Schrinner et al. Genome Biology

https://doi.org/10.1186/513059-020-02158-1

Haplotype threading: accurate
polyploid phasing from long reads

(2020) 21:252

Genome Biology

Check for
updates

Sven D. Schrinner'T, Rebecca Serra Mari?3#1, Jana Ebler?®, Mikko Rautiainen®3#, Lancelot Seillier’,
Julia J. Reimer”, Bjérn Usadel®’8, Tobias Marschall>"t and Gunnar W. Klau&"*

*Correspondence:
tobias.marschall@hhu.de;
gunnar.klau@hhu.de

*Sven D. Schrinner, Rebecca Serra
Mari and Jana Ebler are joint first

authors.
TTobias Marschall and Gunnar W.

Klau are joint last authors.
2Institute for Medical Biometry and
Bioinformatics, Medical Faculty,
Heinrich Heine University
Dusseldorf, Moorenstral3e 5, 40225
Dusseldorf, Germany

! Algorithmic Bioinformatics,
Heinrich Heine University
Disseldorf, Universitatsstr. 1, 40225
Dusseldorf, Germany

Full list of author information is
available at the end of the article

K BMC

Abstract

Resolving genomes at haplotype level is crucial for understanding the evolutionary
history of polyploid species and for designing advanced breeding strategies. Polyploid
phasing still presents considerable challenges, especially in regions of collapsing
haplotypes.

We present WHATSHAP POLYPHASE, a novel two-stage approach that addresses these
challenges by (i) clustering reads and (ii) threading the haplotypes through the clusters.
Our method outperforms the state-of-the-art in terms of phasing quality. Using a real
tetraploid potato dataset, we demonstrate how to assemble local genomic regions of
interest at the haplotype level. Our algorithm is implemented as part of the widely used
open source tool WhatsHap.

Keywords: Polyploidy, Phasing, Haplotypes, Cluster editing, High-throughput
nucleotide sequencing, Plant science, Sequence analysis

Background

Polyploid genomes have more than two homologous sets of chromosomes. Polyploidy
is common to many plant species, including important food crops like potato (Solanum
tuberosum), bread wheat (Triticum aestivum), and durum wheat (Triticum durum).
Resolving polyploid genomes at the haplotype level, i.e., assembling the sequences of
alleles residing on the same chromosome, is crucial for understanding the evolutionary
history of polyploid species: Evolutionary events, such as whole-genome duplications, can
be traced back and reveal the ancestry of polyploid organisms [1]. Beyond that, knowledge
of haplotypes is key for advanced breeding strategies or genome engineering, especially
for improving yield quality in important crop species [1-3].

In this work, we focus on phasing from long read information. Plant genomes typi-
cally exhibit many highly repetitive regions and frequently underwent structural variation
events, rendering alignments from short reads alone problematic. Although long reads
suffer from a higher number of sequencing errors, they align better to the reference

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02158-1&domain=pdf
http://orcid.org/0000-0002-6340-0090
mailto: tobias.marschall@hhu.de
mailto: gunnar.klau@hhu.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Schrinner et al. Genome Biology (2020) 21:252 Page 2 of 22

genome and span more variant positions. Consequently, there are larger overlaps between
read pairs, which is the key information for molecular phasing methods. This is espe-
cially important for polyploid phasing, where the assignment must distinguish not only
between two but between k haplotypes.

While phasing diploid genomes using long reads has become a routine step, polyploid
phasing still presents considerable challenges [4]. Higher ploidy increases the complexity
of the underlying computational problem: In the diploid case, assembling one haplotype
over all heterozygous variants directly determines the complementary second haplotype.
For genomes of higher ploidy, this is not the case. In addition, polyploid genomes usually
exhibit larger regions of two or more identical haplotypes. The Minimum Error Correc-
tion (MEC) model [5], which is the most common and successful formalization for diploid
haplotype assembly from sequence reads, is not suited to distinguish between locally
identical haplotypes. It aims to minimize the number of corrections that are applied to
the reads in order to partition them into distinct sets such that reads from the same parti-
tion belong to the same haplotype. The MEC score is the minimum number of necessary
corrections. In the MEC model, it does not pay off to assign identical haplotypes. Hence,
in regions of locally similar haplotypes, this model is likely to result in incorrect haplo-
type assignments, see Fig. 1. Consequently, MEC-based approaches for polyploid phasing
struggle in such regions and, beyond that, face the challenge that exact optimization tech-
niques for MEC [6] quickly become infeasible in practice due to the NP hardness of the
problem.

Related work

Throughout the last years, a few polyploid phasing methods have already been proposed.
In 2013, Aguiar et al. were the first to introduce a theoretical framework for polyploid
haplotype assembly with the HapCompass [7, 8] model, which is based on spanning trees
and uses the Minimum Weighted Edge Removal (MWER) criterion. In 2014, Berger et
al. introduced HapTree [9], a maximum likelihood approach to discover the most likely
haplotypes given aligned read data. To address the problem of computational complexity,
the most likely haplotypes are assembled for a small set of SNP positions first and then
iteratively extended, keeping only the most likely sub-solutions in each step. HapTree was

Haplotype sequences True partitions Optimal MEC partitions

Fig. 1 The MEC model in collapsed regions. Frequently, in polyploid organisms, two or more haplotypes are
locally identical on larger stretches of sites, as shown by the pink and blue haplotype sequences in the left
picture. The MEC model favors assigning the reads of two haplotypes to only one partition, because the
spare partition can be used to collect noisy reads, which gives a lower MEC score but also results in
unbalanced and likely wrong partitions

A T - A
A | L U

Schrinner et al. Genome Biology (2020) 21:252 Page 3 of 22

shown to outperform HapCompass in terms of accuracy and runtime [9, 10]. Together
with SDhaP [11], a semi-definite programming approach based on an approximate MEC
criterion, HapCompass and HapTree were evaluated and compared to each other in a
simulation study conducted by Motazedi et al. [10] in 2017. The study, where simulated
data of the tetraploid potato genome as model organism was used, revealed that, out of
the compared methods, HapTree provided the best results in terms of precision. How-
ever, it also showed the highest time and memory requirements and often suffered from
low recall. SDhaP showed low performance in regions of locally similar haplotypes, which
is probably related to the underlying MEC model. For ploidies above six, HapCompass
was the only implementation to remain stable, although it showed an overall poor perfor-
mance. As a result, none of the methods came out to be applicable for practical use due
to computational inefficiency that prohibits scaling to large genomic regions as well as
frequent failures and low overall accuracy [10].

H-PoP [12] was shown to outperform these previous approaches both in accuracy and
runtime and is since then considered as the state-of-the-art method. It consists of a model
called Polyploid Balanced Optimal Partition (PBOP) that creates k partitions of sequence
reads with the aim to minimize two measures: Reads from one partition are supposed
to be equal on as many variant loci as possible, whereas reads from different partitions
should contain as many differences as possible. For k = 2, this equals the diploid MEC
model and can thus be seen as a polyploid generalization of MEC. When genotype infor-
mation is present, these constraints are added to the model; the appropriate extension is
then referred to as H-POPG.

More recent advances have not proven to be useful for whole-genome single-individual
haplotyping, like PolyHarsh [13], a Gibbs sampling method that is also based on the MEC
model and has only been shown to work on very small artificial examples, TriPoly [14] that
infers haplotypes from trio data and thus requires family data, and SDA [15]. The latter
provides two algorithms based on a discrete matrix completion approach and correlation
clustering, respectively, and is used to resolve segmental duplications of higher ploidy
during genome assembly. However, it is not designed to scale to the whole genome.

Other matrix-based models are SCGD-hap [16], a structurally constrained gradient
descent approach, and AltHap [17], which builds on SCGD-hap and aims to solve an iter-
ative sparse tensor decomposition problem. This model yielded results similar to those of
H-PoP, but also relies on MEC.

Some tools have been proposed that do not work well with long read data. The work
by [18] is based on minimum fragment removal. The long and relatively erroneous long
reads would lead to a removal of too much data. Ranbow [1] uses allele co-occurrences on
small sets of sampled positions in overlapping short reads. This approach is susceptible
to high error rates found in long reads, as it seeds the phasing on local partitions of reads
based on their allele combination on the small position samples. Thus, a large portion of
the reads are clustered incorrectly and a lot of overlapping position samples are required
to correct these mistakes.

Apart from the limitations of the underlying model, current methods do not give reli-
able information about the accuracy of the resulting haplotypes since these are either
output in one consecutive sequence or in very long blocks. In particular, this means that
there is no information about the positions of likely switch errors. Thus, large regions of
the resulting haplotypes might be wrong, but it is not possible to identify these regions,

Schrinner et al. Genome Biology (2020) 21:252 Page 4 of 22

which makes the results very difficult to use in practice. In the H-POPG algorithm, for
example, the haplotypes are only divided into blocks if there is no read that covers the
affected neighboring variant loci. Further uncertainties in the phasing are not considered
in the model and thus not reported.

