 457.23 million UMIs (Fig. 10a, c), while for GiniClust2 the saturation occurs ear-
lier at a sequencing depth of 113.05 million UMIs (Fig. 10b, d). The t-SNE visualization
supports the observed trends of precision and recall. In each t-SNE plot that corresponds
to one sequencing depth and one detection method (FiRE or GiniClust2), synthetic cells
are labeled as one of four types: true positive (TP; the rare cells correctly detected), false
positive (FP; the unrare cells falsely detected), false negative (FN; the rare cells falsely
undetected), and true negative (TN; the unrare cells correctly undetected). The num-
bers of TP, FP, FN, and TN cells determine the precision and recall: a large precision
requires many TP cells and few FP cells; a large recall requires many TP cells and few FN
cells. Notably, the abnormal accuracy of GiniClust2 at 457.23 million UMIs (Fig. 10d) is
explained by the t-SNE visualization (Fig. 10b), which shows that GiniClust2 misidenti-
fies the second largest cell cluster as the rare cell type, leads to many FP and FN cells, and
results in close to zero precision and recall. Combining the FiRE and GiniClust2 results,
we conclude that the real data sequencing depth at 28.57 million UMIs for 3793 cells is
not optimal for detecting the rare cell type Tuft (Fig. 10c, d). If budget allows, we would
recommend increasing the sequencing depth to 113.06 million UMIs and use GiniClust2
to detect tuft cells.
For the second, varying-cell-number scenario, we expect the detection accuracy to first

increase and then decrease as the cell number increases, similar to our expectation for
cell clustering. Again, the detection accuracy of FiRE and GiniClust2 confirms our expec-
tation. Across thirteen cell numbers ranging from 29 to 121,376 (with the sequencing
depth fixed as 28.57 million UMIs, the same as in real data), we observe an overall trend
of detection accuracy that first increases and then decreases (Fig. 11). For both FiRE and
GiniClust2, their F1-scores are optimal at 1896 cells (Fig. 11c, d). This optimality is sup-
ported by the t-SNE visualization, which shows a plot of synthetic cells with TP, FP, FN,
and TN labels for every cell number and each detection method (Fig. 11a, b). Hence, the
real data cell number 3793 is not optimal for detecting tuft cells given the total sequenc-
ing depth of 28.57 million UMIs. If the detection of tuft cells is a primary goal and the
sequencing depth cannot be increased due to budget constraints, we would recommend
decreasing the cell number to 1896 cells and use GiniClust2 to detect tuft cells.
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Fig. 10 scDesign2 guides the choice of sequencing depth in rare cell type detection. scDesign2 generates
synthetic 10x Genomics data with twelve sequencing depths. Two rare cell type detection methods—FiRE
and GiniClust2—are applied to each synthetic dataset to detect rare cell types. a t-SNE visualization of six
synthetic datasets and identification results—true positive (TP), false positive (FP), false negative (FN), and
true negative (TN) cells—of FiRE in each dataset. b t-SNE visualization of the same six synthetic datasets and
identification results of GiniClust2 in each dataset. c Four identification accuracy measures by FiRE (precision,
recall, F1-score, and AUPRC) vs. sequencing depth. d Three identification accuracy measures by GiniClust2
(precision, recall, and F1-score) vs. sequencing depth. In c and d, the results of the six sequencing depths in a
and b are marked as dots and in the top, and the sequencing depth of the real dataset [83] is marked as
vertical dashed lines

For the third, fixing-average-sequencing-depth scenario, we expect the detection accu-
racy to first increase and then saturate as the cell number increases, similar to our
expectation for cell clustering. The detection accuracy of FiRE roughly confirms our
expectation, while the detection accuracy of GiniClust2 deviates from this trend (Fig. 12).
For FiRE, across thirteen cell numbers ranging from 29 to 121,376 (with the average
sequencing depth fixed as 7.53k UMIs per cell, the same as in real data), the F1-score
reaches an early local maximum at 474 cells, and then stays relatively stable. A similar
trend can be seen for the other three accuracy measures: precision, recall, and AUPRC.
For GiniClust2, across nine cell numbers ranging from 29 to 7586, the F1-score reaches a
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Fig. 11 scDesign2 guides the choice of cell number in rare cell type detection, in the case where the total
sequencing depth is kept as fixed. scDesign2 generates synthetic 10x Genomics data with thirteen cell
numbers. Two rare cell type detection methods—FiRE and GiniClust2—are applied to each synthetic dataset
to detect rare cell types. a t-SNE visualization of six synthetic datasets and identification results—true positive
(TP), false positive (FP), false negative (FN), and true negative (TN) cells—of FiRE in each dataset. b t-SNE
visualization of the same six synthetic datasets and identification results of GiniClust2 in each dataset. c Four
identification accuracy measures by FiRE (precision, recall, F1-score, and AUPRC) vs. cell number. d Three
identification accuracy measures by GiniClust2 (precision, recall, and F1-score) vs. cell number. In c and d, the
results of the six cell numbers in a and b are marked as dots and in the top, and the cell number of the real
dataset [83] is marked as vertical dashed lines. Whenever there is no line for a cell number, FiRE or GiniClust2
does not detect any rare cells or fails

