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Abstract

Long-read sequencing is promising for the comprehensive discovery of structural
variations (SVs). However, it is still non-trivial to achieve high yields and performance
simultaneously due to the complex SV signatures implied by noisy long reads. We
propose cuteSV, a sensitive, fast, and scalable long-read-based SV detection
approach. cuteSV uses tailored methods to collect the signatures of various types of
SVs and employs a clustering-and-refinement method to implement sensitive SV
detection. Benchmarks on simulated and real long-read sequencing datasets
demonstrate that cuteSV has higher yields and scaling performance than state-of-
the-art tools. cuteSV is available at https://github.com/tjiangHIT/cuteSV.
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Background
Structural variations (SVs) represent genomic rearrangements such as deletions, inser-

tions, inversions, duplications, and translocations whose sizes are larger than 50 bp [1].

As the largest divergences across human genomes [2], SVs are closely related to human

diseases (e.g., inherited diseases [3–5] and cancers [6]), evolution (e.g., gene losses and

transposon activity [7, 8]), gene regulations (e.g., rearrangements of transcription factors

[9]), and other phenotypes (e.g., mating and intrinsic reproductive isolation [10, 11]).

Efforts have been made to develop short-read-based SV calling approaches [12, 13].

Most of them use the methods such as read-depths [14], discordant read-pairs [15],

split read alignments [16], local assembly [17], or their combinations [18–20], and they

have played important roles in large-scale genomics studies such as 1000 Genomes

Project [1]. However, the relatively low read length limits these tools to implement

sensitive SV detection [21], and false positives exist as well [22].

With the rapid development of long-read sequencing technologies, such as Pacific

Bioscience (PacBio) [23] and Oxford Nanopore Technology (ONT) [24] platforms,

long-range spanning information provides the opportunity to more comprehensively

detect SVs at a higher resolution [25]. However, novel computational approaches are

required to well-handle the high sequencing error rates (typically 5–20%) and large
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lengths (over 10kbp on average) of the reads [26]. Mainly, two categories of approaches

were employed in previous studies, i.e., de novo assembly-based and read alignment-

based.

De novo assembly-based approaches [27–29] aim at assembling reads to longer gen-

omic sequences (i.e., contigs and/or scaffolds) and discover SVs from the alignments be-

tween the assembled sequences and a reference. Such approaches are less influenced by

the reference than that of read alignment-based approaches, especially free of read align-

ment artifacts. However, they are usually computational-intensive and still have some dif-

ficulties in the reconstruction of haplotype sequences of large genomes [30], which are

also shortcomings to SV calling (a brief discussion is in the “Discussion” section).

Read alignment-based approaches directly align reads against the reference and

detect SVs by analyzing the alignment results. Such approaches are more cost-

effective to computational resources without lack of sensitivity and have been

widely used in long read-based SV calling. Several read-alignment-based SV callers

have been proposed, such as PB-Honey [31], SMRT-SV [32], Sniffles [33], PBSV

(https://github.com/PacificBiosciences/pbsv), and SVIM [34]. They use various

methods to find evidence of SVs implied by read alignments, such as the identifica-

tion of local genomic regions with highly divergent alignments, the local assembly

and re-alignment of clipped read parts, and the clustering of SV-spanning signa-

tures [35]. Moreover, state-of-the-art long-read aligners, such as BLASR [36],

NGMLR [33], Minimap2 [37], and PBMM2 (https://github.com/PacificBiosciences/

pbmm2), were usually employed for read alignment.

However, read alignment-based SV calling is still non-trivial. Under the circumstance

of high sequencing errors and complicated SVs, the alignment of the reads around SV

breakpoints are chimeric and heterogeneous, usually less sensitive and accurate. There-

fore, the SV signatures implied by read alignments are highly complicated, and it is dif-

ficult to collect and analyze them to implement sensitive detection for various kinds of

SVs. Mainly, state-of-the-art tools have the following technical issues to be addressed:

(1) overall, the sensitivity is still not satisfying (i.e., a high sequencing coverage is re-

quired and/or some SVs are still hard to detect); (2) some approaches (such as rMETL

[38], rCANID [39], and npInv [40]) can only detect a subset or a particular class of SVs

due to their specific designs; (3) some approaches (such as PBSV and SMRT-SV) are

still time-consuming and do not have good scaling performance, which could be not

suited to many large datasets; and (4) some approaches (such as SMRT-SV and PB-

Honey) only support one type of sequencing data (e.g., for PacBio reads only), as they

take the advantage of the characteristics of the data. These drawbacks are still the

bottlenecks to the wide use of long-read sequencing data.

Herein, we present cuteSV, a versatile read-alignment-based SV detection approach

having several beneficial features. (1) cuteSV has better SV detection yields than those

of state-of-the-art SV callers. Especially, it has higher sensitivity for low coverage data-

sets without lack of accuracy. (2) cuteSV supports the datasets produced by mainstream

long-read sequencing platforms with various error rates and can discover various types

of SVs (including deletions, insertions, duplications, inversions, and translocations). (3)

cuteSV has faster or comparable speed to state-of-the-art approaches with lower RAM

usage. More importantly, it has outstanding scalability, i.e., enables to achieve almost

linear speedup with the number of CPU threads. With these features, cuteSV is suited
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to large-scale data analysis tasks and has potentials to the cutting-edge genomics

studies.

Results
Overview of cuteSV

Using sorted BAM file(s) as input, cuteSV extracts large insertions/deletions and split

alignments in aligned reads as SV signatures and clusters and analyzes them to call

SVs. The approach has three major steps as follows.

Step 1: cuteSV uses multiple signature extraction methods to comprehensively collect

the signatures of various types of SVs. Furthermore, the insertions and deletions are

heuristically combined to recover the evidence of real SVs from fragile alignments.

Step 2: cuteSV uses a specifically designed clustering-and-refinement approach to clus-

ter the chimerically aligned reads in local regions and further refines the clusters to

precisely distinguish the SV signatures from heterozygous SVs.

Step 3: cuteSV uses several tailored rules to implement SV calling and genotyping

based on the refined clusters of SV signatures.

A schematic illustration is in Fig. 1, and more details are in the “Materials and

methods” section.

The major contribution of cuteSV approach is that it uses tailored heuristics to ad-

dress three difficult technical issues in the alignment-based SV calling.

Firstly, due to the scoring systems of read aligners, some large SV events could be di-

vided into several smaller insertions/deletions in a local region. Such cases are usually

treated as multiple smaller SVs mistakenly. However, in step 1 of cuteSV, a heuristic

method is used to combine insertions/deletions in nearby genomic regions to unbroken

signatures of larger SVs. This method not only reduces the errors caused by the fragile

read alignments, but also enables to produce more homogenous SV signatures from

various reads, which is beneficial to the processing of later steps.

