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Abstract

Background: The speed of translation elongation is primarily determined by the abundance of tRNAs. Thus, the
codon usage influences the rate with which individual mRNAs are translated. As the nature of tRNA pools and
modifications can vary across biological conditions, codon elongation rates may also vary, leading to fluctuations in
the protein production from individual mRNAs. Although it has been observed that functionally related mRNAs
exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins,
experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific
conditions is scarce and the associated mechanisms are still debated.

Results: Here, we reveal that mRNAs whose expression increases during cell proliferation are enriched in rare codons,
poorly adapted to tRNA pools. Ribosome occupancy profiling and proteomics measurements show that upon
increased cell proliferation, transcripts enriched in rare codons undergo a higher translation boost than transcripts
with common codons. Re-coding of a fluorescent reporter with rare codons increased protein output by ~ 30%
relative to a reporter re-coded with common codons. Although the translation capacity of proliferating cells was
higher compared to resting cells, we did not find evidence for the regulation of individual tRNAs. Among the
models that were proposed so far to account for codon-mediated translational regulation upon changing conditions,
the one that seems most consistent with our data involves a global upregulation of ready-to-translate tRNAs, which we
show can lead to a higher increase in the elongation velocity at rare codons compared to common codons.

Conclusions: We propose that the alleviation of translation bottlenecks in rapidly dividing cells enables preferential
upregulation of pro-proliferation proteins, encoded by mRNAs that are enriched in rare codons.
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Introduction
Due to the redundancy of the genetic code, the same protein
can be encoded in many distinct mRNA sequences. Syn-
onymous codons are not uniformly represented in the tran-
scriptome; the observed codon bias having coevolved with
transfer RNA (tRNA) abundances under selection for trans-
lation accuracy and efficiency, among others [1–6]. Although
initiation is the primary rate-limiting step of translation [3,
7], the rate at which the ribosome elongates the polypeptide
chain also modulates the protein output, as elongation-
induced “traffic jams” may affect the initiation rate or lead to
abortion of translation [8]. The decoding rate of synonymous

codons varies widely, depending primarily on the abundance
of cognate tRNAs [9–12]. Common codons are recognized
by abundant tRNAs and are more efficiently translated than
rare codons, whose frequency of occurrence in the transcrip-
tome is low. In addition to modulating protein output, the
choice among synonymous codons has been shown to influ-
ence transcript stability [13–15], protein folding [11, 16–19],
and function [20, 21].
Recent studies have highlighted examples where the

abundance and modifications of individual tRNAs are ad-
justed to match the codon usage of functionally related
genes that are expressed specifically in individual human
tissues [22, 23], during cell differentiation [24–26] and cel-
lular stress [27], or in tumors [28]. In particular, tRNAs
that were found induced in proliferative cells generally de-
code codons that are over-represented in pro-proliferative
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mRNAs [24]. This suggested that tRNA pools fluctuate
between cellular states such as proliferation and differenti-
ation to match the “codon demand” of the corresponding
transcriptomes and presumably enhance translation effi-
ciency. However, subsequent studies argued that the
codon bias of specific classes of mRNAs reflects primarily
local sequence evolution due to meiotic expression and re-
combination, and not selection for translation [29, 30].
Furthermore, perturbations of the protein synthesis appar-
atus, whether due to altered ribosome composition [31,
32] or ribosome levels [33, 34], altered interactions of
translation initiation factors [35–37], or post-translational
modifications in ribosomal proteins [38], can specifically
impact the translation of subsets of mRNAs. The observa-
tion that cell cycle-controlled genes are enriched in non-
optimal codons, presumably supporting their coordinated
oscillatory expression, was especially intriguing [39]. How-
ever, whether and how codon signatures of individual
mRNAs lead to differences in their translation efficiency
in resting compared to proliferating cells is still unclear.
By measuring translation efficiencies transcriptome-

wide in cells that proliferate at different rates, we here
show that pro-proliferative mRNAs, which are enriched
in rare codons, undergo a stronger translation boost in
rapidly dividing cells than mRNAs encoded with com-
mon codons. Reporter constructs re-coded with either
rare or common codons exhibit the same behavior. We
do not find differences in the expression of individual
tRNAs between resting and proliferating cells. Of the
models proposed to relate translational changes to vari-
ation in tRNA pools, the one that remains consistent
with our data is that the elongation velocity at rare co-
dons improves more than that of common codons if glo-
bal ready-to-translate tRNA pools increase during cell
proliferation. Taken together, our data suggest that
changes in a general resource, in this case, translation
elongation capacity, can concertedly modulate a re-
stricted, functionally related set of molecular targets to
control specific phenotypes.

Results
Proliferation-induced mRNAs are enriched in rare codons
To determine the codon usage in different proliferative
states, we tracked the cell cycle progression of mouse em-
bryonic fibroblast NIH-3T3 cells with the FUCCI system
of genetically encoded fluorescent probes [40]. By sorting
cells in the G1 and G2/M cell cycle phases and profiling
their transcriptomes (Fig. 1a), we found that mRNAs en-
coding proteins that are involved in cell adhesion and
specification were preferentially expressed in G1 cells,
whereas mRNAs encoding proteins responsible for DNA
replication and cell division were upregulated in G2/M
cells (Additional file 1: Figure S1A, B). Although the
codon usage of the entire transcriptome remained similar

between the two cell cycle phases, the mRNAs whose ex-
pression was higher in the G2/M relative to G1 phase had
a markedly distinct codon usage (Fig. 1b, Additional file 1:
Figure S1C and Additional file 2: Table S1), consistent
with previous reports [24, 39]. We used the t test to quan-
tify these differences; for any codon, a positive or negative
t value (G2M/G1 codon score, Fig. 1b, c and Add-
itional file 3: Table S2) reflects its preferential use in
mRNAs with higher expression in the G2/M or G1 phase,
respectively. mRNAs enriched in the G2/M phase exhib-
ited a strong preference for codons whose third nucleotide
was an adenine or uridine (A/U), whereas G1-enriched
mRNAs used codons ending in guanine or cytosine (G/C)
(Fig. 1c). The use of A/U-rich codons at the 5′ end of cod-
ing regions has been associated with a reduced propensity
to form RNA secondary structures, which hinder transla-
tion initiation [41–46]. Although the translation initiation
region of G2/M mRNAs indeed had significantly higher
predicted free energy of folding than the corresponding
region of G1 mRNAs (thus “weaker” RNA structure,
Fig. 1d), A/U-rich codons were preferentially used
throughout the coding sequence of G2/M mRNAs, sug-
gesting that the impact of these codons goes beyond
translation initiation (Fig. 1e). The genes induced in the
G2/M phase are significantly less adapted to the tRNA
pools computationally inferred from gene copy numbers
(Fig. 1f); individual codons that are over-represented in
these genes (t value > 3) are less frequently used in the
transcriptome (thus “rare codons,” Fig. 1g) and are
decoded by less abundant tRNAs (Fig. 1h).

Codon usage is correlated with tissue proliferative capacity
To further validate the association between codon choice and
the proliferation state of cells, we compared the codon usage
of genes with higher than average expression in each of 15
different mouse tissues with the codon usage of G1- and G2/
M-enriched genes (Additional file 1: Figure S2A). Remarkably,
genes that are preferentially expressed in tissues with high
proliferative potential (such as testis and thymus) shared the
codon usage of genes enriched in the G2/M phase, whereas
genes with specific expression in tissues with low proliferative
potential (such as lung or cortex) shared the codon bias of
G1-enriched genes. The overlap of tissue-specific genes with
those specifically expressed in different cell cycle phases was
very small (Additional file 1: Figure S2B, C) demonstrating
that the choice between rare and common codons is not re-
stricted to genes whose expression changes between different
phases of the cell cycle, but extends to genes that are specific-
ally expressed in individual tissues.

Translation boost of mRNAs enriched in rare codons
during proliferation
As rare codons have been reported to reduce the rate of
translation elongation [11], we sought to determine the
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impact of codon usage on protein synthesis rates in cells
growing at different proliferation rates. We induced NIH-
3T3 cells to proliferate at different rates by culturing them in
either 1%, 2%, 5%, or 10% fetal calf serum (FCS) (Fig. 2a and
Additional file 1: Figure S3A). By monitoring the

phosphorylation status of eIF2α (p-eIF2α) [47], we confirmed
that growing cells with lower serum concentrations did not
trigger a stress response (Kruskal-Wallis test P= 0.1027,
Fig. 2b, c). We further established that cell viability was not
compromised under these conditions (Additional file 1:

a b c

d e f g h

Fig. 1 mRNAs required for cell proliferation are enriched in rare codons and are poorly adapted to tRNA pools. a NIH-3T3 cells with a stably
integrated FUCCI system were sorted according to the cell cycle phase, and the corresponding transcriptomes were profiled by mRNA sequencing. The scatter
plot shows the expression of AmCyan and mCherry in individual cells. The percentage of cells in each cell cycle phase is depicted. b Boxplots showing relative
usage of synonymous glycine-encoding codons across all genes, or in genes expressed preferentially in either G1 or G2/M phases. Shown are the t and P
values determined by the unpaired, two-tailed, Welch t test comparing the codon usage of G1 genes to that of G2/M genes. c Heatmap showing the t value
(G2M/G1 codon score) for all codons. Codons that are preferentially used in G2/M genes have positive codon scores, whereas codons enriched in G1 genes
have negative codon scores. The amino acid encoded by each codon is shown with a single-letter code: F, phenylalanine; L, leucine; S, serine; Y, tyrosine; C,
cysteine; P, proline; H, histidine; Q, glutamine; R, arginine; I, isoleucine; T, threonine; N, asparagine; K, lysine; V, valine; A, alanine; D, aspartate; E, glutamate; G,
glycine. d Boxplots showing the distribution of the minimum free energy (MFE) for RNA folding of the translation initiation region ([− 40, + 40] nucleotides with
respect to the start codon) of G1- and G2/M-enriched mRNAs. Shown is the P value determined by the non-parametric Mann-Whitney U test. e Scatter plot
depicting the fraction of G1- and G2/M-enriched mRNAs with G/C at the third nucleotide position in the first 300 codons. f Boxplots showing the distribution
of tRNA adaptation index for G1- and G2/M-enriched mRNAs. Shown is the P value determined by the non-parametric Mann-Whitney U test. g, h Boxplots
showing the distribution of the transcriptome-wide usage (weighted by transcript expression (g) or relative adaptiveness to tRNA pools (h) of the codons that
are preferentially used (|t value|> 3) in genes associated with a specific cell cycle phase (G1, n=22 codons, G2/M, n=29 codons). Shown are the P values
determined by the non-parametric Mann-Whitney U test. All boxes extend from the 25th to 75th percentiles (inter-quartile range (IQR)), horizontal lines
represent the median, and whiskers indicate the lowest and highest datum within 1.5*IQR from the lower and upper quartiles, respectively
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Fig. 2 (See legend on next page.)
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Figure S3B, C). Thus, to study the effect of cell proliferation
on mRNA-specific translation regulation, we analyzed cells
growing in either 1% or 10% FCS. We first profiled the ribo-
some occupancy and relative abundance of all expressed
mRNAs (Additional file 1: Figure S4 and Additional file 4:
Table S3) and identified a few hundred transcripts whose
ribosome density (i.e., ribosome occupancy fold change nor-
malized by mRNA fold change) changed more than 50% in
either direction between the two conditions (Fig. 2d, red and
blue dots). The codon scores of mRNAs exhibiting differen-
tial ribosome density (RD) under distinct proliferative condi-
tions were strikingly similar to that observed when
comparing G1- and G2/M-induced mRNAs (Fig. 2e, Pearson
correlation coefficient R= 0.93, P < 0.001). Attesting to the
significance of this correlation, the codon scores obtained by
comparing two random subsets of genes showed much more
modest correlations with the G2M/G1 codon scores (Add-
itional file 1: Figure S5A). Finally, this association was also
evident when considering those genes whose RD is changed
but not the mRNA level (Additional file 1: Figure S5B, C).
Consistent with a higher proportion of dividing cells in

10% FCS, we observed increased expression of mRNAs
previously found enriched in the G2/M phase using the
FUCCI system (Fig. 2f). Remarkably though, not only was
the level of these mRNAs higher, but also their ribosome
density compared to that of G1-enriched mRNAs (Fig. 2g).
We then pursued the quantification of protein levels
genome-wide to validate if mRNAs more densely occu-
pied by ribosomes also exhibited elevated protein

synthesis rates (Additional file 5: Table S4). We identified
a few hundred transcripts whose translation efficiency
(i.e., protein fold change normalized by mRNA fold
change) changed more than 50% in either direction be-
tween cells cultured in 1% and 10% FCS (Fig. 2h, red and
blue dots). We confirmed that mRNAs previously identi-
fied with differential RD also displayed a corresponding
significant change in translation efficiency (Additional file 1:
Figure S5D). In agreement with the ribosome density data,
the codon scores of differentially translated mRNAs were
strongly correlated to those of genes that were differen-
tially expressed between G1 and G2/M phases (Fig. 2i,
Pearson correlation coefficient R = 0.93, P < 0.001). Im-
portantly, we obtained equally strong associations between
codon scores when comparing cells growing in either 2%
or 5% with cells growing in 10% (Fig. 2j and Add-
itional file 1: Figure S5E, F), ruling out the possibility that
our observations are exclusive to cells growing at very low
serum concentrations. Altogether, these results indicate
that mRNAs enriched in rare codons exhibit enhanced
translation in rapidly proliferating cells relative to cells
that proliferate slowly, compared to transcripts that do
not share this codon bias.

Rare codons confer a preferential boost in the protein
output of fluorescent reporters
To validate that the codon choice directly affects the
translation efficiency, we re-coded a fluorescent protein
with rapid turnover rate, d2eGFP [48], generating two

(See figure on previous page.)
Fig. 2 Distinct codon usages are associated with transcriptome-wide translation efficiencies in different proliferative states. a Mean (± s.e.m.)
percentage of wild-type NIH-3T3 cells in the G1 and G2/M phases of the cell cycle, as determined by Hoechst staining for DNA content, for cells
grown in either 1%, 2%, 5%, or 10% FCS (n = 3). b Representative western blot depicting the levels of phosphorylated eIF2α (p-eIF2α), total eIF2α,
and the loading control tubulin, for cells growing in either 1%, 2%, 5%, or 10% FCS, as well as in two control conditions triggering stress
responses (thapsigargin (TG) and hydrogen peroxide (H2O2)). c Mean (± s.e.m.) level of p-eIF2α normalized by total eIF2α estimated from western
blots, for cells growing in either 1%, 2%, 5%, or 10% FCS, as well as in two control conditions triggering stress responses (thapsigargin (TG) and
hydrogen peroxide (H2O2)) (n = 3). d Scatter plot of the log2 fold changes in mRNA and ribosome protected fragments (RPF) in cells grown in
10% relative to 1% FCS. Shown are the mean values computed for each transcript from mRNA (n = 4) and RPF (n = 3) replicates. Transcripts
upregulated and downregulated at ribosome density level (RD, defined as RPFfold change/mRNAfold change), i.e., changed more than 50% in either
direction, are shown in red and blue, respectively. Shown are the Pearson correlation coefficient and respective P value. The dashed line indicates
equal change in mRNA and RPF levels. e Scatter plot of per codon scores among genes that are differentially expressed between G2/M and G1
cell cycle phases and genes with differential ribosome density (RD, defined as RPFfold change/mRNAfold change) when cells are grown in 10% relative
to 1% FCS. Shown are the Pearson correlation coefficient and respective P value. The dashed line indicates the linear regression between the two
estimates. Boxplots showing the distribution of log2 fold changes in mRNA (f) and RD (g) between cells grown in 10% relative to 1% FCS, for
genes with preferential expression in the G1 and G2/M cell cycle phases. Shown are the P values determined by the non-parametric Mann-
Whitney U test. Boxes extend from the 25th to 75th percentiles (inter-quartile range (IQR)), horizontal lines represent the median, and whiskers
indicate the lowest and highest datum within 1.5*IQR from the lower and upper quartiles, respectively. h Scatter plot of the log2 fold changes in
mRNA and protein levels in cells grown in 10% relative to 1% FCS. Shown are the mean values computed for each transcript/protein from
mRNA-seq (n = 3) and proteomics (n = 3) data. Transcripts upregulated and downregulated at translational level (defined as the residuals of the
linear regression between Proteinfold change and mRNAfold change), i.e., changed more than 50% in either direction, are shown in red and blue,
respectively. Shown are also the Pearson correlation coefficient and respective P value. The dashed line indicates the linear regression between
the two measurements. i Scatter plot of per codon scores among genes that are differentially expressed between G2/M and G1 cell cycle phases
and differential translated genes (see above) when cells are grown in 10% relative to 1% FCS. Shown are also the Pearson correlation coefficient
and respective P value. The dashed line indicates the linear regression between the two estimates. j Correlation between codon scores of genes
that are differentially expressed between G2/M and G1 cell cycle phases and differential translated genes (see above) estimated from cells
growing in 10% relative to either 1%, 2%, or 5% FCS
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Fig. 3 (See legend on next page.)
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reporters that conformed to the codon bias of genes that
are preferentially expressed in the two different cell cycle
phases (d2eGFP_G1 and d2eGFP_G2M, Fig. 3a–c). The
5′- and 3-terminal regions of these reporters were left
unchanged, so as to minimally interfere with translation
initiation and termination (Fig. 3b, gray regions). We
then generated stable cell lines, each expressing one of
the reporters, and cultured them in either 1% or 10%
FCS to induce distinct proliferation rates (Fig. 3d and
Additional file 1: Figure S6). Fluorescence intensity mea-
surements based on flow cytometry revealed that the
relative expression of the d2eGFP_G2M construct was
significantly higher than that of the d2eGFP_G1 con-
struct in cells grown in 10% compared to 1% FCS
(Fig. 3e), while the relative mRNA levels of the two re-
porters remained similar (Fig. 3f). Importantly, the ob-
served changes did not result from differences in total
protein synthesis rates of the two cell lines (Fig. 3g), as
these underwent a similar change when the cell lines
were grown in 10% relative to 1% FCS, as shown by the
incorporation of the methionine analog L-homopropar-
gylglycine (HPG) in newly synthesized proteins with a
fluorimetric assay. These data show that a reporter
construct enriched in rare codons was able to produce
~ 30% more protein compared to a synonymous con-
struct enriched in common codons, when cells were in-
duced to proliferate rapidly. Moreover, the observed
translational boost should not be due to a direct change
in the initiation, because the translation initiation re-
gions of the two constructs were identical, thus rather
originating from different elongation rates of reporter
mRNAs.

