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Abstract

Background: The functional genome of agronomically important plant species
remains largely unexplored, yet presents a virtually untapped resource for targeted
crop improvement. Functional elements of regulatory DNA revealed through profiles
of chromatin accessibility can be harnessed for fine-tuning gene expression to
optimal phenotypes in specific environments.

Result: Here, we investigate the non-coding regulatory space in the maize (Zea
mays) genome during early reproductive development of pollen- and grain-bearing
inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal
nuclease (MNase) digestion, we profile accessible chromatin and nucleosome
occupancy in these largely undifferentiated tissues and classify at least 1.6% of the
genome as accessible, with the majority of MNase hypersensitive sites marking
proximal promoters, but also 3′ ends of maize genes. This approach maps regulatory
elements to footprint-level resolution. Integration of complementary transcriptome
profiles and transcription factor occupancy data are used to annotate regulatory
factors, such as combinatorial transcription factor binding motifs and long non-
coding RNAs, that potentially contribute to organogenesis, including tissue-specific
regulation between male and female inflorescence structures. Finally, genome-wide
association studies for inflorescence architecture traits based solely on functional
regions delineated by MNase hypersensitivity reveals new SNP-trait associations in
known regulators of inflorescence development as well as new candidates.

Conclusions: These analyses provide a comprehensive look into the cis-regulatory
landscape during inflorescence differentiation in a major cereal crop, which
ultimately shapes architecture and influences yield potential.

Keywords: Maize inflorescence, Meristem, Accessible chromatin, Gene regulation,
lncRNAs
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Background
Growth and development of all organisms depends on coordinated regulation of gene

expression in time and space. In order for this to occur, chromatin conformation must

be remodeled accordingly so that specific sequences in the DNA are accessible to regu-

latory transcription factors (TFs) [1]. Eukaryotic chromatin is packaged into arrays of

nucleosomes, which each consist of 147 bp of DNA wrapped around a histone octamer.

Dynamic shifts in nucleosome positioning affect gene regulation by modifying availabil-

ity of cis-regulatory elements (CREs) to which combinations of TFs bind in a spatio-

temporal manner [2–4]. Genetic variation in CREs and tissue specificity of regulatory

factors can contribute to phenotypic plasticity. Since CREs are difficult to identify by

sequence alone, various Encyclopedia of DNA Elements (ENCODE)-like projects have

emerged with the goal of annotating the non-coding, functional genome in a given spe-

cies by generating spatiotemporal maps of chromatin accessibility, TF occupancy, pro-

tein and DNA modifications, and gene expression [5, 6]. Although similar datasets are

beginning to mature for a number of plant species [7–10], our knowledge of gene regu-

lation in plants remains limited, and notably in our most economically important crops

[11]. Various methods have been used to map genome-wide chromatin accessibility

and nucleosome occupancy [12–15] and their use is based on the idea that TF occu-

pancy occurs in nucleosome-free regions that present biochemically as nuclease access-

ible or hypersensitive (HS). Enzymes with nuclease activity, such as deoxyribonuclease I

(DNaseI) and micrococcal nuclease (MNase), have thus been used to map nuclease HS

regions of the chromatin as a proxy for regulatory sequences in plants [16–20]. Over-

laying HS regions with TF binding and/or haplotype maps have identified genetic loci

that contribute, for example, to human disease [21, 22]. Since the vast majority of gen-

etic variants map to non-coding intergenic and intronic regions, chromatin accessibility

provides a filter to enrich for potential functional variants and facilitate discovery of

new regulatory loci. In maize, it was reported that approximately 1% of the genome

was accessible based on differential MNase sensitivity in nuclei from young seedlings,

yet this fraction explained 40% of the heritable variation [17]. These results indicated

that, as in animal systems, functional polymorphisms are enriched in accessible regions

of plant genomes, which has significant implications for advancing genome-assisted

breeding. Based on studies in animals and plants, CREs can reside within the core or

proximal promoters of genes (i.e., at or near the transcriptional start site (TSS)), or

within cis-regulatory modules distal to their target genes, such as enhancer sequences

that can influence gene expression at long range [2, 3]. Functional studies on distal en-

hancers, predominantly in animal systems, showed they can integrate various signals

and fine-tune gene expression through combinatorial recruitment of TFs that are avail-

able in distinct spatiotemporal patterns [23–25]. Aside from a handful of functionally

tested cases, the majority identified by Quantitative Trait Loci (QTL), our knowledge of

distal regulatory sequences in plants remains poorly defined [26]. In maize, the domes-

tication genes teosinte branched1 (tb1) and grassy tillers 1 (gt1) are regulated by distal

enhancer sequences. Genetic variation in an enhancer region ~ 60 kb upstream of tb1

modulates its expression through two distinct transposable elements (TEs) [27, 28].