Secondly, reads spanning the same SV usually have heterogeneous breakpoints in

their alignments, which also cause false-positive SV calls. In step 2 of cuteSV, the spe-

cifically designed clustering-and-refinement approach enables to adaptively cluster

alignment breakpoints mapped to relatively large local regions but potentially belonging

to identical SVs, so that heterogeneous breakpoints can be merged more effectively and

more false positives can be prevented.

Thirdly, there are occasionally complex heterozygous SVs which multiple SV al-

leles are in same loci. Such SVs are difficult to detect and genotype. In step 2 of

cuteSV, they are handled by a novel heuristic refinement on the SV signature clus-

ters. That is, cuteSV investigates each of the clusters to check if there are hetero-

geneous signatures. If so, it implements a precise analysis to distinguish the reads

potentially from various SV alleles and re-cluster them into more homogeneous

sub-clusters. Taking the advantage of this approach, the complex SVs can be de-

tected and genotyped correctly.

In addition, cuteSV uses a block division-based approach to process input data in a

parallel way with multiple CPU threads. This implementation greatly helps it to achieve
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outstanding scaling performance, which has been demonstrated on several datasets in

various sizes (see below for details).

SV detection with simulated data

We used simulated datasets in various sequencing coverages to assess the “baseline”

sensitivity and accuracy of cuteSV. More precisely, we collected 20,202 various types of

known non-overlapping SVs, i.e., 6167, 9899, and 44 deletions, insertions, and inver-

sions from CHM1 sample callsets [32] (nstd137 in dbVAR database), and 3712 and 380

duplications and translocations from KWS1 sample callsets [41] (nstd106 in dbVAR

database), respectively. The various types of SVs were separately input to VISOR [42]

with human reference genome (version: hs37d5) to generate five in silico donor ge-

nomes. And four PacBio-like datasets were simulated for each of the donor genomes

(mean read length, 8000 bp; error model, default setting of PBSIM simulator [43];

coverages, 5×, 10×, 20×, and 30×, respectively); thus, 20 datasets were simulated in

Fig. 1 Schematic illustration of the cuteSV approach. cuteSV uses sorted BAM file as input to detect SVs in
3 major steps. In step 1 (“discovering SV signatures”), cuteSV collects various types of SV signatures
comprehensively from inter- and intra-alignments. In step 2 (“clustering of SV signatures”), a heuristic
clustering-and-refinement method is employed to sensitively discover accurate SV alleles. In step3 (“SV
calling and genotyping”), cuteSV generates the SV callsets and assigns genotypes
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total. cuteSV and three state-of-the-art SV callers, i.e., Sniffles, PBSV, and SVIM, were

implemented on the simulated datasets for comparison. Refer to the “Materials and

methods” section for more details on the implementation of the simulation.

The benchmark results (Fig. 2a–c and Additional file 1: Table S1, S2, S3) indicate that

cuteSV achieved highest F1 scores on the detection of deletions, insertions, and

Fig. 2 Benchmark results of the SV callers on various simulated datasets. F1 scores of a deletion, b insertion,
c duplication, d inversion, e translocation at breakpoint level, and f translocation at breakend level, for the
simulated datasets in various coverages and w/o genotyping. In the figure, “N×” and “N×-GT” indicate the
statistics without and with genotyping, respectively
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duplications for almost all the coverages w/o genotyping. It also had highest F1 scores

for discovering inversions (Fig. 2d and Additional file 1: Table S4), but the best runner-

up for genotyping due to slightly lower precision. For translocations, cuteSV and Snif-

fles were the best two callers at breakpoint level (Fig. 2e and Additional file 1: Table

S5); meanwhile, cuteSV and PBSV showed higher F1 scores at breakend level (Fig. 2f

and Additional file 1: Table S6) (refer to the “Materials and methods” section for the

method of breakpoint- and breakend-level assessment for translocations). It is worth

noting that SVIM did not assign genotypes for all the translocations and most of the

duplications, which resulted in lower statistics.

Moreover, we assessed the accuracy of genotyping on the 30× simulated datasets with

genotype confusion matrices (Additional file 1: Table S7). It is observed that cuteSV,

PBSV, and SVIM recognized heterozygous and homozygous variants more accurately.

Sniffles often misclassified homozygous variants as heterozygous especially for dele-

tions, insertions, and duplications.

We also investigated the distinction of accurate calls of cuteSV made by various kinds

of signatures (on the 30× simulated datasets, Additional file 1: Table S8). It shows that

most of accurate insertion (93.59%) and deletion (96.18%) calls are produced with only

CIGAR signatures, and the proportions of accurate calls produced with only split-

alignment signatures and mixed signatures (CIGAR and split alignment) are low. This

indicates that the employed aligner has a strong ability to handle deletions and inser-

tions in reads to make informative CIGARs. It is also worth noting that this assessment

was only done for insertions and deletions, since other types of SVs (inversions, dupli-

cations, and translocations) can only be detected based on split-alignment signatures.

Overall, the results suggest that cuteSV is a good versatile SV caller, i.e., it is able to

sensitively detect various types of SVs without lack of accuracy, and their genotypes

can be correctly recognized as well.

SV detection with HG002 PacBio data

We further benchmarked cuteSV, Sniffles, PBSV, and SVIM with several real sequen-

cing datasets. The SV callers were implemented on a 69× HG002 PacBio CLR dataset

[44] (mean read length, 7938 bp) at first. A high-confidence insertion and deletion call-

set for this sample made by Genome in a Bottle Consortium (GIAB) [45] was employed

as the ground truth (since the callset of all types of SVs has still not been published by

GIAB during the submission of the manuscript). Truvari (https://github.com/spiralge-

netics/truvari) was used to assess the precision, recall, and F1 score of the callsets pro-

duced by various callers. Their yields are shown in Fig. 3a and Additional file 1: Table

S9. cuteSV simultaneously achieved the highest precision, recall, and F1 score, all of

which were > 94% in absolute terms, which is feasible for practical use. The F1 scores

of SVIM, PBSV, and Sniffles were slightly lower, mainly due to their lower recall statis-

tics (i.e., 89.56%, 88.42%, and 86.27%, respectively). For SV genotyping, cuteSV achieved

> 90% recall and F1 score. SVIM was the best runner-up, and the statistics of PBSV

and Sniffles were obviously lower.