Contribution

We present an accurate model for polyploid phasing that produces reliable haplotype
blocks and is computationally efficient and thus applicable in practice. We introduce
WHATSHAP POLYPHASE, a method that departs from the MEC model in order to deal
with the additional challenges arising in polyploid phasing. By taking coverage into
account via a newly established threading step, WHATSHAP POLYPHASE is able to detect
and properly phase regions where multiple haplotypes coincide. Additionally, our method
is able to integrate information from input genotypes for accurate phasing results.

We introduce cuts within the haplotypes at positions with increased phasing uncer-
tainty and thereby output phased blocks that ensure high accuracy within the fragments.
We provide a sensible way to compute these block boundaries at varying, user-defined
degrees of strictness. This way, we enable a configurable trade-off between longer blocks
that potentially contain errors and shorter but highly accurate blocks.

We demonstrate on a simulated dataset of varying ploidy k € {4, 5, 6} that WHATSHAP
POLYPHASE outperforms the state-of-the-art tool H-POPG in terms of phasing quality,
in particular in regions with two or more identical haplotypes, where our method phases
with around seven times lower switch error rates than the competition. The efficient
implementation of WHATSHAP POLYPHASE allows for scaling to gigabase-sized genomes,
while being sufficiently fast: an artificial human tetraploid Chromosome 1 (249 Mb) is
phased in less than 3.5 h on a single core of a standard desktop. We also show the use-
fulness of our method to phase real long read data from a tetraploid potato. We first
correct the long reads, phase them with WHATSHAP POLYPHASE, and then locally assem-
ble the partitioned reads. We show that this strategy is suitable to phase a major fraction
of genes.

WHATSHAP POLYPHASE is implemented as part of the widely used open source tool
WHATSHAP (https://whatshap.readthedocs.io) and therefore ready to be included in pro-
duction settings. It offers convenient usage by supporting standard input and output
formats (BAM and VCF). WHATSHAP POLYPHASE is available at https://github.com/
whatshap/whatshap.

Results

Phasing model and algorithm

WHATSHAP POLYPHASE is a novel two-stage approach that produces accurate haplo-
types for polyploid genomes using data from single-molecule sequencing technologies.
See Fig. 2 for an overview of the method.

The first phase of the algorithm uses cluster editing [19] to find clusters of reads which
are likely to originate from identical haplotypes. In short, this is done by computing a
statistical similarity score for each pair of reads and constructing a graph using the reads
as nodes and the scores as edge weights [20]. The size of the graph makes it infeasible to
solve cluster editing to optimality in reasonable time, so we rely on an iterative heuristic
to produce accurate clusters. We deliberately make no assumptions on the ploidy at the

https://whatshap.readthedocs.io
https://github.com/whatshap/whatshap
https://github.com/whatshap/whatshap

Schrinner et al. Genome Biology (2020) 21:252 Page 5 of 22

reads

bam

allele matrix read pair sim. ;e C CTTAGAAAGCTAAAAT | CAAA|GCTAC
7 C] 4 ATCGCTAAGTTCGGTA | AGAC| CCGAA
Ve —s| (&) C ATCGCAAGATTTATGA | GACC| TTAGA

* TCCCTATCCCAAATGA | GGAG | GGAGG
L7\ scoring cluster editing DP: coverage, genotypes, phased haplotype blocks
variant pos. ref switch cost
genotypes “=----" " genome
Input Phase I: Scoring and clustering Phase Ii: Threading Output

Fig. 2 Overview of WHATSHAP POLYPHASE. The input allele matrix results from a given BAM and VCF file and
an optional realignment step. Phase I: statistical scoring of each read pair classifies them into belonging to
the same or to different haplotypes. The scores are used as weights for a graph over all reads, which is
clustered by cluster editing (gray round shapes). Phase Il threads k haplotypes (colored lines) through the
clusters (here k = 4) balancing coverage violations and switch costs while respecting the genotype
information. This results in k phased haplotypes, subdivided into blocks (vertical lines)

clustering stage. In particular, reads of multiple haplotypes that are locally identical end
up in the same cluster.

The second phase consists of the actual haplotype assembly by threading k haplotypes
through the set of clusters obtained in the first phase. We take the position-wise read
coverage of each cluster into account to determine the number of haplotypes threaded
through each cluster. In contrast to MEC-based models, this handles genomic regions
where some haplotypes are locally identical by allowing that multiple haplotypes run
through the same cluster. During the threading step, we further expect haplotypes to stay
in the same cluster for as long as possible and ensure that the consensus genotype fits
the input genotype, if provided. We cut the phasing into blocks at variant pairs showing
insufficient phasing confidence to increase its accuracy at the cost of decreased phasing
block lengths. See the “Methods” section for details of WHATSHAP POLYPHASE.

WHATSHAP POLYPHASE produces accurate results

To demonstrate that WHATSHAP POLYPHASE works well in practice, we ran it on an
artificial tetraploid dataset at different coverages and compared our results to those of
H-POPG, the state-of-the-art method for polyploid phasing, as well as to HapCompass,
HapTree, and Ranbow. Since HapCompass, HapTree, and Ranbow were not able to pro-
cess whole chromosomes, we applied them to an exemplary 1-Mb-long region from
Chromosome 1. The results can be found in Additional file 1: Table S1, showing that
HapCompass, HapTree, and Ranbow performed considerably worse than WHATSHAP
POLYPHASE and H-POPG. We therefore focus our further comparative analysis on
H-POPG. We used common evaluation statistics that capture different properties of hap-
lotype sequences to compare the solutions computed by both tools to ground truth
haplotypes available for our datasets.

Evaluation statistics
For ploidy &, a set of ground truth haplotype sequences & = {hy, ..., i} and predicted
haplotypes #* = {h7, ..., i}'}, we compute the number of Hamming errors HE as

HE = min — ZdH (hl, hg(l)>

UESk

where Sy represents the permutation group on {1, ..., k} and dy () the Hamming distance
between two sequences. The Hamming rate (HR) is then defined as the sum of Hamming

Schrinner et al. Genome Biology (2020) 21:252 Page 6 of 22

errors divided by the total number of all phased variants. If subtracted from 1, the Ham-
ming rate is equivalent to the reconstruction rate and the correct phasing rate presented
in [14] and [12], respectively.

A well-established evaluation metric for diploid phasing is the switch error rate (SER),
for which we use a polyploid version. Instead of counting the number of incorrect alleles
on each haplotype, the SER counts the minimum number of switches, i.e., how often the
assignment between predicted and true haplotypes must be changed in order to recon-
struct the true haplotypes from the predicted ones. The polyploid extension of the switch
error was already introduced as the vector error rate in [9].

More formally, for every position j, let IT; be the set of one-to-one mappings between %
and /%, such that for each 7 € TII; it holds that /;[] = h;(i) [/] for all haplotypes 4;. The
switch error rate is then defined as:

1 m—1
SER = min _— ds (m;, 7;
(Tt €M X o x Ty k(11 — 1) ; s (i it 1)

where m is the number of variants and ds (7r;, wi+1) the number of different mappings
between 7r; and 74 1.

If the genotype of 4* is not equal to the genotype of & for every position, the set
[Ty x ... x I1,, is empty and the vector error cannot be computed. Therefore, we compare
only those positions, on which the predicted genotype is correct, and report the frac-
tion of missing variants (MV), that is, either unphased or incorrectly genotyped variants,
separately.

Phasing tools may not phase the entire input region as one set of haplotypes. If the
phasing between two consecutive variants is too uncertain (e.g., if not enough reads cover
both variants), the phasing might be split into blocks. In our evaluation, we applied the HR
and SER on all reported phasing blocks separately and aggregated them. More precisely,
we summed up the number of respective errors and divided them by the total number
of variants (HR) or by the total number of variants excluding the first variant in every
block (SER). Since this favors shorter blocks, we also included the N50 block length into
our evaluation, which is the smallest block length needed to cover 50% of the considered
genomic region when using only blocks of that size and larger.

Testing on artificial polyploid humans

We generated a tetraploid, pentaploid, and hexaploid versions of human Chromosome 1
by combining sequencing data of three individuals (NA19240, HG00514, and HG0733),
for which high-quality trio-based haplotype information is available [21]. We refer to
these haplotypes as ground truth haplotypes. We merged PacBio sequencing data for the
first two samples to produce tetraploid data at different coverages (40x and 80x). Using
the read simulator PBSIM [22], we additionally generated equivalent simulated tetraploid,
pentaploid, and hexaploid datasets with the same coverages and known read origin.