Most current models of tRNA pool variations do not
appear to underlie the observed translational changes
To uncover the molecular mechanisms underlying the
enhanced translation of mRNAs with rare codons, we
performed gene set enrichment analysis (GSEA) using
mRNA expression data comparing cells growing in

different serum levels. This revealed an upregulation of
several translation machinery-related pathways in prolif-
erating cells, including ribosome biogenesis and multiple
tRNA metabolism pathways (Fig. 4a). We confirmed that
the total protein synthesis rate was significantly in-
creased (~ 2-fold) in cells growing in 10% compared to
1% FCS (Fig. 4b), in agreement with the observations
registered for the reporter cell lines growing in similar
conditions (Fig. 3g). While increased ribosome concen-
tration could lead to increased translation initiation rates
[33], it could not be at the root of observed differences
in output between our constructs, which only differ in
the codon bias of internal parts of their open reading
frames, and thus are most likely affected in their transla-
tion elongation rates. Since codon elongation velocity is
mostly dependent on the level of cognate tRNAs, we
next assessed tRNA pools in cells growing at different
proliferation rates by tRNA sequencing [49]. We found
no difference in the relative abundance of individual
tRNAs between cells growing in 1% and 10% FCS, nei-
ther at the gene (Fig. 4c) nor at the isoacceptor level
(Additional file 1: Figure S7A), demonstrating that the
apparent improvement in elongation efficiency at rare
codons did not result from a specific increase in abun-
dance of the cognate tRNAs.
A recent study has proposed that self-renewing embry-

onic stem cells optimize the translation of codons that
depend on the wobble interaction with cognate tRNAs
via adenosine-to-inosine modification [26]. Since these
codons are a subset of those we found enriched in pro-
proliferative transcripts, we investigated the possibility
that increased inosine modifications of tRNA underlie
the translation reprogramming of proliferative cells.
However, we did not observe changes in the abundance
of tRNA deaminases (Fig. 4d), and further analysis of
tRNA sequencing data showed no increase of inosine
modifications in tRNAs (Fig. 4e and Additional file 6:
Table S5), as inferred from A-to-G mutations in the
anticodon wobble position of tRNAs.

(See figure on previous page.)
Fig. 3 Rare codons confer increased translation efficiency in rapidly dividing cells. a Starting from the rapid turnover rate protein d2eGFP [48], we
designed two fluorescent reporters, encoded with codons that are more frequently used in either G1- or G2/M-enriched mRNAs. Yellow box corresponds
to the PEST sequence attached to the C-terminal region of the eGFP protein. b G2M/G1 codon score (Fig. 1c) for each codon of the d2eGFP_G1 (top) and
d2eGFP_G2M (bottom) reporters. The first and last 17 codons (51 nucleotides) of eGFP, as well as the PEST sequence, were left unchanged (gray regions)
to avoid effects on translation initiation and termination. c Mean (± s.e.m.) G2M/G1 codon score for the re-coded region in the 2 fluorescent reporters. d
Mean (± s.e.m.) percentage of cells in the G1 and G2/M phases of the cell cycle, as determined by Hoechst staining for DNA content, for the
d2eGFP_G1 and d2eGFP_G2M cell lines grown in either 1% or 10% FCS (n = 6). e Representative result of the GFP fluorescence intensity measurement
by flow cytometry in the 2 cell lines grown in either 1% or 10% FCS (left). Mean (± s.e.m.) ratio of fluorescence intensity for cells grown in 10% relative
to 1% FCS for the two reporters (n = 6) (right). Shown is the P value determined by the non-parametric Mann-Whitney U test. f Mean (± s.e.m.) ratio of
transcript abundance, as measured by qRT-PCR, for cells grown in 10% relative to 1% FCS for the 2 reporter cell lines (n = 4) (right). Shown is the P
value determined by the non-parametric Mann-Whitney U test. g Representative result of HPG incorporation measurement (a.u., arbitrary units) by flow
cytometry in the 2 cell lines growing in either 1% or 10% FCS (left). Quantification of the mean (± s.e.m.) ratio of HPG incorporation in 10% compared
to 1% FCS for the 2 reporter cell lines (n = 5) (right). For control, we also incubated wild-type NIH-3T3 cells with the translation inhibitor cycloheximide
(CHX). Shown are the P values determined by Dunn’s multiple comparisons test post hoc and the non-parametric Kruskal-Wallis test (P = 0.0018)
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Yet, another model that was proposed to underlie os-
cillations in translation during the cell cycle of the yeast
Saccharomyces cerevisiae relies on a global oscillation in
the total tRNA pool [39]. Specifically, the expression of a
number of tRNA synthetases was found to oscillate dur-
ing the yeast cell cycle, while the total tRNA concentra-
tion was reported to be ~ 2-fold higher in the G2 phase
compared to the other cell cycle phases. Such global up-
regulation was proposed to specifically enhance elong-
ation at codons dependent on the wobble interaction,
which are over-represented in genes whose expression
oscillates during the cell cycle [39]. Measuring changes
in tRNA concentrations is challenging, especially when
the effects are small as we expect in our system, where
the proportion of cells in G2/M varies only 10–15% be-
tween conditions (Fig. 2a). By separating and quantifying
the population of RNAs in the tRNA size range, we did
not find a significant difference between the cells grown
in 1% vs 10% FCS (data not shown). Alternatively, the
level of ready-to-translate tRNA can be increased by
more efficient charging of these molecules [6]. Since our
GSEA analysis suggested changes in tRNA aminoacyla-
tion (Fig. 4a), we used a probe for tRNAs decoding the
lysine anticodon UUU (tRNA-Lys-UUU) to quantify
their charged/uncharged abundance in cells growing in
1% and 10% FCS by northern blotting (Fig. 4f). Starting
from the same amount of total RNA, we found that the
ratio of charged to total tRNA-Lys-UUU is slightly in-
creased in proliferating cells (Fig. 4g), consistent with an
increase in tRNA aminoacylation. Thus, our data indi-
cate that a specific increase in the translation efficiency
of mRNAs enriched in rare codons could neither be ex-
plained by specific upregulation of the cognate tRNAs
nor by increased inosine modification of tRNAs. Instead,
our data are most consistent with the model whereby an
increase in a general component of the translation
elongation machinery upon induction of proliferation
preferentially boosts the translation of elongation-

limited transcripts carrying rare codons. An analogous
mechanism has been suggested to explain how alter-
ations in ribosome concentration may specifically regu-
late initiation-limited mRNAs [33].

A general increase in the availability of ready-to-translate
tRNAs can selectively improve the decoding of rare codons
To find out whether a global change in ready-to-
translate tRNA availability could give rise to the tran-
script and codon-specific effects on elongation speed, we
used a mathematical model describing the main bio-
chemical steps involved in ribosome translocation by
one codon during the elongation step of translation
(Fig. 5a). Assuming a steady state, the speed of elong-
ation for a given codon is:

v ¼ 1
τel

¼ konktC
kt þ konC

where τel is the time needed for a given codon to be recog-
nized by the cognate tRNA and for translocation to take
place, C is the number of charged tRNAs, which depends
on other parameters (see the “Materials and methods” sec-
tion), while kon and kt are the rates of codon-cognate tRNA
binding and ribosome translocation, respectively. Further
analysis of this model revealed that for a given tRNA:codon
ratio, more abundant codons have higher elongation speed
compared to rare codons (Fig. 5b), as expected [11, 12].
However, the speed of elongation shows an ultrasensitive
response with respect to the tRNA:codon stoichiometry,
exhibiting a peak when the tRNA abundance stops being
rate limiting; whereas the height of the peak is greater for
common codons, once tRNAs are not limiting, the same in-
crease in the tRNA to codon ratio leads to a higher increase
in the elongation rate for rare codons compared to more
common codons (Fig. 5c). Similar results were obtained
when the sensitivity of decoding speed to changes in the
tRNA charging rate (kr) was determined. Specifically, when