We further randomly down-sampled the dataset to 5×, 10×, 20×, 30×, and 40× to as-

sess the ability of the SV callers on lower coverage datasets (Fig. 3a and Additional file

1: Table S9). cuteSV still achieved higher precisions, recalls, and F1 scores on almost all
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the datasets. Especially, it achieved > 90% F1 score and > 85% GT-F1 score at 20×, indi-

cating that more cost-effective sequencing plans (lower coverages) could be feasible

with cuteSV. However, this is still difficult for other callers since their precisions, re-

calls, and F1 scores were decreased on the down-sampled datasets.

We also assessed the ability of the callers on a PacBio CCS dataset of the same sam-

ple [29, 46] (coverage: 28×, mean read length: 13478 bp). The results of cuteSV and

PBSV were very close to each other (Fig. 3b and Additional file 1: Table 10) (precision,

94.6%; recall, 98.0%; F1 score, 96.3%), and they outperformed Sniffles and SVIM by 1 to

6% on various statistics. cuteSV also outperformed the other three callers by 2 to 33%

on GT-F1 score. We randomly down-sampled this dataset to 5× and 10× for further as-

sessment (Fig. 3b and Additional file 1: Table S10). On the 10× dataset, the F1 score of

PBSV is 0.37% higher than that of cuteSV due to its highest recall (96.70% vs. 93.79%).

The lower recall of cuteSV was mainly due to that the minimal signature size param-

eter setting of cuteSV (default value, 30 bp) was larger than that of PBSV (default value:

20 bp), which hindered cuteSV in identifying more SVs having smaller sizes. Moreover,

it was observed that both of cuteSV and PBSV achieved > 90% precision, recall, and F1

score at 5×, suggesting that the required coverage for SV calling can be lower with high

sequencing quality.

Fig. 3 Benchmark results of the SV callers on various HG002 PacBio sequencing datasets. a Precisions,
recalls, and F1 scores on the whole and down-sampled HG002 PacBio CLR datasets. b Precisions, recalls,
and F1 scores on the whole and down-sampled HG002 PacBio CCS datasets. c Recall rate of homozygous
parental variants. d Mendelian-Discordance-Rates (MDRs) for the variants unique to the offspring
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To assess the ability to detect various types of SVs (i.e., insertions, deletions, inver-

sions, duplications, and translocations) more comprehensively, we further employed

GIAB Ashkenazi Trio PacBio CLR datasets (HG002, HG003, and HG004) to assess the

recall rates and Mendelian-Discordance-Rates (MDRs). cuteSV and SVIM obtained >

95% mean recall rate, i.e., more than 95% homozygous parental SVs has been con-

firmed in the offspring (Fig. 3c and Additional file 1: Table S11). cuteSV was 1% lower

than SVIM on recall rate; however, we realized that this does not mean a lower sensi-

tivity of cuteSV, but due to that about 15% SVs in parental callsets discovered by SVIM

had no genotypes so that they cannot be assessed and decreased the total number of

homozygous parental SVs. Meanwhile, the MDR of cuteSV is lowest (7.36%, Fig. 3d

and Additional file 1: Table S11), indicating that its callsets were more plausible. The

MDRs of SVIM (7.62%) and PBSV (9.25%) are also comparable and much lower than

that of Sniffles (17.45%).

SV detection with HG002 ONT PromethION data

A newly published ONT PromethION dataset of the HG002 sample is used for bench-

marking the SV callers on ONT data (mean read length, 17335 bp; coverage, 47×, avail-

able at ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/

UCSC_Ultralong_OxfordNanopore_Promethion/). The results (Fig. 4a and Additional

file 1: Table S12) suggest that the outperformance of cuteSV (precision, 92.14%; recall,

96.61%; and F1 score, 94.32%) was more obvious than that of the PacBio CLR dataset.

It is also worth noting that PBSV crashed for this dataset. On the randomly down-

sampled datasets (5×, 10×, and 20×), the outperformance of cuteSV was notable as well.

Particularly, cuteSV detected most (85%) of the ground truth SVs only at 10× coverage

with high precision (93.07%) and F1 score (88.85%), while the F1 scores of Sniffles,

SVIM, and PBSV were at least 7% lower at the same coverage. Moreover, the GT-F1

score of cuteSV was at least 9% higher as well.

The SV callsets produced by cuteSV from the HG002 PacBio CLR, PacBio CCS and

ONT PromethION datasets were compared (having 42,732, 50,056, and 51,563 > 30 bp

SV calls, respectively, Fig. 4b, Additional file 1: Fig. S1 and Table S13). Five thousand

eight hundred ninety-five SVs (13.80%) of the PacBio CLR callset, 10,889 SVs (21.75%)

of the PacBio CCS, and 18,878 SVs (36.61%) of the ONT callset are unique. It is worth

noting that 67.18% (3960 of 5895) CLR-only calls and 82.34% (15,545 of 18,878) ONT-

only calls are insertions and deletions, respectively. The numbers coincide with previ-

ous studies [23] that more false-positive insertion and deletion calls are likely to be pro-

duced with PacBio CLR and ONT datasets, respectively [24]. Moreover, it is also

observed that ONT data is more useful to discover large insertions than PacBio CLR

data, mainly because of larger read lengths. An example is shown in Additional file 1:

Fig. S2. A 6481-bp insertion (breakpoint at chr1:9683994) was only detected in the

ONT reads, possibly due to that the PacBio reads in this region are shorter and the

aligners cannot align them with such a large insertion, while a large proportion of

ONT reads carry significant insertion signals in their CIGARs.

Moreover, Venn diagrams of the SV callsets produced by various approaches on the

HG002 PacBio CLR, PacBio CCS, and ONT PromethION datasets were plotted (Fig.

4c–e and Additional file 1: Table S14). For PacBio CLR and CCS data, there are 22,804
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and 29,733 > 30-bp SV calls made by all the approaches, respectively, and cuteSV has

fewer unique calls (3818 for CLR and 2517 for CCS data) than other tools. For ONT

PromethION data, only the callsets of cuteSV, Sniffles, and SVIM were considered, and

35,592 > 30-bp SV calls were made by all of the three tools; the trend is similar to that

of PacBio data. However, the number of unique calls by cuteSV (i.e., 6029 of 51,563) is

slightly higher than that of the other two methods. This is mainly due to that cuteSV

detected more deletions.