We ran WHATSHAP POLYPHASE and H-POPG and compared the resulting phasings
to the ground truth haplotypes. H-POPG defines phased blocks based on the connected
components of the underlying reads by introducing cuts between pairs of variants not
connected by any sequencing reads. Per default, WHATSHAP POLYPHASE uses a more
sensitive approach (see the “Methods” section), typically leading to shorter but more
accurate haplotype blocks. Additionally, our algorithm supports different levels of block

Schrinner et al. Genome Biology (2020) 21:252 Page 7 of 22

cut sensitivities, which allow to balance block length against block accuracy. In order to
provide a better comparison of both tools, we ran WHATSHAP POLYPHASE with different
configurations, which can be seen in Fig. 3.

Even when forcing our tool to yield block lengths as computed in H-POPG, we observe
around 30% lower switch error rates among the tested datasets (Fig. 3, see Additional
file 1: Figure S1 for Hamming error rates). As expected, higher coverage has a positive
effect on the error rates. More sensitive block cuts, and in particular the default setting
for WHATSHAP POLYPHASE, lead to a significant decrease in switch error rates.

Table 1 shows all used evaluation metrics on H-POPG and WHATSHAP POLYPHASE for
their default settings. We can see that WHATSHAP POLYPHASE phases more accurately,
with at least three times lower switch error rates than H-POPG on the varying datasets
when using the default settings. For the Hamming rate, the differences are even larger.
Among other reasons, this is caused by the block cut policy of H-POPG, leading to switch
errors on sparsely connected variants, which have a big impact on the global correctness
of the phasings. The configurable block cut strategy of WHATSHAP POLYPHASE allows to
maintain accurate blocks with low Hamming rates. For a comparison with more similar
block lengths, we also tested the datasets using a different setting of our tool, which can
be achieved by running the tool with “-B 1” as an additional parameter. The N50 block
lengths and Hamming rates become almost identical, while the switch error rates remain

N50 vs block-wise SER (real)

T T T T T T Ty L T LI
< 2 + 1
@ - .|
§ 1.5
o +
s 1 1
—
Q
S 05/ |
=
3
N 0 Ll Lol Ll Lol Ll Ll
10% 105 106 107 108

N50 block length
N50 vs block-wise SER (simulated)
2 J“T T oo T T T “7

+
1.5 h

switch error rate (%)

0 Ll Ll Ll Ll Ll L
104 105 106 107 108

N50 block length
X WH-PP (40x) 4+ H-PoPG (40x) X WH-PP (80x) 4+ H-PoPG (80x)

Fig. 3 N50 block lengths and the respective block-wise switch error rates for different block cut strategies of
WHATSHAP POLYPHASE (default strategy marked by a circle) on the real tetraploid read dataset (top) and the
simulated tetraploid dataset (bottom) with 40x and 80x coverage

Schrinner et al. Genome Biology (2020) 21:252 Page 8 of 22

Table 1 Comparison of WHATSHAP POLYPHASE and H-POPG on tetraploid real (a) and simulated (b)
datasets, pentaploid simulated dataset (c), and hexaploid simulated dataset (d). Performances are
based on the switch error rate (SER), block-wise Hamming rate (HR), and N50 for the block size. For
better comparability with H-POPG, a second setting (WH-PP*) with less block cuts was used. The total
length of the chromosome is 249 Mb

Coverage Method SER (%) HR (%) N50 (bp) Runtime (s) Memory (GB)
(a) Real tetraploid read data
40x WH-PP 0.58 1.48 29,529 3333 141
WH-PP* 1.39 28.72 1,692,352 3433 142
H-POPG 2.01 27.53 1,785,293 2230 997
80x WH-PP 0.31 143 54,434 12694 252
WH-PP* 0.74 28.27 2,587,104 13042 2.89
H-POPG 1.24 27.66 2,587,104 4368 9.99

(b) Simulated tetraploid read data

40x WH-PP 042 1.74 48,815 1960 1.10
WH-PP* 1.00 26.57 1,830,943 2004 117
H-POPG 1.67 26.37 1,917,094 1414 9.96
80x WH-PP 0.29 2.51 86,227 5738 1.78
WH-PP* 0.68 2523 2,142,893 5865 204
H-POPG 0.98 25.65 2,142,893 2843 9.97

(c) Simulated pentaploid read data

40x WH-PP 0.86 1.57 22,625 2331 1.05
WH-PP* 2.01 2534 1,361,459 2377 1.07
H-POPG 350 24.78 1,453,040 2357 9.97
80x WH-PP 047 1.18 33438 5031 1.69
WH-PP* 1.33 23.64 1,701,753 5118 1.87
H-POPG 2.24 24.76 1,748,404 4849 9.96

(d) Simulated hexaploid read data

40x WH-PP 112 1.82 16,785 25841 1.30
WH-PP* 2.35 27.03 3,877,456 25860 1.79
H-POPG 3.85 26.75 4,490,129 5450 9.96

80x WH-PP 048 0.97 26,711 10331 1.98
WH-PP* 1.34 2563 4,540,968 10827 263
H-POPG 2.37 2593 4,721,421 11563 10.89

30-40% lower than those of H-POPG . Both configurations need noticeably more time to
compute the phasings than H-POPG . Higher coverages increase the running time more
than linearly for WHATSHAP POLYPHASE as well as ploidy does for both tools. H-POPG
consumed more memory while running our experiments.

The haplotype blocks output by our tool remain quite short when applying the default
settings for accurate blocks. One reason for this is the fact that the phaser always discon-
tinues all haplotypes when it decides that two variants cannot be connected with enough
confidence. This is due to a limitation of the VCF format, where it is common to only
supply one phase set identifier per variant. WHATSHAP POLYPHASE is also able to out-
put these phase set identifiers per haplotype in a custom format (HS). This results in
haplotype-level blocks that are between 1.8 and 2.4 times as long as the original blocks,
because not all haplotypes need to be interrupted in the polyploid case, if there is just a
possible switch between two of them. We show the effect of this alternative phase block
definition in Additional file 1: Table S3.

Schrinner et al. Genome Biology (2020) 21:252 Page 9 of 22

Identifying collapsing regions

We define regions in the genome where two or more haplotypes share the same sequence
for at least 50 variant positions as collapsing regions. For MEC-based approaches, these
parts are particularly difficult to phase since different configurations of haplotypes with
locally identical sequences are not distinguishable based on their MEC scores and the
MEC model exploits this to explain sequencing errors with “noise” haplotypes.

We evaluated the ability to correctly assemble haplotypes in these regions. We com-
pared WHATSHAP POLYPHASE and H-POPG on Chromosome 1 of the simulated and real
tetraploid datasets with 40x and 80x coverage, respectively. Collapsing regions take up a
large part (17.28%) of the simulated Chromosome 1.

Table 2 shows the results. It can be seen that the differences between switch error
rates achieved by H-POPG and by WHATSHAP POLYPHASE are remarkably higher in the
case of collapsing regions than for the rest of the genome. In comparison to WHATSHAP
POLYPHASE, the switch error rate of H-POPG is around 7 times higher in collapsing
regions, while on average throughout the whole chromosome, this factor is only 3.37. For
higher coverage, these values are further increased to 7.5 and 3.5, respectively. The clos-
est results are achieved in non-collapsing regions, i.e., regions where either all haplotype
sequences are unique or coincide on fragments shorter than 50 variants. In these regions,
H-POPG results in 3.13 times more switch errors.

For the simulated data (see Table 2), the differences are even more striking, especially
on 80x coverage. In regions with coinciding haplotypes, WHATSHAP POLYPHASE out-
performs H-POPG by a factor of up to 11.75. Compared to the average quotient of 3.09,
WHATSHAP POLYPHASE thereby yields an almost 4 times higher reduction in switch
error rates in collapsing regions. On lower coverage, similar results are obtained.

As for the previous experiments, we repeated this analysis with block lengths computed
as in H-POPG. The results of this second run are presented in Additional file 1: Table S2.

