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Abstract

Single-cell sequencing technologies are revolutionizing biology, but they are limited
by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a
dissociation approach for single-cell transcriptomics that simultaneously fixes cells.
ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times,
and are sortable and permeable. As a proof of principle, we provide single-cell
transcriptomic data of different species, using both droplet-based and combinatorial
barcoding single-cell methods. ACME uses affordable reagents, can be done in most
laboratories and even in the field, and thus will accelerate our knowledge of cell
types across the tree of life.
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Background
Biology is undergoing a paradigm shift due to the introduction of single-cell sequen-

cing methods [1–5]. The cell is the fundamental unit of biological systems, and study-

ing thousands of them individually allows reconstruction of the cellular diversity and

dynamics formerly blended into bulk tissue samples. For instance, single-cell tran-

scriptomics (or scRNA-seq) allows the measurement of the expression of thousands of

mRNAs from potentially hundreds of thousands of individual cells. The mRNAs of

each cell are indicative of the cell type or state and allow biological questions to be ad-

dressed at a new level of integration and detail. From the sequencing of a single cell in

2009 [6], we have seen year-on-year exponential increases in the number of cells that

can be sampled by scRNA-seq [7]. Using these methods, scientists have already pro-

filed a broad taxonomic range of different animals, classified their cell types, profiled

their gene expression patterns, and begun to reconstruct their cell differentiation line-

ages. Single-cell transcriptomics has been already used in very diverse animal groups,
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including sponges [8, 9], cnidarians [10, 11], placozoans [9], ctenophores [9], planarians

[12–16], nematodes [17, 18], arthropods [19–22], ascidians [23], and extensively in ver-

tebrates [24–31].

Currently, the most popular methods are based on droplet-based barcoding: encapsu-

lating single cells with oligonucleotide barcodes in nanolitre droplets [32, 33]. One of

the most promising recent developments involves employing combinatorial barcoding

techniques [17, 34], which use the cells themselves as reaction chambers. These ap-

proaches label cellular mRNAs through successive rounds of mixing and pooling the

cell population such that the probability of two cells receiving the same barcode com-

bination is minimized. The implementation of combinatorial barcoding methods allows

the generation of datasets containing millions of cells from different samples [25, 35].

One major technical hurdle of single-cell transcriptomic approaches is the lack of a

cell dissociation method that simultaneously fixes the cells and preserves mRNAs. Typ-

ically, dissociation is done in live cells and relies on enzymatic (e.g., trypsin, papain, or

similar) or mechanical (e.g., dounce homogenization) approaches [36], which introduce

dissociation artifacts and cellular stress on the samples [37–39]. Dissociated cells are

stripped from their extracellular context and washed, incubated, centrifuged, stained,

and often sorted by FACS while still alive, which changes their gene expression pat-

terns. Preservation can only take place hours after the beginning of the experiment, but

this time suffices for the activation of stress responses [38]. The use of cold-active pro-

teases obtained from psychrophilic organisms has been proposed as an alternative ap-

proach [40]. Another alternative is obtaining single-cell transcriptomic data from the

nuclei [41, 42], as these can be extracted from frozen tissue [25]. However, this ap-

proach eliminates the majority of mature mRNAs, as these concentrate outside the nu-

cleus. The introduction of a method that simultaneously fixes and dissociates cells,

preserving their RNA, is a critical need of the single-cell transcriptomic field.

To overcome the limitations of live cell dissociations, we have developed ACME dis-

sociation. Our protocol is based on a nineteenth-century dissociation protocol—often

called “maceration”—with modifications to make it compatible with modern single-cell

transcriptomics. The maceration procedure was first used by Schneider in 1890 [43]. It

was then used throughout the twentieth century to dissociate cells of animals such as

cnidarians [44] and planarians [45] and observe them under the microscope but is now

rarely used [46, 47]. In its original form, the maceration solution simply consisted of

acetic acid and glycerol dissolved in water. Baguñà and Romero added methanol as it

preserved better morphology [45]. Our protocol uses acetic acid and methanol, to-

gether with glycerol, dissolved in water. This solution produces fixed single cells in sus-

pension with high-integrity RNAs. Conveniently, we show that ACME-dissociated cells

can be cryopreserved using DMSO [48] at different points throughout the process, with

little detriment to their recovery and RNA integrity. We also show that ACME can be

used as a fixative, rendering RNA with an integrity superior to that obtained by formal-

dehyde. As a proof of principle, we have obtained single-cell transcriptomic data from

different species and with different single-cell transcriptomic platforms using ACME-

dissociated cells. First, we obtained 3899 cells from the cnidarian Nematostella vecten-

sis, using a droplet-based method. With this, we recover all major cell types described

in a previous study [10]. Second, we combined ACME with a modified version of split

pool ligation-based transcriptome sequencing (SPLiT-seq) [34], a combinatorial
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indexing method, and were able to profile 33,827 cells from two different planarian spe-

cies, Schmidtea mediterranea and Dugesia japonica, in a single run. We recover all S.

mediterranea cell types from a previous study [13], at comparable proportions, showing

that ACME dissociation does not introduce biases in cell type composition. Further-

more, we describe for the first time the single-cell transcriptome of D. japonica, open-

ing the study of cell type evolution in this clade. We integrate our analysis with

previous S. mediterranea data obtained by trypsin dissociation, showing that the data-

sets are broadly compatible and can be integrated in a straightforward manner.

Altogether, in combination with droplet-based or combinatorial barcoding platforms

such as SPLiT-seq, ACME dissociation is a robust method to obtain high-quality

single-cell transcriptomic data from fixed cells.

Results
ACME dissociation produces fixed cells with preserved morphology that can be

visualized by flow cytometry

ACME dissociation takes place in ~ 1 h (Fig. 1a). We immerse ~ 10–15 adult S. medi-

terranea individuals or a similar amount of other tissue (representing ~ 100 μL of bio-

logical material) in 10 mL of ACME solution. An optional initial washing step in N-

acetyl-L-cysteine (NAC) prior to ACME dissociation helps remove the mucus [49, 50]

(see the “Methods” section). Once animals are in ACME solution, they are shaken for

1 h at room temperature, with occasional pipetting up and down of the solution to aid

dissociation. We then collect the cells by centrifugation to remove the ACME solution

(Fig. 1a) and wash the pellet in cold conditions in a PBS solution containing 1% BSA.

We perform a second centrifugation as a subsequent cleaning step and, finally, resus-

pend the cells in the same buffer solution (Fig. 1a). After this step, cells must be kept in

PBS/1% BSA solution in cold conditions (i.e., on ice).

In order to visualize cells by flow cytometry, we stain fixed cells with DRAQ5 (nuclei)

and Concanavalin-A conjugated with Alexa Fluor 488 (cytoplasm). DRAQ5 is a far-red

emitting anthraquinone compound that stains DNA. Concanavalin-A is a lectin that

binds carbohydrates present in internal cell membranes. Since ACME cells are perme-

abilized, we find Concanavalin-A staining throughout the cytoplasm. These staining

conditions reveal several cell populations (Fig. 1b). The lowest DNA-containing popula-

tion corresponds to cells with 2C DNA content and includes G1 and G0 cells (hereafter

“G1”). The cell population above contains G2/M cells with 4C DNA content (hereafter

“G2”). S-phase cells are difficult to resolve with these staining conditions. G2 corre-

sponds to what planarian FACS protocols typically refer to as the “X1” population [51]

and is sensitive to irradiation (Additional file 1: Figure S1A-B). Like other dissociation

protocols, ACME also produces a large quantity of cellular debris, with cytoplasm

staining but without DNA (Fig. 1b). Undissociated cell aggregates are also visible, with

higher levels of DNA and cytoplasm staining (Fig. 1b). When compared to the classic

trypsin dissociation protocol [51], ACME-dissociated cells display more aggregates, but

less cellular debris (Additional file 1: Figure S1C). Ultimately, all dissociation methods

generate variable amounts of aggregates and debris, but these can be excluded due to

their cytometric profiles. To distinguish singlets from doublets and other aggregates,

we use a singlet filter: aggregates are gated out by their increased area signal compared
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to the height. This can be achieved using either the FSC (Fig. 1c) or the DRAQ5 (Fig.

1d) area vs height signal, or both, by selecting events with well-correlated signal area

and height values. Then, gating DRAQ5-positive cells (DRAQ5 area vs FSC area) ex-

cludes cellular debris to obtain clear G1 and G2 populations (Fig. 1e).

Typically, we resuspend one dissociation reaction in 1 mL of buffer. The analysis of

10 μL of such reactions reveals thousands of singlet cells (Fig. 1f) that can be FACS-

sorted. The relative proportions of G1 vs G2 cells are similar to those described in pla-

narians by enzymatic approaches [51] (Fig. 1f, right). ACME-dissociated cells also

Fig. 1 ACME cell dissociation and fixation. aWhole dissociation process for the planarian Schmidtea mediterranea.
From left to right: live worms used as input in water, ACME dissociation reaction after 10–60min, cell suspension after
final pipetting, pellet after first centrifugation, and pellet after second centrifugation in PBS 1% BSA. b–e Flow
cytometry profiles of S. mediterranea ACME-dissociated cells stained with DRAQ5 (nucleus) and Concanavalin-A
(cytoplasm): ungated (b), after gating singlets by FSC (c), and DRAQ5 (d). Area vs height, and resulting clean G1 (red)
and G2 (cyan) populations. Singlets are selected based on their well-correlated area vs height signal, while aggregates
display high area vs height ratios. f Relative proportion of singlets in a typical S. mediterranea ACME cell dissociation,
corresponding to 22.8% of the total events, and histogram of their DNA content (linear scale), showing the relative
proportions of G1 and G2 cells. g Bright field (BF) and confocal fluorescence (Fluo) microscopy images of S.
mediterranea ACME-dissociated cells stained with Concanavalin-A and DRAQ5, showing single cells, aggregates, and
debris (top) and details of different cell types with well-preserved morphology (bottom). Scale bars are 50μm (top)
and 5μm (bottom)
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exhibit well-preserved morphology under microscopic observation (Fig. 1g), as this was

the original purpose of the maceration technique [43–45].