global maximum at 237 cells, and then it decreases as the cell number further increases.
This is mainly due to the increasing proportion of FPs in the discovered rare cells, as
indicated by the plunging precision curve. The recall, on the other hand, stays relatively
stable after the optimal cell number. The t-SNE visualization supports the observed trends
of these accuracy measures. For example, we can see that for GiniClust2, when the cell
number reaches 1000, more cells are labeled as FP, as shown in subpanels (4)–(6) of
Fig. 12b. In summary, if the goal is to detect tuft cells and the average sequencing depth is
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fixed as 7.53k UMIs per cell, we recommend using GiniClust2 and decreasing the number
of cells to 237.

In addition to assisting experimental design, scDesign2 also provides an objective com-
parison of FiRE and GiniClust2 across sequencing depths and cell numbers. Figures 10,
11 and 12 show that GiniClust2 has much better accuracy than FiRE at close-to-optimal
sequencing depths and cell numbers. However, FiRE is a more robust method that it can
successfully run at all sequencing depths and cell numbers, while GiniClust2 fails when

Fig. 12 scDesign2 guides the choice of cell number in rare cell type detection, in the case where the average
sequencing depth is kept as fixed. scDesign2 generates synthetic 10x Genomics data with thirteen cell
numbers. Two rare cell type detection methods—FiRE and GiniClust2—are applied to each synthetic dataset
to detect rare cell types. a t-SNE visualization of six synthetic datasets and identification results—true positive
(TP), false positive (FP), false negative (FN), and true negative (TN) cells—of FiRE in each dataset. b t-SNE
visualization of the same six synthetic datasets and identification results of GiniClust2 in each dataset. c Four
identification accuracy measures by FiRE (precision, recall, F1-score, and AUPRC) vs. cell number. d Three
identification accuracy measures by GiniClust2 (precision, recall, and F1-score) vs. cell number. In c and d, the
results of the six cell numbers in a and b are marked as dots and in the top, and the cell number of the real
dataset [83] is marked as vertical dashed lines. Whenever there is no line for a cell number, FiRE or GiniClust2
does not detect any rare cells or fails
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the cell number is too small or too large (GiniClust3 may have addressed this large cell
number issue [96]). This finding is consistent with the methodological difference between
the two methods: FiRE detects rare cells via an outlier detection approach, while Gini-
Clust2 first performs cell clustering and then identifies the cells in small clusters as rare
cells. The requirement of cell clustering explains why GiniClust2 fails when the cells
exhibit no clear clusters and why it works well when rare cells form small clear clusters. In
contrast, outlier detection has no requirement on cluster patterns, and this explains why
FiRE is robust.

Discussion
In this article, we propose scDesign2, a transparent simulator for single-cell gene expres-
sion count data. Our development of scDesign2 is motivated by the pressing challenge
to generate realistic synthetic data for various scRNA-seq protocols and other single-
cell gene expression count-based technologies. Unlike existing simulators including our
previous simulator scDesign, scDesign2 achieves six properties: protocol adaptiveness,
gene preservation, gene correlation capture, flexible cell number and sequencing depth
choices, transparency, and computational and sample efficiency. This achievement of
scDesign2 is enabled by its unique use of the copula statistical framework, which com-
bines marginal distributions of individual genes and the global correlation structure
among genes. As a result, scDesign2 has the following methodological advantages that
contribute to its high degree of transparency. First, it selects a marginal distribution from
four options (Poisson, ZIP, NB, and ZINB) for each gene in a data-driven manner to
best capture and summarize the expression characteristics of that gene. Second, it uses a
Gaussian copula to estimate gene correlations, which will be used to generate synthetic
single-cell gene expression counts that preserve the correlation structures. Third, it can
generate gene expression counts according to user-specified sequencing depth and cell
number.
We have performed a comprehensive set of benchmarking and real data studies to

evaluate scDesign2 in terms of its accuracy in generating synthetic data and its efficacy
in guiding experimental design and benchmarking computational methods. Based on
four scRNA-seq protocols and 12 cell types, our benchmarking results demonstrate that
scDesign2 better captures gene expression characteristics in real data than eight existing
scRNA-seq simulators do. In particular, among the four simulators that aim to pre-
serve gene correlations, scDesign2 achieves the best accuracy. Moreover, we demonstrate
the capacity of scDesign2 in generating synthetic data of other single-cell count-based
technologies including MERFISH and pciSeq, two single-cell spatial transcriptomics
technologies. After validating the realistic nature of synthetic data generated by scDe-
sign2, we use real data applications to demonstrate how scDesign2 can guide the selection
of cell number and sequencing depth in experimental design, as well as how scDesign2
can benchmark computationalmethods for cell clustering and rare cell type identification.
In the last stage of manuscript finalization, we found another scRNA-seq simulator