(See figure on previous page.)
Fig. 4 Enhanced translation capacity in proliferating cells. a Normalized enrichment score (ES) for translation- and tRNA-related Gene Ontology
terms, derived from gene set enrichment analysis (GSEA) comparing gene expression data from cells grown in 10% relative to 1% FCS. For all the
pathways depicted, P<0.05. P values were calculated by comparing the empirical ES of a gene set to a null distribution of ESs derived from permuting the
gene set and then adjusted for multiple hypotheses testing. b Representative result of HPG incorporation measurement (a.u., arbitrary units) by flow cytometry
in the wild-type NIH-3T3 cells grown in either 1% or 10% FCS (left). Quantification of the mean (± s.e.m.) ratio of HPG incorporation in 10% compared to 1%
FCS for the same cells (n=5) (right). For control, we also incubated wild-type NIH-3T3 cells with the translation inhibitor cycloheximide (CHX). Shown are the P
values determined by the non-parametric Mann-Whitney U test. c Scatter plot of tRNA gene expression levels (log10, library size-normalized counts) in cells
grown in either 10% or 1% FCS. Shown are the mean expression values for each tRNA gene (n=3). The dashed line indicates equal relative abundances in the
two conditions. No tRNA genes were significantly upregulated or downregulated between the two conditions (false discovery rate, FDR <
0.01). d Mean (± s.e.m.) mRNA and protein fold changes of tRNA deaminases for cells grown in 10% relative to 1% FCS (n = 3). e Mean (±
s.e.m.) percentage of A34I modification in different tRNAs, as inferred from tRNA sequencing data, for cells grown in 10% relative to 1% FCS
(n = 3). Shown are the P values determined by the non-parametric Mann-Whitney U test. The amino acid encoded by each codon is shown
with a three-letter code: Arg, arginine; Ile, isoleucine; Leu, leucine; Pro, proline; Ser, serine; Thr, threonine; Val, valine. f Representative result of
charged/uncharged tRNA-Lys-UUU abundances in cells grown in either 10% or 1% FCS using northern blot analysis. Total RNA was also
treated with alkaline buffer to deaminoacylate tRNA-Lys-UUU. g Mean (± s.e.m.) ratio of charged to total tRNA-Lys-UUU in cells grown in either
10% or 1% FCS using northern blot analysis (n = 3). Shown is the P value determined by t test
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kr increases, the elongation speed of rare codons increases
more than that of common codons. Thus, while the precise
parameter that changes as cells are induced to proliferate
needs to be identified, our results are most consistent with
an overall increase in tRNA availability leading to a stronger
boost in the translation of transcripts that are enriched in
rare codons compared to other transcripts. This would be a
reflection of translation elongation being most limited for
rare codon-enriched transcripts in cells when the overall
elongation machinery is reduced, such as cells growing at
low proliferation rates [33, 34, 39, 50, 51].

Discussion
Our results reveal an unexpected translation program
encoded in proliferation-related mRNAs, which are

enriched in rare codons. Although rare codons are gen-
erally associated with reduced translation output [9, 11,
12], we here demonstrate that in proliferating cells, these
codons enable a higher boost in translation efficiency
compared to common codons (Fig. 5d). This suggests
that induction of proliferation is associated with the re-
moval of a translation bottleneck, consistent with reports
of increased availability of various components of the
protein synthesis apparatus in these conditions [39, 52].
The nature of the translation bottleneck remains to be
further defined. Here, we explore a few scenarios, previ-
ously proposed to explain how tRNAs can drive codon-
mediated changes in translation. We do not find tRNA
genes to be individually regulated in cells proliferating at
different rates, in agreement with a few reports [29, 39],

a

d

b c

Fig. 5 A global increase of ready-to-translate tRNAs can specifically alleviate rare codon-dependent translation bottlenecks in proliferating cells.
a Schema of one step of the peptide elongation model. For details regarding the different states and rates, please refer to the “Materials and
methods” section. Results of simulations showing the dependency of codon elongation speed (b) and its sensitivity (c) (∂Speed/∂tRNA:codon) to
the tRNA:codon ratio, for codons with different abundances in the transcriptome. d Conceptual model of the relationship between proliferation
rate, codon elongation speed, and the abundance of ready-to-translate tRNAs for mRNAs enriched in rare or common codons. In slowly
proliferating cells with limited translation capacity, elongation at rare codons is slow (top left), whereas in rapidly proliferating cells, this translation
bottleneck is relieved by a global increase of ready-to-translate tRNAs (bottom left), leading to a faster elongation on pro-proliferation mRNAs
containing rare codons. Conversely, mRNAs enriched in common codons will be mostly insensitive to variation in the translation capacity
registered in cells with different proliferation rates (top and bottom right)
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but not with an initial study comparing the proliferation/
differentiation state of cells [24]. Profiling of tRNA expres-
sion being very challenging [49, 53], it remains possible
that more accurate methods can reveal some differences
in the expression of individual tRNAs between cellular
states. However, the coverage of tRNAs by reads in our se-
quencing dataset, though not uniform over the tRNA
length, was relatively similar for tRNAs decoding codons
with A/U or G/C at the third nucleotide position (Add-
itional file 1: Figure S7B), making it unlikely that a
sequence-dependent bias in the sample preparation has
masked true changes in individual tRNA abundance be-
tween conditions.
The model that remains most consistent with our

data is that global changes in translation capacity dif-
ferentially affect the translation output of transcripts
with pro-proliferative functions compared to other
mRNAs, due to distinct codon biases. Pro-proliferative
mRNAs enriched in rare codons are elongation-
limited when cells are growing slowly, as cognate
tRNAs are present in low abundance. If the availability
of ready-to-translate tRNAs increases globally upon
induction of proliferation, transcripts enriched in rare
codons will cease to be elongation-limited and will ex-
hibit a preferential boost in protein synthesis rates [46,
54]. Both reduced ribosome collisions and reduced
drop-off events could contribute to this effect. Im-
proved elongation can also lead to higher transcript
initiation rates by faster ribosome clearance within the
initiation region or by increasing ribosome recycling,
both of which would result in a further overall in-
crease in protein synthesis rates. It is clear that this
model needs further experimental validation, currently
hampered by a lack of methods for systematically
quantifying global tRNA pools in specific and possibly
small populations of cells. Irrespective of this, our
study emphasizes the nuanced and dynamic nature of
translation and the role of rare codons in this process.
Transcripts carrying rare codons, which are distinct
across tissues and implement different functions
(Additional file 1: Figure S2), are not simply hampered
in translation compared to transcripts encoded with
common codons, but undergo a stronger boost in
translation in specific conditions, when the availability
of translation elongation machinery increases globally.

Conclusion
Our study shows that rare codons may serve a dual pur-
pose: (1) to stabilize the resting state of cells by limiting
the expression of pro-proliferative genes when tRNA
pools are limited and (2) to specifically boost the protein
output of pro-proliferative relative to other mRNAs,
when cells need to divide rapidly. We provide direct evi-
dence that codon bias is exploited to yield dynamic

changes in translation efficiency and that rare codons,
rather than persisting passively in genomes due to re-
duced selection for translation efficiency, may be actively
used to modulate translation rates. Our data indicate
that induction of proliferation leads to the removal of a
translation bottleneck that affects transcripts enriched in
rare codons. Of the tRNA-related models proposed so
far to underlie translational changes, our data are most
consistent with a global change in the tRNA pool differ-
entially affecting translation of transcripts with distinct
codon biases.

Materials and methods
Cell culture
All NIH-3T3 cell lines were cultured and maintained in
DMEM (SIGMA-ALDRICH, Cat# D5671) supplemented
with 2mM glutamine (GIBCO, Cat# 25030-024), 100U
penicillin/0.1mg/ml streptomycin (Sigma, Cat# P4333), and
10% heat-inactivated fetal calf serum (FCS) (BioConcept,
Amimed, Cat# 2-01F30-l). For the experiments comparing
resting and proliferating cells, we seeded and cultured the
cells either with 1%, 2%, 5%, or 10% FCS for 48 h.

Development of a FUCCI cell line and sorting of cells in
different cell cycle phases
NIH-3T3 cells (ATCC, Cat# CRL-1658), cultured normally,
were used to create a stable FUCCI cell line [40]. The follow-
ing vectors were used to generate the FUCCI system: (1)
pRetroX-G1-Red (Clontech, Cat# 631463) and (2) pRetroX-
SG2M-Cyan (Clontech, Cat# 631462). For particle formation
and replication, the plasmids were transfected into the pack-
aging Phoenix-AMPHO cell line (ATCC, Cat# CRL-3213)
according to the manufacturer’s instructions. To make a
stable cell line, the parental cells were first transduced with
10ml of viral supernatant containing the pRetroX-G1-Red
vector mixed with 8 μg/ml polybrene (SIGMA-ALDRICH,
Cat# TR-1003) for 8 h. After 48 h, cells were passaged and
cultured in standard medium containing 0.8 μg/ml of the se-
lection marker puromycin. The cells were then propagated
to 10 15-cm plates and grown to approximately 50% conflu-
ence, after which they were harvested with Accutase
(Thermo Fisher Scientific, Cat# A1110501) and a uniform
single-cell suspension was generated by filtering the harvest
through 30-μM Miltenyi filters (Miltenyi Biotec Cat# 130-
041-407) and suspended in 2ml of FACS buffer (PBS with
2% FBS). The cells were then sorted on a BC MoFlo XDP
cell sorter (Beckman Coulter) for positive mCherry expres-
sion using the 561 laser, BP Filter 615/20. Non-transduced
NIH-3T3 cells, not expressing mCherry, were used as con-
trol. The sorted cells were put back in the culture and were
transduced analogously with the pRetroX-SG2M-Cyan vec-
tor. After 48 h, cells were cultured in standard medium con-
taining both 0.8 μg/ml of the selection marker puromycin
and 0.8 μg/ml of the selection marker geneticin (Thermo
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Fisher Scientific, Cat# 10131027) and passaged for 2 weeks
to allow for proper selection of transduced cells. The cells
were again propagated to 10 15-cm plates and grown to ap-
proximately 50% confluence, after which they were harvested
with Accutase (Thermo Fisher Scientific, Cat# A1110501)
and a uniform single-cell suspension was generated by filter-
ing the harvest through Miltenyi filters and suspended in 2
ml of FACS buffer (PBS with 2% FBS). Transduced cells were
then sorted on a BC MoFlo XDP cell sorter (Beckman
Coulter) for positive amCyan expression using the 445 laser,
BP Filter 510/20. Non-transduced NIH-3T3 cells, expressing
neither mCherry nor amCyan, were used as control. Finally,
cells were put back in the culture in standard medium con-
taining both selection markers.
The stable cell line with the integrated FUCCI system

was then used to collect cells in different cell cycle
phases. In every FACS experiment, 15 15-cm plates with
FUCCI cells were grown, harvested, prepared, and sorted
as described above. Immediately following the sorting,
cells were centrifuged, and pellets were snap-frozen.
These pellets were then used for the various mRNA li-
brary preparations.