ACME is a species-versatile method that can be used in a broad range of animals and

developmental stages

To test if ACME can be used in different species, we used it to dissociate several ani-

mals, including the sea anemone N. vectensis, the planarian D. japonica, the annelid

Pristina leidyi, the snail Lymnaea stagnalis, the spider Parasteatoda tepidariorum, the

fruitfly Drosophila melanogaster, the mouse Mus musculus, and the fish Danio rerio

(Fig. 2a). This set of animals includes organisms belonging to diverse major metazoan

lineages, including early-branching metazoans, lophotrochozoans, ecdysozoans, and

deuterostome animals. Furthermore, it encompasses animals from a broad range of ter-

restrial, freshwater, and marine habitats. It also includes several life stages, such as em-

bryos, larvae, juveniles, and adults. Therefore, ACME dissociation is a versatile method

that can be used in markedly different animal models. We use the same protocol for all

organisms with minimal alterations. ACME solution dissociates soft tissues and cannot

penetrate hard shells, chorions, or vitelline membranes. We dechorionated zebrafish

embryos using standard protocols and ruptured the cocoons and vitelline membranes

that encapsulate spider and snail embryos. This can be done after embryos are placed

in the ACME solution, using forceps under the scope or with short pulses of

homogenization. Soft-bodied animals, like planarians, completely dissociate with min-

imal mechanical forces (shaking and pipetting up and down), but other animals such

zebrafish or cnidarians benefit from stronger mechanical dissociation using a combin-

ation of homogenization and dissection. We successfully obtained clear singlet popula-

tions from these animals using DRAQ5 and Concanavalin-A as fluorescent stains with

similar gating conditions (Fig. 2b). Adjustments to the dissociation protocol (acid con-

centration, time of incubation, mechanical dissociation), staining (dyes and concentra-

tions), and cytometry detection (gating) may improve the purification of single cells

from other organisms. Our protocol provides a solid starting point for the optimization

of ACME in these. Altogether, these experiments show that ACME is a species-

versatile cell dissociation approach that can be used in a wide range of species.

ACME-dissociated cells can be cryopreserved multiple times

Currently, single-cell dissociation protocols typically rely on enzymatic (e.g., trypsin)

dissociation. One disadvantage of enzymatic approaches is that cells can only be cryo-

preserved after dissociation, typically by FACS sorting them into methanol [52] or

DMSO-containing solutions [46]. However, cells have already been out of their cellular

context for several hours. Apart from biological effects, this also imposes logistical re-

strictions: cell dissociation needs to be done in close proximity to a single-cell tran-

scriptomic facility or at least a FACS facility. This logistical restraint renders single-cell

analysis of specimens collected in remote sampling areas, or that are difficult to culture

in the laboratory, extremely challenging.

Our protocol avoids lengthy live incubations, as ACME fixes cells immediately. Fur-

thermore, we found that ACME-dissociated cells can be easily cryopreserved multiple

times by freezing them in a PBS solution containing BSA (1%) and DMSO (10%) [48].
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To test this, we compared ACME-dissociated cell populations after several freezing

steps (Fig. 3a). We analyzed cell populations by flow cytometry right after dissociation

(Fig. 3b) and after freezing and thawing the cells (Fig. 3c). We also FACS-sorted

ACME-dissociated cells resulting in an 85–90% enrichment of G1 and G2 cells. We

compared FACS-sorted cells directly after sorting (Fig. 3d) with FACS-sorted cells

Fig. 2 Species versatility of ACME cell dissociation. a Visual representation of the phylogenetic distribution,
habitat, and stage of the animals where ACME dissociation was assayed: sea anemone juveniles (Nematostella
vectensis), planarians (Dugesia japonica), annelid adults (Pristina leidyi), snail larvae (Lymnaea stagnalis), spider
stage 7 embryos (Parasteatoda tepidariorum), fruitfly 3rd instar stage larvae (Drosophila melanogaster), mouse
E11.5 embryos (Mus musculus), and zebrafish 1-day embryos (Danio rerio). b Flow cytometry ungated and gated
profiles of ACME-dissociated cells from different organisms stained with DRAQ5 (nucleus) and Concanavalin-A
(cytoplasm). Axes are shown in subset logarithmic scales

García-Castro et al. Genome Biology           (2021) 22:89 Page 6 of 34



cryopreserved again after sorting (Fig. 3e). This shows that ACME-dissociated cells can

be subjected to several rounds of cryopreservation without altering their cytometry pro-

files. To test resistance to freezing, we subjected ACME-dissociated cells to 5 freeze/

thaw cycles and analyzed the resulting populations (Fig. 3f). We found no differences in

the cytometry profiles after multiple steps of cryopreservation, showing that ACME is a

robust and convenient method to obtain and preserve dissociated cells.

ACME-dissociated cells retain high-integrity RNAs

We next tested if RNAs are well preserved in ACME-dissociated cells, a critical re-

quirement for single-cell transcriptomics. We added NAC to the ACME solution

as it provides reducing conditions that protect RNA from degradation [49, 50] (see

the “Methods” section). To test RNA integrity, we ran our samples in a Bioanalyzer

and obtained RNA integrity number (RIN) values. One caveat of this measurement

is that it is based on a Bayesian learning approach, and the samples used to train

this algorithm were exclusively vertebrate [53]. As a result, the Bioanalyzer software

sometimes fails to calculate RIN values of non-vertebrate samples as the peak

shapes do not match training sets [53, 54]. Moreover, a phenomenon known as the

“hidden break” in the 28S ribosomal RNA causes it to break in two pieces of ap-

proximately the same size as the 18S [55, 56], causing a sharp decrease in the RIN

value of the sample that is not due to RNA degradation. This is triggered by de-

naturation, heating, or chemicals [55, 56] and has been described to be widely

present in platyhelminthes, including Schmidtea mediterranea, and many other ani-

mal groups [54]. As a result, RIN numbers of ACME samples are never above 8.

These facts make the evaluation of RNA integrity using RIN numbers challenging.

We registered RIN values when possible, but also inferred them when we failed to

obtain them, by calculating the signal area taken up by the two 28S and 18S ribo-

somal bands compared to the total RNA signal area. This measure robustly corre-

lates with the RIN value (Figure S2A). Then, inferred values were calculated using

a linear regression of this correlation (Figure S2B). This is a straightforward and

robust approach to evaluate RNA integrity in invertebrate RNA samples.

We found that the major factors affecting RNA quality in ACME-dissociated cells are

time and temperature. To test the degree of impact of this, we extracted RNA from

ACME-dissociated cells in different conditions and compared it to RNA from undis-

sociated planarians (Fig. 3g). RNA degradation at room temperature was tested by incu-

bating ACME-dissociated cells in PBS containing 1% BSA for several hours (Fig. 3h).

We observed that RNA integrity after ACME dissociation progressively declines over

time at room temperature. Keeping cells on ice effectively prevents this effect (Fig. 3i).

Therefore, cold conditions are sufficient to safeguard RNA for ongoing work. FACS-

sorted cells also show some RNA degradation (Fig. 3j), as the total time required for

our staining and FACS sorting is about ~ 3–6 h. Repeated freeze/thaw cycles also nega-

tively impact RNA integrity (Fig. 3k) but do not result in complete degradation. These

results show that ACME-dissociated cells can be cryopreserved multiple times with lit-

tle detriment to recovery and RNA integrity. Therefore, ACME dissociation is a con-

venient method to obtain and cryopreserve large sample sets and to obtain single-cell

suspensions from animals difficult to culture in the lab, or directly from the wild.
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Fig. 3 Cryopreservation and RNA integrity of ACME-dissociated cells. a Experimental workflow of ACME
dissociation for cytometry and RNA analysis. b–e Flow cytometry profiles of singlet gated (FSC) Schmidtea
mediterranea ACME-dissociated cells, stained with DRAQ5 (DNA) and Concanavalin-A (cytoplasm), directly
after dissociation (b), after a first freezing step (c), after FACS (d), and after a second freezing step (e).
DRAQ5 scales are shown in linear values to focus on G1 and G2 populations and differ due to the freezing
steps. Aggregates are gated out by FSC. Percentages relative to the number of total singlets are shown in
black for debris and cells. G1 (red) and G2 (blue) percentages refer to these population proportions. G1 and
G2 proportions do not greatly vary, but FACS sorting effectively enriches these populations. f Flow
cytometry profiles of singlet gated (FSC) S. mediterranea ACME-dissociated cells after 1 to 5 freezing cycles.
DRAQ5 and Concanavalin-A-positive cells are shown in green and debris in black. Scale and gating
conditions as in b and c. g–k Bioanalyzer profiles and RIN values of RNA samples. Inferred values (Inf RIN,
blue open boxes) are calculated from a correlative analysis of the % area of the two ribosomal bands
compared to the total as shown in Additional file 1: Figure S2. As a control sample, we used RNA from
worms directly in TRIzol (g). A size ladder is displayed, and the two major RNAs (18S and 28S) are indicated.
Time- and temperature-dependent RNA degradation were tested keeping samples at room temperature (h)
or on ice (i) for 6 h. RNA integrity along the protocol was tested for the conditions described in b–e (j),
showing partial degradation after FACS. RNA integrity was tested after 1 to 5 freeze/thaw cycles (k)
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ACME can be used as a fixative of enzymatic dissociated cells

We next tested if ACME can act as a fixative of trypsin-dissociated cells. We dissoci-

ated animals using trypsin as previously described [51] and fixed the resulting cells with

ACME or with increasing concentrations of formaldehyde (Fig. 4a). After trypsin dis-

sociation and ACME fixation with minor modifications (see the “Methods” section), we

recovered cells that pelleted normally. We inspected these cells using cell cytometry

and were able to recover G1 and G2 populations with our normal staining and gating

conditions (Fig. 4b). This indicates that ACME can be used as a fixative of trypsin-

dissociated cells. These cells can later be subjected to FACS enrichment. To test the

RNA integrity of these cells, we compared trypsin-dissociated cells fixed with ACME to

trypsin dissociated cells fixed with formaldehyde (Fig. 4c). The latter has been used to

perform single-cell transcriptomic experiments, particularly by combinatorial methods

[17, 25, 34], but it is known to result in poor RNA integrity, which can make sequen-

cing approaches challenging [57]. Trypsin-dissociated cells fixed with ACME preserve

RNA integrity better than formaldehyde fixation, except at the lowest formaldehyde

concentration used, 0.1% (Fig. 4c). Arguably, at this concentration, cells are underfixed,

as formaldehyde is typically used at 1–4% concentrations. These experiments show that

ACME can be used as an alternative to formaldehyde fixation of enzymatic

dissociations.