Table 2 Comparison between the resulting switch error rates of WHATSHAP POLYPHASE (WH-PP) and
H-POPG on collapsing regions over at least 50 variants as compared to non-collapsing regions and
the average throughout the genome. Results (switch error rates in %) are presented for
Chromosome 1 of the real and simulated tetraploid dataset on both 40x and 80x coverage. The
third row marks the quotient between the switch error rate of H-POPG and that of WHATSHAP
POLYPHASE to highlight by which magnitude the results differ

Coverage Method Collapsing regions Non-collapsing regions Total

(a) Real read data (tetraploid)

40 WH-PP 029 069 060
H-POPG 202 216 202

H-POPG
SER(Syrersd) 697 313 337
80x WH-PP 0.14 046 035
H-POPG 105 130 124

H-POPG
SER(Trere) 7.50 283 354

(b) Simulated read data (tetraploid)

40 WH-PP 018 045 043
H-POPG 201 163 168
SER(HPES) 1117 362 391
80x WH-PP 0.08 0.37 0.32
H-POPG 094 098 0.99
SER(HFOEG) 1175 265 3.09

Schrinner et al. Genome Biology (2020) 21:252

Potato data

We applied our algorithm to real sequencing data for tetraploid potato (Solanum tubero-
sum), for which we generated paired-end short Illumina and long Oxford Nanopore reads.
In the first step, we aligned the reads produced by the different technologies to the potato
reference genome published by the Potato Genome Sequencing Consortium (PGSC) [24].
We observed unbalanced coverage distributions for the alignments, especially for the
short Illumina reads, hinting towards a high number of structural variations and rear-
rangements being present in the data (Fig. 4a). Thus, the Illumina reads are ill-suited
for reliable variant calling as their short length makes it more difficult to unambiguously

a b
16 1e7 chr01
" ~ 100 10°
=
12 2 804 10°
=]
3
~ 1.0 %:’B 601 10!
=1 S
g 08 = -
@
0.6 £ 404
04
. 201
g 0
0.2 |
0.0 =Y
) 100 200 300 400 500 0 10000 20000 30000 40000 50000
coverage gene length (bp)

e [

Frameshift mutation
H1 CTATTGACATCATTTCTACAT
H2 CTATTAACATCATTTCTACAT
— H3 CTATTGACATCATTTCTACAT
H4 CTATTGACAT-ATTTCTACAT
HoRk KRR R K

Stop codon

d 1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 753 Length
753

1 1 1 [1o 1 (B o 742
1 [o o 1 1 1 1 1 1 oo 751
1 TH1 1 1 1 1 o 747
15top 36

Fig. 4 Phasing of potato genome. a Per-base coverage distribution of lllumina and ONT MinION alignments
on Chr01. b Fraction of phased variants in relation to gene length. The x-axis shows the gene length and the
y-axis the percentage of phased variants in the longest block. Axis histograms and hexagons illustrate the
distribution of data points. € IGV [23] screenshot showing alignments of uncorrected (top) and corrected
MinlON reads (bottom) of FRIGIDA-like protein 5 isoform X2 gene on Chr04. The corrected reads are colored
(red, green, blue, purple) according to the haplotypes WHATSHAP POLYPHASE assigned them to. d Multiple
sequence alignment of the ORFs detected in the four haplotype sequences. The uppermost gray sequence
represents the reference, and the others correspond to the four haplotypes (same order as in panel ¢

Page 10 of 22

Schrinner et al. Genome Biology (2020) 21:252 Page 11 of 22

align them to the reference. We therefore relied on the much longer nanopore reads to
identify SNPs that we can later use for phasing. However, Oxford Nanopore reads typ-
ically come with high sequencing error rates, complicating the calling process. In order
to obtain reliable variant positions and genotypes from these error-prone reads, we ran
an error correction pipeline [25] to reduce the number of sequencing errors (see the
“Methods” section). Figure 4c shows an exemplary IGV [23] screenshot of uncorrected
reads (top) and corrected (bottom) for the FRIGIDA-like protein 5 isoform X2 gene.
Next, we ran minimap2 [26] to align the corrected nanopore reads to the potato refer-
ence genome and called variants using FreeBayes [27]. To verify the genotypes produced
in this way, we added an additional step to WHATSHAP POLYPHASE that re-genotypes
the positions based on the nanopore reads prior to phasing and only keeps those variants,
for which the newly predicted genotype matches the one reported by FreeBayes (see the
“Methods” section).

We focused on the potato genes [24] as they are biologically interesting for phasing.
Of the total 36274 genes containing heterozygous variants after calling and retyping,
91% could be (at least partially) phased by WHATSHAP POLYPHASE. On average, about
2.13 phased blocks were produced per gene. Furthermore, for each gene, we deter-
mined the number of phased variants inside the longest phased block. We observe
that a large fraction of genes, including many long genes, can be fully phased, see
Fig. 4b. We also evaluated the percentage of phased genes in relation to their level
of heterozygosity, but could not observe a strong dependency, see Additional file 1:
Figure S2.

We used the FRIGIDA-like protein 5 isoform X2 (accession: XP_015169713) gene as
an example to demonstrate how WHATSHAP POLYPHASE enables haplotype-resolved
assembly. We extracted the phasing of the longest phasing block reported for this
gene and separated the reads by haplotype. In order to do so, we extended the com-
mands whatshap haplotag and whatshap split, previously implemented in
the diploid version of whatshap, to higher ploidies. Briefly, the idea is to tag each
sequencing read according to the computed haplotype sequence it is most similar to
and separate the reads based on these tags (see “Methods” section). The reads shown
in Fig. 4c are colored according to the resulting haplotype assignments. In the next
step, we separately ran wtdbg2 [28] on each haplotype-specific read set to produce
local assemblies of the four haplotypes. Additional file 1: Figure S3 shows a visualiza-
tion of a multiple sequence alignment of these haplotypes. We ran the NCBI ORFfinder
[29] on each of the assemblies and detected a long ORF in the first three haplo-
types representing the FRIGIDA like coding sequence. For the fourth haplotype, we
could not detect a corresponding OREF, as the putative FRIGIDA gene in the fourth
phase showed an early STOP codon highlighted in Fig. 4c. Interestingly, the fourth
phase showed an additional frameshift mutation shown in the inset of Fig. 4c where
only the phasing information provides the information that this is linked to the pre-
mature STOP codon highlighting the necessity of (local) phasing to understand gene
architecture. Using COBALT [30], we generated multiple sequence alignments of the
amino acid sequences resulting from these three ORFs and the corresponding refer-
ence sequence (Fig. 4d). The three sequences show an overall good alignment with the
reference with small differences, which may serve as an input for functional follow-up
studies.

Schrinner et al. Genome Biology (2020) 21:252 Page 12 of 22

Runtimes

We show the runtimes of WHATSHAP POLYPHASE and H-POPG for phasing the artificial
human Chromosome 1 in Table 1. Both programs were run on a single core on a dual
socket machine (2xIntel Xeon E5-2670 v2) with 256 GB of memory. At coverage 40x,
WHATSHAP POLYPHASE took about 49 min to phase the real data, while H-POPG took
about 30 min. WHATSHAP POLYPHASE phased the simulated dataset in about 30 min
and H-POPG in 20 min. At coverage 80x, WHATSHAP POLYPHASE took 3.2 h on the real
data and H-POPG 1 h. On the simulated data, WHATSHAP POLYPHASE took 1.5 h and
H-POPG 41 min for phasing.

Discussion

We introduce WHATSHAP POLYPHASE, a novel two-stage algorithm enabling accurate
haplotype phasing of polyploid genomes. Our model consists of two phases performing
a clustering of the reads based on their similarity and assembling the final haplo-
types through the resulting clusters. Unlike approaches based on solving the MEC
problem, WHATSHAP POLYPHASE takes coverage of the read clusters into account
to resolve regions with multiple coinciding haplotypes. Additionally, the phasing can
be cut at low confident positions to maximize phasing accuracy. In our view, such
stringent block boundaries are warranted to avoid phase connections that essentially
represent guessing, for instance when there is only one read connecting two variants
in a tetraploid setting while three haplotypes remain unobserved (Additional file 1:
Figure S4).

Applying our algorithm to Chromosome 1 of polyploid datasets created of human sam-
ples NA19240, HG00514, and HGO0733 shows that in comparison with H-POPG, the
current state-of-the-art phasing method, WHATSHAP POLYPHASE returns 3.4-fold to
4.9-fold lower switch error rates on real and simulated data at varying ploidies and cov-
erages (Table 1). As default setting, we prescribe a stringent block boundary criterion in
WhatsHap and hence the returned blocks are shorter than for H-POPG. Relaxing this cri-
terion, even though not recommended in our view, leads to block sizes similar to H-POPG
at still 1.4-fold to 1.7-fold lower switch error rates.

The Hamming rate is more sensitive than the switch error rate, because a single switch
on two haplotypes in the middle of a block can potentially cause 50% of the variants being
phased wrongly on the two affected haplotypes. While WHATSHAP POLYPHASE shows
low Hamming error rates ranging from 0.97 to 2.51% (Table 1), H-POPG displays much
higher rates between 24.76 and 28.72%, highlighting again that overly aggressive block-
connecting strategies lead to errors. When WHATSHAP POLYPHASE is run with relaxed
block boundary criteria, the Hamming error rates become comparable to H-POPG.

Furthermore, we show that the coverage-aware approach of haplotype threading is able
to resolve regions where multiple haplotypes coincide, which occur frequently in poly-
ploid genomes. A comparison to H-POPG shows that WHATSHAP POLYPHASE performs
particularly well in these regions. The switch error rates are 7 times higher in H-POPG for
the real data and more than 11 times higher for the simulated dataset. When using larger
blocks according to the block definition of H-POPG, the switch error rate of H-POPG is
still more than 3 times higher in these collapsing regions as opposed to 1.22 times, on
average. Within Chromosome 1 of our simulated dataset, with a total length of 249 MB,
we found around 17% of the genome to be part of long collapsing regions over at least

Schrinner et al. Genome Biology (2020) 21:252 Page 13 of 22

50 variants. These results clearly highlight the limitation of MEC-based approaches with
regard to these regions and the need for phasing methods that address this problem.
Finally, we present a typical use case of polyploid phasing using real sequencing data of
potato. Due to the high genomic diversity and lack of high-quality reference sequences,
large-scale polyploid phasing remains challenging. We restricted our analysis to the gene
regions and use the FRIGIDA-like protein 5 isoform X2 gene as an example to demon-
strate that our polyploid phasing tools enable haplotype-resolved assembly of polyploid

organisms.