Similarly, variation in a region ~ 7.5 kb upstream of gt1 controls its expression [29].

Genome-wide surveys of putative enhancer regions have been carried out in Arabidop-

sis, rice and maize [7, 16, 30, 31], yet very few have been functionally validated. Maize

Parvathaneni et al. Genome Biology          (2020) 21:165 Page 2 of 33



is the cereal crop with the largest dollar value in the U.S. and abroad. Non-coding se-

quence makes up ~ 98% of the maize genome, the vast majority of which remains unex-

plored. In this study, we used a method that leverages differential sensitivity of

chromatin to various concentrations of MNase followed by high-throughput sequen-

cing (MNase-seq) to map global chromatin accessibility and nucleosome occupancy in

maize inflorescence primordia early in development. Maize forms male and female

flowers on separate inflorescences; the male tassel is formed apically following the tran-

sition from vegetative development and female ears are produced in the axils of leaves.

Tassel and ear share common developmental programs and are morphologically similar

at the early primordia stages. But variations on these developmental programs at the

molecular level result in distinct structural features at maturity that directly affect yield

potential, e.g., outgrowth of branches in the tassel and development of kernel rows on

the ear [32, 33].

Our analysis of tassel and ear specifically examines primordia, which are enriched for

meristematic cells ideal for mapping of HS signatures to footprint-level resolution.

These accessible chromatin maps were integrated with complementary genomics data-

sets from comparable tissues, e.g., transcriptome profiles and TF occupancy maps, to

validate functional regions in the maize genome. We also annotated a suite of long

non-coding (lnc) RNAs associated with signatures of chromatin accessibility in the

young maize inflorescences, which showed spatiotemporal specificity. Finally, we identi-

fied novel trait-SNP associations for key inflorescence architecture traits by using the

functional genome to guide GWAS analyses. Results from this work provide a founda-

tion for deeper explorations of the regulatory mechanisms underlying early develop-

mental transitions during maize tassel and ear morphogenesis, which can be leveraged

for crop improvement through molecular breeding and/or precision engineering.

Results
Mapping accessible chromatin in early development of maize inflorescences

To determine the regulatory landscape of the maize genome during early inflorescence

development, we generated genome-wide, tissue-specific maps of accessible chromatin

from immature tassels and ears. We used a method that defines differential sensitivity

of chromatin using different concentrations of micrococcal nuclease (MNase), which

was previously demonstrated in maize for vegetative tissue types [17, 19, 34]. Here,

maize tassel and ear primordia were precisely staged and hand-dissected from

greenhouse-grown, B73 inbred maize plants (Additional file 1: Fig. S1). For each tissue,

approximately 170 individual primordia (1–5 mm in size) were pooled for each of two

biological replicates. This developmental sampling scheme is comparable to previous

genomics analyses for these tissues [32, 35, 36]. From each sample, fixed, intact nuclei

were isolated and divided into two pools for “light” and “heavy” MNase digestion, and

genomic library construction (Additional file 1: Fig. S1).

Mapped reads from light and heavy digests were compared to reveal regions of differ-

ential nuclease sensitivity (DNS), including MNase sensitive (accessible chromatin) and

MNase resistant (closed chromatin) signatures (Additional file 1: Table S1). Since the

exonuclease activity of MNase results in protected fragments of various sizes, data were

analyzed in different ways relative to the DNA fragment sizes. For example,
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nucleosome-protected fragments are expected to be greater than 130 bp in length,

whereas smaller fragments (< 131 bp), particularly those resulting from a light MNase

digest, are likely associated with small, sub-nucleosomal particles in chromatin, bio-

chemically defined as open and accessible. Therefore, selective mapping of different size

classes from the light and/or heavy digests can provide different views of the chromatin

landscape, as previously described [15, 37]. We mapped read coverage across the maize

genome for: i) all size classes from light and heavy digests (provides information on ac-

cessible chromatin as well as nucleosome occupancy); ii) DNS analysis; and iii) small

fragment (< 131 bp) coverage from the light digests only, hereafter referred to as Light

digest Coverage Small fragments (LCS) (Fig. 1a). Overall, MNase hypersensitivity (HS)

associated with gene-rich regions of the genome and MNase resistance was largely as-

sociated with repetitive sequence.

To classify genomic regions of chromatin accessibility, we used the peak-calling algo-

rithm iSeg [38] (see Methods; Additional file 1: Figs. S2 and S3, Tables S2 and S3; Add-

itional files 2, 3, 4, and 5: Datasets S1- S4). Based on genomic overlap of HS regions,

approximately 67.3% of the accessible genome was shared between tassel and ear (Fig.

1b). If considering genomic space within 2 kb of genes, this increases to 75%. The high

concordance between tissues was expected given morphological similarities between

tassel and ear at the early stage examined here. Approximately 33% of tassel accessible

regions were found only in tassel, and 26% were specific to ear (Additional file 1: Fig.