Fig. 4 Comparison of ACME and formaldehyde as cell fixation reagents. a Experimental workflow of trypsin
dissociation with ACME and formaldehyde fixation. b Flow cytometry ungated and gated profiles of trypsin-
dissociated ACME-fixed cells stained with DRAQ5 (nucleus) and Concanavalin-A (cytoplasm). c Bioanalyzer
profiles and RIN values of RNA samples dissociated with trypsin and fixed with ACME or increasing
concentrations of formaldehyde (FA). Inferred values (Inf RIN, blue open boxes) are calculated from a
correlative analysis of the % area of the two ribosomal bands compared to the total. As a control sample,
we used RNA from worms dissociated with trypsin and introduced unfixed in TRIzol
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Single-cell transcriptomic analysis of cnidarian ACME-dissociated cells using a droplet-

based method

Droplet-based methods of single-cell transcriptomics [32, 33] dominate the current lit-

erature [7]. To test if ACME-dissociated cells can be profiled by droplet-based

methods, we used the 10X Genomics Chromium technology. We used juvenile individ-

uals of the cnidarian Nematostella vectensis, as its cell type atlas has been profiled pre-

viously [10]. We performed ACME dissociation with one freezing step and used FACS

to enrich for differentiated cell types (Fig. 5a, Additional file 1: Figure S3A). We ob-

tained 3899 cells which recapitulated the major known cell types of N. vectensis [10]

(Fig. 5b). These broad cell type identities were supported by the expression of dozens

of transcription factors, for example, Jun bZIP in cnidocytes, SCX/TCF15 in retractor

muscle cells, Rfx4/6/8 in digestive filaments, and ASC and Pou5 in neurons (Additional

file 1: Figure S3B). Our ACME-dissociated dataset recovered a median of 671 UMI per

cell and 418 genes per cell (Fig. 5c, Additional file 1: Figure S3C), resembling the statis-

tics obtained in the previous study (833 UMI per cell and 464 genes per cell, and 696

UMI per cell and 381 genes per cell when downsampled to a comparable number of

reads) generated using enzymatic (Liberase) dissociations [10] and MARS-seq [58]. A

recent single-cell transcriptomic study of N. vectensis cells dissociated enzymatically

and barcoded using 10X Genomics technology had comparable statistics [59]. We then

compared the cell type abundances that we obtained with the previous dataset, showing

similar relative proportions (Fig. 5d). The main difference observed was a higher frac-

tion of epidermal cells in the ACME-based single-cell experiment.

Fig. 5 Droplet-based single-cell transcriptomic analysis of ACME-dissociated cells from the cnidarian Nematostella
vectensis. a Experimental workflow. We used ACME-dissociated and FACS-sorted G1 cells from the cnidarian
species N. vectensis, after one freezing step. For droplet-based single-cell transcriptomic analysis, we used the 10X
Genomics Chromium platform. b UMAP visualization of 3899 N. vectensis cells, colored by cluster identity and
annotated on the basis of marker genes. c Violin plots showing the distribution of UMI counts and genes
detected per cell. d Comparison of cell proportions for N. vectensis with a previous cell type atlas (Sebé-Pedrós
et al.). Cell clusters are grouped by cell type
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Single-cell transcriptomic analysis of planarian ACME-dissociated cells using

combinatorial barcoding

ACME-dissociated cells are fixed and permeabilized and, therefore, could be used coupled to

combinatorial barcoding single-cell transcriptomic approaches. These methods allow profiling

a higher number of cells and have lower costs per cell, and furthermore do not require spe-

cialized microfluidic devices. In combinatorial barcoding methods, cells themselves are used

as compartments where barcoding reactions take place. To test the potential of ACME-

dissociated cells in combinatorial barcoding protocols, we performed a species mixing experi-

ment (Fig. 6a) using SPLiT-seq [34] to profile two different planarian species: S. mediterranea

and D. japonica. Briefly, pools of cells are split equally into wells, labeled with different reac-

tions, and then pooled again (Fig. 6a, Additional file 1: Figure S4A). After four barcoding

rounds, the probability of any two cells receiving the same barcode combination is minimized.

The SPLiT-seq protocol consists of an in-cell retrotranscription (RT) and two rounds of oligo

ligations, with the fourth barcode introduced in the sub-library amplification step (Add-

itional file 2: Table S1). We modified the original SPLiT-seq protocol to make it compatible

with ACME-dissociated cells. First, we eliminated the formaldehyde fixation included in the

original protocol as our cells are already fixed by ACME. Furthermore, we eliminated random

hexamer RT oligos, as these could result in the excessive recovery of highly abundant cyto-

plasmic rRNA. In our configuration, we used 48 RT poly-dT barcodes and 96 ligation bar-

codes in each of 2 rounds of ligation, and 3 sub-libraries (Fig. 6a), which together generate 1.3

million possible barcode combinations. The barcodes are concatenated in the terminal part of

the resulting cDNA sub-library, whereas the other end contains the mRNA sequence (Fig. 6a,

Additional file 1: Figure S4B). To minimize collisions (cells receiving the same combination of

barcodes), it is recommended to use less than 5% of the number of possible combinations.

Fig. 6 SPLiT-seq single-cell transcriptomic analysis of ACME-dissociated cells, overview, and metrics. a
Experimental workflow. We used ACME-dissociated and FACS-sorted cells from the planarian species S.
mediterranea and D. japonica, after two freezing steps. For SPLiT-seq, combinatorial barcoding consisted of
4 rounds of barcoding with 48 × 96 × 96 × 3 barcodes. cDNA molecules coming from each cell are uniquely
labeled by one of the 1,327,104 possible barcode combinations. b Violin plots showing the distribution of
UMI counts and genes detected per cell. c Saturation plots for UMIs per cell (left) and genes per cell (right)
at given fractions of the complete sequencing depth, for the 19,741 and 14,086 single-cell transcriptomes
sequenced above the threshold for S. mediterranea and D. japonica, respectively. d Scatter plot of
S. mediterranea (red) vs D. japonica (blue) UMI counts per cell. Collisions are shown in gray
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We started the experiment with ~ 480K cells (~ 10K per well). Since cells are lost throughout

the barcoding process, only ~ 8% of the cells were detected in the last barcoding step, before

cell lysis and sub-library generation. This level of cell loss is comparable to that reported in

other combinatorial barcoding experiments [25]. We generated 3 sub-libraries from a total of

~ 40K ACME-dissociated cells from the two planarian species.

Our cDNA sub-libraries ranged between 400 and 1000 bp in length (Additional file 1:

Figure S4C). We subjected these libraries to NovaSeq Illumina sequencing (paired 150

bp read length), with 425, 502, and 436 million (M) read pairs provided by the sequen-

cing center. After removal of low-quality, truncated, and adapter chimera sequences,

read depth was 173, 192, and 196M read pairs. To analyze this experiment, we gener-

ated novel annotations (see the “Methods” section) of the most recent S. mediterranea

genome assembly [60] and the recently sequenced D. japonica genome [61]. We

mapped 96% and 85% of S. mediterranea and D. japonica reads, respectively, to gene

models in their respective gene annotations. Despite obtaining a similar amount of

reads mapping to the D. japonica genome, the genome annotation of this species is less

complete, due to the fragmented assembly. We selected cells with reads mapping to

≥125 genes (19,975 and 14,263 cell barcodes in S. mediterranea and D. japonica, re-

spectively). We also discarded very high UMI containing cell barcodes (> 5000 counts)

to prevent the inclusion of aggregates that may have remained after FACS purification,

as well as cells sharing the same cell barcodes through “collisions” (234 and 177 cell

barcodes excluded in S. mediterranea and D. japonica, respectively). This rendered 19,

741 cells for S. mediterranea and 14,086 cells for D. japonica. The latter species has a

comparatively less complete genome annotation, and consequently, fewer cells are

above the high gene coverage threshold at the same sequencing depth. Sub-library 3

contained fewer cells of both species, but those cells above thresholds in sub-library 3

were comparable to other libraries in UMI content (Additional file 1: Figure S4D) and

had cells distributed throughout all clusters (Additional file 1: Figure S4E). Within

these sets, after excluding high UMI cells, we obtain an average of 897.5 UMI per cell

for S. mediterranea and 949.8 UMI for D. japonica (Fig. 6b). At this depth, we observe

that libraries are not yet saturated, as shown by evaluating the number of UMIs and

genes detected after performing subsampling at different fractions of the total depth

(Fig. 6c). To estimate the presence of collisions, we took advantage of the species-

mixing approach and we mapped reads to a combination of both genomes. We de-

tected only 923 (2.8%) cell barcodes with mapping to both species above a stringent

cutoff of 10% (Fig. 6d), showing the quality of our SPLiT-seq data.

Cell type composition of two planarian species

To establish cell types and abundances in both species, we further analyzed our sets of

19,741 and 14,086 cells. To minimize the possibility of inclusion of Schmidtea-Schmid-

tea and Dugesia-Dugesia doublets, we used DoubletDecon [62], which resulted in fur-

ther refined datasets of 19,025 and 13,406 cells, respectively. We found 41 cell clusters

in S. mediterranea (Fig. 7a, Additional file 3: Table S2). Four central clusters highly

expressed neoblast makers such as smedwi-1 (Additional file 1: Figure S5). Within the

remaining clusters, we found cells expressing markers (Additional file 4: Table S3) from

all progenitor and differentiated cell types that we described previously using Drop-seq
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[13] (Additional file 1: Figure S5). Some groups were clustered together in fewer clus-

ters (Additional file 1: Figure S5). For instance, we identified only 3 clusters containing

parenchymal cell types, also termed cathepsin+ cells [12], but within them, we identify

markers of all 7 clusters of parenchymal cells described in Plass et al. In other cases,

such as the secretory cell types, we achieved better clustering (Additional file 1: Figure

S5), finding 6 well-resolved cell clusters, compared to 4 in the trypsin-based dataset.

Remarkably, we found a neoblast cluster containing nanos-positive germ cell progenitor

cells that have not previously been observed in single-cell atlases (Additional file 1: Fig-

ure S6A). These cells are well described in the literature [63, 64], but none of the previ-

ous planarian single-cell transcriptomic studies [12, 13, 16] was able to distinguish

them from the other neoblast populations (Additional file 1: Figure S6A). Though these

germ cell progenitor cells are rare (1.6% of our total cell number), single-cell methods

can detect far rarer cell types. Furthermore, previous studies included more cells and/

or higher UMI contents. To rule out that this cluster arises as an artifact of aggregates,

we monitored high UMI-containing cells in our clusters both before and after applying

the > 5000 UMI cutoff (Additional file 1: Figure S7). In neither of these cases, the

nanos-positive cluster is associated with high UMI-containing cells. Therefore, these

facts cannot explain their clustering together with other neoblast populations in other

studies. This strongly suggests that the detection of these germ cell progenitors in our

study relies on the early fixation provided by ACME. We detected low abundance cell

clusters described in Plass et al., including two protonephridia cell types (tubule and

flame cells, 0.4 and 1.0%, respectively), psd+ cells (1.0%), epidermis of the dorsoventral

boundary (DVb) (0.5%), and even lower abundance neuron subtypes including eye-53

expressing neurons (0.2%).