SPsimSeq [79] (published in Bioinformatics as a 2.3-page software article), which can
capture gene correlations. However, unlike scDesign2, SPsimSeq cannot generate scRNA-
seq data with varying sequencing depths. To compare scDesign2 with SPsimSeq, we have
benchmarked their synthetic data against the corresponding real data in two sets of anal-
yses: (1) gene correlation matrices of the previously used 12 cell type–protocol com-
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binations (3 cell types × 4 scRNA-seq protocols) and (2) 2D visualization plots of the 4
multi-cell type scRNA-seq datasets and one MERFISH dataset. The results are summa-
rized in Additional file 2. We find that in most cases (10 out 12 cases in the first set of
analysis; 5 out 5 cases in the second set of analysis), the synthetic data of scDesign2 better
resemble the real data than the synthetic data of SPsimSeq do.
Since scRNA-seq data typically contain tens of thousands of genes, the estimation of the

copula gene correlation matrix is a high dimensional problem. This problem can be par-
tially avoided by only estimating the copula correlationmatrix of thousands of moderately
to highly expressed genes. We use a simulation study to demonstrate why this approach
is reasonable (Additional file 1: Figures S42 and S43), and a more detailed discussion is
in the “Methods” section. To summarize, the simulation results suggest that, to reach an
average estimation accuracy of ±0.3 of true correlation values among the top 1000 highly
expressed genes, at least 20 cells are needed. To reach an accuracy level of ±0.2 for the
top 1500 highly expressed genes, at least 50 cells are needed. With 100 cells, an accuracy
level of ±0.1 can be reached for the top 200 highly expressed genes, and a slightly worse
accuracy level can be reached for the top 2000 genes.
In the implementation of the scDesign2 R package, we control the number of genes

for which copula correlations need to be estimated by filtering out the genes whose zero
proportions exceed a user-specified cutoff. For all the results in this paper, the cutoff is set
as 0.8. In Additional file 1: Table S1, we summarize the number of cells (n), i.e., the sample
size, and the number of genes included for copula correlation estimation (p) in each of
the 12 datasets used for benchmarking simulators. Based on Additional file 1: Figures S42
and S43, we see that p appears to be too large for the CEL-Seq2, Fluidigm C1, and Smart-
Seq2 datasets. This suggests that the results in this paper may be further improved by
setting a more stringent cutoff for gene selection.
For future methodological improvement, there are other ways to address this high-

dimensional estimation problem. For example, we can consider implementing sparse
estimation (e.g., [97]) for the copula correlation matrix. Moreover, we can build a hier-
archical model to borrow information across cell types/clusters. This will be useful for
improving the model fitting for small cell types/clusters that may share similar gene
correlation structures.
The current implementation of scDesign2 is restricted to single-cell datasets composed

of discrete cell types, because the generative model of scDesign2 assumes that cells of
the same type follow the same distribution of gene expression. However, many single-cell
datasets exhibit continuous cell trajectories instead of discrete cell types. A nice prop-
erty of the probabilistic model used in scDesign2 is that it is generalizable to account
for continuous cell trajectories. First, we can use the generalized additive model (GAM)
[52, 98, 99] to model each gene’s marginal distribution of expression as a function of cell
pseudotime, which can be computationally inferred from real data [53, 54, 56]. Second,
the copula framework can be used to incorporate gene correlation structures along the
cell pseudotime. Combining these two steps into a generative model, this extension of
scDesign2 has the potential to overcome the current challenge in preserving gene corre-
lations encountered by existing simulators for single-cell trajectory data, such as Splatter
Path [69], dyngen [77], and PROSSTT [68]. Another note is that scDesign2 does not
generate synthetic cells based on outlier cells that do not cluster well with any cells in
well-formed clusters. This is not necessarily a disadvantage, neither is it a unique feature
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to scDesign2. In fact, all model-based simulators that learn a generative model from real
data must ignore certain outlier cells that do not fit well to their model. Some outlier
cells could either represent an extremely rare cell type or are just “doublets” [100–103],
artifacts resulted from single-cell sequencing experiments. Hence, our stance is that igno-
rance of outlier cells is a sacrifice that every simulator has to make; the open question is
the degree to which outlier cells should be ignored, and proper answers to this question
must resort to statistical model selection principles.
Regarding the use of scDesign2 to guide the design of scRNA-seq experiments, although