S4; Additional file 6: Dataset S5). We also re-analyzed publicly available MNase-seq

data from arial maize seedling tissues [17] using iSeg (Fig. 1a-b). As was reported previ-

ously, 1.07% of the genome was MNase HS in the seedling shoot. Approximately 51%

of MNase HS in seedling shoot was shared in inflorescence primordia (Fig. 1b).

We next determined the genomic distribution of MNase HS by mapping the mid-

point of each region to genic and intergenic features (Fig. 1c; Additional file 1: Table

S4). We defined the proximal promoter of protein coding genes (PCGs) to include 1 kb

upstream and 200 bp downstream from the TSS, which showed higher peak densities

compared to within gene body features. Strikingly, high densities of HS were also ob-

served in the 3′ UTR and downstream regions flanking genes (Fig. 1c). While DNS pro-

files showed similar peak intensities at the TSS and Transcriptional Termination Site

(TTS) of genes, densities of LCS were higher at TSSs (Additional file 1: Fig. S5). This

indicates that the promoter region of genes is characterized by more non-nucleosomal

footprints while downstream flanks are predominantly nucleosome-bound. For HS sig-

natures that mapped to intergenic regions, the distance to the nearest PCG was deter-

mined. Intergenic HS regions were positioned significantly closer to genes than by

random chance in both tassel and ear, however the median distance to genes was sig-

nificantly smaller in ear (~ 5 kb) than tassel (~ 10 kb; Welch’s t-test (p-value < 2.2 e− 16))

(Fig. 1d). Mapping tassel- and ear-specific HS sites accentuated the differences observed

in their genomic distributions, with tassel HS enriched in intergenic regions, and ear-

specific HS more prominent in gene body features (Additional file 1: Fig. S4, Table S4).

We asked whether the increased tassel-specific accessibility in the intergenic space

was associated with transposable elements (TEs). Approximately 85% of the maize gen-

ome is made up of TEs, and 50% of the transposon component resides within gene-

rich regions of the genome [39, 40]. Based on TE annotations in the maize genome

[41], we found enrichment of MNase HS associated with TEs relative to randomized
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intergenic regions (p value < 0.001, permutations n = 1000), as previously shown for

other tissue types [16, 42]. Notably, there was increased chromatin accessibility associ-

ated with retrotransposons in tassel primordia compared to ear (p value < 0.001, per-

mutations n = 1000; Additional file 1: Fig. S6). This is consistent with early activation of

Fig. 1 Genome-wide mapping of chromatin accessibility in early tassel and ear primordia. a Genome-wide
visualization of MNase HS in tassel and ear and aligned against other genomic features: a - Chromosome ideograms;
black bars indicate centromeres, b - Repeat elements, c - Gene density, d - Density of conserved non-coding
sequences (CNSs), e - Differential nuclease sensitivity (DNS) from tassel, f - DNS from ear, g - DNS from seedling shoot,
h - Density of small fragments (< 131 bp) from the light MNase digest (LCS) in tassel, i - LCS in ear, j - Density of gene
expression from RNA-seq in 1–2mm tassel primordia, k - Density of gene expression from RNA-seq in 1–2mm ear
primordia. A 60 kb slice on chromosome 2 is represented in a genome browser view below and includes the liguleless
1 gene and a prominent HS region approximately 20 kb upstream. b The venn diagram compares the portion of
MNase HS genome (in Megabases) based on DNS in tassel, ear and shoot tissues. c Distribution of MNase HS sites
(based on peak midpoint) across eight genomic features relative to protein coding genes: within 1 and 2 kb upstream
of the TSS, the proximal promoter defined as 1 kb upstream and 200 bp downstream of the TSS, 5′ UTR, exon, intron,
3′ UTR, within 1 kb downstream of the TTS, intergenic. Density of DNS signatures were normalized per 10 kb of
genomic space per feature. In both tassel and ear, the promoter and 3′ regions of genes are most accessible. d
Distribution of distances (in the range of 50 kb) from the midpoints of intergenic MNase HS sites to the closest protein
coding gene in ear and tassel. The gray bar plots the distribution of midpoints of genomic space between any two
sequential genes in the genome
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TEs in the male germline as it was recently shown that in tassel primordia, TEs are ac-

tivated much earlier than was described for Arabidopsis, well before the development

of male-specific reproductive organs [43].

Differential HS in gene promoters reveals regulatory DNA associated with organ-specific

expression

Previous work comparing chromatin accessibility in different maize tissues showed that

HS in proximal promoters of genes tended to correlate with gene expression [17, 19].