Fig. 7 SPLiT-seq single-cell transcriptomic analysis of ACME-dissociated cells from two planarian species. a,
b UMAP visualization of 19,025 S. mediterranea cells (a) and 13,406 D. japonica cells (b), colored by cluster
identity and annotated on the basis of marker genes and homologous marker genes respectively. c
Comparison of cell proportions for S. mediterranea, in comparison with a previous cell type atlas (Plass et al.)
and D. japonica. Cell clusters are grouped by cell type group
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We then aimed to analyze for the first time the D. japonica cell type atlas. This plan-

arian species belongs to another planarian clade, and its last common ancestor with S.

mediterranea lived ~ 85 million years ago [65]. Due to its comparatively lower cell

numbers, we were able to confidently detect fewer cell clusters. We annotated cell types

by comparing their markers to their S. mediterranea homologs (Fig. 7b, Additional file

3: Table S2), finding similar cell types in comparable relative abundances. While it is

difficult to establish one-to-one homology of cell types based on top markers [66], we

confidently detected the major cell type groups with this approach (Additional file 4:

Table S3): neoblasts, epidermis, neurons, muscle, parenchymal cells, phagocytes, and

secretory cells, to a total of 28 cell clusters. At this resolution, we are only able to clus-

ter two types of neurons and muscle respectively. We also identify low abundance cell

types, such as psd+ cells (0.8%) and epidermis DVb cells (1.0%). Encouragingly, our

analysis recovers the germ cell progenitors (1.5%) in this species as well (Additional file

1: Figure S3B).

We then compared the cell type compositions of both species. We grouped cell types

in groups according to previous data [13]. We first compared the S. mediterranea data-

set to our previously described dataset generated from trypsin dissociated cells analyzed

by Drop-seq (Fig. 7c). Our S. mediterranea dataset contains ~ 22% neoblasts, in line

with microscopy-based estimates [45], obtained by the classic maceration technique.

The most abundant cell type groups in S. mediterranea are epidermal, neural, muscu-

lar, and parenchymal cells, present at comparable proportions as those described. This

shows that ACME dissociation robustly retrieves all cell types at comparable propor-

tions, not introducing biases in cell type composition, and can retrieve even lowly

abundant cell types. We then compared the two species. The most abundant cell types

in both species are stem cells, representing 20–35% of the total cell number. In both

species, the most abundant differentiation cell type groups are epidermal, neurons, and

muscle cells. Our D. japonica dataset contains considerably less parenchymal cells (1

cluster, 2.1% compared to 3 clusters with 7.1% of the total cells in S. mediterranea).

These cell types were shown to vary with animal size [45] by microscopic observation.

Future analyses, enabled by the characteristics of ACME dissociation and the multi-

plexing capacity of SPLiT-seq, will characterize the cell type composition of each spe-

cies and the factors that underlie it. Furthermore, comparing the gene expression

patterns of each cell cluster will provide insights into the cell type evolution. With re-

gard to our methodology, this proof of principle highlights the flexibility and efficiency

of ACME by allowing the robust simultaneous processing of two (and potentially more)

species in a single SPLiT-seq and sequencing run.

Integration of trypsin-dissociated and ACME-dissociated planarian single-cell datasets

We then compared trypsin- and ACME-dissociated datasets to show that ACME-

dissociated cells can be integrated with other datasets and to study the differences be-

tween the results of these types of dissociation. To do this, we selected the dataset gen-

erated by Plass et al. [13], as it is similar in cell numbers and depth, but was generated

with trypsin-dissociated cells and Drop-seq [33]. We re-analyzed the data using our

novel gene annotation (Fig. 8a). To compare UMI and gene per cell statistics in the two

datasets, we performed downsampling experiments (Additional file 1: Figure S8). When
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both datasets are downsampled to 10K reads per cell, our ACME-dissociated dataset

still recovers a median of 723 UMI per cell (compared to 594 in the Plass et al. dataset)

and 176 genes per cell (compared to 394). This relatively lower gene recovery can be

attributed to several causes, potentially including a comparatively higher recovery of in-

tronic regions in the SPLiT-seq dataset (37.83% compared to 23.7% in the Plass et al.

dataset, 55.7% if only S. mediterranea reads are considered) or differences in the pres-

ence of ambient RNA.

We then clustered the cells to obtain a similar number of clusters (38 in Plass et al.

compared to 41 in our study). We annotated these clusters based on markers published

in the original study (Fig. 8b, Additional file 3: Table S2). This resolution recovered al-

most all clusters obtained in the original publication. We then transferred the labels of

cell clusters in this dataset to our ACME-generated dataset (Fig. 8b), resulting in the

identification of equivalent cell types for the vast majority of Plass et al. cell types. To

determine if the genes that are differentially expressed in these clusters are comparable

in the two datasets, we performed a series of differential gene expression comparisons

between neoblasts and a differentiated cell type in the two datasets (Additional file 1:

Figure S9, Additional file 5: Table S4). These analyses showed a high overlap (74.3–

Fig. 8 Integrative analysis of planarian trypsin- and ACME-dissociated datasets. a Analysis workflow. b
UMAP visualization of 21,610 trypsin-dissociated S. mediterranea cells reanalyzed from Plass et al., colored by
cluster identity and annotated on the basis of marker genes. c UMAP visualization of 19,025 ACME-
dissociated S. mediterranea cells colored by transfer label analysis from trypsin-dissociated cell analysis (a).
The numbers in the plot denote the center of the cells transferred with each of the trypsin-dissociated cell
clusters. d UMAP visualization of 40,635 cells integrating trypsin-dissociated and ACME-dissociated cells.
Clusters are colored by transfer label analysis from ACME-dissociated cell analysis
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84.3% depending on the cell type). We observed that clusters obtained in the ACME-

dissociated dataset are more homogeneous in terms of UMI content (Additional file 1:

Figure S10A) and number of genes detected (Additional file 1: Figure S10B), albeit this

parameter is lower than in trypsin. Our dataset did not cluster out types such as the

pigment cells, but we found these clustered together with a cluster from a related cell

lineage (the pgrn+ parenchymal cells), as suggested by the presence of markers within

those clusters (Additional file 1: Figure S5). Only 3 clusters from the Plass et al. dataset

did not possess equivalents in our dataset: the two smallest neoblast clusters and the

goblet cell progenitors. These clusters contain low cell numbers (0.4–1.6%). We there-

fore found equivalents for clusters representing ~ 97% of cells of the trypsin-generated

dataset. When we performed the reverse comparison (Additional file 1: Figure S11A), a

larger number of clusters from our dataset were not identified in the trypsin-generated

dataset (Additional file 1: Figure S11B). These were also minor clusters (0.2–1.8%) and

included neuron types such as the serotonin and eye-53+ neurons. This suggests that

most differences in cell type clustering can be explained by cluster size and resolution

parameters, and both datasets contain broadly comparable cell types. However, the

germ cell progenitor cluster of our ACME-generated dataset was transferred to the

neoblast clusters of Plass et al. (Additional file 1: Figure S11C). Similarly, markers of

the germ cell progenitors were also found interspersed among the neoblast clusters in

our analysis of the Plass et al. dataset (Additional file 1: Figure S11D). This supports

the claim that the clustering of germ cell progenitors in our dataset depends on ACME

dissociation, as none of the trypsin-based analyses shown here or previous papers re-

trieves them. While differences in clustering resolution parameters, cell numbers, and

UMI content can explain these differences, altogether, our analysis shows that cell types

obtained with trypsin and ACME dissociations are broadly comparable and that both

methods robustly retrieve the major cell types of the planarian S. mediterranea.

We then wanted to test if the datasets could be integrated. Recently, algorithms to in-

tegrate single-cell datasets have been developed [67]. These rely on the identification of

correspondent cells across the datasets (anchors). We successfully integrated both of

these datasets (Fig. 8c), further demonstrating the compatibility of both dataset types.

We transferred labels from this study (Fig. 8c) and also from the trypsin-generated

dataset of Plass et al. (Additional file 1: Figure S11E), resulting in both cases in

complete transferring of labels to the integrated set. This dataset contains 40,635 cells

and will serve as a comprehensive resource for future studies of Schmidtea mediterra-

nea. Altogether, both transfer labels and integration comparisons show that trypsin-

dissociated and ACME-dissociated single-cell transcriptomic datasets are broadly com-

patible and can be integrated in a straightforward manner. This further shows that

ACME dissociation of cells is a robust method for studying the biology of cell types

and retrieving cell type atlases by single-cell transcriptomics.

Discussion
Here, we present ACME dissociation, a new cell dissociation protocol for single-cell

transcriptomics. Our protocol relies on the principle of acetic acid-methanol dissoci-

ation, an approach used to dissociate cells for microscopy in past centuries but not yet

applied to modern single-cell transcriptomics. The original maceration protocol was

applied to relatively soft-bodied animals such as planarians and cnidarians. However,
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we have shown that the approach works, with slight modifications, in a broad range of

animals with hard body parts such as chorions, vitelline membranes, cuticles, and

shells. ACME cannot dissolve or penetrate these hard parts, but straightforward mech-

anical disruption is sufficient to extract cells from their acellular surroundings. We have

successfully obtained dissociated cells from species belonging to all major animal

groups from a wide range of habitats. It is possible that further modifications of the

ACME protocol will specifically optimize the quality of cell suspensions in different or-

ganisms. We highlight the main criteria for species-specific optimization (time of dis-

sociation, mechanical disruption, filtering steps), but other changes might help provide

the ideal dissociation conditions for each organism. Our protocol provides a robust and

broadly applicable starting point for such optimization. We also note that while ACME

provides simultaneous dissociation and fixation, it is also worthwhile to consider

ACME as a fixative of cells dissociated with other methods, as it preserves RNAs with

high integrity, is compatible with cell staining and FACS, and provides an excellent

platform for both droplet-based and combinatorial methods of single-cell

transcriptomics.

ACME is a cell dissociation approach that fixes cells while they are being dissociated.

This has enormous advantages over enzymatic and mechanical approaches, as disrupt-

ing the cellular environment in live cells has effects on the cellular transcriptomic pro-

files that are only beginning to be realized [38, 39, 68]. Unlike nucleus extraction

approaches, ACME preserves the cell cytoplasm, where most cellular mRNAs reside.

Furthermore, the dissociation-fixation approach streamlines the preparation of cell sus-

pensions for single-cell transcriptomics, with the possibility of cryopreserving cells be-

fore and/or after the FACS sorting. This will allow a range of experiments presently

beyond the range of current approaches, including the collection of large sample sets,

consisting of different treatments, time points, and/or replicates. These can then be

subject to simultaneous or sequential cryopreservation, and single-cell transcriptomics

can be performed on all samples, multiplexed together in a single SPLiT-seq run. This

represents a marked improvement on current workflows, helping prevent a variety of

batch effects from accumulating. For instance, this could lead to clinicians preserving

dissociated patient material to be later subjected to single-cell transcriptomics at a dif-

ferent research institution.

Similarly, enzymatic methods are hard to apply to organisms that are difficult to cul-

ture in the laboratory, as single-cell transcriptomics, or at least FACS and cryopreserva-

tion, needs to take place immediately when using previous protocols. ACME

dissociation consists of simple reagents and only requires widely available instruments:

a shaker, a low-speed centrifuge, and a freezer. Cells are fixed from the beginning of

the process and can be immediately cryopreserved. Therefore, we envision that ACME

dissociation will facilitate the single-cell analysis of organisms from locations where

single-cell facilities are not available, such as on field sampling trips, and allow ex-

change between collaborating institutions. This will accelerate our knowledge of cell

types across the tree of life.