Fig. 4 Benchmark results of the SV callers on various of HG002 ONT sequencing datasets. a Precisions,
recalls, and F-scores on the whole and down-sampled HG002 ONT datasets. b The Venn diagram of SV calls
produced by cuteSV from HG002 PacBio CLR, CCS, and ONT PromethION datasets (indicated by “CLR”,
“CCS,” and “ONT”, respectively). c The Venn diagram of SV calls produced by different tools on HG002
PacBio CLR data. d The Venn diagram of SV calls produced by different tools on HG002 PacBio CCS data.
e The Venn diagram of SV calls produced by different tools on HG002 ONT PromethION data
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The performance of the SV callers

We assessed the speed and memory footprint of the SV callers on the three HG002

datasets (Fig. 5 and Additional file 1: Table S15). Generally, using a single CPU thread,

Sniffles with genotyping was faster than other benchmarked SV callers, i.e., Sniffles

(without genotyping), SVIM (w/o genotyping), cuteSV (w/o genotyping), and PBSV

(genotyping cannot be skipped). It is also worth noting that the genotyping step of

cuteSV costs 17 to 55% of the time on various datasets, since it needs to re-check all

the reads around the detected SV breakpoints to infer SV genotypes. When using mul-

tiple CPU threads, only cuteSV has high scaling performance, i.e., it achieved a quasi

linear speedup with the number of CPU threads and its wall clock time was greatly re-

duced. Neither Sniffles nor PBSV had an obvious speedup with more CPU threads

while SVIM does not support multiple-thread computing. In this situation, cuteSV is

faster than all the other callers when using 4 or more threads. On memory footprint,

cuteSV (about 0.1GB to 0.4GB) was smaller than that of other approaches by one or

two orders of magnitude. With its quasi linear multiple-threads speedup and low mem-

ory footprint, we realized that cuteSV is a highly scalable SV detection tool, which is

suited to high-performance computing platforms and large-scale data analysis tasks

such as SV detection in many samples.

The effects of various read aligners on SV calling

We further employed PBMM2 and NGMLR to separately align the reads of the 69×

HG002 PacBio CLR dataset to produce various callsets. Mainly, two issues were

observed.

1) The false negatives (FNs) of the callsets with various aligners are shown in

Additional file 1: Fig. S3A and Table S16. With PBMM2, cuteSV, Sniffles, PBSV,

and SVIM discovered 134, 200, 404, and 55 more < 1-kbp SVs, respectively,

Fig. 5 Performance of the benchmarked SV callers. The a runtimes and b memory footprints of cuteSV,
cuteSV, Sniffles, and PBSV with 1, 2, 4, 8, and 16 CPU threads. “Skip GT” indicates the statistics without
genotyping. SVIM was benchmarked with single CPU thread only since it does not support multiple
thread computing
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indicating that PBMM2 is more helpful to the detection of < 1-kbp insertions and

deletions. Notably, PBSV discovered 369 more insertions (size between 200 and

700 bp) with PBMM2, which are coincided with the sequences of the Alu family.

On the other hand, NGMLR seems better for the detection of > 1-kbp SVs, as 109,

283, 127, and 113 more such SVs were discovered by the four callers respectively.

2) The false positives (FPs) of the callsets with PBMM2 and NGMLR are shown in

Additional file 1: Fig. S3B and Table S17. cuteSV, Sniffles, and PBSV with PBMM2

had slightly higher numbers (155, 54, and 43, respectively) of < 1-kbp FP insertions

and deletions, while SVIM had a higher number (45) of FPs with NGMLR. For >

1-kbp SVs, the numbers of FPs were very close for the corresponding callsets of

cuteSV, PBSV, and SVIM, but there were 32 more FPs in the callset of Sniffles

with NGMLR than that of PBMM2.

The results of cuteSV with various configurations of parameters

We assessed the yields of cuteSV with various configurations of two critical parameters,

i.e., --min_support and --min_size (-s and -l in the software, respectively), on various

coverages (5×, 10×, 20×, 30×, 40×, and 69×) of HG002 CLR datasets.

The --min_support parameter indicates the minimal number of supporting reads to

make an SV call. As the results displayed in Additional file 1: Fig. S4A and Table S18

show, with the default setting of --min_size (--min_size = 30), cuteSV achieved the best

yields when --min_support was configured as 1 to 10 for the various coverages. And there

is an obvious trade-off between precision and recall, that is, setting a smaller --min_sup-

port value might result in higher sensitivity but lower precision, and vice versa.

The --min_size parameter indicates the minimal size of SV signature considered in clus-

tering. Keeping the --min_support parameter fixed, we investigated the results of cuteSV

with two different settings for --min_size (i.e., --min_size = 30 and --min_size = 50, Add-

itional file 1: Fig. S4B). At various coverages, the accuracies of cuteSV were 0.12 to 1.38%

higher with the setting of --min_size = 50, while the recall rates were − 0.06 to 1.09%

higher with --min_size = 30. This indicates that setting --min_size with smaller numbers

might result in higher sensitivity but lower accuracy, and vice versa. It is also worth noting

that, although the trade-off exists, for each coverage, the F1 scores of cuteSV with various

settings are quite close to each other (the difference is less than 1%).

SV detection with NA19240 PacBio CLR data

A PacBio CLR dataset from another well-studied human sample (NA19240) [47] was

employed (mean read length, 6503 bp; coverage, 40×) to benchmark the SV callers

more comprehensively. We collected a callset from a previous study [48] for this sam-

ple and considered it as the ground truth. It contains a total number of 37,657 SVs (size

> 50 bp), including 17,950 deletions, 19,482 insertions/duplications, and 225 inversions.

The precisions, recalls, and F1 scores of the benchmarked SV callers are shown in

Additional file 1: Fig. S5 and Table S19. cuteSV had the highest F1 scores for all types

of SVs (i.e., DEL, 63.37%; INS/DUP, 56.50%; INV, 13.22%; and all types, 59.36%). Snif-

fles and PBSV had lower sensitivities or/and accuracies than that of cuteSV. SVIM out-

performed cuteSV on sensitivity by 6% for all types. However, this is partially due to its
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larger number of predictions (30,024 vs. 21,721, surpassed cuteSV by 38%); meanwhile,

cuteSV showed a 9% higher precision than that of SVIM.

Discussion
Long-read sequencing technologies are promising to discover the SVs of sequenced

sample comprehensively. However, it is still non-trivial to exert the advantages of long

reads due to the high sequencing errors and the complexity of SVs. Herein, we propose

cuteSV, a novel read alignment-based SVs calling approach, to show how to achieve

higher yields, speed, and scaling performance in SV calling with tailored signature ex-

traction, clustering, and refinement methods.

Mainly, the proposed approach has four advantages as follows.

1) The heuristic SV signature extraction methods enable to well-handle the fragile

read alignments around SV breakpoints, which helps to build high-quality SV evi-

dence. This is one of the major reasons that cuteSV outperforms state-of-the-art

tools. An example is in Additional file 1: Fig. S6. It shows how a 272-bp insertion

event was successfully discovered by cuteSV, while other benchmarked SV callers

were affected by the multiple insertions and deletions in read alignments.