Here, we leveraged publicly available RNA-seq datasets from early tassel and ear prim-

ordia comparable with those used for our MNase-seq data [32]. PCGs were divided into

three equal groups based on their normalized expression levels in Transcript Per kilo-

base Million (TPM), and for each group (none-low, mid, and high expression; Add-

itional file 7: Dataset S6), MNase HS was plotted with respect to a consensus promoter

region (± 1 kb around the TSS; Fig. 2a). Enrichment of MNase HS was observed in

proximal promoters of expressed genes in both tassel and ear, indicating a positive cor-

relation between degree of chromatin accessibility and gene expression level (Fig. 2a;

Additional file 1: Fig. S7).

We expect chromatin accessibility to be highly dynamic during meristem develop-

ment and organogenesis. Genes that control meristem determinacy are largely

expressed in both tassel and ear, but it is the precise regulation of these genes that

fine-tune developmental processes that lead to subtle morphological differences. By de-

fining differential promoter accessibility and/or usage coupled to gene expression

changes, we hope to resolve tissue-specific regulatory differences that underlie variation

in branching, or meristem determinacy, between tassel and ear. We asked whether dif-

ferential degrees of HS in proximal promoters of genes between tassel and ear trans-

lated to differential expression. Based on a set of criteria described in the Methods, a

differential DNS analysis was performed for promoters of PCGs (500 bp directly up-

stream of the TSS). This revealed 1925 genes with differential accessibility in their im-

mediate proximal promoters; 877 showed increased HS in tassel and 1048 in ear (Fig.

2b; Additional file 8: Dataset S7). Expression levels of these genes were plotted (tassel

relative to ear), and classified based on the degree and direction of expression change

with respect to promoter accessibility (Fig. 2c; Additional file 8: Dataset S7). Approxi-

mately 41% (794) showed substantial expression differences between tassel and ear, in-

cluding direct correlations with chromatin accessibility as well as anti-correlated trends

(Fig. 2c). The latter could be indicative of repressor binding and this was observed for

approximately half of the genes. The rest showed little differences in expression be-

tween organs despite the differential accessibility in the immediate promoter and could

reflect poised transcriptional complexes, for example.

Among the differentially regulated genes (i.e., differential accessibility in the proximal

promoter and altered gene expression between tassel and ear) were 112 TFs, including

multiple members of TF families implicated in meristem development and organogen-

esis (Fig. 2d; Additional file 1: Fig. S8). The majority of these differentially regulated

TFs were more highly expressed in ear primordia, which were enriched for members of

ZF-HD (q = 7.67e-04), GRF (q = 1.19e-02), GRAS (q = 4.19e-02), ERF (q = 5.67e-02) and

TCP (Teosinte branched/Cycloidea/PCF; q = 5.67e-02) families. The latter included five
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Fig. 2 (See legend on next page.)
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differentially regulated family members including tb1 (AC233950.1_FG002), a class II

TCP that is well known for its function in repressing shoot branching in maize [44].

Consistent with a function for tb1 in repressing branching in ears, there was increased

accessibility in its promoter and much higher expression in ear primordia (Fig. 2d).

The other four TCPs (GRMZM2G078077, GRMZM2G107031, GRMZM2G445944,

GRMZM2G465091) are of the class I type of TCP TFs. Class I TCPs have been gener-

ally less studied for their roles in development, however, several members have been

shown to control aspects of cell division and differentiation [45]. All five TCPs showed

strikingly higher expression in ears and notable increases in promoter accessibility.

We performed functional enrichment analysis on differentially regulated genes using

Gene Ontologies (GO) based on maize-Gamer [46] annotations. Functional categories

overrepresented among genes that were up-regulated in ear primordia included bio-

logical processes related to flower development and organogenesis (e.g., GO:0009909:

regulation of flower development; q = 4.1e-05, GO:0009933: meristem structural

organization; q = 8.73e-03, GO:0008361: regulation of cell size; q = 1.12e-02) (Fig. 2e;

Additional file 8: Dataset S7). In addition to tb1, other classical maize genes known to

repress branching and/or promote meristem determinacy were in this class, e.g. dor-

mancy associated 1 (drm1), ramosa 3 (ra3) [47] and thick tassel dwarf (td1) [48] (Fig.

2d). Increased transcription of these genes is consistent with a determinacy program

being imposed on axillary meristems in the ear compared to tassel; the latter produces

indeterminate branch meristems at this early stage of development.

In contrast, differentially regulated genes with higher expression in tassel primordia

tended to be involved in cell growth processes including translation (GO:0002181: cyto-

plasmic translation; q = 6.26e-10), protein synthesis and turnover, and sugar metabolism

(GO:0006007: glucose catabolic process; q = 4.4e-04) (Fig. 2d,e; Additional file 8: Data-

set S7). This could be related to increased protein and energy metabolism required for

outgrowth of indeterminate branch meristems. Interestingly, distinct hormone path-

ways appear to be differentially regulated in tassel and ear. Auxin, ethylene and GA-

related pathway components tend to be up-regulated in ear, while genes involved in JA

and BR synthesis and signaling are up-regulated in tassel (Fig. 2d,e).