We have demonstrated that ACME-dissociated cells can be subjected to single-cell

sequencing using several platforms. In particular, we have used the commercial

droplet-based method 10X Genomics and a combinatorial barcoding approach, SPLiT-

seq. Even at low sequencing depths, and with relatively low UMI counts per cell, we
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identify cells of all cell types that were previously described by enzymatic dissociations

analyzed by MARS-seq in the cnidarian N. vectensis [10] and Drop-seq [13] in the plan-

arian S. mediterranea and found a similar number of cell clusters in a previously

uncharacterized planarian species, D. japonica. This shows that the “many cells, few

UMIs per cell” approach is highly effective to profile cell types, as previously suggested

[25], even in uncharacterized species.

As ACME-dissociated cells are fixed and can easily be cryopreserved, we also envision

that ACME could provide a framework for developing complex labeling procedures for

single-cell analysis. Our current procedure involves one step of RT and two rounds of

splint oligo ligation, after DNA and cytoplasm labeling. We foresee that more complex

staining procedures (such as immunohistochemistry or mRNA in situ hybridization, or

several metabolic labeling procedures) could be used to subset cells that would be later

sorted by FACS to profile lowly abundant cell populations.

Conclusions
We show that ACME is a versatile and powerful cell dissociation method for single-cell

transcriptomics. ACME dissociation provides a solution to various shortcomings of the

canonical single-cell transcriptomic workflow, providing early fixation of material. This

fixation process provides opportunities for the further development of this technique.

Therefore, we believe that ACME will be a valuable tool for single-cell transcriptomics

that will greatly enable the investigation of cell type diversity and dynamics in multiple

different organisms presently beyond the scope of current techniques in this revolu-

tionary approach.

Methods
ACME dissociation

ACME solution was prepared fresh using a 13:3:2:2 ratio of commercially sourced

DNase/RNase-free distilled water, methanol, glacial acetic acid, and glycerol. For each

sample, between 10 and 30 mixed-size adult planarians (cultured as previously de-

scribed [13]) were added to a 15-mL Falcon tube, for a final biomass volume of ~ 100–

300 μL. We removed planarian water using a Pasteur pipette and added ~ 100–500 μL

of 7.5% N-acetyl cysteine in 1× PBS, sufficient to cover the planarians. N-acetyl cysteine

helps clean planarian mucus and protects RNA. The ACME solution was immediately

added to samples to a final volume of 10 mL per tube. Alternatively, N-acetyl cysteine

can be added to the ACME solution at this stage, in the same quantity as noted above.

Samples were left to dissociate at room temperature for 1 h on a see-saw motion

shaker at 35–45 rpm, with tubes oriented parallel to the direction of movement. We

then pipetted the reactions up and down several times to complete dissociation using

1-mL pipette tips. From this point, samples were kept on ice to prevent RNA degrad-

ation. We centrifuged samples at 1000g for 5 min (4 °C) to remove the ACME solution.

The resulting pellet may not be completely compact, so the supernatant must be dis-

carded carefully. To clean the cells, 7 mL of buffer (1× PBS 1% BSA) was added and the

pellet was mixed by flicking. Samples were centrifuged again at 1000g for 5 min (4 °C),

and the supernatant was removed. If the pellet was still not compact, an additional

cleaning step was performed to remove the remaining ACME solution. Pellets were
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resuspended in 900 μL of buffer (1× PBS 1% BSA) and transferred to 1.5-mL Eppendorf

tubes.

To cryopreserve cells, we added 100 μL of DMSO per tube [48] and stored the sam-

ples directly at − 80 °C. Afterwards, we thawed the samples on ice and centrifuged them

at 1000g for 5 min (4 °C) to remove DMSO. The supernatant was discarded and pellets

resuspended in 1 mL of washing buffer (1× PBS 1% BSA). Samples were centrifuged

again, and pellets were resuspended in 1 mL of fresh washing buffer.

ACME dissociation in other animals was performed with modifications to the above

protocol. Zebrafish embryos were dechorionated before the ACME solution was added,

and mechanically disrupted in the ACME solution by applying short pulses of Polytron

homogenization. Lymnaea stagnalis embryos were decapsulated by passing them

through a syringe and then mechanically disrupted in the ACME solution. To remove

broken eggshells, the cell dissociation mixes for both these species were passed through

a 100-μm CellTrics filter (Sysmex). Parasteatoda tepidariorum egg capsules were either

manually dissected under the scope within the ACME solution, or mechanically dis-

rupted in the ACME solution using short pulses of Polytron homogenization, and fil-

tered through a 40-μm cell strainer (Corning). Pristina leidyi adults were manually

shaken every 10 min during dissociation.

Protecting RNA from degradation

In the course of ACME dissociation, RNAs are exposed to hydrolysis or degradation by

RNAses. Therefore, RNAse-free conditions are essential. We have found that N-acetyl-

L-cysteine (NAC, Sigma A7250) results in better RNA integrity after maceration. NAC

was initially added as a mucolytic agent to planarian ACME dissociations. NAC is a re-

ducing agent that breaks up disulfide bonds in the mucus, solubilizing it. NAC is also

widely used due to its antioxidant properties [49]. NAC is acidic in solution and can be

mixed with the acidic ACME solution, resulting in reducing, RNA protective, condi-

tions. We first used NAC as an initial wash step. Due to its acidity, this step has to be

performed quickly as it results in cell dissociation and lysis. We also have had good re-

sults mixing the NAC directly with the ACME solution. The concentration of NAC in

the ACME solution and the possibility of performing it as an initial wash step should

be evaluated in each case.

We have also found that a significant source of RNAse contamination can come from

the use of BSA to avoid cell clumps. While RNAse-free BSA can be obtained commer-

cially, it is often too expensive to be used in large amounts. However, we have had good

results with non-RNAse-free BSA Microbiological Grade Powder (Thermo Fisher, cat.

BP9700100). We recommend testing the RNAse activity in advance and making

aliquots to prevent cross-contamination and bacterial growth.

Trypsin dissociation

For these experiments, between 50 and 70 mixed-size adult planarians (S. mediterra-

nea) were chopped into small pieces (< 1 mm) in a petri dish with a sterile, new razor

blade. With a Pasteur pipette, chopped worms were transferred to a 15-mL Falcon tube

containing 10 mL of 1% trypsin, diluted in 1× PBS. The sample was incubated for 30

min at room temperature in a see-saw shaker at 35–45 rpm, with tubes oriented
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parallel to the direction of movement. The reaction was pipetted up and down several

times every 10 min to help dissociation. After incubation, we filled the Falcon tube to

14mL with buffer (1× PBS 1% BSA) and centrifuged at 1000g for 5 min (4°). We dis-

carded the supernatant and resuspended the pellet in 5–10 mL of buffer (1× PBS 1%

BSA). Cells were then passed through a 50-μm CellTrics filter (Sysmex) and, subse-

quently, passed through a 20-μm Nylon net filter (Millipore) into a new 15-mL Falcon

tube. We filled the tube to 14mL with buffer and centrifuged at 1000g for 5 min (4 °C).

The resulting pellet was resuspended in 1–2 mL of buffer (1× PBS 1% BSA) and trans-

ferred to 1.5-mL Eppendorf tubes. Trypsinized cells were kept on ice to avoid cell

death. These were then fixed, using either ACME or formaldehyde, or directly stained

for flow cytometry visualization.

ACME fixation after trypsin dissociation

As an alternative to ACME dissociation, tissues can be dissociated using trypsin (as

described above), and cells are then fixed and permeabilized with ACME. For this

procedure, we began with 300–600 μL of trypsinized cells per sample in a 15-mL

Falcon tube. We added 8.5 mL of ACME solution without methanol: 6.5 mL of buf-

fer (1× PBS 1% BSA), 1 mL glycerol, 1 mL acetic acid, and 100 μL of 7.5% NAC.

Note that in this case, we used PBS buffer for the ACME solution, instead of dis-

tilled water, to avoid an osmotic shock to dissociated cells. We incubated this mix

for 15–20 min at room temperature in a see-saw shaker at 35–45 rpm. Subse-

quently, we added 1.5 mL of methanol and incubated for another 15–20 min.

Methanol was added at a later stage to allow partial fixation in acetic acid prior to

permeabilization. In general, the variations in this protocol, compared to ACME

dissociation, are focused on protecting previously dissociated cells, as they are

more fragile than whole tissues. Afterwards, we centrifuged the samples at 1000g

for 5 min (4 °C) to remove the ACME solution. We discarded the supernatant care-

fully, as the pellet may not be compact, and resuspended it in 7 mL of buffer (1×

PBS 1% BSA). Cells should resuspend without additional mixing. Samples were

centrifuged again at 1000g for 5 min (4 °C), resuspended in 1 mL of buffer (1× PBS

1% BSA), and transferred to 1.5-mL Eppendorf tubes. From this point, cells were

treated as regular ACME-dissociated cells and can be cryopreserved or visualized

by flow cytometry in the same way.

Formaldehyde fixation

For each fixation, we took 100–200 μL of previously trypsinized cells and resus-

pended them in 8 mL of buffer (1× PBS 1% BSA) in a 15-mL Falcon tube. We

added 2 mL of previously prepared formaldehyde (FA) stock diluted in 1× PBS (at

0.5%, 2.5%, 5%, 10%, or 20% FA in PBS), to result in a final concentration of 0.1%,

0.5%, 1%, 2%, or 4% in 10 mL total volume. The Falcon tubes were immediately

gently shaken to homogenize the FA concentration. Samples were then incubated

for 10 min at 4 °C in a see-saw shaker at 35–45 rpm. We then centrifuged twice at

1000g for 5 min (4 °C) to remove FA. After each centrifugation step, the super-

natant was discarded. Fixed cells were resuspended in 5–7 mL of buffer (1× PBS
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1% BSA), after the first centrifugation, and in 1 mL of TRIzol after the second, for

RNA extraction as described below.

RNA quality assessment and extraction

For the assessment of time and temperature-dependent RNA degradation (Fig. 3h, i),

for each experiment, we prepared planarian samples (S. mediterranea) as described in

the ACME dissociation section above.

For assessment of temperature-dependent RNA degradation after ACME dissociation

(Fig. 3i), after one freezing cycle, two samples were pooled together to avoid sample-

specific effects, and cells were resuspended in 4mL of buffer (1× PBS 1% BSA). Then,

cells were split again into two different 2-mL Eppendorf tubes. One of the tubes was

left at room temperature, and the other was kept on ice for 6 h. We took the samples

from each tube at sequential time points (0 h, 1 h, 2 h, 3 h, 4 h, 5 h, and 6 h) for RNA

extraction (see the method below).