Conclusions

Polyploid phasing is a difficult technological and computational problem. Current state-
of-the-art tools rely on the Minimum Error Correction model, which is successful for
diploid phasing, but has limitations in the conceptually and computationally far more
complex polyploid case. We provide an implementation that departs from the MEC
paradigm and instead uses a novel clustering and threading method, taking coverage and
genotype information into account. Doing so, it represents the first algorithm designed
to specifically handle locally identical haplotypes and, in consequence, performs signif-
icantly better in such regions than the state-of-the-art. To our knowledge, it is also the
first approach that offers a configurable trade-off between the lengths of phased haplo-
type blocks and phasing accuracy to fit the user’s individual needs. Our implementation
scales to whole genomes while being sufficiently fast.

Current challenges lie in resolving more switch error locations, as they either lead to
block cuts or to switch errors, which have a high impact on the Hamming rate. Also,
the running time of our approach scales exponentially with increasing ploidy. To mitigate
this, we have implemented heuristics that allow handling even higher ploidies than the
hexaploids evaluated here. We plan to test and validate these techniques in future work.
Furthermore, our haplotype threading framework is well suited to be extended to use
local ploidy estimates. That would allow phasing genomic regions where the observed
ploidy deviates, for instance due to aneuploidies, large deletions on a subset of haplotypes
or collapses of segmental duplications in the used reference genome, and we plan to add
this functionality to future releases.

Of note, alignment-based phasing methods heavily depend on the quality of the align-
ments and the subsequent variant calls. In case of strong deviations from the reference
genome, as, for example, in large regions of our proof-of-concept potato phasing study,
any alignment-based method that relies on the reference genome will struggle. On good
quality reference genomes such as the artificial tetraploid benchmark genome proposed
in this paper, we show that our method WHATSHAP POLYPHASE delivers haplotype
reconstructions with significantly lower error rates compared to the state-of-the-art tool
H-POPG. Our algorithm is implemented as part of the widely used open source tool
WHATSHAP and is hence ready to be included in production settings.

Methods

Here, we present the phasing algorithm in detail. We denote with k the ploidy of the
phased genome, with #n the number of heterozygous variants in the genomic region of
interest, and with m the number of reads. We assume that all variants are biallelic, denot-
ing the major allele with 0 and the minor allele with 1. Each read r is represented by a

Schrinner et al. Genome Biology (2020) 21:252 Page 14 of 22

sequence ry, . .., ry—1 of length n over the alphabet ¥ = {0, 1, —} such that r; is the allele
for the ith variant and “—” indicates an uncovered variant. We use olprs = |{i | r;,s; €
{0, 1}}] to denote the size of the overlap (number of shared variants) between two reads
r,s and disrs = |{i | ri,s; € {0,1},r; # s;}| for the number of disagreements between r
and s. The ratio between these values is a value between 0 and 1 and called the Hamming
rate between two reads. The true (and to us unknown) haplotype of a read r is denoted as
H(r) € {0,...,k — 1}. The objective is to find k sequences H,,... ,H,,(_l of length # over
%, which are close or identical to the original haplotypes Hy, . .., Hx_;1.

Clustering
The first step of our algorithm is to cluster reads that are likely to originate from the same
haplotype. The clustering is based on pairwise similarity of overlapping reads. The simi-
larity scores of the read pairs are then used in the clustering process. Two reads with an
overlap of less than 2 variants are not considered as overlapping and always get a neutral
score of 0.

We make two assumptions about the reads for the scoring scheme. First, all true hap-
lotypes are expected to be equally frequent among the reads. Second, the Hamming rate
between all pairs of haplotypes is expected to be the same (i.e., all haplotypes are equally
different from each other). While the first assumption is reasonable, the second one is
a simplification, as in practice the dissimilarity between even a fixed pair of haplotypes
can vary heavily depending on evolutionary history and chromosomal region. The idea is
to estimate the expected Hamming rate between reads from the same haplotype, which
we call dsame, and the expected Hamming rate for reads from different haplotypes, called
dgifs. The former depends only on the sequencing error rate, while the latter additionally
includes the differences between the true haplotypes. With dy), we further denote the
expected Hamming rate over all overlapping read pairs.

For two reads r and s, the probability of observing the same allele at a shared vari-
ant locus equals dgyme if H(r) = H(s) or dgir if H(r) # H(s). Since the variants are
independent from each other in our model, disrs should follow one of the two binomial
distributions Bolprs,dgyme OF Bolprs,dgg With olprs being the number of attempts and dsame or
dgifs being the success probability. For each individual read pair, we can then decide which
of the two possible distributions is the most likely one.

According to our first assumption, a %—fraction of all possible read pairs include reads
from the same haplotype each, as for a read r there is a % chance that another one is
from the same haplotype. In order to estimate dsame, Wwe compute the Hamming rate
over all overlapping read pairs and use the average of the lower %—fraction as estimate.
As alternative, one could also use the sequencing error rate to compute dgyme, since the
corresponding reads contain only sequencing errors. These error rates are, however, not
always available, especially when preprocessing steps like error correction are included.
Since dy can be simply computed and d; ~ %dsame + L;lddiff, we get an estimate on
daigr as well. Finally, the similarity score of reads » and s is defined as

o f (disrs, OIPVS: dsame)
f (disrs, olprs, dir)

with f being the binomial probability density function for disrs successes.

Schrinner et al. Genome Biology (2020) 21:252 Page 15 of 22

Please note that the score is negative if the read pair appears to be from different
haplotypes and positive in the opposite case.

In our studies, we noticed that the disagreement rate between haplotypes varied
between different regions. In order to increase the accuracy of our model, we partition the
variants into windows wy, . . ., w; of average read length and compute dsame and dg;r inde-
pendently for each window. If the overlap region of a read pair spans multiple windows,
we use the weighted average of the d-values.

As clustering model, we chose cluster editing [19], which takes a complete graph with
real edge weights as input and finds the most cost-efficient way to transform it into a graph
only consisting of disjoint cliques. Therefore, positive weighted edges are interpreted as
present edges and negative ones as missing edges. The absolute value of a weight is the
cost to either insert a missing or delete a present edge. A small example of this model can
be found in Fig. 5. For our algorithm, we model each read as a node of the input graph
and use the similarity score for each read pair to obtain edge weights. Non-overlapping
read pairs are defined to have an edge weight of 0, which we call a zero-edge. The resulting
cliques can be interpreted as clusters of reads with high confidence of originating from
the same haplotype.

The number of clusters depends on the data and is not an input parameter. In practice,
we get much more than k clusters for two reasons: First, the distance between variants
can vary and can become too large for some variant pairs such that enough reads con-
nect them with sufficient confidence. Second, collapsed regions lead to clusters with reads
from multiple haplotypes, forcing single-haplotype clusters to be discontinued. Restrict-
ing the cluster editing model to k clusters would force clusters to span poorly connected
variants and split up reads from locally identical sequences. As this would likely introduce
errors, we instead postpone the problem of reducing the clusters to k haplotypes to the
second part of our algorithm.

Due to the NP hardness of the cluster editing problem, it is infeasible to solve it to opti-
mality on large real-world instances as given by the comparison of all read pairs. Instead,
we use a heuristic that greedily picks an edge in each iteration and decides whether it
should be present in the resulting clique graph or not, potentially inserting or deleting

oo o0

"'
.

o o
o oL

Fig.5 Cluster editing example. The input graph on the left contains one node per read and positive
weighted edges (blue) for similar reads and negative weighted edges (pink) for dissimilar reads. All other
edges are zero-edges and not drawn for sake of simplicity. The model considers blue edges as present edges
and pink edges as missing edges, as shown in the second graph. The information of the pink edges is still
used as insertion cost for missing edges. The third graph indicates operations needed to get a clique graph
as dashed edges. The blue edges need to be deleted, and the pink needs to be inserted. The final clique
graph is shown on the right

Schrinner et al. Genome Biology (2020) 21:252 Page 16 of 22

edges. We denote the first case as making an edge permanent and the second one as
making an edge forbidden. If an edge (u,v) is made permanent, for all other nodes w, it
must hold that either both (i, w) and (v, w) must be in the final clique graph or none of
them. Similarly, if («, v) is made forbidden, there must not be any node w such that both
(#, w) and (v, w) are in the final clique graph. Following these conditions, we can compute
induced costs for each edge (u, v), which reflect the costs of obligatory insertion and dele-
tion operations for making (u, v) permanent or forbidden. These costs are called icp(u, v)
and icf(x, v) respectively and were originally defined in [31]. Once an edge becomes per-
manent (forbidden), its weight is set to oo (—o0) and all induced costs of incident edges
are updated accordingly.