mRNA sequencing of cells in different cell cycle phases
Libraries were prepared for mRNA sequencing using “Direc-
tional mRNA-seq sample preparation” protocol from Illu-
mina with minor modifications. In brief, poly(A)+ RNA was
isolated directly from cells using Dynabeads® mRNA DIR-
ECT™ Kit (Life Technologies, Cat# 61011) according to the
manufacturer’s protocol. After isolation, 50 ng of mRNA was
chemically fragmented by incubating mRNA solution with
twice the volume of alkaline hydrolysis buffer (50mM so-
dium carbonate [NaHCO3/Na2Co3] pH 9.2, 1mM EDTA)
at 95 °C for 5min to get the fragments of approximately
200–300 bases. Fragmented mRNA was immediately purified
with RNeasy MinElute Cleanup Kit (Qiagen, Cat# 74204) to
stop the reaction and to remove small RNA fragments (<
100 bases). Further, purified fragmented mRNA was treated
with thermo-sensitive alkaline phosphatase FastAP (Fermen-
tas, Cat# EF0651) at 37 °C for 30min and then at 75 °C for 5
min to inactivate FastAP. Fragmented mRNA was further in-
cubated with ATP and T4 polynucleotide kinase (Fermentas,
Cat# EK0032) at 37 °C for an hour and subsequently purified.
Ligation of RNA 3′ adapter (Illumina, RA3, Part# 15013207)
was done using T4 RNA Ligase 2, truncated K227Q (New
England Biolabs Inc., Cat# M0351 L) according to the Illu-
mina protocol. The ligation step is followed by RNA purifica-
tion as mentioned above to remove unligated 3′ adapters.
The RNA 5′ Adapter (Illumina, RA5, Part# 15013205) was
ligated using T4 RNA ligase (Fermentas, Cat# EL0021)
according to the Illumina protocol followed by RNA purifica-
tion step to remove unligated 5′ adapters. cDNA was synthe-
sized using RNA RT Primer (Illumina, RTP, Part# 15013981)
using SuperScript III (Invitrogen, Cat# 18080044) as per the

Illumina protocol. Libraries were amplified for 14 cycles of
PCR using forward PCR primer (Illumina, RNA PCR Primer
(RP1), Part# 15005505) and reverse PCR primer (Illumina
PCR Primer, Index). Different indexed reverse PCR primers
were used for library preparation from different samples to
facilitate multiplexing. Libraries were sequenced for 51 cycles
on Illumina HiSeq 2000 machine.

Generation of stable cell lines expressing different GFP
reporters
The two re-coded fluorescent reporters were based on
the d2eGFP protein [48], which is the enhanced green
fluorescent protein (eGFP) with a C-terminal extension
consisting in amino acids 422–461 of the degradation
domain of mouse ornithine decarboxylase (PEST se-
quence). The rapid turnover rate of this reporter protein
makes it ideal for observing dynamic changes in protein
synthesis [48]. To design the two re-coded fluorescent
reporters, we have altered each codon of the d2eGFP
coding sequence to match the codon bias of either G1-
or G2M-enriched genes, yielding two reporters:
d2eGFP_G1 and d2eGFP_G2M, respectively (Add-
itional file 7: Table S6). The first and last 17 codons (51
nucleotides) of eGFP, as well as the PEST sequence,
were left unchanged to avoid potential effects on the
translation initiation and termination of the reporter
transcripts. In silico-designed sequences were first syn-
thesized into double-stranded DNA fragments by IDT
(Skokie, IL 60076, USA) using gBlocks technology and,
then, cloned into the pCDH-EF1-MCS-T2A-Puro vector
(System Biosciences, Cat# CD527A-1). To generate a
stable cell line, we grow the HEK-293T cell line in a 6-
well plate and produce the pseudo-virus using the Lenti-
vpak Lentiviral Packaging Kit (Origene, Cat# TR30022)
according to the manufacturer’s instructions. After 48 h,
the media containing pseudo-viruses were collected, fil-
tered through 0.45-μm syringe filter (Sarstedt, Cat#
83.1826). For transduction, we added the pseudo-viral
supernatant containing 8 μg/ml polybrene to NIH-3T3
cells growing in a 6-well plate. For the selection of trans-
duced cells, we changed the media after 48 h with nor-
mal media containing 1.0 μg/ml of puromycin. Finally,
the 2 stable cell lines expressing d2eGFP_G1 and
d2eGFP_G2M were sorted on a BD FACSAria III (Beck-
man Coulter) using the 488 laser, BP filter 514/30 so as
to display a similar level of green fluorescence. We also
used an empty pCDH-EF1-MCS-T2A-Puro vector to
generate a stable control cell line (pCDH-empty) using
the protocol mentioned above.

Quantification of GFP expression and cell cycle phase for
the different reporters
Cells were grown in either 1% or 10% FCS as described
in the “Cell culture” section. For this assay, we seeded
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8 × 105 cells in 10-cm plates for the pCDH-empty,
d2eGFP_G1, and d2eGFP_G2M cell lines. After 48 h, we
performed a flow cytometry analysis using 0.6 × 106 cells
resuspended in 1 ml of corresponding media and stained
with Hoechst 33342 (SIGMA ALDRICH, Cat# B2261) at
a final concentration of 15 μg/ml for 60 min at 37 °C
with gentle shaking to avoid settling of the cells. After
incubation, 4 ml of PBS was added and the samples were
centrifuged at 1000 RPM for 3 min at room temperature.
The cell pellet was resuspended in 300 μl of HBSS
(Gibco, Cat# 14025-050) with 2% FCS and subsequently
used for flow cytometry analysis on a BD LSR Fortessa
(Beckman Coulter) using the 405 laser, BP filter 450/50
(for Hoechst measurement) and the 488 laser, BP filter
512/25 (for GFP measurement).
For each biological replicate of the two reporter cell

lines, GFP fluorescence intensity, as well as the fraction
of cells in G1 and G2/M phases (based on Hoechst
staining), was estimated by averaging the measurements
from two technical replicates. Then, we calculated the
ratio of GFP fluorescence intensity in cells grown in 10%
relative to 1% FCS.

Transcriptomic profiling with mRNA-seq for cells grown in
different serum levels
Cells were grown in either 1% or 10% FCS as described in
the “Cell culture” section. For this experiment, we seeded
8 × 105 cells in 10-cm plates for the pCDH-empty cell line.
After 48 h, total RNA was isolated using Direct-zol RNA
MiniPrep kit (Zymo Research, Cat #R2050) according to the
manufacturer’s manual. Total RNA was quality-checked on
the Bioanalyzer instrument (Agilent Technologies, Santa
Clara, CA, USA) using the RNA 6000 Nano Chip (Agilent,
Cat# 5067-1511) and quantified by spectrophotometry using
the NanoDrop ND-1000 Instrument (NanoDrop Technolo-
gies, Wilmington, DE, USA). One microgram total RNA was
used for library preparation with the TruSeq Stranded
mRNA Library Prep Kit High Throughput (Illumina, Cat#
RS-122-2103). Libraries were quality-checked on the
Fragment Analyzer (Advanced Analytical, Ames, IA, USA)
using the Standard Sensitivity NGS Fragment Analysis Kit
(Advanced Analytical, Cat# DNF-473). The samples were
pooled to equal molarity. Each pool was quantified by
PicoGreen Fluorometric measurement to be adjusted to
1.8 pM and used for clustering on the NextSeq 500 instru-
ment (Illumina). The samples were sequenced using the
NextSeq 500 High Output Kit 75-cycles (Illumina, Cat# FC-
404-1005). Primary data analysis was performed with the
Illumina RTA version 2.4.11 and base calling software ver-
sion bcl2fastq-2.20.0.422.

mRNA-seq differential expression analysis
mRNA-seq reads were subjected to 3′ adapter trimming
(Additional file 7: Table S6) and quality control (reads

shorter than 20 nucleotides or for which over 10% of the
nucleotides had a PHRED quality score < 20, were dis-
carded). Filtered reads were then mapped to the mouse
transcriptome based on genome assembly mm10 and
transcript annotations from RefSeq (November 2017)
with segemehl v0.1.7-411 [55] allowing a minimum map-
ping accuracy of 90%. Transcript counts were calculated
based on uniquely mapped reads and used for differen-
tial expression analysis with DESeq2 [56]. Upregulation
and downregulation of mRNAs were considered signifi-
cant when the false discovery rate was lower than 0.01.
Two biological replicates were obtained for each cell

cycle phase using the FUCCI system. Library sizes (before
quality control) ranged from 20 to 35 million reads, and
mapping rates varied between 71 and 75% across repli-
cates. The large number of uniquely mapped reads to
mRNAs (~ 12–20 million) allowed a robust quantification
of genome-wide transcript abundances (Spearman corre-
lations between biological replicates of 0.972–0.973).
Four biological replicates were obtained for each

serum condition (1% or 10% FCS) for the pCDH-empty
cell line. Library sizes (before quality control) ranged
from 30 to 40 million reads, and mapping rates varied
between 78 and 82% across replicates. The large number
of uniquely mapped reads to mRNAs (~ 16–20 million)
allowed a robust quantification of genome-wide tran-
script abundances (Spearman correlations between repli-
cates of 0.975–0.978).