(See figure on previous page.)
Fig. 2 Differential MNase HS and expression changes between tassel and ear. (a) MNase HS relative to the
TSS of three expression classes of PCGs in tassel. HS is plotted as average read density from the light, heavy
and differential (light -heavy) MNase analysis ±1000 bp surrounding the TSS of a composite PCG model
divided into 3 tertiles (high, medium and low) based on their TPM values. Results from ear are similar and
presented in Fig. S7. (b) Distribution of MNase HS around the TSS of 1925 PCGs that were differentially
accessible within 500 bp upstream of the TSS (877 showed increased HS in tassel and 1048 in ear). (c)
Expression profiles of differentially accessible PCGs in tassel compared to ear primordia. Genes are
represented as colored bubbles of different sizes (log10 fold change of gene expression between the two
tissues). Bubble color indicates one of five gene classes as indicated in the legend. Gray areas in the
scatterplot represent genes with a fold change difference greater than |1.5|. Genes with expression levels of
> 500 TPM (n = 150) were excluded from the visualization. (d) A subset of differentially regulated PCGs and
their expression profiles are grouped in four classes: more accessible and higher expression in tassel, more
accessible and higher expression in ear, more accessible and lower expression in tassel, and more
accessible and lower expression in ear. Genes are listed in descending order by their delta value, which
represents the degree of differential accessibility in the immediate proximal promoter. Functional
annotations are based on information at MaizeGBD. (e) Subset of GO categories overrepresented among
differentially accessible PCGs that showed gene expression changes between tassel and ear
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MNase HS signatures predict TF binding sites to footprint level resolution

To test whether HS sites called from LCS are a proxy for TF binding, we overlaid

ChIP-seq data generated from comparable inflorescence tissue for two developmental

regulators; KNOTTED 1 (KN1), a homeodomain TF that regulates maintenance of all

plant meristems [36], and FASCIATED EAR 4 (FEA4), a bZIP TF that regulates meri-

stem size [35]. More than 90% of KN1 and FEA4 high confidence ChIP-seq peaks over-

lapped with the MNase HS sites, and approximately 97% of sites co-bound by KN1 and

FEA4 were accessible (Fig. 3a; Additional file 1: Fig. S9). It was previously shown that

Fig. 3 MNase HS as a proxy for TF-DNA binding. (a) Overlap of high confidence peaks from FEA4 and KN1
ChIP-seq experiments with MNase HS regions based on LCS data. Less than 2 % of co-bound sites and 6 %
of all sites do not overlap MNase HS. (b) Read density (reads per million) of LCS are plotted around a
consensus TSS of genes bound by KN1 and/or FEA4. Genes co-bound by both TFs in the proximal
promoter show a wider range of accessibility. Data are shown for tassel; similar profiles are shown for ear
presented in Fig. S9. (c) Examples of intergenic MNase HS sites in tassel, ear, and/or shoot that are co-
bound by KN1 and FEA4: a known enhancer element 65 kb upstream of tb1, and a site 6 kb upstream of
the gnarley 1 (gn1) locus. (d) Fragment densities from the light MNase digest plotted around high-
confidence FEA4 ChIP-seq peaks show strong enrichment at the consensus FEA4 binding motif. (e) Density
of ABI3-like motifs were plotted in relation to experimentally validated FEA4 binding sites. The ABI3-like
motif was discovered by mining HS regions called by iSeg that overlapped consensus FEA4 binding sites.
ABI3-like motifs are most densely positioned within 50 bp of FEA4 motifs. (f) GO terms overrepresented
among genes within 1 kb of FEA4-ABI3-like motif modules (ABI3-like motifs within 50 bp of FEA binding
sites) and compared with genes within 1 kb of random FEA4 motifs of equal number
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KN1 and FEA4 TFs co-occupy many sites during early maize inflorescence develop-

ment to regulate lateral organ initiation [35] and we expect co-bound regions to be

regulatory. Genes co-bound by KN1 and FEA4 in their proximal promoters showed

stronger and broader MNase HS signatures than those bound by either TF alone, con-

sistent with highly accessible promoters occupied by multiple TFs (Fig. 3b and Add-

itional file 1: Fig. S9; Additional File 9: Dataset S8). Accessible intergenic sites that are

co-bound by these TFs are potential long-range transcriptional regulators. For example,

FEA4 and KN1 co-bound an accessible region that aligned with a known enhancer

element ~ 65 kb upstream of tb1 (Fig. 3c). Another co-bound region 6 kb upstream of

the gnarley 1 (gn1) homeobox locus was accessible only in inflorescence tissue (Fig. 3c).