To improve the running time, we ignore zero-edges in the heuristic and assume them
to not be present in the solution, unless one of them is needed to complete a clique.

Haplotype threading

For the second part of the algorithm, we developed a novel approach called haplotype
threading, which performs the actual phasing to k haplotypes. The cluster editing step
results in a set C of read clusters with two properties: First, the number of clusters at a
position i € {0,...,n — 1} can be larger than k, so that some clusters do not contribute
to any computed haplotype. Second, the reads in a cluster ¢ € C usually do not cover
the whole chromosome, but only a part of the # variants, so in order to obtain whole-
chromosome haplotypes, these must be assembled from multiple clusters. This is done
by threading a haplotype through the clusters, meaning that for every haplotype, a path
through C is assembled by choosing one cluster ¢ € C for each haplotype at every variant
position i.

In a genome of ploidy &, we seek for k haplotypes and thus assemble all k sequences
simultaneously by choosing k-tuples of clusters at each position. Duplicate clusters within
tuples are allowed since reads from one cluster can belong to multiple true haplotypes: For
regions with high local similarity between the true haplotypes, the corresponding reads
are likely placed into one cluster by the cluster editing step.

In the threading process, we aim at achieving three objectives: (i) genotype concor-
dance, (ii) read coverage, and (iii) haplotype contiguity. The first, genotype concordance,
captures the agreement between the known target genotype and the chosen clusters.
For the true haplotypes Hy,...,Hi_1 of length #, the corresponding genotype can be
described as the component-wise sum G = Hp + H; + --- + Hi_1 and is denoted by
G = g0,41,---,gu—1. Furthermore, for each cluster ¢ and each position i, we can com-
pute the consensus cons(c,i) € {0,1,—} as the most frequent allele among all reads in
¢ at position i. Using this definition, we can compute a consensus genotype of a k-tuple
(co-..,Cx_1) at position i as le;_ol cons(cj, i). For each position i, we then only take those
cluster tuples into account whose consensus genotype at i is concordant with the target
genotype, i.e., Z]IF;OI cons(cj, i) = g;. Reducing the search space of possible tuples this
way increases efficiency as well as accuracy by filtering out non-promising combinations
beforehand. In case there is no tuple with a concordant genotype at position i, we allow
genotype deviations of 1; if this also fails, all possible tuples are considered.

To determine the best fit among the possible cluster tuples, we designed an objec-
tive function that takes the remaining two criteria into account as follows. The second
criterion is read coverage. Since in locally identical regions multiple haplotypes can be

Schrinner et al. Genome Biology (2020) 21:252 Page 17 of 22

threaded through the same cluster—which leads to multiple appearances of this clus-
ter in the k-tuple—this number of haplotypes has to correspond to the coverage of the
chosen cluster. The relative coverage of a cluster c at position i describes the number
of reads in ¢ covering i divided by the total number of reads in all clusters that cover
i. We denote this value by cov(c, i). Then, we can compute the expected copy number
of a cluster c at j, i.e., the expected number of haplotypes that are threaded through ¢,
by chexp(c,i) = [kcov(c, i) — i—| The true copy number of ¢ in a chosen cluster tuple
(co,-..,Ck—1) is given by cnyye((cos .- ck—1),60) = [{i | i € {0,....,k — 1},¢c = ¢}
Deviations of the true number of occurrences from the expected ones are penalized by
a constant factor pcoy per cluster, so that a cluster tuple (¢, . .., ck—1) is evaluated by the
cost function

k—1

COStScov((€o, - - k-1),8) = Y peovll Mexp(€jy i) # chirue((Co, - -5 k1), 65y D)]]

j=0
where [[x # y]] returns 1 if x # y and 0 otherwise.

The third and last criterion, haplotype contiguity, encourages haplotypes to stay in the
same cluster as long as possible, so that switching of haplotypes between clusters is penal-
ized. For two consecutive cluster tuples (co, . . ., cx—1) and (c(), ey c}(_l) at positions i and
i+ 1, we denote the cost factor by psyitch, which results in the cost function

k—1
COStSswitch ((Co, e Ck—1)s (067) C;<—1)) = Zpswitch [[Ci i C;]]
i=0

We developed a dynamic programming approach to rapidly find the optimal sequence
of tuples that minimizes all costs. We compute a two-dimensional matrix S with a column
for every variant j from 0 to » — 1 and a row for every possible genotype-conform tuple of
clusters. Since the number of eligible cluster tuples can differ between variant positions,
the columns of S do not necessarily have the same lengths. We denote the length of a

column j with /;. Using the cost functions defined above, S[i,] is then computed as

S[i,0] = costscoy(ci, 0)
S[i,j] = costscov(cis)+
min (S[k,j — 1] +costsswitch (Ck> i) forj > 0 ,
ke(0,...li—1—1)
where ¢; denotes the cluster tuple in row i. The optimal threading score is then given by
the minimum value in the last column. Starting at this position, we assemble the sequence
of clusters with minimum costs via backtracing.

The threading process is illustrated in Fig. 6a for k = 4. The clusters from the first
step are drawn as gray shapes in a two-dimensional space, where the horizontal position
refers to the variants covered by the reads inside a cluster and the height represents the
relative coverage of a cluster at every position. The position on the y-axis has no numer-
ical meaning and is just used for illustration purpose. Starting from the left, a 4-tuple of
the five present clusters needs to be chosen. According to the coverage, the best choice
is to thread one haplotype through each of the four clusters with highest coverage and
ignoring the smallest one, as this is likely to contain noisy reads only. From thereon, the
threads change clusters whenever a cluster ends or undergoes a drastic change in relative

coverage.

Schrinner et al. Genome Biology (2020) 21:252

— b o
e N
© e i g -
o © - e,
S = @ S
7] pge———r Y
SRS, 3 Y
9 o
v fah ' s
=
« SN S = =
wn | 4 =) . .
2] 5
g % { e IR S
E] S o R
E] N 2 \ e i ;
S S .. KN
pE—— g —
v <«——— variantspace @——» + <«——— variantspace @ —— ==

(a) Example of tetraploid threading (b) Critical switching positions

Fig. 6 Visualization of the threading. a Clusters of reads are represented as gray shapes with their horizontal
span indicating the covered variants and the height being the respective coverage. The k = 4 threads are
shown as colored lines passing through the clusters. Multiple threads can co-enter the same cluster if the
coverage is suited. b Alternative threading with the same score in our model. Two positions cause ambiguity
and allow switches in the threading compared to a. These are candidate cut positions to prevent switch
errors in the final phasing

Block cuts

Phasing tools are able to divide phased haplotypes into blocks if there is not enough evi-
dence in the data to connect these blocks. This is usually done when there are two variants
with no connecting read in between. For polyploid organisms, however, even a single
connecting read is not sufficient, as reads from k — 1 different haplotypes are needed to
resolve the connection of k haplotypes on both sides. In general, block cuts are a trade-
off between block length and accuracy, as one of these metrics can easily be optimized
by giving up the other one. To offer more flexibility to the user, WHATSHAP POLYPHASE
provides different modi of applying block cuts to either get short and accurate or long but
less accurate blocks.

Since it is uncertain whether different read clusters represent the same or different hap-
lotypes, the most conservative method is to cut the phasing whenever one thread switches
to another cluster, which we call single-switch-cuts. While this yields the lowest block-
wise error rate, many of these cuts can be avoided. If only one thread switches the cluster,
while the other k — 1 threads stay, one could conclude that the old cluster is linked to
the new one by process of elimination. If two or more threads switch, the continuation is
ambiguous and a cut can be placed here to prevent switch errors, which we call a multi-
switch-cut. In principle, only the switching threads need to be cut, while the rest can stay
connected. To the best of our knowledge, however, there is no established method to
express such selective block cuts in a VCF file. Therefore, all haplotypes are interrupted
in case of a multi-switch-cut.

The last type of cuts is the separation-cut, which is necessary to handle collapsed
regions. Assume a cluster contains multiple threads at some position and the number of
threads has to be decreased by 1 for the next position due to a decrease in coverage. Even
though this is not covered by the multi-switch-cuts, there is still a choice which of the
contained threads should leave the cluster. If all threads have been in the cluster since the
start of the current block, the leaving thread can be chosen arbitrarily. However, if they
entered the current cluster on different positions or from different predecessor clusters,
the choice affects the resulting haplotype sequences and we need to insert a separation-
cut here to avoid potential switch errors. Figure 6b shows an example, where two threads
(green and blue) share the same cluster before one of them has to leave. Either of them
switching would lead to a different result, for which we do not know the correct one.