Ribosome occupancy profiling for cells grown in different
serum levels
Ribosome occupancy profiling protocol was adapted
from [57]. In brief, cells were grown in either 1% or 10%
FCS as described in the “Cell culture” section. For each
library preparation, we seeded 5 × 106 cells in 15-cm
plates for cells grown in 1% (two plates) and 10% (one
plate) FCS, respectively. After 48 h, the cells were
washed twice with ice-cold PBS containing 100 μg/ml
cycloheximide (Sigma, Cat# C1988-1G) on ice. The cells
were extensively scraped in presence of 500 μl polysome
lysis buffer (20 mM Tris-HCl, 100 mM NaCl, 10 mM
MgCl2, 1% Triton X-100, 2 mM dithiothreitol, 100 μg/ml
cycloheximide, 500 U/ml RNasin plus, protease inhibitor
mini Complete EDTA free), collected, triturated with the
pipette, and incubated for 10 min on ice. Further, the
lysate was clarified by passing through a 26-G needle for
five to seven times and followed by centrifugation at 20,
000g for 10 min at 4 °C. The clarified lysate was snap fro-
zen and stored at − 80 °C if required.
10–50% linear sucrose gradient was prepared in gradient

buffer (50mM Tris-HCl (pH= 7.5), 50mM NH4Cl, 12mM
MgCl2, 0.5mM DTT, 100 μg/ml CHX) using Gradient
Master instrument (Biocomp) according to the instrument
instruction and precooled for 1 h at 4 °C. In parallel, a
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fraction of lysate equivalent to A260 = 10 was treated with
8 μl of 1:10 diluted RNase I (100U/μl, Ambion, Cat#
AM2295) for 45min at 22 °C with gentle agitation, and
RNase I was inactivated by addition of 10 μl of SUPERaseIn
(20U/μl, Ambion, Cat# AM2696). The samples were im-
mediately loaded on the precooled linear gradient and cen-
trifuged at 35000 rpm for 3 h at 4 °C in a TH-641 rotor
(Thermo Scientific). For ribosome profiling, different frac-
tions of the gradient were collected in 1% SDS solution
using Density Gradient Fractionation System (Brandel) with
a setting of pump speed (0.75ml/min), detector sensitivity
at 1.0, and collection time 32 s per tube and flash frozen.
The appropriate fractions that contain monosomes were

processed for footprint library preparation according to [58].
In brief, RNA was isolated from the collected monosomes
fraction with the phenol-chloroform method. RNA frag-
ments of appropriate size (28–30 nt) were selected by run-
ning samples on 15% polyacrylamide denaturing TBE-Urea
gel and visualized by SYBR Gold (Life Technologies, Cat#
S11494). Size-selected RNA was dephosphorylated by T4
polynucleotide kinase (PNK, New England Biolabs, Cat#
M0201 L) treatment for 1 h at 37 °C. PNK was heat inacti-
vated, and RNA was purified using the phenol-chloroform
method and overnight precipitation of RNA in ethanol at −
20 °C. Preadenylated 3′ linker was ligated to dephosphory-
lated RNA by using T4 RNA ligase 2, truncated (New Eng-
land Biolabs, Cat# M0242 L). The ligation reaction was
carried out for 4 h at 22 °C. The ligation reaction was run on
15% polyacrylamide denaturing TBE-Urea gel to separate
and purify the ligated product from the unligated product
and unused 3′ linker. Gel-purified ligated RNA was reverse
transcribed by Superscript III (Invitrogen) for 30min at
48 °C in a total reaction volume of 20 μl. After reverse tran-
scription, RNA was hydrolyzed by adding 2.2 μl of 1N
NaOH solution and incubating for 20min at 98 °C. First-
strand cDNA was further gel purified by electrophoresis on
12% polyacrylamide denaturing TBE-Urea gel and circular-
ized by incubating with CircLigase™ II ssDNA Ligase (Epi-
centre, Cat# CL9025K) for 60min at 60 °C followed by
inactivation of CircLigase by heating at 80 °C for 10min.
cDNA was subjected to rRNA depletion by subtractive
hybridization as described in [57]. Thereafter, circular cDNA
was PCR amplified, and then the amplified products were gel
purified on 8% native polyacrylamide gel. The prepared li-
brary was sequenced on the Illumina Nextseq platform.

Differential expression analysis of ribosome protected
fragments
Ribosome protected fragment (RPF) reads were sub-
jected to 3′ adapter trimming (Additional file 7: Table
S6) and quality control (reads shorter than 20 nucleo-
tides or for which over 10% of the nucleotides had a
PHRED quality score < 20 were discarded). Filtered reads
were then mapped to the mouse transcriptome based on

genome assembly mm10 and transcript annotations
from RefSeq (November 2017) with segemehl v0.1.7-411
[55] allowing a minimum mapping accuracy of 90%.
Transcript counts were calculated based on uniquely
mapped reads to the coding sequence and used for dif-
ferential expression analysis with DESeq2 [56].
Three biological replicates were obtained for each

serum condition (1% or 10% FCS). Library sizes (before
quality control) ranged from 60 to 80 million reads, and
mapping rates varied between 83 and 90% across repli-
cates. Despite an unusually high abundance of rRNA
species (~ 80–92% of total mapped reads), the number
of uniquely mapped reads to mRNAs (~ 4–9 million)
still allowed a robust quantification of genome-wide
ribosome occupancies (Spearman correlations between
replicates of 0.981–0.988).
The sequenced reads had the expected length (28–34 nt),

and for each read length, the relative location of the A-site
with respect to the read start was inferred as the offset value
for which the 3-nt periodicity was most apparent (the num-
ber of reads at the first frame being larger than at both other
frames). Only read lengths showing the expected 3-nt peri-
odicity along the CDS were considered for further analyses
requiring a codon-level resolution.
The fold changes for ribosome density were calculated

by dividing the RPF fold change by the mRNA fold
change (RPFfold change/mRNAfold change). Genes whose
ribosome density changed more than 50% in either dir-
ection between the two conditions were considered up-
regulated/downregulated.

Proteomics and transcriptomics profiling for cells grown
with different serum concentrations
Cells were grown in either 1%, 2%, 5%, or 10% FCS as de-
scribed in the “Cell culture” section. For this experiment, we
seeded 8 × 105 cells in 10-cm plates from the parental cell
line. Transcriptomic profiling was performed as described
above in the “Transcriptomic profiling with mRNA-seq for
cells grown in different serum levels” section. Differential
expression analysis for mRNA-seq data was performed as de-
scribed above in the “mRNA-seq differential expression ana-
lysis” section. Three biological replicates were obtained for
each serum condition (1%, 2%, 5%, or 10% FCS) for the par-
ental cell line. mRNA sequencing library sizes (before quality
control) ranged from 20 to 30 million reads, and mapping
rates varied between 74 and 86% across replicates. The large
number of uniquely mapped reads to mRNAs (~ 14–20 mil-
lion) allowed a robust quantification of genome-wide tran-
script abundances (Spearman correlations between replicates
of 0.9696–0.978).

Proteomics sample preparation
Cell pellets (obtained from one well of a 6-well plate) were
lysed in 50 μl of lysis buffer (1% sodium deoxycholate, 10
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mM TCEP, 100mM Tris, pH = 8.5) using 10 cycles of son-
ication (30 s on, 30 s off, Bioruptor, Diagenode). Protein
concentration was determined by Reducing Agent Compat-
ible BCA assay (Thermo Fisher Scientific). Sample aliquots
containing 100 μg of total proteins were reduced for 10min
at 95 °C and alkylated at 15mM chloroacetamide for 30
min at 37 °C. Proteins were digested by incubation with
sequencing-grade modified trypsin (1/50 w/w; Promega,
Madison, WI) overnight at 37 °C. After digestion, the sam-
ples were acidified with TFA to a final concentration of 1%.
Peptides were cleaned up using PreOmics Cartridges
(PreOmics, Martinsried, Germany) following the manufac-
turer’s instructions. After drying the samples under vac-
uum, the peptides were resuspended in 0.1% aqueous
formic acid solution at a concentration of 0.5mg/ml.