To further test whether density of MNase small fragments could locate TF binding

sites, we mined sequences under 2163 high-confidence FEA4 ChIP-seq peaks that over-

lapped with MNase HS. We resolved a consensus FEA4 motif (NCGTCA; p = 1.3e-

183). Density plots of LCS showed high enrichment centered around FEA4 motifs in

both tassel and ear (Fig. 3d; Additional file 1: Fig. S9). We next used the iSeg-defined

regions overlapping the FEA4 motifs to computationally screen for other known TF

binding motifs enriched around FEA4 binding (Additional file 1: Fig. S10). Multiple Em

for Motif Elicitation (MEME) was used to identify de novo motifs, which were com-

pared to experimentally validated plant Position Weight Matrices (PWMs) to define

best matches. In addition to the FEA4 (bZIP) motif itself and KN1, we identified a

highly overrepresented motif that matched an experimentally validated binding site for

a plant B3-domain TF, Abscisic Acid Insensitive (ABI) 3, based on two different motif

scanning methods (Additional file 1: Fig. S10). This motif was present within 70% of

the FEA4 binding site regions. Distribution of this motif relative to FEA4 binding

showed strong enrichment within 50 bp (Fig. 3e; Additional file 10: Dataset S9). Func-

tional enrichment analysis of genes proximal (within 1 kb) to FEA4-ABI3-like cis-elem-

ent modules (the two motifs within 50 bp of each other) showed overrepresentation of

GO terms related to ABA-related signaling, e.g., negative regulation of abscisic acid-

activated signaling pathway (GO:0009788; q = 1.84e-03) and seed dormancy process

(GO:0010162; q = 0.02), and other hormone pathways such as ethylene activated signal-

ing (GO:0009873; q = 0.002) compared to genes flanking a random set (n = 1039) of

FEA4 motifs (Fig. 3f; Additional file 10: Dataset S9). This suggests potential functional

significance of a FEA4 regulatory interaction with an ABI3-like B3-domain TF to con-

trol a particular suite of genes, possibly in a combinatorial way.

The average size of HS regions called from the small fragment data was 165 bp. We

asked whether we could refine putative TF footprints within these regions by mapping

just the midpoints of the LCS. Theoretically, the mid-point of these read fragments

would be most protected from MNase activity by a TF binding to DNA. We used iSeg

to call footprints based on read density at midpoints. At a stringent bc 4.0 threshold,

an average of ~ 350,000 footprints were called in tassel and ear with a median size of

21 bp (Additional file 11: Dataset S10), which constituted less than 0.01% of the maize

genome. Alignment with FEA4 binding sites was statistically significant (p = 0.001, 1000

iterations; Additional file 1: Fig. S11).

We next performed motif enrichment analysis within the footprints to predict candi-

date TF binding that drives suites of differentially regulated genes between tassel and

ear primordia (Fig. 2c). For genes that showed an expression change between tissues
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and increased promoter accessibility in tassel or ear, footprints within 2 kb upstream

and 200 bp downstream of the TSS, and 1 kb downstream of the TTS, were mined for

de novo motifs using Discriminative Regular Expression Motif Elicitation (DREME)

[49]. PWMs of highly enriched motifs were matched against the JASPAR database of

known plant TF binding sites (http://jaspar.genereg.net/). Genes that showed increased

promoter accessibility in tassel were highly enriched for ERF and ARF TF motifs, while

those that were more accessible in ear were enriched for WRKY, C2H2 zinc finger,

TCP and MYC elements (Fig. 4; Additional file 1: Table S5). The five TCP TFs that

were up-regulated in ear primordia (Fig. 2d) all had multiple occurrences of the pre-

dicted TCP motif (RGCCS), suggesting regulation of individual TCPs by each other

and/or other family members (Fig. 4a-b). We also scanned all mapped footprints in tas-

sel and ear for the 21 experimentally validated TCP PWMs that exist in JASPAR plant

(Additional file 1: Table S6). We found TCP binding sites overall were more enriched

in ear HS footprints compared to tassel, and that PWMs associated with TCP23 and

TCP15 from Arabidopsis were most highly enriched.

Long non-coding RNAs associate with accessible chromatin in inflorescence primordia

and mark putative distal regulators

In addition to enrichment of MNase HS at the proximal 5′ and 3′ ends of PCGs, we

observed numerous intergenic accessible regions greater than 2 kb away, but largely

within 10 kb of genes (Fig. 1d). Based on our knowledge of gene regulation in other sys-

tems, at least some of these distal accessible regions may mark enhancers or other

long-range regulators of gene expression. Reports in both animal and plant systems

have linked enhancers with transcription of long non-coding RNAs (lncRNAs), which

have been shown to control distal gene expression in various ways [50–52]; e.g., aiding

chromatin looping to modulate expression of adjacent or distant PCGs [53–55].