To evaluate the RNA integrity along our pipeline (Fig. 3j), we extracted RNA from

different ACME-dissociated samples right after dissociation (b), after freezing (c), after

FACS sorting (d), and after sorting and freezing (e). To evaluate RNA resistance to

freezing (Fig. 3k), we froze and thawed the same ACME dissociation for 5 cycles, taking

a sample for RNA extraction after each cycle. Untreated whole-tissue RNA extractions

were used as positive controls.

For comparison of RNA integrity between ACME-fixed vs formaldehyde-fixed cells

(Fig. 4), we made a single preparation of trypsin-dissociated cells (as described above),

and divided it into seven different subsamples: a trypsin-dissociated sample which was

directly extracted in TRIzol, a sample that was ACME-fixed (see ACME fixation proto-

col) and 5 formaldehyde-fixed samples, using different FA concentrations (0.1%, 0.5%,

1%, 2%, and 4%), generated according to the formaldehyde fixation protocol above. This

experiment was performed in 3 replicates.

All RNA extractions were performed using TRIzol or TRIzol LS, following the manu-

facturer’s protocol. RNA quality was assessed using an Agilent 2100 Bioanalyzer,

according to the Agilent RNA 6000 Nano Kit Guide.

Flow cytometry and FACS

ACME-dissociated and ACME-fixed cells were filtered through 50-μm CellTrics

strainers (Sysmex), collected in 1.5-mL Eppendorf tubes and stained with the nuclear

dye DRAQ5 (eBioscience) adding 1–8 μL/mL of 5 mM stock solution (we normally use

1 μL/mL for planarian samples), and the cytoplasmic dye Concanavalin-A conjugated

with AlexaFluor 488 (Invitrogen), adding 2 μL/mL of 1mg/mL stock solution. Trypsin-

dissociated cells were filtered through a 50-μm CellTrics filter (Sysmex) and a 20-μm

Nylon net filter (Millipore) as previously described. For flow cytometry visualization,

trypsin-dissociated cells were stained with DRAQ5 as a nuclear dye, adding 10 μL/mL

of 5 mM stock solution, and Calcein (eBioscience) as a live cell labeling dye, adding

1 μL/mL of a 0.5 mg/mL stock solution.

Staining concentrations require optimization and ultimately depend on FACS/Cyt-

ometer adjustments and cell concentration. Cells were stained in the dark, on ice, for

30–45min, and visualized using a CytoFlex S Flow Cytometer (Beckman Coulter) or
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sorted using a BD FACS Aria III (BD Biosciences) Cell Sorter. To avoid RNAse con-

tamination during cell sorting, the FACS was thoroughly decontaminated with bleach

and pre-cooled before sorting, keeping injection and collection chambers at 4 °C during

the process. Sorting was performed using the BD FACSDiva Software, setup in 4-Way

Purity mode, with an 85-μm nozzle and moderate-pressure separation (45 Psi). We set

DRAQ5-positive, Concanavalin-A-positive single-cells to be sorted and collected in 1.5-

mL Eppendorf tubes with 100 μL of collection buffer (1× PBS, 1% BSA), obtaining up

to 500,000 cells per tube. Completing a sorting run normally takes 3 to 5 h. After sort-

ing, samples were centrifuged at 1000g for 5 min (4 °C). The supernatant was removed,

and the pellet resuspended in 900 μL of fresh buffer (1× PBS 1% BSA). We cryopre-

served the cells at this point, by adding 100 μL of DMSO and storing them at − 80 °C.

Irradiation

We irradiated three petri dishes with 20 planarians each at 60 Gy in a Gamma (Cs-137)

Cabinet Irradiator. As a negative control, we used three equivalent non-irradiated sam-

ples. Irradiated planarians and controls were dissociated 72 h post-treatment according

to the ACME dissociation protocol described above. After dissociation, samples were

resuspended in 1 mL of buffer (PBS 1× BSA 1%) and passed through a 50-μm CellTrics

filter (Sysmex). Samples were then stained with 2 μL of DRAQ5 (5 mM) and 2 μL of

Concanavalin-A (1 mg/mL) and profiled by flow cytometry.

scRNA-seq of Nematostella vectensis ACME-dissociated cells using 10X Genomics platform

For Nematostella vectensis ACME dissociations, 10 juveniles were quickly washed in

cold 7.5% NAC in PBS before the addition of 4 mL of ACME solution. The tissue in

ACME solution was transferred into a gentleMACS C-tube (Miltenyi Biotech, 130-093-

237) and incubated in a rocking table for 10 min before running the program “B” on

the gentleMACS octo dissociator (Miltenyi Biotech). The process was repeated 3 times

using the program “Multi_A_1” for a total time of 1 h in the ACME solution at RT.

Cells were then transferred to a conical tube, centrifuged at 1500g at 4 C, resuspended

in PBS 0.5% BSA in the presence of RNAse inhibitor (40 U/mL), and frozen after the

addition of 10% DMSO. After this, cells were thawed, washed in PBS 0.5% BSA in the

presence of RNAse inhibitor, stained with 0.33 μL/mL of DRAQ5 (stock 5 mM), filtered

through a 40-μm strainer, and sorted using a BD Influx cell sorter. A total of 6250 sin-

glets with 2n DNA content (G1/G0) were directly sorted into Master Mix without RT

enzyme C (10x Chromium single cell 3′ reagents kit v3.1), using 1-Drop purity mode, a

100-μm nozzle and 20Psi (Additional file 1: Figure S3A). After adding the RT enzyme

C, cells were immediately loaded onto a 10x Genomics Chromium chip and single cell

3′ GE libraries (v3.1) constructed according to the manufacturer’s protocol. cDNA was

amplified 12 cycles, and the sample was PCR indexed 16 cycles. The library was

sequenced on a HiSeq 2500 with 50 PE.

Cnidarian single-cell transcriptomic analysis

We used Metacell [69] to select gene features, to construct cell clusters (termed meta-

cells) used in the downstream analyses, and to generate projected data visualizations.

We first filtered out cells with too low (< 100) or too high (> 10,000) a number of
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UMIs. We selected feature genes using a normalized size correlation threshold of −

0.05 and normalized niche score threshold of 0.05, with > 1 UMI in at least three cells

and a total UMI count > 30 molecules. For kNN graph building, we used K = 100 as the

target number of edges per cell, and for metacell construction, we used K = 30, mini-

mum module size of 20, and 1000 iterations of bootstrapping with resampling of 75%

of the cells. This way, we obtained a robust estimate of co-clustering between all pairs

of single cells and identified clusters of single or grouped metacells. Lastly, we filtered

out low-quality metacells expressing less than 30 marker genes and with total UMI

count falling below UMI distribution peak, unless they specifically expressed more than

two TF genes (log fold change > 2). To perform label transfer, for every single cell in

the ACME dataset (query), we calculated the top Pearson correlation to any cell in the

fresh dataset [10] using functions implemented in Metacell. Briefly, the average top k

correlations were used to transfer labels to single cells and metacells in the query data-

set, where k is the maximum number of edges in the cell-to-cell similarity graph in the

reference dataset. We assigned labels to query metacells for which averaged top corre-

lations to the reference dataset were higher than the average correlations to cells in the

query dataset (absolute difference > 1). We generated single-cell gene expression heat-

maps using the R package ComplexHeatmap [70], showing the top 20 genes with log

fold change > 2 per metacell and highlighting TFs.

Split pool ligation-based transcriptome sequencing

The SPLiT-seq protocol was performed as previously described [34] with some modifi-

cations. Different samples of sorted ACME-dissociated planarian cells, from S. mediter-

ranea and D. japonica, were thawed, centrifuged twice at 1000g for 5 min (4 °C) to

remove the DMSO, and resuspended in 100–200 μL of buffer (1× PBS 1% BSA). For

each sample, we stained 100 μL of a 1:10 dilution for 15–20min and counted these

subsamples by flow cytometry. The remaining portion of cells was then diluted and

pooled together (mixing both species cells) to a final concentration of 1.25M cells/mL

(10,000 cells per well for the reverse transcription round: 5000 cells per each planarian

species).

Plate preparation

Barcodes were provided lyophilized by integrated DNA technologies on three 96-well

stock plates: Stock-1 (well-specific anchored poly (dT) *Round 1 barcodes), Stock-2

(well-specific *Round 2 barcodes), and Stock-3 (well-specific *Round 3 barcodes). Ly-

ophilized barcodes were resuspended in DNAse/RNAse-free water to a final concentra-

tion of 100 μM/well. From the stock plates, we prepared another three plates at specific

working dilutions (WD-1, WD-2, and WD-3 from stock plates 1–3, respectively). Using

a multichannel pipette, we prepared WD-1 with 12 μL of round 1 barcodes from Stock-

1 and 88 μL of DNAse/RNAse-free water per well. For WD-2, we mixed 12 μL of round

2 barcodes from Stock-2, 11 μL of *Linker_1 (100 μM) and 77 μL of DNAse/RNAse-free

water per well. Finally, WD-3 was made of 14 μL of round 3 barcodes from Stock-3,

13 μL of *Linker_2 (100 μM) and 73 μL of DNAse/RNAse-free water per well.

With a total volume of 100 μL per well, WD-1 will last for up to 25 experiments

(4 μL/well used per experiment), while WD-2 and WD-3 plates will last for up to 10
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experiments (10 μL/well used per experiment). Before following the SPLiT-seq proto-

col, WD-2 and WD-3 were heated to 95 °C, for 2 min, and ramped down to 20 °C at a

rate of − 0.1 °C/s, to anneal the 5′ end of each barcode oligo to the universal linker

oligos.

Round 1 of barcoding: reverse transcription

The first round of barcoding was carried out by in-cell reverse transcription (RT). The

original SPLiT-seq protocol uses a combination of random hexamers and anchored

poly (dT) oligos [34]. We only used the latter (Additional file 2: Table S1). A 96-well

plate (round 1) was prepared on ice by transferring 4 μL/well of round 1 barcodes from

WD-1. We then added 8 μL/well of RT mix “plate round 1”: 4 μL of 5× RT Buffer

(Thermo Scientific), 0.35 μL of SUPERase-In RNAse inhibitor (20 U/μL, Invitrogen),

1 μL of 10 mM/each dNTPs (NEB), 1.65 μL of nuclease-free water, and 1 μL of Maxima

H Minus RT (Thermo Scientific). Finally, 8 μL of previously counted cells (1.25M

cells/mL) was also added to each well, giving a total volume of 20 μL/well. Round 1 was

incubated in a thermocycler for 30 min at 50 °C and immediately placed on ice. Individ-

ual reactions were then pooled together in a 15-mL Falcon tube, on ice, and round 1

plate was discarded. We added 9.6 μL of 10% Triton X-100 to the pooled cells (0.1%

final concentration) and centrifuged them at 1000g for 5 min (4 °C). We discarded the

supernatant and resuspended the pellet in 2 mL of 1× NEB buffer 3.1 (NEB).