LC-MS/MS data acquisition
For each sample, aliquots of 0.5 μg of peptides were analyzed
by LC-MS. A chromatic separation was carried out using an
EASY nano-LC 1200 system (Thermo Fisher Scientific),
equipped with a heated RP-HPLC column (75 μm×37 cm)
packed in-house with 1.9 μm C18 resin (Reprosil-AQ Pur,
Dr. Maisch). Peptides were separated using a stepwise gradi-
ent ranging from 95% solvent A (0.15% formic acid, 2%
acetonitrile) and 5% solvent B (80% acetonitrile, 20% water,
0.15% formic acid) to 50% solvent B over 90min at a flow
rate of 200 nl/min (5–12% B by 5min, 12–35% B by 65min
and 35–50% B by 90min). Mass spectrometry analysis was
performed on Orbitrap Fusion Lumos mass spectrometer
equipped with a nanoelectrospray ion source (both Thermo
Fisher Scientific). Each MS1 scan was followed by high-
collision dissociation (HCD) of the 20 most abundant pre-
cursor ions with a dynamic exclusion for 30 s. For MS1, 1e6
ions were accumulated in the Orbitrap cell over a maximum
time of 50ms and scanned at a resolution of 240,000
FWHM (at 200m/z). MS2 scans were acquired in the linear
ion trap at a target setting of 1e4 ions, with an accumulation
time of 35ms. Singly charged ions and ions with unassigned
charge state were excluded from triggering MS2 events. The
normalized collision energy was set to 35%, the mass isola-
tion window was set to 1.4m/z, and one microscan was ac-
quired for each spectrum.

Label-free quantification
The acquired raw files were imported into the Progenesis
QI software (v2.0, Nonlinear Dynamics Limited), which
was used to extract peptide precursor ion intensities
across all samples applying the default parameters. The
generated mgf files were searched using the MASCOT al-
gorithm (Matrix Science, version 2.4.1); the mgf files were
searched against a database containing normal and reverse
sequences of UniProt entries of Mus musculus (March 07,
2019) and commonly observed contaminants (in total 34,
794 sequences. The search criteria were set as follows: full

tryptic specificity was required (cleavage after lysine or ar-
ginine residues, unless followed by proline), 3 missed
cleavages were allowed, carbamidomethylation (C) was set
as fixed modification, oxidation (M) and N-terminal
acetylation were set as variable modifications, and mass
tolerance of 10 ppm (precursor) and 0.6 Da (fragments).
The database search results were imported into Progenesis
QI software, and the list with quantified peptides was
exported. The quantitative data were further processed
and statistically analyzed using the SafeQuant software
tool [59]. In brief, the false discovery rate (FDR) of peptide
and protein identification was set to 1%. For quantifica-
tion, the analysis included global data normalization by
equalizing the total peak areas across all LC-MS runs and
summation of peak areas per protein. The summarized
protein expression values were used for statistical analysis
using Bayes moderated t-statistics. Finally, the calculated
P values were corrected for multiple testing using the
Benjamini-Hochberg method.

Quantification of eIF2α and p-eIF2α for cells grown in
different serum concentrations
Cells were grown in either 1% or 10% FCS as described in
the “Cell culture” section. The western blot protocol was
adapted from our previous work [58]. Cells were lysed in
300 μl RIPA buffer containing protease inhibitor and phos-
phatase inhibitor. Fifteen to 25 μg total protein was loaded
on 10% SDS PAGE, and electrophoresis was performed for
1 h at 120V to resolve the proteins. We followed the proto-
col from Cell Signaling for transferring, blocking, incubating,
washing, and developing the membrane. Cells treated with
1 μM thapsigargin (TG) and 1 μM hydrogen peroxide for 5 h
were also included as a positive control for phosphorylation
of eIf2α protein. Tubulin was used as a loading control. The
following antibodies were used in the western blot analysis:
Phospho-eIF2α (Ser51) Antibody (Cell Signaling #9721), eIF2
α Antibody (Cell Signaling #9722), and α-Tubulin Antibody
(Merck Millipore #CP06).
For quantification, band intensities of eIF2α and p-eIF2α

were normalized by the corresponding loading control (tubu-
lin). Then, for both eIF2α and p-eIF2α, normalized band in-
tensities were divided by the average normalized band
intensity across the different conditions. Finally, the ratio of
p-eIF2α to eIF2α was calculated by dividing the normalized
intensities calculated in the previous step. The band inten-
sities were quantified using the ImageJ software [60].

Quantification of aminoacyl tRNA levels by northern blot
Cells were grown in either 1% or 10% FCS as described in
the “Cell culture” section. The northern blot protocol was
adapted from [61] with minor modifications. In brief, total
RNA was isolated using TRI Reagent® (Sigma-Aldrich
#T9424) as described in the manufacturer’s protocol. After
the final step of 75% ethanol wash, the RNA pellet was
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resuspended in acidic RNA storage buffer (Sodium acetate
10mM; pH= 5.2, EDTA 1mM) to preserve the aminoacyl
state of tRNAs. Five micrograms of total RNA was loaded
onto 8% acidic polyacrylamide Urea gel containing 8M
urea, 100mM sodium acetate, 1 mM EDTA. An equal
amount of RNA from each sample was alkali treated by
adding an equal volume of alkaline buffer (10mM Tris-
HCl; pH 8.9, 1 mM EDTA) at 72 °C for half an hour and
included in gel electrophoresis to determine the gel migra-
tion position of deacetylated tRNA. The electrophoresis
was performed in 100mM sodium acetate buffer (pH ~
5.2) for 36 h at 60 V at 4 °C. Following electrophoresis,
RNA was transferred to a positively charged nylon mem-
brane and subsequently crosslinked to the membrane
using Strata UV crosslinker for 2min. The membrane was
pre-hybridized for 30min at 42 °C with ULTRAhyb® Ul-
trasensitive Hybridization Buffer (Thermo Fisher Scientific
#AM8669). Thereafter, 20 pmol of 32P-labeled ssDNA
probe against UUU-tRNA (5′-GCCCGGATAGCTCA
GTCGGTAGAGCATCAGACTTTTAATCTGAGGGTC
CAGGGTTCAAGTCCCTGTTCGGGCG-3′) was added
to the hybridization buffer and incubated for 16 h at 42 °C.
After hybridization, the membrane was washed according
to the manufacturer’s protocol for the hybridization buf-
fer. Additionally, the membrane was finally washed with
0.1% SDS buffer for overnight at 42 °C. For detection, the
membrane was exposed to phosphorimager screen for 8 h,
and the image was captured on a phosphorimager.
The ratio of charged to total tRNA was quantified by

dividing the intensity of the band corresponding to
charged tRNA by the sum of intensities for the bands of
charged and uncharged tRNA. The band intensities were
quantified using the ImageJ software [60].

Quantitative RT-PCR analysis
Cells were grown in either 1% or 10% FCS as described in
the “Cell culture” section. For this experiment, we seeded
8 × 105 cells in 10-cm plates for the pCDH-empty, d2eGFP_
G1, and d2eGFP_G2M cell lines. After 48 h, total RNA was
isolated using the Direct-zol RNA MiniPrep kit (Zymo Re-
search, Cat #R2050) according to the manufacturer’s manual.
We then synthesized cDNA according to the protocol de-
scribed in Super Script III First Strand Synthesis System for
qRT-PCR kit (Invitrogen, Cat# 18080-044). After cDNA syn-
thesis, the RNA was digested using RNAse H (NEB, Cat#
M0297 L), and the reaction was purified using Qiagen PCR
purification kit (Qiagen, Cat# 28104).
For quantitative PCR analysis, we used the GoTaq

qPCR Master mix kit (Promega, Cat# A6002). For qPCR
reaction setup, we used 1 μl of cDNA, 0.2 μM of primers
(Additional file 7: Table S6), 10 μl of GoTaq qRT-PCR
master mix (2×), and water to make a final volume of
20 μl per reaction. The reaction was run on OneStepPlus
qPCR machine from Applied Biosciences. The

amplification program was as follows: initial denatur-
ation at 95 °C for 10 min, 40 cycles at 95 °C for 30 s, and
60 °C for 1 min. After amplification, a thermal denatur-
ing cycle was added to derive the dissociation curve of
the PCR product to verify amplification specificity. Reac-
tions for each sample were carried out in triplicate.
For each biological replicate, d2eGFP_G1 and d2eGFP_

G2M transcript abundances were estimated relative to the
endogenous Gapdh gene after averaging the measurements
from three technical replicates. Relative fold changes in the
gene expression between 1 and 10% FCS were calculated
using the comparative 2−ΔΔCt method [62].