2) The clustering-and-refinement method enables to distinguish the reads from the

multiple SV alleles in the same loci and generate correct signature clusters. Thus,

complex heterozygous SVs can be detected and genotyped sensitively and accur-

ately, which also outperforms state-of-the-art tools. Two examples are shown in

Additional file 1: Fig. S7. One is a heterozygous insertion event (a 108-bp and a 36-

bp insertion in the same region), and the other is a heterozygous deletion event (a

123-bp and a 37-bp deletion in the same region). Only cuteSV and PBSV success-

fully discovered them.

3) With its novel heuristic methods, cuteSV improves the sensitivity of SV calling

especially for lower coverage datasets. The benchmark results suggest that cuteSV

can discover most of the SVs in 20× coverage datasets for human samples without

loss of accuracy; meanwhile, the performance of genotyping is consistent with its

yields as well. This is helpful to make more flexible and cost-effective sequencing

plans in large-scale genomics studies.

4) With its block division-based implementation, cuteSV has outstanding scaling per-

formance, which enables to achieve a nearly linear multiple-thread speedup during

data processing. This is very suited to modern HPC resources and helpful for

large-scale genomics studies.

However, from the view of alignment-based SV calling, there are still a few shortcom-

ings for cuteSV as follows, which are also important future works to further improve

the approach.

1) There are still some SVs that cannot be successfully detected by cuteSV. We

investigated the intermediate results of cuteSV and found that most of the false-

negative calls were due to the read alignments being inaccurate or not informative

enough. Two typical examples are shown in Additional file 1: Fig. S8 and S9. In

Additional file 1: Fig. S8, a 98-bp deletion case is shown in which deletion
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signatures emerge in nearly all the reads around the event. However, the size of

the deletions in the alignment are not correct (i.e., most of them are around 50

bp). In Additional file 1: Fig. S9, a 707-bp insertion case is shown in which inser-

tion signatures also emerge and their sizes are close to the SV event, but the posi-

tions of the breakpoints in the reads are quite far from the ground truth

breakpoint. Under such circumstances, all the benchmarked SV callers made SV

calls, but the sizes and/or positions are incorrect since the read alignments are

misleading.

2) The current version of cuteSV is tailored for human genomes or diploid genomes.

For multi-ploidy genomes such as many plant genomes, cuteSV can also extract

the signatures to detect SVs; however, genotyping is still implemented with the

diploid model. Such tasks are still non-trivial to cuteSV (as well as other state-of-

the-art SV calling approaches), since there could be more heterozygous SVs and

less SV supporting reads (as more alleles exist), and the genotypes of SVs are also

more complicated as well. With the current implementation, cuteSV could miss

some SV alleles in multi-ploidy genomes due to low numbers of supporting reads;

meanwhile, it may make mistakes in genotyping. This is an important work for us

to develop more sensitive SV signature extraction methods as well as specifically

designed genotyping model to the SV detection of multi-ploidy genomes.

3) Although it has higher scaling performance, the speed of cuteSV in single thread is

still slower than some of state-of-the-art approaches. This is mainly due to that the

SV signature extraction of cuteSV is more complicated. An optimization on the

data structures and operations of cuteSV could be feasible to further reduce the

time cost.

Moreover, from a higher-level view, de novo assembly-based approaches have their

own advantages to cuteSV as well as other alignment-based SV callers. Firstly, although

the mappability of long reads is much higher than that of short reads, their alignments

are still heterogeneous and have potential errors due to many factors, such as sequen-

cing errors, SV complexity, and repetitive sequences. However, de novo assembly-based

approaches are free of such alignment artifacts so that they could have less systematic

errors. Secondly, de novo assembly-based approaches are able to well-handle large

novel insertions by assembling them as distinctive contigs; however, this type of SV is

still non-trivial to alignment-based approaches. Thirdly, haplotype-resolved assembly

inherently helps to unravel the haplotype configuration of SVs, which is useful to many

downstream analyses.

However, de novo assembly-based approaches also have some non-neglectable bottle-

necks. Firstly, the assembly could be not complete, i.e., some of the haplotype se-

quences (especially contigs of SV alleles) are missing, which may affect the sensitivity of

SV calling. Secondly, assembly mistakes still exist, which may cause false positives.

Thirdly, de novo assembly is still computational-intensive, which is not cost-effective

for large-scale data analysis tasks. Fourthly, it usually needs high-coverage sequencing

or the combination of multiple types of data (such as short reads, long reads, Hi-C and

optical map) to implement haplotype-resolved assembly [49]; however, most of SVs can

be detected with lower coverage data by alignment-based approaches like cuteSV. Con-

sidering their own advantages and shortcomings, we consider that alignment- and
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assembly-based approaches are complementary to each other, and it could be useful to

integrate these two approaches to produce SV callsets with higher quality.

Conclusion
In this article, we propose a novel long-read-based SV detection approach, cuteSV. It

enables the thorough analysis of the complex signatures of SVs implied by read align-

ments. Benchmark results demonstrate that cuteSV achieves good yields and perform-

ance simultaneously. Especially, it has good sensitivity to detect SVs, even with low

coverage sequencing data, and it also has outstanding scaling performance which is

suited to handle many large datasets. We believe that cuteSV has the potentials to

cutting-edge genomics studies.

Materials and methods
Some details on the implementations of cuteSV approach and the benchmark are as

follows. Please also refer to Additional file 1: Table S20 for a nomenclature.

Read alignment

cuteSV uses sorted BAM files as input, and it is supported by employing state-of-the-

art long-read aligners to compose SV detection pipelines. Aligners with a good ability

to handle large insertions/deletions in reads and/or produce accurate split alignments

are preferred, since cuteSV extracts important SV signatures from such alignments. In

the “Results” section, it is demonstrated that state-of-the-art aligners such as PBMM2,

NGMLR, and Minimap2 are suited to cuteSV.