Round 2 of barcoding: ligation 1

The second round of barcoding was carried out by a ligation reaction. A new 96-well plate

(round 2) was prepared on ice with 10 μL/well of round 2 barcodes from WD-2. Then, 2

mL of ligation mix (500 μL of T4 Ligase Buffer 10× (NEB), 100 μL of T4 DNA ligase (400

U/μL, NEB), and 1500 μL of nuclease-free water) were added to the cells resuspended in

1× NEB buffer 3.1 and mixed thoroughly into a disposable basin. We added 40 μL/well of

this ligation mix (including cells) to the round 2 plate and covered it with an adhesive

PCR plate seal. The plate was incubated in a thermocycler for 30min at 37 °C. To block

Linker_1 after incubation, a blocking solution was prepared with 264 μL of *Blocker_1

(26.4 μM final concentration), 250 μL of T4 Ligase Buffer 10× (NEB), and 486 μL of

nuclease-free water. After incubation, the seal was removed from the round 2 plate and

10 μL of blocking solution was added to each well, giving a final volume of 60 μL/well.

The plate was sealed again and incubated for another 30min at 37 °C.

Round 3 of barcoding: ligation 2

The third round of barcoding was carried out by a second ligation reaction. We filled a 96-

well plate (round 3) with 10 μL/well of round 3 barcodes from WD-3. Then, we took round 2

from the incubator, pooled cells together into a new disposable basin, and discarded the plate.

We added 100 μL of T4 DNA ligase (400U/μL, NEB) to the basin and mixed thoroughly with

the cells. The round 3 plate was then filled with 50μL/well of this cell-ligase solution, sealed

with a PCR adhesive and incubated for 30min at 37 °C. Termination solution was prepared

with 288 μL of *Blocker_2 (11.5 μM final concentration), 625 μL of 0.5M EDTA (to stop ligase

activity), and 1587 μL of nuclease-free water. We added 20 μL/well of the termination solution
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(for a final volume of 70 μL/well) without further incubation. Afterwards, cells were pooled

into a 15-mL Falcon tube and placed on ice.

Cell lysis

Following the addition of 70 μL of 10% Triton-X 100 (0.1% final concentration), the

pooled cells were centrifuged at 1000g for 5 min (4 °C). We carefully removed the

supernatant (leaving about 100 μL) and resuspended the cells in 4.04 mL of washing

buffer (4 mL of 1× PBS and 40 μL of 10% Triton X-100). The cells were centrifuged

again at 1000g for 5 min (4 °C). After removing the supernatant, we resuspended the

cells in 50 μL of 1× PBS buffer. We diluted 5 μL of this resuspension in 195 μL of 1×

PBS and counted the number of cells by flow cytometry to decide the number of sub-

libraries. Then, we aliquoted the remaining 45 μL of cells in 1.5-mL Eppendorf tubes

according to the cell concentration obtained by flow cytometry. For this experiment,

we generated three different sub-libraries of ~ 15.000 cells/each. The volume of each

sub-library was adjusted to 50 μL with 1× PBS.

Lysis buffer was prepared with the following reagents (final concentrations in

brackets): Tris pH 8.0 (20 mM), NaCl (400 mM), EDTA pH 8.0 (100 mM), and SDS

(4.4%). We added 50 μL of lysis buffer and 10 μL of Proteinase K (20 mg/mL) to each

sub-library and incubated the lysates at 55 °C for 2 h, shaking the tube manually every

15 min. After incubations, lysates were frozen at − 80 °C.

cDNA purification with magnetic beads

We used 44 μL of Dynabeads™ MyOne™ Streptavidin C1 (Invitrogen) per lysate to purify

the cDNA by linking the beads to the biotin molecule at the 3′ end of the third bar-

code. We followed the manufacturer’s protocol for Dynabeads nucleic acid purification,

with modifications taken from Rosenberg et al.’s protocol: Manufacturer’s Washing

Buffer (1× B&W) was prepared with the addition of 0.05% final concentration of

Tween-20. Lysates were incubated for 10 min at room temperature with 5 μL of

100 μM PMSF (diluted in isopropanol) to inhibit Proteinase K activity. Afterwards, ly-

sates were incubated with the magnetic beads for 60 min, at room temperature, with

rotation. During washing steps, samples were agitated in 1× B&W/Tween-20 buffer for

5 min at room temperature. Finally, beads were resuspended in 250 μL of 10 mM Tris-

T buffer (10 mM Tris-HCl pH 8.0, 0.1% Tween-20 and 0.2% SUPERase-In RNAse

Inhibitor) and kept at 4 °C.

Template switch

Template switch mix was prepared with 44 μL of 5× RT Buffer (Thermo Scientific),

44 μL of 20% Ficoll PM 400 (Sigma Aldrich), 22 μL of 10 mM/each of four dNTPs

(NEB), 5.5 μL of *TSO primer (100 μM), 11 μL of Maxima H Minus RT, and 93.5 μL of

nuclease-free water per sample. Dynabeads linked to cDNA were washed, using a mag-

netic rack, with 250 μL of nuclease-free water (no resuspension) and resuspended in

200 μL of the template switch mix. Samples were incubated in the mix for 30 min at

room temperature and then for 90 min at 42 °C, with agitation. After incubation, the

template switch mix was removed using a magnetic rack; beads were resuspended in

250 μL of Tris-T buffer and kept at 4 °C.
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PCR amplification

The PCR mix was prepared with 110 μL of 2× Kapa HiFi HotStart ReadyMix (Roche),

8.8 μL of *PCR_PF (10 μM), 8.8 μL of *PCR_PR (10 μM), and 92.4 μL of nuclease-free

water. Dynabeads in Tris-T buffer were placed in a magnetic rack and washed with

250 μL of water (no resuspension). Each sub-library was then resuspended in 220 μL of

PCR mix and split into 4 PCR tubes. The following program was run in the thermocy-

cler: 95 °C (3 min) and five cycles at 98 °C (20 s), 65 °C (45 s), and 72 °C (3 min). The 4

PCR reactions were combined again in a 1.5-mL Eppendorf, and Dynabeads were sepa-

rated using a magnetic rack. Two hundred microliters of supernatant, containing cDNA

in suspension, was split into 4 wells in a qPCR plate (50 μL/well). We added 2.5 μL of

20× EvaGreen (Biotium) to each well and run the following program in a qPCR ther-

mocycler: 95 °C (3 min), cycling until plateau phase, normally 8–10 cycles, at 98 °C (20

s), 65 °C (20 s) and 72 °C (3 min), and a final elongation at 72 °C (5 min).

Size selection

We purified qPCR reactions by SPRI size selection to remove fragments smaller than 300

bp. We used Kapa Pure Beads (Roche) at a ratio of 0.8× and followed the manufacturer’s

protocol for “Cleanup of Fragmented DNA in NGS Workflows,” with two modifications

taken from the original SPLiT-seq protocol: washing steps were performed with 750 μL of

85% ethanol, and cDNA was eluted in 20 μL of nuclease-free water at 37 °C for 10min.

Tagmentation

The sub-libraries were tagmented using the Nextera DNA Library Preparation Kit (Illu-

mina). After the SPRI 0.8x size selection, we quantified the sub-libraries by Qubit

(Thermo Fisher) and diluted 50 ng of cDNA in a total volume of 20 μL of nuclease-free

water. The tagmentation reaction mix was prepared with 20 μL of cDNA (50 ng), 25 μL

of Tagmentation Buffer, and 5 μL of enzyme 1. Samples were incubated in a pre-heated

thermocycler for 5 min at 55 °C and placed on ice at the end of this time period. We

neutralized the tagmentation activity of enzyme 1 by immediately cleaning the reaction

with the Monarch PCR & DNA Cleanup Kit (NEB). Samples were eluted in a final vol-

ume of 20 μL of UltraPure water.

Round 4 of barcoding: PCR

The fourth barcode was introduced by PCR. We prepared a separate reaction mix for each

sub-library, containing 20 μL of tagmented cDNA, 25 μL of 2× Kapa HiFi HotStart ReadyMix

(Roche), 1.5 μL of *P5_oligo (10 μM), 1.5 μL of *Round 4 barcode (10 μM), and 2.5 μL of 20×

EvaGreen (Biotium). For the three sub-libraries made in the present study, we used the

*Round4_1, *Round4_2, and *Round4_3 oligos as round 4 Barcodes. The qPCR program ran

as follows: 95 °C (30 s); cycling until plateau phase (8–10 cycles) at 95 °C (10 s), 55 °C (30 s),

and 72 °C (30 s); and final elongation at 72 °C (5min). The resulting qPCR reactions were size

selected (SPRI 0.7x) by mixing 40 μL of the sample with 28 μL of Kappa Pure Beads (Roche),

following the protocol described above. Each sub-library was resuspended in a final volume of

20 μL in nuclease-free water and fragment distribution was checked in an Agilent 2100 bio-

analyzer following the Agilent High Sensitivity DNA Kit Guide.

*Oligo sequences provided in Additional file 2: Table S1.
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Planarian single-cell transcriptomic analysis

Sequencing and quality control

The three sub-libraries were pooled together and sequenced on a NovaSeq 6000 plat-

form (Illumina) by Novogene, with 150 bp length, paired-end reads. These reads were

provided without any quality verification except a basic chastity check. They were

therefore subject to initial quality checks with FastQC. Read Phred quality was gener-

ally good, but adaptor and N content required curation and removal. CutAdapt v2.8

[71] was used to trim residual adaptor sequence, low-quality, and short reads. Differing

strategies for clean-up were used for read 1 (transcript sequence) and read 2 (UMI and

barcode sequences). For read 1, cutadapt -j 4 -m 60 -q 10 -b AGATCGGAAGAG was

run, removing residual Illumina universal adapter and a read length shorter than 60 bp.

For read 2, cutadapt -j 4 -m 94 --trim-n -q 10 -b CTGTCTCTTATA was run, remov-

ing reads shorter than 94 bp (the minimum to span all barcodes), terminal Ns, and re-

sidual Nextera adapter sequence. Read 2 sequences were checked for “phase” (i.e.,

whether barcodes were in their correct position, due to possible indels) using grep to

compare adapter-derived flanking sequence was correctly positioned with that of each

read. Reads were conservatively retained, with only reads with UMI and UBC barcodes

in the correct location carried forward to further analysis. Dephasing, while advisable,

did not prove a major issue, and very few reads were discarded. Makepairs (https://

github.com/sestaton/Pairfq/wiki/makepairs) was used to retain only paired reads, and a

further round of FastQC analysis was used to confirm all detectable adaptor and low-

quality sequence had been removed.