Quantification of nascent protein synthesis
To quantify nascent protein synthesis as a measure of global
translation, we used the non-radioactive metabolic labeling
assay Click-iT HPG Alexa Fluor 594 Protein Synthesis Assay
Kit (Thermo Fisher Scientific, Cat #C10429). The method is
based on the incorporation of L-HPG, an amino acid analog
of methionine containing an alkyne moiety, and Alexa Fluor
594 azide. For this assay, we seeded 7 × 105 cells per well in
6-well plates for the parental, d2eGFP_G1, and d2eGFP_
G2M cell lines and let them grow for 24 h. We changed the
media with a L-methionine-free medium DMEM (Gibco,
Cat#21013) supplemented with 2mM glutamine, 100U
penicillin/0.1mg/ml streptomycin, and 10% heat-inactivated
FCS and 50 μM HPG, and incubated for 3 h at 37 °C and 7%
CO2. For the control, we also incubated parental cells with
an additional 35 μg/ml of cycloheximide. After incubation,
cells were harvested with Accutase (Thermo Fisher Scientific,
Cat# A1110501) and further processed according to the kit
protocol. The signal intensity of incorporated HPG-Alexa
Fluor 594 was measured by flow cytometry on a BD LSR
Fortessa (Beckman Coulter) using the 561 laser, BP filter
610/20 laser. Mean fluorescence intensities were computed
from 50,000 cells for each sample. Fluorescence intensity for
each cell line growing in 10% FCS was normalized by the
mean fluorescence intensity of the same cell line growing in
1% FCS. The experiment was performed with five biological
replicates.

tRNA abundance profiling with tRNA-seq for cells grown
in different serum levels
Cells were grown in either 1% or 10% FCS as described
in the “Cell culture” section. For this experiment, we
seeded 8 × 105 cells in 10-cm plates for the pCDH-
empty, d2eGFP_G1, and d2eGFP_G2M cell lines. After
48 h, total RNA was isolated using Direct-zol RNA
MiniPrep kit (Zymo Research, Cat# R2050) according
to the manufacturer’s manual. The tRNA-seq method
was performed by Arraystar Inc. (Rockville, MD 20850,
USA). Briefly, total RNA from each sample was quantified
using a NanoDrop ND-1000 instrument. tRNAs were
purified from total RNA and partially hydrolyzed
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according to the Hydro-tRNAseq method [49]. Then, par-
tially hydrolyzed and re-phosphorylated tRNAs were used
to prepare the sequencing library in the following steps:
(1) 3′-adapter ligation, (2) 5′-adapter ligation, (3) cDNA
synthesis, (4) PCR amplification, and (5) size selection of
~ 140–155 bp PCR-amplified fragments (corresponding to
~ 19–35 nt tRNA fragments size range). The libraries were
denatured as single-stranded DNA molecules, captured
on Illumina flow cells, amplified in situ as sequencing
clusters, and sequenced for 75 cycles on Illumina NextSeq
system as per the manufacturer’s instructions.

tRNA-seq differential expression analysis
tRNA-seq reads were subjected to 3′ adapter trimming
(Additional file 7: Table S6) and quality control (reads
shorter than 20 nucleotides or for which over 10% of the nu-
cleotides had a PHRED quality score < 20 were discarded).
Filtered reads were then mapped to an artificial mouse tran-
scriptome based on genome assembly mm10 and annota-
tions for rRNA and tRNA genes from RefSeq and GtRNAdb
(http://gtrnadb.ucsc.edu, January 2018) [63], respectively,
with segemehl v0.1.7-411 [55] allowing a minimum mapping
accuracy of 90%. tRNA gene counts were calculated based
on uniquely and multi-mapped reads, where the latter were
evenly split across all compatible tRNA genes, and used for
differential expression analysis with DESeq2 [56]. Upregu-
lated and downregulated genes were considered significant if
the corresponding false discovery rate was lower than 0.01.
Three biological replicates were obtained for each serum

condition (1% or 10% FCS). Library sizes (before quality
control) ranged from 10 to 12 million reads, and mapping
rates varied between 64 and 82% across replicates. The
large number of mapped reads to tRNAs allowed a robust
quantification of their abundances (Spearman correlations
between replicates of 0.970–0.992).

Quantification of inosine levels in tRNAs using tRNA-seq
Inosine at the first residue of the anticodon will form the
strongest bond to cytosine and it will therefore appear as a
guanine following sequencing. Thus, the level of A34I
modifications was quantified by measuring the A-to-G
substitutions at the anticodon wobble position using sam-
tools mpileup v1.9 (http://samtools.sourceforge.net) [64]
and VarScan v2.4.1 (http://varscan.sourceforge.net) [65]:
samtools mpileup -B -f reference.fa sam-

ple.sam | java -jar VarScan.v2.4.1.jar mpi-
leup2snp --min-coverage 10 --min-var-freq
0 --p-value 0.05 --variants --output-vcf
--strand-filter 0

Prediction of RNA structure in the translation initiation
region
Minimum free energy (MFE) of folding of the 80 nucleo-
tide region centered on the start codon of mouse genes

was calculated using UNAFold v3.8 (http://unafold.rna.
albany.edu/) [66] with default parameters.

Calculation of codon usage
The frequency of each codon in every protein-coding
mouse transcript, based on genome assembly mm10 and
transcript annotations from RefSeq (November 2017), was
calculated using codonR vFeb2005 (http://people.cryst.bbk.
ac.uk/~fdosr01/tAI/). Then, for each transcript, the relative
usage of different synonymous codons was calculated by
dividing the frequency of usage of each codon by the total
frequency of codons encoding the same amino acid.

Determination of tissue-specific transcripts
mRNA-seq data for different mouse tissues was retrieved
from [67] (GSE29184). Kallisto v0.43.0 (https://pachterlab.
github.io/kallisto/) [68] (parameters: --single -l 200 and -s
20) was used to map the reads to a reference transcrip-
tome based on genome assembly mm10 and transcript an-
notations from RefSeq (November 2017). Transcript
counts were then used for differential expression analysis
with DESeq2 [56]. Transcripts were defined as tissue-
specific if their expression in that particular tissue com-
pared to all other tissues was greater than twofold and the
corresponding false discovery rate was lower than 0.01.

Calculation of the tRNA adaptation index
tRNA adaptation index (tAI) [69] for each protein-coding
transcript was calculated using codonR vFeb2005 (http://
people.cryst.bbk.ac.uk/~fdosr01/tAI/). Mouse transcriptome
was based on genome assembly mm10 and transcript anno-
tations from RefSeq (November 2017). In brief, to calculate
the tAI for a gene, we first needed to calculate the absolute
adaptiveness (Wi) for each codon i:

Wi ¼
Xni

j¼1
1−sij
� �

tGCNij

where ni is the number of tRNA isoacceptors that recognize
the ith codon, tGCNij is the gene copy number of the jth
tRNA that recognizes the ith codon, and sij is a selective
constraint on the efficiency of the codon-anticodon coup-
ling [69]. tRNA gene copy numbers for a mouse (mm10)
were retrieved from the GtRNAdb (http://gtrnadb.ucsc.edu,
January 2018) [63]. From the Wi values, the relative adap-
tiveness value wi of a codon is obtained as:

wi ¼ Wi=Wmax if Wi≠0 or wi ¼ wmean otherwise

where Wmax is the maximum Wi value, and wmean is the
geometric mean of all wi. The tRNA adaptation index
tAIg of a gene g is defined as the geometric mean of the
relative adaptiveness values of its codons:

tAIg ¼
Ylg

k¼1
wikg

� �1=lg
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where ikg is the codon defined by the kth triplet in gene
g and lg is the length of the gene in codons (except the
stop codon).

Model of codon elongation speed
We modeled the codon elongation cycle with the follow-
ing a simple system of chemical reactions:

U →
kr C

C þ C0 →
kon C1

C1 →
kt C2

C2 →
ke U þ C3

C3 →
kep

C0

where U and C are the number of uncharged and charged
tRNAs, respectively; C0 represents the state where the
codon at the A-site of the ribosome is not bound yet by
the cognate tRNA; C1 represents the state where the codon
is bound to the cognate tRNA at the A-site of the ribo-
some; C2 represents the state where the codon-cognate
tRNA translocated from the A-site to the P-site of the ribo-
some; and C3 represents the state when the specific codon
is not yet in the A-site of the ribosome. The reaction rates
are as follows: kr, rate of tRNA recharging; kon, rate of
codon-cognate tRNA recognition; kt, rate of translocation
from the A-site to the P-site; ke, exit rate from P-site, yield-
ing a free codon and an uncharged tRNA; and kep, rate
with which a given codon enters the A-site of the
ribosome.
The time that a given codon needs for recognition by

the cognate tRNA and translocation is:

τel ¼ τrecogn þ τtrans ¼ 1
konC

þ 1
kt

Consequently, the elongation speed can be calculated as:

v ¼ 1
τel

¼ konktC
kt þ konC

Using the steady-state solution from the system of re-
actions, we can substitute in v the number of charged
tRNAs (C) with:

and estimate the expected elongation speed for different
values of total tRNAs (=C+U+C1+C2) and codons
(=C0+C1+C2+C3). Assuming the reaction rates are constant
for the different codons, the variability in elongation will
mostly depend on tRNA availability and codon abundance.
We have performed simulations using the software

Wolfram Mathematica v10.0.2.0 (http://www.wolfram.
com/mathematica/) and the following reaction rates: kr =
0.01, kon = 0.0001, kt = 1, ke = 1, and kep = 0.001, selected
based on [51]. Importantly, the interpretation of th re-
sults and conclusions were not affected by modulating
these rate constants.

Gene set enrichment analysis
The tool GSEA v2.2.3 (http://software.broadinstitute.org/
gsea/index.jsp) [70] was used to calculate the enrichment of
gene sets derived from the KEGG pathway database, Gene
Ontology: Biological Processes, and the Hallmark collection.
P values were estimated by comparing the empirical enrich-
ment score (ES) of a gene set relative to a null distribution
of ESs derived from permuting the gene set 1000 times and
then adjusted for multiple hypotheses testing [70].

Statistical analysis
Statistical analysis was performed with Prism 7.0c (Graph-
Pad). For the different statistical tests performed, a P <
0.05 was considered significant.
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