scDesign2 can model and simulate data from various scRNA-seq protocols and other
single-cell expression count-based technologies, the current scDesign2 implementation
is not yet applicable to cross-protocol data generation (i.e., training scDesign2 on real
data of one protocol and generating synthetic data for another protocol) because of com-
plicated differences in data characteristics among protocols. To demonstrate this issue,
we use a multi-protocol dataset of peripheral blood mononuclear cells (PBMCs) gen-
erated for benchmarking purposes [20]. We select data of five cell types measured by
three protocols, 10x Genomics, Drop-Seq, and Smart-Seq2, and we train scDesign2 on
the 10x Genomics data. Then, we adjust the fitted scDesign2 model for the Drop-Seq and
Smart-Seq2 protocols by rescaling the mean parameters in the fitted model to account
for the total sequencing depth and cell number, which are protocol-specific (see the
“Methods” for details). After the adjustment, we use the model for each protocol to gen-
erate synthetic data. Additional file 1: Figure S44 illustrates the comparison of real data
and synthetic data for each protocol. From the comparison, we observe that the syn-
thetic cells do not mix well with the real cells for the two cross-protocol scenarios; only
for 10x Genomics, the same-protocol scenario, do the synthetic cells mix well with the
real cells.
To further illustrate the different data characteristics of different protocols, we compare

individual genes’ mean expression levels in the aforementioned three protocols. We refer
to Drop-Seq and Smart-Seq2 as the target protocols, and 10x Genomics as the reference
protocol. First, we randomly partition the two target-protocol datasets and the reference-
protocol dataset into two halves each; we repeat the partitions for 100 times and collect
100 sets of partial datasets, with each set containing two target-protocol partial datasets
(one Drop-Seq and one Smart-Seq2) and two reference-protocol partial datasets (split
from the 10x Genomics dataset)—one of the latter is randomly picked and referred to as
the “reference data.” Second, For every gene in each cell type, we take each set of partial
datasets and compute two cross-protocol ratios, defined as the gene’s mean expression
levels in the target-protocol partial datasets divided by its mean expression level in the ref-
erence data, and a within-protocol ratio, defined as the ratio of the gene’s mean expression
level in the other reference-protocol partial dataset divided by that in the reference data;
together, with the 100 sets of partial dataset, every gene in each cell type has 100 ratios
for each of the two cross-protocol comparisons and 100 ratios for the within-protocol
comparison. We apply this procedure to the top 50 and 2000 highly expressed genes in
five cell types. Additional file 1: Figures S45 and S46 show that, with the within-protocol
ratios as a baseline control for each cell type and each target protocol, the cross-protocol
ratios exhibit a strongly gene-specific pattern; moreover, there is no monotone relation-
ship between the cross-protocol ratios and the mean expression levels of genes. This
result confirms that there does not exist a single scaling factor to convert all genes’ expres-
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sion levels from one protocol to another. However, an interesting phenomenon is that, for
each target protocol, the cross-protocol ratios have similar patterns across cell types. This
phenomenon sheds light on a future research direction of cross-protocol simulation for
the cell types that exist in only one protocol, if the two protocols have shared cell types.
In this scenario, we may train a model for each cell type in each protocol, learn a gene-
specific but cell type-invariant scaling factor from the shared cell types, and simulate data
for the cell types missing in one protocol.
We note that the above analysis is only conducted for the genes’ mean expression levels.

The difficulty of cross-protocol simulation is in fact even larger because realistic simu-
lation requires the rescaling of the other distributional parameter(s) in a two-parameter
distribution such as NB and ZIP or a three-parameter distribution such as ZINB. Existing
work has provided extensive empirical evidence on the vast differences between protocols
in terms of data characteristics [42, 86].
In applications 2 and 3, we have demonstrated how to use scDesign2 to guide experi-

mental design and benchmark computational methods for the tasks of cell clustering and
rare cell type detection. Note that in these analyses, the optimized sequencing depths
and cell numbers are only applicable to the same experimental protocols and biological
samples. Yet, this limitation does not disqualify scDesign2 as a useful tool to guide exper-
imental design. For example, researchers usually perform a coarse-grained, low-budget
experiment to obtain a preliminary dataset, and then they may use scDesign2 to guide the
optimal design of the later, more refined experiment. As another example, if scRNA-seq
data need to be collected from many individuals, researchers usually first perform a pilot
study on a small number of individuals. Then, they may train scDesign2 using the pilot
data to guide the design of the subsequent, large-scale experiments. In addition to guiding
the experimental design, scDesign2 is useful as a general benchmarking tool for various
experimental protocols and computational methods. For example, the analyses we per-
formed in applications 2 and 3 are easily generalizable to other computational methods
for a more comprehensive benchmarking.
Although we only use cell clustering and rare cell type detection to demonstrate scDe-