Extraction of SV signatures implied by CIGARs

Given a set of aligned reads, cuteSV separately analyzes the detailed alignment of each

read. Mainly, it extracts two categories of SV signatures, i.e., long insertions/deletions

in CIGARs and split alignments. The signatures of SVs are represented as 3-tuples (i.e.,

Sig = (Refs, SVL, ReadID), where Refs indicates the starting coordinate on the reference

genome, SVL indicates the size of SV, and ReadID indicates the unique read ID). cuteSV

clusters and analyzes Sigs of various reads to call SVs.

cuteSV uses a heuristic method to extract and merge the long insertions/deletions in

CIGARs during SV signature extraction. In details, cuteSV extracts insertions/deletions

> 30 bp in size as described by the CIGARs of the reads and composes them into Sigs

with their positions, lengths, and read IDs. For two signatures, Sig1 and Sig2, cuteSV

merges them if they meet the following condition:

Ref2s − Ref1s≤Sigdis if INS
Ref2s − Ref1s þ SV1Lð Þ≤Sigdis if DEL

�
ð1Þ

where Sigdis is a threshold of the distance between the two Sigs. The two signatures are

then merged as SigM = (Ref1s, SV1L + SV2L, ReadID). This method enables to recover the

SV signatures of long insertions/deletions which are initially partitioned as multiple

trivial indels by read aligners. Further, all the remaining signatures after merging are

used as informative signatures.
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Extraction of SV signatures implied by split alignments

For a read having split alignments (described by its primary and supplementary align-

ments), cuteSV records each split by a 6-tuple Seg = (Reads, Reade, Refs, Refe, Chr,

Strand) (also termed as a “segment”), where Reads, Reade, Refs, Refe respectively indi-

cate the starting and end coordinates on the read and reference genome, and Chr and

Strand respectively indicate its chromosome and orientation. cuteSV uses the following

heuristic rules to recover SV signatures from Segs.

(1) Extraction of deletion/insertion signatures. If two segments, Seg1 and Seg2, are

adjacent on the read and aligned to the same chromosome with identical

orientations, cuteSV computes Diffdis = (Ref2s − Ref1e) − (Read2s − Read1e) and

Diffolp = Ref1e − Ref2s. If Diffolp < 30 bp and Diffdis ≥ 30 bp, cuteSV considers that

the two segments indicate a deletion event and composes a deletion signature:

SigDEL ¼ Ref1e;Diffdis;ReadIDð Þ ð2Þ

Moreover, if Diffolp < 30 bp and Diffdis ≤ − 30 bp, cuteSV considers it as an insertion

event and an insertion signature is composed:

SigINS ¼
Ref1e þ Ref2s

2
; −Diffdis;ReadID

� �
ð3Þ

(2) Extraction of duplication signatures. If two adjacent segments are mapped to

similar positions (i.e., Diffolp ≥ 30 bp) and in identical orientations, cuteSV

composes a duplication signature:

SigDUP ¼ Ref2s;Ref1e;ReadIDð Þ ð4Þ

(3) Extraction of inversion signatures. If two adjacent segments are mapped to the

same chromosome but to different strands, cuteSV composes an inversion

signature:

SigINV ¼ min Ref1e;Ref2eð Þ; max Ref1e;Ref2eð Þ; INVhh;ReadIDð Þ; if Strand1 isþ
min Ref1s;Ref2sð Þ; max Ref1s;Ref2sð Þ; INVtt;ReadIDð Þ; if Strand1 is −

�

ð5Þ

where INVhh and INVtt indicate head-to-head inversion signal and tail-to-tail inversion

signal, respectively.
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(4) Extraction of translocation signatures. If two adjacent segments are mapped to

different chromosomes, and the two segments are < 100 bp distant on the reads,

cuteSV composes a translocation signature:

SigBND ¼

Chr1;Ref1e;Chr2;Ref2s;ReadIDð Þ; if Chr1 < Chr2 andþþ
Chr2;Ref2s;Chr1;Ref1e;ReadIDð Þ; if Chr2 < Chr1 andþþ
Chr1;Ref1e;Chr2;Ref2e;ReadIDð Þ; if Chr1 < Chr2 andþ −
Chr2;Ref2e;Chr1;Ref1e;ReadIDð Þ; if Chr2 < Chr1 andþ −
Chr1;Ref1s;Chr2;Ref2s;ReadIDð Þ; if Chr1 < Chr2 and −þ
Chr2;Ref2s;Chr1;Ref1s;ReadIDð Þ; if Chr2 < Chr1 and −þ
Chr1;Ref1s;Chr2;Ref2e;ReadIDð Þ; if Chr1 < Chr2 and − −
Chr2;Ref2e;Chr1;Ref1s;ReadIDð Þ; if Chr2 < Chr1 and − −

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where < means the first chromosome is alphabetically smaller than the second chromo-

some and “++”, “+−”, “−+”, “--” indicate the combination of strands for an inter-

chromosomal SV.

(5) cuteSV uses a specifically designed method to extract the signatures of a complex

kind of SV, when there is a mobile insertion in between two duplicated sequences.

An example is shown in Additional file 1: Fig. S10, in which there are two

duplicated local sequences (both of their mapped positions are around

Chr1:73594981), and there is another local sequence within them in the read

(whose mapped position is in a decoy sequence of hs37d5). cuteSV extracts a series

of signatures, including a duplication (as shown in Eq.4), a translocation (as shown

in Eq.6), and an insertion (as shown in Eq.7), to describe such complex SV events.

SigINS ¼ min Ref1e;Ref2sð Þ; −Diffdis;ReadIDð Þ ð7Þ

Clustering-and-refinement of SV signatures

cuteSV uses a two-step approach to cluster SV signatures into bins, where each bin has

a set of SIGs belonging to a specific SV allele. In the first step, it clusters the signatures

by their genomic positions and types in order to bin the signatures in various local re-

gions. In the second step, it refines the clusters of signatures by their length in order to

distinguish the signatures of the various alleles of complex heterozygous SVs (i.e., a

complex heterozygous SV has multiple similar SV alleles at the same locus).

In the first step, cuteSV sorts all the SV signatures by their genomic coordinates and

types (i.e., deletions, insertions, duplications, inversions, and translocations). For each

category, cuteSV initially creates a new cluster and scans all the signatures from up-

stream to downstream and adds them into the cluster using an iterative approach.

More precisely, for a newly scanned SV signature SIGi, cuteSV adds it into the cluster

if there is at least one signature SIGj in the cluster which meets the following

condition:
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Sigi posð Þ − Sig j posð Þ≤THtype or

Sigi posð Þ þ Sigi lenð Þ� �
− Sig j posð Þ þ Sig j lenð Þ
� �			 			≤THtype

ð8Þ

where THtype is a threshold of the distances among the clustered signatures, and differ-

ent values are used for various types of SVs (THtype is typically configured to between

50 and 500 bp). If Sigi cannot be added into the cluster, cuteSV creates a new cluster

only having Sigi and goes to the next SV signature.

In the second step, cuteSV discards the clusters with too few signatures, and the

remaining clusters are refined by various methods according to their SV type.