Since lncRNAs are highly context-specific, we cataloged the spatiotemporal expres-

sion of lncRNAs in maize inflorescence primordia to i) investigate their association

with intergenic HS chromatin signatures and ii) to extend our regulatory maps for tas-

sel and ear development. We used a pipeline described by De Quattro et al. (2017) [56]

to annotate these lncRNAs by re-analyzing RNA-seq data from a developmental series

of tassel and ear primordia stages [32]. We identified 2679 high-confidence lncRNAs

derived from 2520 unique loci (Fig. 5a; Additional file 1: Figs. S12 and S13; Add-

itional file 12: Dataset S11; Additional file 13: Dataset S12). These lncRNAs showed

spatiotemporal expression differences during tassel and ear development, with expres-

sion generally most prominent in undifferentiated inflorescence meristem (IM) tissue

at the earliest stages of development (Fig. 5a). We used the Shannon Entropy (SH) cal-

culation [57] to determine spatiotemporal specificity of lncRNA expression across early

tassel and ear development (Additional file 1: Fig. S13). A subset of lncRNAs (n = 52)

was specifically expressed in a particular meristem type or developmental stage (SH ≥

0.6; Additional file 1: Fig. S14), while the majority were dynamically expressed through-

out inflorescence development (SH ≤ 0.2).

LncRNAs were classified as genic or intergenic. Based on overlap with known gene

features, genic lncRNAs were further divided into exonic-, intronic- and exon-intron-

lncRNAs (Fig. 5b). Intergenic lncRNAs were classified based on relative distance from
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the closest annotated PCG and assigned to one of three bins: ≤ 2 kb, ≤ 10 kb, or >

10 kb from the gene. We also annotated antisense lncRNAs that overlapped gene

models based on intron-exon splice junctions derived from the genome-guided

transcriptome reconstruction (see Methods; Additional file 14: Dataset S13). Since

polyadenylated lncRNAs share biochemical features with coding mRNAs [58], we

evaluated their exon number, transcript length, mean expression and spatiotempo-

ral expression profiles. Sixty-seven percent of lncRNAs were unspliced (single exon)

Fig. 4 CP TFs up-regulated in ear primordia harbor TCP binding motifs in promoter footprints. Genomic
regions are shown surrounding two class I TCP TFs that were up-regulated in ear primordia compared to
tassel. For (a) GRMZM2G107031 and (b) GRMZM2G465091, RNA-seq data show enhanced expression in ear,
with increased MNase HS. MNase footprint regions were called by mapping fragment center hotspots,
shown in black. The 5′ (green) and 3′ (orange) fragments ends are also indicated. Four motifs (TCP, C2H2.
MYC4, WRKY) were significantly enriched in footprints in promoters of genes up-regulated in ear primordia
and are color-coded
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and these had a median length of 387 bp and showed a range of expression, in-

cluding some that were highly expressed (Additional file 1: Fig. S13). Both genic

and intergenic lncRNAs showed strong enrichment of MNase HS at TSSs and

TTSs, similar to PCGs (Fig. 5c) and consistent with what has been shown in mam-

malian systems [59].

Fig. 5 A catalog of long non-coding (lnc) RNAs expression during early maize inflorescence development. a
Expression profiles (plotted as normalized z-score) for 2679 lncRNAs across different stages of ear and tassel
development. Euclidean distance was computed across rows (lncRNAs) and columns (tassel and ear
developmental stages), and data were hierarchically clustered using the maximum linkage method. b The
various classifications of lncRNAs used in this study, including their positions relative to PCGs. c MNase HS
profiles across a composite genic and intergenic lncRNA model show highest densities around the TSS and
TTS, similar to PCGs. d Expression profiles (plotted as normalized z-scores) during early ear and tassel
development of lncRNAs that overlapped putative enhancer loci identified from maize leaf and husk tissue
(enhancer-associated intergenic lncRNAs) [16]. e Context-specific methylation profiles plotted across a
composite lncRNA model based on 45 enhancer-associated intergenic lncRNAs. CHH (red) methylation is
plotted on the left, and CG (purple) and CHG (green) methylation on the right. e A representative co-
expression module of lncRNA and PCG pairs located in a genomic window of < 2 kb. The diagonal axis
indicates the co-expression value between each lncRNA and PCG pair expressed as the biweight
midcorrelation. f Expression values of the seven lncRNA-PCG pairs within the module in (e). Dots represent
the rlog values of lncRNAs (yellow) and PCGs (blue), and the line indicates the average expression level
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To test whether any of these early inflorescence-expressed lncRNAs were associ-

ated with genomic enhancer-like features, we leveraged a published set of ~ 1500

candidate enhancer loci from maize leaf (V5) and husk tissues that were identified

based on combined enrichment of histone 3 lysine 9 acetylation (H3K9ac) marks,

high chromatin accessibility and low DNA methylation [16]. We expected a high

degree of tissue specificity for the enhancer loci as well as the lncRNAs, but 45

inflorescence-expressed lncRNA loci overlapped with these enhancer regions (Add-

itional file 12: Dataset S11). Expression profiles of these enhancer-associated

lncRNAs were dynamic across tassel and ear development, with several accumulat-

ing in specific spatiotemporal patterns (Fig. 5d). To investigate context-specific