sign2’s use in guiding experimental design and benchmarking computational methods,
we want to emphasize that scDesign2 has broad applications beyond these two tasks.
Inheriting the flexible and transparent modeling nature of our previous simulator scDe-
sign, scDesign2 can also benchmark other computational analyses we have demonstrated
in our scDesign paper [35], including differential gene expression analysis and cell dimen-
sionality reduction. Moreover, beyond its role as a simulator, scDesign2 may benefit
single-cell gene expression data analysis by providing its estimated parameters about gene
expression and gene correlations. Here, we discuss three potential directions. First, scDe-
sign2 can assist differential gene expression analysis. Its estimated marginal distributions
of individual genes in different cell types can be used to investigate more general patterns
of differential expression (such as different variances and different zero proportions), in
addition to comparing gene expression means between two groups of cells [104]. Second,
its estimated gene correlation structures can be used to construct cell type-specific gene
networks [105] and incorporated into gene set enrichment analysis to enhance statistical
power [106, 107]. Third, scDesign2 has the potential to improve the alignment of cells
from multiple single-cell datasets [108]. Its estimated gene expression parameters can
guide the calculation of cell type or cluster similarities between batches, and its estimated
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gene correlation structures can be used to align cell types or clusters across batches based
on the similarity in gene correlation structures. [109].

Methods
The statistical framework of scDesign2

Fitting a generativemodel of single-cell gene expression count data with gene correlations

Given an scRNA-seq count matrix X ∈ N
p×n with p genes and n cells, we assume that

the n cells belong to K cell types and that the cell memberships have been assigned by
clustering, labeled by marker genes, or known in advance. (For input data without pre-
defined cell types, our recommendation for cell clustering is in two subsections.) Our goal
is to fit a parametric count model to characterize the joint distribution of genes’ counts in
each cell type. For cell type k, we denote its number of cells by n(k), its count sub-matrix
by X(k), and its set of model parameters by �(k), k = 1, . . . ,K . For simplicity of notation,
we drop the superscript (k) in the following discussion about the generative model for
one single cell type.
We denote X·j = (X1j, . . . ,Xpj)T ∈ R

p as a random p-dimensional gene count vector
in cell j, j = 1, . . . , n. We denote its realization, i.e., the observed gene count vector as
the jth column in X, by x·j = (x1j, . . . , xpj)T. Jointly for the p genes, we assume that X·j
independently follows a p-dimensional distribution F, which we will specify by a copula in
the next paragraph.Marginally for each gene i, we assume thatXij independently follows a

univariate count distribution Fi. For example, if Fi is the ZINB distribution, we writeXij
ind∼

ZINB(pi,ψi,μi), which can be interpreted as a hierarchical model: (1) Zij
ind∼ Ber(pi) is a

hidden latent variable indicating whether gene i drops out in cell j; (2) Xij|Zij
ind∼ 10Zij +

NB(ψi,μi)(1 − Zij), where 10 indicates a point mass at 0. That is,

E(Xij|Zij = 0) = μi , Var(Xij|Zij = 0) = μi + μ2
i

ψi
.

Note that the Zij’s are unobserved and introduced only to describe the zero-inflation
component. The Poisson, the zero-inflated Poisson (ZIP), and the negative binomial (NB)
distributions are three special cases of the ZINB distribution, where pi = 0 for Poisson
and NB, and ψi = ∞ for Poisson and ZIP. From these four distributions, scDesign2 auto-
matically chooses the one that best fits to gene i’s observed counts. Specifically, for the ith
row of X, xi· = (xi1, . . . , xin)T, if its sample mean x̄i· = n−1 ∑n

j=1 xij ≥ its sample variance
σ̂ 2
i = (n − 1)−1 ∑n

j=1(xij − xi·)2, i.e., there is no over-dispersion, scDesign2 fits the Pois-
son and the ZIP distributions separately to xi· by maximum likelihood estimation (MLE),
and then performs a likelihood ratio test with χ2

1 as the null distribution to determine if
zero-inflation is significant, i.e., the ZIP distribution should be chosen over the Poisson
distribution. Otherwise if there is over-dispersion, i.e., x̄i· < σ̂ 2

i , scDesign2 fits the NB and
the ZINB distributions separately to xi· by MLE and then performs a likelihood ratio test
with χ2

1 as the null distribution to determine if zero-inflation is significant, i.e., the ZINB
distribution should be chosen over the NB distribution. The default significance level (i.e.,
p value cutoff ) for both tests is 0.05.
After estimating the marginal distributions of the p genes, i.e., F1, . . . , Fp, scDesign2

uses a copula to model the joint p-dimensional distribution F. A copula is defined as
a joint cumulative distribution function (CDF), C(·): [ 0, 1]p →[ 0, 1], which includes p
uniform marginal distributions on [ 0, 1]. That is, C is the CDF of a random vector
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U = (U1, . . . ,Up)T ∈[ 0, 1]p, with Ui ∼ Uniform[ 0, 1], i = 1, . . . , p. For cell j’s gene
count vector X·j ∈ R

p, although its ith component Xij may not follow the Uniform[ 0, 1]
distribution, we can transform Xij by applying the marginal CDF Fi so that Fi(Xij) ∼
Uniform[ 0, 1]. This allows us to write the joint CDF F as:

F(x1j, . . . , xpj) = C(F1(x1j), . . . , Fp(xpj)) ,

which is decomposable into the copulaC and themarginal distributions F1, . . . , Fp. Sklar’s
theorem states that such a decomposition exists uniquely for any continuous distribution
F [110]. If F is discrete in any dimension, the copula C still exists but may not be unique,
i.e., not identifiable [111, 112]. To resolve this unidentifiability issue, scDesign2 uses the
technique of distributional transform [113]: first draw Vij ∼ Uniform[ 0, 1] independently
for i = 1, . . . , p and j = 1, . . . , n; second define Uij as:

Uij = VijFi(Xij − 1) + (1 − Vij)Fi(Xij) . (1)

The effect of this transform is illustrated in Additional file 1: Figure S47. Essentially, for a
discrete random variable Xij with CDF Fi, this transform distributes the non-zero proba-
bility mass Xij has at every value x uniformly to the interval [ x, x + 1), thus transforming
the discrete CDF Fi to a continuous CDF F̃i as:

F̃i(y) = Fi(�y	 − 1) + (y − �y	) (Fi(�y	) − Fi(�y	 − 1)) ,

where �y	 denotes the largest integer no greater than y.
With Vij and Xij, if we define:

X̃ij = Xij + Vij , (2)

then the probability density function of X̃ij is:

f̃ (y) = Pr(Xij = �y	,Vij = y − �y	) = Pr(Xij = �y	) = Fi(�y	) − Fi(�y	 − 1) ,

and the CDF of X̃ij is:
∫ y

−∞
f̃ (t)dt = Fi(�y	 − 1) + (y − �y	) (Fi(�y	) − Fi(�y	 − 1)) .

Hence, X̃ij ∼ F̃i; that is, the continuous random variable X̃ij constructed from Xij and Vij
follows F̃ij. Defining Uij = F̃i(X̃ij), we have Uij ∼ Uniform[ 0, 1] and:

Uij = F̃i(Xij + Vij) = Fi(Xij − 1) + Vij
(
Fi(Xij) − Fi(Xij − 1)

)

= VijFi(Xij − 1) + (1 − Vij)Fi(Xij) ,

which is (1). This proves that Uij constructed by (1) follows Uniform[ 0, 1] and is thus
desirable.
After this transform, the CDF F ofX·j is defined as the copulaC ofU·j = (U1j, . . . ,Upj)T:

F(x1j, . . . , xpj) = C(u1j, . . . ,upj) ,

where (u1j, . . . ,upj)T is a realization of (U1j, . . . ,Upj)T. In scDesign2, we choose C as the
Gaussian copula. Denoting by � the CDF of a standard Gaussian distribution, we define
F as:

F(x1j, . . . , xpj) = �p(�
−1(u1j), . . . ,�−1(upj);R),

where �p(·;R) is the CDF of a p-dimensional Gaussian distribution with a zero mean
vector and a covariancematrix that is equal to the correlationmatrixR. If we denote Rhl as
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the Gaussian copula correlation between genes h and l, i.e., the (h, l)-th entry of R, and τhl
as the Kendall’s tau between the same two genes on the original scale, i.e., τhl = τ(Xhj,Xlj),
then we have the following relationship [114, 115]:

Rhl = sin
(π

2
τhl

)
.

This relationship links the copula correlation with the Kendall’s tau of the two original
variables, thus providing an interpretation of the copula correlation. It also suggests that
R can be estimated by plugging the sample tau matrix into the above formula; however,
this estimate of R may not always be positive semidefinite [116, 117]. Therefore, we use
another procedure to estimate R.
Denote by (p̂i, ψ̂i, μ̂i) the estimated parameters of Fi, which specify a fitted marginal

distribution F̂i. We sample v∗
ij from Uniform[ 0, 1] independently for i = 1, . . . , p and

j = 1, . . . , n, and we calculate u∗
ij as:

u∗
ij = v∗

ijF̂i(xij − 1) + (1 − v∗
ij )̂Fi(xij) .

Then, we estimate R by the sample covariance matrix R̂ of
(
�−1(u∗

1j), . . . ,�−1(u∗
pj)

)T
,

j = 1, . . . , n.
As a side note, since this estimation procedure requires the random sampling of v∗

ij’s,
it introduces additional randomness into the estimation of R; that is, R̂ is not a deter-
ministic function of data. However, this additional randomness has a negligible effect on
the synthetic data. As demonstrated in Additional file 1: Figure S48, the gene correlation
matrices estimated from synthetic data generated by scDesign2, with R̂ estimated under
two different random samples of v∗

ij’s, are very similar to each other.
To summarize, scDesign2 first estimates the marginal distributions F1, . . . , Fp as

F̂1, . . . , F̂p, each of which may be a fitted Poisson, ZIP, NB, or ZINB distribution. Then,
scDesign2 calculates u∗

ij’s as described above and estimates a p × p covariance matrix as
R̂. Finally, scDesign2 estimates the p-dimensional joint distribution F as:

F̂(x1j, . . . , xpj) = �p(�
−1(u∗

1j), . . . ,�−1(u∗
pj); R̂) ,

whose estimated model parameters are �̂ = {p̂1, ψ̂1, μ̂1, . . . , p̂p, ψ̂p, μ̂p, R̂}.
As a practical note, since the datamatrixX typically contains tens of thousands of genes,

if the sample size, i.e., the number of cells is not large enough, the estimation of the copula
correlationmatrix can be problematic [97].Moreover, many genes are too lowly expressed
to be detected in scRNA-seq data, making their correlations uninteresting to estimate.
For these two reasons, we argue that the copula correlations should only be estimated for
a subset of moderately to highly expressed genes.
In Additional file 1: Figures S42 and S43, we analyze how n (the sample size, i.e., the

number of cells) and p (the number of top expressed genes included) affect the estimation
of the copula correlation matrix. We use two example datasets: the stem cell data gener-
ated by the 10x Genomics protocol and the dendrocyte (subtype 1) data generated by the
Smart-Seq2 protocol. For each dataset, we extract the fitted Gaussian copula model for
the top 2000 genes with the highest mean expression levels, and we use this model as the
ground truthmodel to generate 1000 samples with a varying n. Then, we estimate the cop-
ula correlation matrix of a varying p from each sample. For computational efficiency, we
use the plug-in estimation method based on sample tau values: R̂hl = sin (π

2 τ̂hl). Finally,



Sun et al. Genome Biology          (2021) 22:163 Page 30 of 37

we calculate the mean squared error (MSE) between the estimated copula correlations
and the true copula correlations. That is, for each n and p, we have 1000 MSE values.
In Additional file 1: Figures S42 and S43, from panel (a), we can see that MSEs decrease

as n increases. From panel (b), we can see that MSEs increase as p increases, i.e., more
lowly expressed genes are included. To ease the interpretation of the results, we mark
three horizontal lines at MSE= 0.09, 0.04, and 0.01 to represent three levels of estimation
quality. On the scale of correlation values, these three levels indicate that on average the
estimated values are within ±0.3, ±0.2, and ±0.1 of the true values. The results suggest
that to reach the±0.3 level of estimation quality, a reasonable choice of n is at least 20, and
the top 1000 highly expressed genes can be included. To reach the±0.2 level, a reasonable
choice of n is at least 50, and the top 1500 highly expressed genes can be included. For
n = 100, the ±0.1 level can be reached for the top 100–200 highly expressed genes, and
even the error level for the top 2000 is close to this level. The results confirm that sample
size is not a concern for single-cell data because most cell types contain at least a hundred
cells that can be measured by current protocols.
In the implementation of the scDesign2 R package, before fitting the above genera-

tive model for each cell type, scDesign2 partitions the genes into three groups: the first
group containing genes with zero proportions less than a cutoff (default 0.8, but can be
changed according to the discussion above), the second group containing genes with zero
proportions between the cutoff and (n − 2)/n, where n is the number of cells, and the
last group including the remaining genes, i.e., genes expressed in fewer than three cells.
For the first group, scDesign2 fits the above generative model jointly for its genes. For the
second group, scDesign2 fits a marginal distribution for each individual gene. For the last
group, scDesign2 only generates zero counts for all its genes.

Generation of synthetic single-cell gene expression count data

To generate synthetic scRNA-seq data for K cell types, scDesign2 first estimates the pro-
portions of K cell types from the real scRNA-seq count matrix X, for which we denote
the number of reads mapped to the n(k) cells of type k as N (k), and the total number
of reads mapped to all the n cells as N = ∑K

k=1N (k). Denoting the cell type propor-
tions as π = (π(1), . . . ,π(K))T such that

∑K
k=1 π(k) = 1, scDesign2 estimates them by

π̂ = (π̂ (1), . . . , π̂ (K))T, where:

π̂ (k) = n(k)

n
, k = 1, . . . ,K .

We denote the synthetic scRNA-seq data to be generated as X′, which contains n′ cells
and N ′ expected number of reads, with n′ and N ′ as user-specified input parameters of
scDesign2. Denoting the number of synthetic cells of type k as n(k)′, scDesign2 draws
the numbers of synthetic cells of all K cell types from a multinomial distribution, i.e.,
(n(1)′ , . . . , n(K)′)T ∼ Multinomial(n′, π̂). Then, given n(k)′ , the expected number of reads
assigned to cell type k in X′ should be:

N (k)0 = N (k)

n(k) n
(k)′ , k = 1, . . . ,K .

However, given the constraint that the expected total number of reads inX′ isN ′, we need
to rescale N (k)0 to:
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N (k)′ = N (k)0
∑K

s=1N (s)0
N ′, k = 1, . . . ,K .