(1) Refinement of deletion/insertion clusters. Given a deletion or insertion cluster,

cuteSV sorts all its signatures by their sizes and computes a parameter, BiasL, with

the following equation:

BiasL ¼ α� 1

GroupSig

			 			
X

1≤ k ≤ GroupSigj jLenk ð9Þ

where α is a weighting parameter, |GroupSig| is the number of the signatures in the

cluster, and Lenk is the length of the k-th longest signature in GroupSig. The configur-

ation of α depends on SV types, i.e., the default value of α is 0.2 for an insertion cluster

and high error rate reads (PacBio CLR and ONT reads), α = 0.65 for low error rate

reads (e.g., PacBio CCS reads), and α = 0.3 for a deletion cluster (regardless of error

rate).

Using BiasL, cuteSV divides the cluster into sub-clusters of which each is a potential

SV allele in a local genomic region. It initially adds the signatures with the largest size

into a new sub-cluster and then iteratively scans the signatures by size (from largest to

smallest). A newly scanned signature is added into the sub-cluster if the difference be-

tween its size and that of the last signature added to the sub-cluster is smaller than

BiasL. Otherwise, a new sub-cluster is created.

cuteSV recognizes the generated sub-clusters with the highest number of signatures

as a “major allele” sub-cluster if it meets the following conditions:

SR≥SRmin&&SR > μ� GroupSig

			 			 ð10Þ

where SR and SRmin are the number of its supporting reads and the threshold of the

minimum number of supporting reads, respectively. μ is a weighting parameter. For an

insertion cluster, its default value is 0.6 (for PacBio CLR or ONT reads) or 0.65 (for

PacBio CCS reads). For a deletion cluster, the default values are 0.7 and 0.35 for the

data types mentioned above, respectively. If a major allele sub-cluster exists, cuteSV

recognizes the remaining sub-clusters having more than SRmin signatures as “minor al-

lele” sub-clusters.

There is occasionally no major allele sub-cluster due to lack of enough supporting

reads. cuteSV uses another heuristic rule in which it recognizes the two largest sub-

clusters SRfirst and SRsecond as major allele and minor allele sub-clusters if they meet

the following conditions:
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SRmin≤SRfirst≤μ� GroupSig

			 			
0:4� GroupSig

			 			≤SRsecond≤SRmin

0:95� GroupSig

			 			≤SRfirst þ SRsecond

8>>><
>>>:

ð11Þ

This rule indicates that almost all of the SV signatures support the two alleles; mean-

while, both of them occupy > 40% of the supporting signatures in the cluster.

(2) Refinement of duplication/inversion clusters. Given a duplication or inversion

cluster, cuteSV initially creates one or more sub-clusters such that the breakpoints

of all the signatures in the same sub-cluster are within 500 bp. cuteSV recognizes

the major allele and minor allele sub-clusters with a heuristic rule similar to Eq.10

but sets μ = 1/3.

(3) Refinement of translocation clusters. Given a translocation cluster, cuteSV initially

creates one or more sub-clusters such that the breakpoints of all the signatures in

the same sub-cluster are within 50 bp. Furthermore, cuteSV recognizes the major

allele and minor allele sub-clusters with a heuristic rule similar to Eq.10 but sets

μ = 0.6 and SRmin as half of the value used for deletion/insertion clusters. This set-

ting helps to fully consider the diverse combinations of chromosomes and orienta-

tions of translocation events to achieve higher sensitivity.

SV calling and genotyping

For each cluster of signatures, cuteSV computes the weighted average of the positions

and sizes to predict the breakpoint(s) and size of the corresponding SV and removes

the predicted SVs of < 30 bp in size.

cuteSV employs a bi-allelic assumption to perform SV genotyping. If an SV site has

more than one alternative alleles, each alternative allele is treated respectively. All pos-

sible bi-allelic genotypes are kept. It uses a local genomic region for a predicted SV to

analyze the likelihood of various zygosity of SVs by their supporting reads, which is

defined as:

L 0=0ð Þ ¼ 1
3
� 1 − εð ÞSRRef � εSRALT

L 0=1ð Þ ¼ 1
3
� 1

2

� �SRRefþSRALT

L 1=1ð Þ ¼ 1
3
� 1 − εð ÞSRALT � εSRRef

8>>>>><
>>>>>:

ð12Þ

where ε is the probability that a read is being mapped to a given zygosity erroneously

(default value, 0.1), assuming it is constant and independent between all observations,

SRRef and SRALT are the numbers of supporting reads for reference and SV allele, re-

spectively. After the calculation of the original likelihoods, cuteSV normalizes these

values by computing the log sum of exponentials. The final genotype is determined by

the zygosity with the maximum genotype likelihood. After genotyping, cuteSV produces

the phred-scaled genotype likelihoods, conditional genotype quality, and phred-scaled

quality score of SV in order to further quality control and higher accuracy callsets’

generation.
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Implementation of simulation

In total, 6167, 9899, and 44 deletions, insertions, and inversions were extracted from CHM1

sample callsets (nstd137 in dbVAR database). The extracted SVs are non-overlapping and

meet the condition that experiment IDs are 1 or 2 and all of ACs, ANs, and AFs are higher

than 0. Similarly, 3712 and 380 non-overlapping duplications and translocations were ex-

tracted from KWS1 sample callsets (nstd106 in dbVAR database), respectively. Then, the

five types of SVs were respectively integrated into human reference genome (hs37d5) to

build five in silico donor genomes to generate simulated datasets with VISOR simulator.

For a specific type of SVs, the simulation is done by the following two steps.

(1) The SVs were transformed into BED format according to the requirement of

VISOR HACk. Deletions, insertions, or inversions were directly spiked into the

reference to generate haplotype in silico donor genomes correspondingly.

Employed translocations and duplications were preprocessed as reciprocal

translocations and tandem duplications with CN = 2 before input to VISOR,

respectively. It is also worth noting that translocations in same strand orientations

(e.g., forward-forward and reverse-reverse reciprocal translocations) have 2 kinds

of breakpoint combinations and 4 kinds of breakend combinations, and transloca-

tions in different strand orientations (e.g., forward-reverse and reverse-forward re-

ciprocal translocations) have 4 kinds of breakpoint combinations and 4 kinds of

breakend combinations. A schematic illustration is in Additional file 1: Fig. S11.

(2) For a given donor genome, its in silico chromosomes were randomly selected as

“homozygous” and “heterozygous” chromosomes to mimic homozygous and

heterozygous SVs. For a homozygous chromosome, all the reads were simulated

from the in silico chromosome with SVs. For a heterozygous chromosome, 50% of

the reads were simulated from the in silico chromosome and 50% from the

corresponding reference chromosome. With this rule, four PacBio-like datasets in

various coverages (5×, 10×, 20×, and 30×) were produced by VISOR LASeR (using

PBSIM and minimap2 with default setting). Thus, there are 20 datasets produced

for the five donor genomes and the specific sets of SVs and their genotypes were

used as ground truth.