Page 18 of 22

Schrinner et al. Genome Biology (2020) 21:252 Page 19 of 22

Preprocessing and phasing the potato genome

We ran a recently developed error correction pipeline [25] to reduce the typically high
number of sequencing errors in the Oxford Nanopore MinION reads, in order to use
them for variant calling and phasing. Illumina reads were first self-corrected using Lighter
[32], the corrected reads were used to build a de Bruijn graph with bcalm2 [33], and the
MinION reads were aligned to the graph with GraphAligner [25]. We used the default
parameters for the error correction pipeline (Lighter k = 21, bcalm2 k = 61 and abun-
dance = 3, GraphAligner default alignment parameters). The corrected read sequence of
each mapped MinION read was obtained from the path of its respective alignment in the
graph. The corrected reads where aligned to the reference genome using minimap2 [26]
and converted to BAM-format using samtools [34]. In the next step, we ran FreeBayes [27]
(with additional parameters: -p 4 -no-indels -no-mnsp -no-complex) inside
of all gene regions to call SNPs from the corrected Nanopore alignments. As base qualities
are not produced during error correction and FreeBayes seems to need them in order to
compute genotypes, we added a constant quality of 40 for all bases to the BAM file before
calling SNPs. Finally, we ran WHATSHAP POLYPHASE in order to phase the variants with
option -verify-genotypes. This option invokes an additional step prior to phasing,
which re-genotypes all variants and only keeps those positions for which the computed
genotype matches the input genotype. For determining the genotype of a position, we
implemented a simple algorithm that calculates the fraction of reference and alternative
alleles that cover a variant and compare it to the fractions that we would expect for all
possible genotypes. We then assign the genotype whose expected fractions of reference
and alternative alleles best match the ones observed in the data.

We focused on the FRIGIDA-like protein 5 isoform X2 gene to demonstrate a use case
of polyploid phasing. We first extracted all phased variants that are part of the longest
phasing block reported by WHATSHAP POLYPHASE for this gene. In order to assign reads
to the haplotypes computed by WHATSHAP POLYPHASE, we extended the command
whatshap haplotag, which was previously implemented for the diploid version of
whatshap, to the polyploid case. Given a phased VCF with predicted haplotypes and
BAM file with sequencing reads, we assign each read to the haplotype it is most simi-
lar to in terms of the alleles observed at variant positions in the read. This assignment is
stored by tagging the respective sequences in the BAM file, which enables visualizing the
haplotype clusters by programs like IGV [23] (see Fig. 4c). Furthermore, we extended the
subcommand whatshap split to higher ploidies, which can be used to split tagged
reads by haplotype and store them in separate files. For each haplotype, we produced a
BAM file with reads in this way.

In the next step, we ran wtdbg2 [28] (with options -x ccs -g 1m) separately for
reads corresponding to each haplotype to generate haplotype-resolved assemblies for
the Frigida gene. Those were further analyzed with NCBI's ORFfinder and COBALT
algorithms [29, 30] using their web interfaces (https://www.ncbi.nlm.nih.gov/orffinder/,
https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/513059-020-02158-1.

Additional file 1: We provide the switch errors and Hamming rates of WHATSHAP POLYPHASE and H-POPG,
HapCompass, HapTree and Ranbow on an exemplary region of chromosome 1. Further, we provide figures showing

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi
https://doi.org/10.1186/s13059-020-02158-1

Schrinner et al. Genome Biology (2020) 21:252 Page 20 of 22

the N50 block lengths and the corresponding Hamming rates for different block cut strategies of WHATSHAP
POLYPHASE on the artificial tetraploid human dataset, including real and simulated reads on different coverages. We
also include a comparison between WHATSHAP POLYPHASE and H-POPG in collapsing regions, using long blocks
similar to H-POPG. For the potato data, we show the relation between the fraction of phased variants and
heterozygosity level in the potato genes and also include a figure showing the haplotype assemblies for the
FRIGIDA-like protein 5 isoform X2 gene. Additionally, we show an example for the phasing behavior of WHATSHAP
POLYPHASE and H-POPG over weakly connected variants. Last, we provide a description of the haploid N50 block
length and the comparison between the regular and the haploid N50 for several simulated datasets.

Additional file 2: Review history.

Peer review information
Barbara Cheifet was the primary editor of this article and managed its editorial process and peer review in collaboration
with the rest of the editorial team.

Acknowledgements
We thank Sebastian Bdcker for pointing us to the idea to use the icp and icf values in a greedy cluster editing heuristic.

Review history
The review history is available as Additional file 2.

Authors’ contributions

SDS, RSM, JE, GWK, and TM developed the algorithmic concepts and designed the study. RSM designed the haplotype
threading algorithm and implemented a prototype. SDS designed and implemented the cluster editing algorithm,
designed the block cut strategies, and optimized the threading implementation. JE performed the evaluation and
analyzed the potato dataset. MR ran the error correction on the potato reads. LS, JJR, and BU performed potato
sequencing, and BU helped with the interpretation of phasing results. SDS, RSM, and JE integrated all software
components into WhatsHap and tested the workflow. SDS, RSM, JE, GWK, and TM wrote the paper. All authors read and
approved the final manuscript.

Authors’ information
Twitter handles: @guwekl (Gunnar W. Klau), @tobiasmarschal (Tobias Marschall), @rserramari (Rebecca Serra Mari),
@usadellab (Bjorn Usadel).

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — 395192176 and 391137747 -
as well as under Germany's Excellence Strategy — EXC 2048/1 —390686111. BU acknowledges funding by the German
ministry of education and research BMBF 031A536C. Open access funding provided by Projekt DEAL.

Availability of data and materials

WHATSHAP POLYPHASE is available as open source code under the MIT License [35]. The version to generate the results in
this paper is archived at [36]. All scripts needed to handle the input data and to reproduce the analyses can be found at
https://github.com/eblerjana/whatshap-polyphase-experiments. The input files for the data generation are alignments
of the diploid samples and gold standard phasings of these samples, which can be found at ftp://ftp.1000genomes.ebi.
ac.uk/voll/ftp/data_collections/hgsv_sv_discovery/working/20180102_pacbio_blasr_reheader/ and on https://zenodo.
org/record/3999218, respectively. For read simulation, the pipeline uses the file SRR3658380.fastq as example file, which
is available at https://www.ncbi.nlm.nih.gov/sra/SRX1837675. Solanum tuberosum sequencing data has been made
available at the NCBI with accession number PRINA587397 [37].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Algorithmic Bioinformatics, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225 Dusseldorf, Germany.
2|nstitute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Disseldorf, Moorenstrale
5, 40225 Dusseldorf, Germany. >Center for Bioinformatics, Saarland University, Saarland Informatics Campus E2.1, 66123
Saarbriicken, Germany. 4Graduate School of Computer Science, Saarland Informatics Campus E1.3, 66123 Saarbriicken,
Germany. °Max Planck Institute for Informatics, 66123 Saarbriicken, Germany. ®Forschungszentrum Jilich IBG-4,
Wilhelm-Johnen-Str., 52428 Jilich, Germany. 7Institute for Biology I, RWTH Aachen, Worringer Weg 3, 52074 Aachen,
Germany. 8Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Dusseldorf, Universitétsstr. 1,
40225 Dusseldorf, Germany.

Received: 3 February 2020 Accepted: 26 August 2020
Published online: 21 September 2020

https://github.com/eblerjana/whatshap-polyphase-experiments
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20180102 _pacbio_blasr_reheader/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20180102 _pacbio_blasr_reheader/
https://zenodo.org/record/3999218
https://zenodo.org/record/3999218
https://www.ncbi.nlm.nih.gov/sra/SRX1837675

Schrinner et al. Genome Biology (2020) 21:252 Page 21 of 22

References

1.

20.

21

22.

23.

24.

25.

26.

Yang J, Moeinzadeh M-H, Kuhl'H, Helmuth J, Xiao P, Haas S, Liu G, ZhengJ, Sun Z, Fan W, Deng G, Wang H, Hu
F, ZhaoS, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome
traces back its hexaploidization history. Nat Plants. 2017;3(9):696-703. https://www.nature.com/articles/s41477-017-
0002-z.

Visser RGF, Bachem CWB, Borm T, de Boer J, van Eck HJ, Finkers R, van der Linden G, Maliepaard CA, JGA M,
Voorrips R, Vos P, Wolters AMA. Possibilities and challenges of the potato genome sequence. Potato Res.
2014,57(3-4):327-30.

Li K-T, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, Ma Q, Zhang P, Fitzpatrick TB, Gruissem W,
Vanderschuren H. Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat
Biotechnol. 2015;33:1029-32.

Klau GW, Marschall T. A guided tour to computational haplotyping. In: Unveiling dynamics and complexity. Lecture
Notes in Computer Science. Cham: Springer; 2017. p. 50-63.

Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the single nucleotide polymorphism haplotype
assembly problem. Brief Bioinform. 2002;3(1):23-31.

Patterson M, Marschall T, Pisanti N, van lersel L, Stougie L, Klau GW, Schonhuth A. WhatsHap: weighted haplotype
assembly for future-generation sequencing reads. J Comput Biol. 2015;22(6):498-509.

Aguiar D, Istrail S. Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics.
2013;29(13):352-60.

Aguiar D, Istrail S. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data. J
Comput Biol. 2012;19(6):577-90.

Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel Bayesian framework for single individual polyplotyping
using NGS data. PLoS Comput Biol. 2014;10(3):1003502.

Motazedi E, Finkers R, Maliepaard C, de Ridder D. Exploiting next-generation sequencing to solve the haplotyping
puzzle in polyploids: a simulation study. Brief Bioinform. 2017;19(3):387-403. https://academic.oup.com/bib/article/
19/3/387/2870504.

Das S, Vikalo H. SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC
Genomics. 2015;16:260.

Xie M, Wu Q, Wang J, Jiang T. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping
of polyploids. Bioinformatics. 2016;32(24):3735-44.

He D, Saha'S, Finkers R, Parida L. Efficient algorithms for polyploid haplotype phasing. BMC Genomics.
2018;19(Suppl 2):110.

Motazedi E, de Ridder D, Finkers R, Baldwin S, Thomson S, Monaghan K, Maliepaard C. Tripoly: haplotype
estimation for polyploids using sequencing data of related individuals. Bioinformatics. 2018;34(22):3864-72. https://
doi.org/10.1093/bioinformatics/bty442.

Chaisson MJP, Mukherjee S, Kannan'S, Eichler EE. Resolving multicopy duplications de novo using polyploid
phasing. Res Comput Mol Biol. 2017;10229:117-33.

Cai G, Sanghavi S, Vikalo H. Structured Low-Rank matrix factorization for haplotype assembly. IEEE J Sel Top Signal
Process. 2016;10(4):647-57.

Hashemi A, Zhu B, Vikalo H. Sparse tensor decomposition for haplotype assembly of diploids and polyploids. BMC
Genomics. 2018;19(Suppl 4):191.

Siragusa E, Haiminen N, Finkers R, Visser R, Parida L. Haplotype assembly of autotetraploid potato using integer
linear programing. Bioinformatics. 2019;35(18):3279-86. https://doi.org/10.1093/bioinformatics/btz060.

Zahn CTJ. Approximating symmetric relations by equivalence relations. J Soc Ind Appl Math. 1964;12. https://doi.
org/10.1137/0112071.

Topfer A, Marschall T, Bull RA, Luciani F, Schonhuth A, Beerenwinkel N. Viral quasispecies assembly via maximal
clique enumeration. PLoS Comput Biol. 2014;10(3):1-10. https://doi.org/10.1371/journal.pcbi.1003515.

Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Gardner EJ, Rodriguez O, Guo L, Collins
RL, Fan X, Wen J, Handsaker RE, Fairley S, Kronenberg ZN, Kong X, Hormozdiari F, Lee D, Wenger AM, Hastie A,
Antaki D, Audano P, Brand H, Cantsilieris S, Cao H, Cerveira E, Chen C, Chen X, Chin C-S, Chong Z, Chuang NT,
Lambert CC, Church DM, Clarke L, Farrell A, Flores J, Galeev T, Gorkin D, Gujral M, Guryev V, Heaton WH, Korlach
J, KumarS, Kwon JY, Lee JE, LeeJ, Lee W-P, Lee SP, LiS, Marks P, Viaud-Martinez K, Meiers S, Munson KM,
Navarro F, Nelson BJ, Nodzak C, Noor A, Kyriazopoulou-Panagiotopoulou S, Pang A, Qiu 'Y, Rosanio G, Ryan M,
Stltz A, Spierings DCJ, Ward A, Welch AE, Xiao M, Xu W, Zhang C, Zhu Q, Zheng-Bradley X, Lowy E, YakneenS,
McCarroll' S, Jun G, Ding L, Koh CL, Ren B, Flicek P, Chen K, Gerstein MB, Kwok P-Y, Lansdorp PM, Marth G, Sebat
J, Shi X, Bashir A, Ye K, Devine SE, Talkowski M, Mills RE, Marschall T, Korbel JO, Eichler EE, Lee C. Multi-platform
discovery of haplotype-resolved structural variation in human genomes. Nat Commun. 2019;10(1):1784. https://doi.
0rg/10.1038/541467-018-08148-z.

OnoY, Asai K, Hamada M. PBSIM: PacBio reads simulator—toward accurate genome assembly. Bioinformatics.
2012;29(1):119-21. https://doi.org/10.1093/bioinformatics/bts649.

Robinson JT, Thorvaldsdéttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics
viewer. Nat Biotechnol. 2011;29(1):24.

Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, Manrique-Carpintero NC, Newton L, Pham
GM, Vaillancourt B, Yang X, Zeng Z, Douches DS, Jiang J, Veilleux RE, Buell CR. Genome reduction uncovers a
large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum
tuberosum. Plant Cell. 2016;28(2):388-405. https://doi.org/10.1105/tpc.15.00538.

Rautiainen M, Marschall T. Graphaligner: rapid and versatile sequence-to-graph alignment. BioRxiv. 2019810812.
https://doi.org/10.1101/810812.

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-100. https://doi.org/
10.1093/bioinformatics/bty191.

https://www.nature.com/articles/s41477-017-0002-z
https://www.nature.com/articles/s41477-017-0002-z
https://academic.oup.com/bib/article/19/3/387/2870504
https://academic.oup.com/bib/article/19/3/387/2870504
https://doi.org/10.1093/bioinformatics/bty442
https://doi.org/10.1093/bioinformatics/bty442
https://doi.org/10.1093/bioinformatics/btz060
https://doi.org/10.1137/0112071
https://doi.org/10.1137/0112071
https://doi.org/10.1371/journal.pcbi.1003515
https://doi.org/10.1038/s41467-018-08148-z
https://doi.org/10.1038/s41467-018-08148-z
https://doi.org/10.1093/bioinformatics/bts649
https://doi.org/10.1105/tpc.15.00538
https://doi.org/10.1101/810812
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191

Schrinner et al. Genome Biology (2020) 21:252 Page 22 of 22

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907.
2012.

Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17:155-58. https://www.
nature.com/articles/s41592-019-0669-3.

Wheeler DL, Church DM, FederhenS, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E,
Tatusova TA, et al. Database resources of the national center for biotechnology. Nucleic Acids Res. 2003;31(1):28-33.
Papadopoulos JS, Agarwala R. Cobalt: constraint-based alignment tool for multiple protein sequences.
Bioinformatics. 2007;23(9):1073-9.

Bocker S, Briesemeister S, Klau GW. Exact algorithms for cluster editing: evaluation and experiments. Algorithmica.
2011,60(2):316-34. https://doi.org/10.1007/500453-009-9339-7.

Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error correction without counting.
Genome Biol. 2014;15(11):509.

Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics. 2016;32(12):201-8. https://doi.org/10.1093/bioinformatics/btw279.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence
alignment/map format and samtools. Bioinformatics. 2009;25(16):2078-9.

Schrinner S, Serra Mari R, Ebler J, Marschall T, Klau GW. WHATSHAP POLYPHASE source code. 2020. https://github.
com/whatshap/whatshap. Accessed 25 Aug 2020.

Schrinner S, Serra Mari R, Ebler J, Marschall T, Klau GW. Version of WHATSHAP POLYPHASE used to produce the
results in this manuscript. 2020. https://zenodo.org/record/3999208. Accessed 25 Aug 2020.

Seillier L, Usadel B, Reimer J. Solanum tuberosum genome sequencing. Oxford Nanopore and lllumina Data. NCBI
Short Read archive. 2019. https://www.ncbi.nim.nih.gov/bioproject/PRINA587397. Accessed 04 Nov 2019.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

* gold Open Access which fosters wider collaboration and increased citations

e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

https://www.nature.com/articles/s41592-019-0669-3
https://www.nature.com/articles/s41592-019-0669-3
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1093/bioinformatics/btw279
https://github.com/whatshap/whatshap
https://github.com/whatshap/whatshap
https://zenodo.org/record/3999208
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA587397

	Abstract
	Keywords

	Background
	Related work
	Contribution

	Results
	Phasing model and algorithm
	WhatsHap polyphase produces accurate results
	Evaluation statistics
	Testing on artificial polyploid humans

	Identifying collapsing regions
	Potato data
	Runtimes

	Discussion
	Conclusions
	Methods
	Clustering
	Haplotype threading
	Block cuts
	Preprocessing and phasing the potato genome

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02158-1.
	Additional file 1
	Additional file 2

	Peer review information
	Acknowledgements
	Review history
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