Read mapping, barcode extraction, and matrix production

The S. mediterranea S2F2 genome [60] was downloaded from Planmine, and the D. ja-

ponica v 1.0 genome [61] was downloaded from http://www.planarian.jp. De novo gene

models were created for both S. mediterranea and D. japonica. A total of 183 published

S. mediterranea and 43 D. japonica RNA-seq datasets were downloaded from the NCBI

SRA and the DNA Data Bank of Japan, comprising all those listed at the time of ana-

lysis. These collected reads were aligned to the respective reference genomes using

HiSat 2.1.0 [72]. StringTie and StringTie—merge [73] were then used to merge map-

ping outputs with the existing SMESG-high confidence gene models from Planmine (S.

mediterranea) and the full v1 AUGUSTUS-derived gene models from http://www.

planarian.jp (D. japonica). Isoformal variants whose length was greater than 100 kb

were removed from the gene set as likely artifacts (588 in D. japonica, 617 in S. medi-

terranea). D. japonica and S. mediterranea fasta and gtf files were then concatenated to

create a combined database for mapping. Drop-seq_tools-2.3.0 (https://github.com/

broadinstitute/Drop-seq) was then used to create sequence dictionary, refFlat, reduced

GTF, and interval files. A STAR-2.7.3a [74] index was generated using the --sjdbOver-

hang 99 --genomeSAindexNbases 13 --genomeChrBinNbits 14 settings for both ge-

nomes concatenated together (to allow measurement of collisions, see below).

Each of the three sub-libraries sequenced in the present manuscript was then proc-

essed separately. SPLiTseq toolbox (https://github.com/RebekkaWegmann/splitseq_

toolbox), which incorporates many of the components of Drop-seq_tools-2.3.0 (https://

github.com/broadinstitute/Drop-seq) was used to extract, check, and correct barcodes

García-Castro et al. Genome Biology           (2021) 22:89 Page 27 of 34

https://github.com/sestaton/Pairfq/wiki/makepairs
https://github.com/sestaton/Pairfq/wiki/makepairs
http://www.planarian.jp
http://www.planarian.jp
http://www.planarian.jp
https://github.com/broadinstitute/Drop-seq
https://github.com/broadinstitute/Drop-seq
https://github.com/RebekkaWegmann/splitseq_toolbox
https://github.com/RebekkaWegmann/splitseq_toolbox
https://github.com/broadinstitute/Drop-seq
https://github.com/broadinstitute/Drop-seq


(corrections with hamming distance ≤1). Mapping was performed using STAR-2.7.3a

[74], with --quantMode GeneCounts and all other default settings. Picard v2.21.1-

SNAPSHOT (Broad Institute, http://broadinstitute.github.io/picard/) SortSam and

MergeBamAlignment were used to re-order and merge aligned and tagged reads.

Drop-seq_tools-2.3.0 TagReadWithInterval and TagReadWithGeneFunction were then

run sequentially to note mapping location, using the custom refFlat and genes.intervals

files created above. An additional character (A, T, or C) was then added to the cellular

barcode of each sub-library, to allow identical cell barcodes from different sub-libraries

to be differentiated. Reads mapping to D. japonica and S. mediterranea were then sepa-

rated. These mapping files were then used to create expression matrices using Drop-

seq_tools-2.3.0 DigitalExpression for each library individually, with the following set-

tings: READ_MQ=0, EDIT_DISTANCE=1, MIN_NUM_GENES_PER_CELL=100, and

LOCUS_FUNCTION_LIST=INTRONIC. These matrices, along with the novel gene

models and raw reads, have been uploaded to the NCBI GEO, accession GSE150259.

Using the matrices produced from the full data for S. mediterranea and D. japonica, a

2-species “barnyard” plot was built, showing the UMIs per cell barcode from each of

the species. Collisions were defined as cell barcodes sharing over 10% of their UMIs

with the minority species in this plot.

Seurat feature identification, doublet removal, and clustering

The digital expression matrices for each sub-library were loaded into Seurat v 3.1.0 [67]

within R v 3.6.2 and a Seurat object created for each, with min.cells = 1 and min.fea-

tures = 125 (although note the matrix creation cutoff described above). Cells with a

UMI count greater than 5000 were excluded with subset = nCount_RNA < 5000. Data

was normalized, and variable features selected (selection.method = “vst”, nfeatures = 10,

000) and data scaled. The three libraries were then merged (merge (x = L1, y = list(L2,

L3), add.cell.ids = add.cell.ids, merge.data = FALSE)). Data was again normalized (nor-

malization.method = “LogNormalize”, scale.factor = 10,000) and variable features se-

lected (split.by = “library”, nfeatures = 10,000, verbose = TRUE, fvf.nfeatures = 10,000,

selection.method = “vst”). Principal component analysis (PCA) was run for 50 principal

components. JackStrawPlots and ElbowPlots were generated to understand the dimen-

sionality of the data (plots not shown). Clustering was performed with resolution = 1

(D. japonica) or 1.4 (S. mediterranea) and the original Louvain algorithm. UMAP pro-

jections were displayed both by cluster and by library to assay for batch effects. Further

batch effect correction was not necessary. VlnPlot was used to generate violin plots of

gene and UMI content in each library, using a log scale. A number of resolutions were

trialed and compared manually with marker lists (see “cluster identity assignment”

below) to determine the most appropriate cutoff for initial display and further analysis.

The resulting objects were then saved in R and used as the basis for doublet identifica-

tion and removal using DoubletDecon v 1.15 [62]. The Improved Seurat Pre-Process

pipeline was run at a range of ρ′ values, a min_uniq genes setting of 4 and num_

genes = 50. The high-end number of likely within-species doublets was ground-truthed

using the number of S mediterranea: D. japonica collisions seen in our barnyard plot,

and the final ρ′ value (D. japonica 0.3, S. mediterranea 0.4) used to identify potential

doublets, erring on the side of over-estimation of doublets. Cells identified as potential
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doublets were removed from our final list of cells carried forward for analysis, along

with cells with more than 5000 UMIs. The resulting matrices were then re-analyzed as

detailed above. For both species, clustering was performed with resolution = 1.6. UMAP

representations were created for both species with the following settings: dims = 1:50,

reduction = “pca”, spread = 1, metric = “euclidean”, seed.use = 1, and n.neighbors = 45,

min.dist = 0.4. Clusters were recolored natively within Seurat as plots were generated.

Markers were extracted from Seurat using the FindAllMarkers function. Cell numbers

per cluster were extracted using the Idents function. FeaturePlot was used to highlight

the expression of individual markers in cells in our dataset, to aid with cell cluster

identification.

Cluster identity assignment

To establish the identity of S. mediterranea cell clusters we cross-referenced the markers

found in them with the markers from our previous publication [13]. Representative examples

are shown in Additional file 1: Figure S2. Novel cell clusters eye-53 neurons, serotonin neu-

rons, protonephridia tubule cells, and protonephridia flame cells were named respectively by

the expression of markers eye-53-1 (SmMSTRG.4014, dd_Smed_v6_889_0_1) [75], sert

(SmMSTRG.6717, dd_Smed_v6_12700_0_1) [76, 77], CAVII-like (SmMSTRG.5392, dd_

Smed_v6_4841_0_1) [78], and egfr-5 (SmMSTRG.13890, dd_Smed_v6_11310_0_1) [79]. To

establish the identity of D. japonica cell clusters, we found known S. mediterranea homologs

of the top D. japonica cluster markers as noted below and examined the expression of these

in our S. mediterranea and D. japonica feature maps.

To establish marker homology between our novel gene models and known gene se-

quences from previous publications, we used a different approach for each species. For

S. mediterranea comparisons to previously cataloged genes: blastn megablast [80] of

known nucleotide sequences to our gene models (E value cutoff = E < 10−99, although

best hit normally = 0) and Standalone BLAT v. 36 × 5 (-out= blast8) [81] were used to

find clearly homologous sequences. For D. japonica, the same approach was used to

find homologs between our novel gene models and known D. japonica genes when ap-

propriate. However, to annotate based on known S. mediterranea sequences, the pro-

tein sequences of previously identified S. mediterranea genes were used to search our

novel D. japonica gene set using tblastn (E value cutoff = E < 10−99), alongside nucleo-

tide vs nucleotide blat searches as described previously. Secretory clusters were arbi-

trarily named 1–7 and a–h according to their abundance, as the exact correspondence

of these with previously published experiments and the homology between planarian

species requires further research.

Re-mapping of Plass et al. datasets

We re-analyzed the datasets of Plass et al. [13] using the improved gene annotation put

forward in this manuscript. These were downloaded from the NCBI GEO at accession

GSE103633 and processed using Drop-seq tools 2.3.0 (https://github.com/

broadinstitute/Drop-seq) using the Dropseq Core Computational Protocol v2.0.0. For

final matrix generation, the cell barcode list used for the original study was downloaded

from https://shiny.mdc-berlin.de/psca/ and used to construct matrices and cells with

more than 2500 genes mapped to them, as in that resource, are excluded from our
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analysis. Note that due to improvements in the Drop-seq DetectBeadSubstitutionErrors

and DetectBeadSynthesisErrors pipelines, we recover 21,610 cells, rather than the 21,

612 originally used, as the pipeline was able to recognize and correct errors in the last

position of the UMI for several cell barcodes, merging several cells. Seurat v 3.1.0 [67]

within R v 3.6.2 was then run using the settings described above, with resolution = 1.6,

n.neighbors = 35, min.dist = 0.5.

Label transfer and integration

Label transfer and integration analyses were performed within R v 3.6.2 and with Seurat

v 3.1.0 [57]. Objects were pre-processed (data normalized, variable features selected,

data scaled, and PCA run) as described above. For label transfer, FindTransferAnchors

was used to identify anchors within the reference set for each comparison, using cca re-

duction. TransferData was then used to find predicted labels, with pca used for weight

reduction, dims = 2:30, and all other default settings.

For integration, FindIntegrationAnchors was run using dims = 1:20 and all other default

settings, before IntegrateData was run using the same settings on the output. The result-

ing integrated object was then processed as described for individual libraries above (using

ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP) for display (n.neigh-

bors = 45, min.dist = 0.4, spread = 1, metric = “euclidean”, seed.use = 1). Markers and cell

numbers were extracted using FindAllMarkers and from Idents within Seurat.

Other analyses performed for single-cell RNA-seq data

To assay whether our library sequencing was saturated at the given read depth, reads

were downsampled randomly using seqtk (10%, 25%, 50%, and 75% of total read depth).

These read results were extracted from our final bam files and used to generate UMI

and gene numbers per cell for the cell barcode set identified from our full results (NB:

as bam files were ordered in the process of data generation, sampling from the bam file

directly would likely have returned non-random results). seqtk downsampling was also

used to generate subsamples seen in Additional file 1: Figure S8. UMI and gene num-

bers per cluster were displayed using VlnPlot in Seurat v 3.1.0 [57], and the FeaturePlot

function was used to color cells within our plots expressing particular gene markers.
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