As a result, the scaling factor is:

r = N (k)′

N (k)0 = N ′
∑K

s=1N (s)0
,

which does not depend on the cell type, and scDesign2 uses this scaling factor to rescale
the mean parameter of every gene.
Given the fitted generative model F̂(k) for cell type k with parameters:

�̂(k) = {p̂(k)
1 , ψ̂(k)

1 , μ̂(k)
1 , . . . , p̂(k)

p , ψ̂(k)
p , μ̂(k)

p , R̂(k)} , k = 1 . . . ,K ,

and the scaling factor r, scDesign2 generates n(k)′ synthetic cells from a rescaled model
F̂(k)′, which is defined by parameters:

�̂(k)′ = {p̂(k)
1 , ψ̂(k)

1 , rμ̂(k)
1 , . . . , p̂(k)

p , ψ̂(k)
p , rμ̂(k)

p , R̂(k)} , k = 1 . . . ,K .

Concretely, how the data generation works is that scDesign2 first draws n(k)′ vectors,
denoted as z(k)′·j ∈ Rp; j = 1, . . . , n(k)′, independently from �p(·; R̂(k)). Then, scDe-
sign2 converts z(k)′ij to x(k)′

ij by setting x(k)′
ij to be the �(z(k)′ij )-th quantile of F̂(k)′

i , i.e.,
ZINB(p̂(k)

i , ψ̂(k)
i , rμ̂(k)

i ) (including the Poisson, ZIP, and NB distributions as special cases),
i = 1, . . . , p. Finally, scDesign2 outputs the synthetic count matrix X′ =[X(1)′ · · ·X(K)′],
where X(k)′ = (x(k)′

ij ) is a p × n(k)′ matrix for cell type k.
Note that the synthetic count matrix X′ does not contain exactly N ′ reads; rather, N ′

is the expected total number of reads. We think this setting mimics a real sequencing
experiment, where the total number of sequenced reads would not be exactly the same as
the preset sequencing depth N ′ due to experimental randomness.

Recommendation for cell clusteringwhen input data do not have labeled cell types

If users would like to train scDesign2 on a gene-by-cell count matrix without cell type
labels, a necessary preceding step is cell clustering. We recommend users to choose a
state-of-the-art cell clustering method such as Seurat and SC3. For the resulting clusters,
we recommend users to visualize them by t-SNE or UMAP and use a goodness-of-fit
measure (e.g., Pearson’s chi-square statistic and ROGUE score [87]) to check whether
each gene approximately follows a NB or ZINB distribution in a cell cluster. This check
will guide users to decide on an appropriate number of cell clusters in a data-driven way.

The scDesign2 variant without copula

The only difference between this variant “w/o copula” and scDesign2 is that this variant
assumes the p genes to have independent marginal distributions F1, . . . , Fp. The fitting of
the p marginal distributions and the generation of synthetic data is the same as those in
scDesign2.

Existing simulators
• scDesign: The R package scDesign version 1.0.0 is used for the analysis.
• scGAN: This method is executed from this github repository https://github.com/

imsb-uke/scGAN, downloaded around March 29, 2020.
• splat, splat simple, kersplat: These methods are executed from the R packge

splatter version 1.10.1.

https://github.com/imsb-uke/scGAN
https://github.com/imsb-uke/scGAN
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• SPARSim: The R package SPARSim version 0.9.5 is used for the analysis.
• SymSim: The R package SymSim version 0.0.0.9000 is used for the analysis.
• ZINB-WaVE: The ZINB-WaVE method is used from the wrapper functions in the R

package splatter version 1.10.1.
• SPsimSeq: The R package SPsimSeq version 0.99.13 is used for the analysis.

Cell type/cluster refining method
• ROGUE: The R package ROGUE version 1.0 is used for the analysis.

Dimensionality reduction methods

• t-SNE: The R package Rtsne version 0.15 is used for generating t-SNE plots. The
function Rtsne is used, with all parameters set to default, except
check_duplicate = FALSE and perplexity is changed from the default
value of 30 to one third of the sample size when the sample size (total number of
cells) is less than 90.

• PCA: The R function prcomp() is used for generating PCA plots, with parameters
set as default.

Cell clustering methods

• Seurat: The Seurat clustering method is executed by the following instruction in this
tutorial https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html. R package Seurat
version 3.1.5 is used for the analysis.

• SC3: The SC3 clustering method is executed by the following instruction in this
tutorial https://www.bioconductor.org/packages/release/bioc/vignettes/SC3/inst/
doc/SC3.html. R package SC3 version 1.14.0 is used for the analysis.

Rare cell type detection methods
• FiRE: The FiRE method is executed by the following instruction in this tutorial

https://github.com/princethewinner/FiRE. R package FiRE version 1.0 is used for
the analysis.

• GiniClust2: This method is executed from this github repository https://github.
com/dtsoucas/GiniClust2 downloaded around March 4, 2020. It is executed based on
the reference manual in this repository, except no cells are filtered.
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