The used command lines for data simulation are in the Additional file 1: Supplemen-

tary Notes.

Implementation of long-read mapping and SV calling

PBMM2 (version 1.0.0), NGMLR (version 0.2.3), and Minimap2 (version 2.17) were

employed to implement the read alignment of the benchmarking datasets. The param-

eter “--preset” of long-read aligners was tuned for various types of sequencing data.

Samtools (version 1.9) was employed for read extraction, sorted BAM generation, and

sequencing data down-sampling.

For Sniffles (version 1.0.11), the configuration “-l 30 -s 1/2/3/4 --genotype” was used

for simulated datasets, “-l 30 -s 2/3/4/4/5/10 --genotype” was used for PacBio CLR

datasets, “-l 30 -s 1/2/3 --genotype” for was used for PacBio CCS reads, and “-l 30 -s 2/

3/4/10 --genotype” was used for ONT PromethION reads.
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For PBSV (version 2.2.0), default settings were used for simulated, PacBio CLR and

ONT PromethION data, and “--preset CCS” was used for PacBio CCS data.

For SVIM (version 0.4.3), the configuration “--min_sv_size 30” was employed for all

datasets in this study.

For cuteSV (version 1.0.6), the configuration “-l 30 -s 1/2/3/4 --genotype” was used

for simulations, “-l 30 --genotype” was used for PacBio CLR (“-s 2/3/4/4/5/10”) and

ONT PromethION reads (“-s 2/3/4/10”), and “-l 30 -s 1/2/3 --genotype --max_cluster_

bias_INS 200 --diff_ratio_merging_INS 0.65 --diff_ratio_filtering_INS 0.65 --diff_ratio_

filtering_DEL0.35” was used for PacBio CCS reads.

The used command lines for the tools are in the Additional file 1: Supplementary

Notes.

Evaluation of SV callsets

The SV calls from simulated data were assessed based on the ground truths in the fol-

lowing approach. For deletions, insertions, duplications, and inversions, a prediction is

determined as a true-positive (TP) when meeting the following conditions:

max comps − 1kbp; basesð Þ≤ min compe þ 1kbp; baseeð Þ
min compL; baseLð Þ= max compL; baseLð Þ≥0:7

compt ¼ baset

8<
: ð13Þ

where comps, compe, compL, and compt indicate start coordinate, stop coordinate, size,

and SV class of a prediction, and bases, basee, baseL, and baset are starting coordinate,

end coordinate, size, and SV class of a SV recorded in the ground truth, respectively. In

terms of translocations, a prediction is determined as a TP call at breakpoint level if it

meets the following conditions:

compBK1 − baseBK1j j≤1kbp
compBK2 − baseBK2j j≤1kbp

compChr1 ¼ baseChr1
compChr2 ¼ baseChr2

8>><
>>:

ð14Þ

where BK1, BK2, Chr1, and Chr2 are the combination of breakpoints and chromo-

somes of a call on the prediction and base, respectively. Moreover, a prediction is deter-

mined as a TP call at breakend level if meeting the following conditions:

compBK1 − baseBK1j j≤1kbp
compBK2 − baseBK2j j≤1kbp

compChr1 ¼ baseChr1
compChr2 ¼ baseChr2
compcnt ¼ basecnt

8>>>><
>>>>:

ð15Þ

where compcnt and basecnt are the connectivity of breakends on the prediction and

base, respectively. A prediction is determined as a false positive (FP) if it does not sat-

isfy Eqs.13–15. A ground truth SV is assigned as a false negative (FN) if there is no SV

call satisfies Eq.13–15 with it. With the above definition, precision (or the ratio of TPs

to total calls in predictions) is defined as

Precision ¼ TPs
TPsþ FPs

ð16Þ

Similarly, recall (or the ratio of TPs to total calls in the truth set) is defined as:
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Recall ¼ TPs
TPsþ FNs

ð17Þ

F1 score is defined as

F1 ¼ 2� Precision� Recall
Precisionþ Recall

ð18Þ

Moreover, when considering the zygosity, if the prediction satisfies Eqs.13–15

and its genotype is same as corresponding base call, it will be a TP-GT call.

Hence, we reuse Eq.16–18 to calculate the statistics under genotyping.

The evaluation of the HG002 human sample was done by Truvari (version

1.2), and the high confidence insertion and deletion callsets (available at

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_

SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz) and high confidence re-

gions (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/

NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.bed) published by GAIB

consortium were used as ground truth. Before evaluation, we preprocessed the

SV calls of each tool. For Sniffles, we discarded inversions and translocations,

and transform duplications to insertions. For SVIM, we transformed duplica-

tions to insertions as well, deleted SV calls with a quality score of less than 5,

and kept the supporting reads consistent with Sniffles and cuteSV in each cor-

responding dataset. For PBSV and cuteSV, we only selected insertions and dele-

tions for evaluation. Then, BGZIP and TABIX were employed to compress and

index the processed VCF files. In addition, only SV calls between 50 bp and

10 kbp being within the GIAB high confidence regions were considered for

evaluation.

To benchmark the NA19240 human sample, we select SV calls in each tool

with 50 bp to 10 k bp in size and with 5 supporting reads at least, besides, we

discard low quality (QUAL below 5) calls in cuteSV and SVIM. We used Eq.13

to assess every call against the deletion, insertion (duplication regarded as a

subset of insertion), and inversion in the callsets generated from the study [48],

and Eqs. 16 to 18 were employed to summarize the performance of SV calling.

For the evaluation of the Ashkenazi trio, we used the homozygous SV calls in parents

(i.e., HG003 and HG004) to measure the recall rate via Eq.13–15 as follows:

Recall trio ¼
P

SVs in the offspringP
homozygous SVs in parents

ð19Þ

We also used all parental SV calls to assess MDR, i.e., the percentage of SV calls of

the son (HG002) that cannot be detected in its parents:

MDR ¼
P

offspring
0
s SVs not reidentified in parentsP

offspring0s SVs
ð20Þ

To evaluate the computational performance of the SV callers with various num-

bers of CPU threads w/o genotyping, runtime and memory footprint were

assessed by using the “/usr/bin/time -v” command of the Linux Operating Sys-

tem. In the output results of the command, “Elapsed (wall clock) time” and

“Maximum resident set size” indicate the elapsed runtime and memory
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consumption, respectively. It is worth noting that we used the sum of the wall

clock time of both steps as the final elapsed runtime, because SV calling per-

formed by PBSV involves two steps (i.e., discover and call). Meanwhile, the mem-

ory footprint depends on the maximum memory usage of the two runs.

Refer to Additional file 1: Supplementary Notes for the used command lines of

benchmark.
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