DNA methylation patterns at these loci, we re-analyzed and integrated publicly

available genome-wide bisulfite sequencing data from 5mm ear primordia [60].

While we observed a decrease in symmetric CG and CHG methylation from the

proximal promoter into the gene body, there was a notably strong enrichment of

asymmetric CHH methylation immediately upstream of the enhancer-associated

lncRNA TSSs (Fig. 5e). This asymmetric CHH methylation profile, known as an

mCHH island, has been also shown to flank active PCGs as well as CNSs in plants,

and has been hypothesized to mark the transition between heterochromatin to eu-

chromatin [60]. Moreover, mCHH islands located upstream of TSSs were shown to

be positively correlated with differential gene expression and tended to localize

within open chromatin [61].

1To explore potential cis-regulatory relationships between inflorescence-

expressed lncRNAs and nearby PCGs, we analyzed correlation of their expression

profiles across the eight spatiotemporal stages of immature tassel and ear devel-

opment. Expression trajectories of PCGs were aligned with those of lncRNAs that

were classified either as intronic or intergenic, and we prioritized lncRNA-PCG

regulatory pairs based on congruence of expression patterns and their proximity

to one another in the genome (Additional file 12: Dataset S11). We identified 78

lncRNA-PCG pairs that were i) positioned within a median distance of approxi-

mately 7 kb of each other and ii) were co-expressed across early maize inflores-

cence development (correlation coefficient > |0.8|). Among the PCGs that co-

expressed with a lncRNA positioned within 2 kb, several encoded TFs including

wuschel-related homeobox 4 (wox4; GRMZM6G260565) and other homeobox fam-

ily members, as well as hormone synthesis and signaling components, e.g., ethyl-

ene insensitive 2 (ein2; GRMZM2G102754), gibberellin 20-oxidase 2 (ga20ox2;

GRMZM2G127232) and nine-cis-epoxycarotenoid dioxygenase 3 (nced3;

GRMZM5G858784).

Based on the assumption that transcripts with similar expression trajectories

might act in common pathways, we determined relationships between co-

expressed lncRNA-PCG pairs (modules) based on hierarchical clustering (Add-

itional file 1: Fig. S15). For example, one module consisted of seven lncRNA-PCG

pairs, each within 2 kb (Fig. 5e). PCGs and lncRNAs in this module showed high-

est expression in 1 mm ear and 3–4 mm tassel primordia, consistent with a shift

from indeterminate to determinate fate (Fig. 5f) [32]. PCGs in this module

included a SQUAMOSA BINDING PROTEIN (SBP) family TF (sbp3;

GRMZM2G101499) and ga20ox2.
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Accessible chromatin-guided GWAS identifies novel SNP-trait associations for

inflorescence architecture traits

Previous work in maize seedlings showed that while only 1–2% of the genome was

MNase HS, this fraction accounted for more than 40% of the heritable variation [17].

We therefore hypothesized that our tassel and ear chromatin accessibility maps could

help prioritize and/or assign biological function to trait-associated SNPs resulting from

GWAS for inflorescence traits. We also speculated that using only those SNPs associ-

ated with regions of chromatin accessibility in a GWAS model could potentially help

resolve novel SNP-trait associations, including smaller effect loci that may drive more

subtle phenotypic variation. To investigate this, we first performed a GWAS analysis

for two inflorescence architecture traits, tassel branch number (TBN) and ear row

number (ERN), using publicly available phenotype data from the Nested Association

Mapping (NAM) population and HapMap version (v) 3 SNP markers [62]. We also per-

formed the GWAS analysis for these two traits using only SNPs that fell within access-

ible chromatin from the tassel and ear datasets combined. This latter analysis reduced

the input SNP set to 15 million (approximately 19% of HapMap v3 SNPs).

For each set of markers, i) whole genome v3 SNPs and ii) SNPs within accessible

chromatin regions, a stepwise model selection procedure was used [63]. Using the en-

tire HapMap v3 SNP set, our GWAS model yielded 57 and 47 trait-associated SNPs for

TBN and ERN, respectively. Interestingly, we identified different sets of associated

SNPs for each trait from the two analyses. Using only SNPs within MNase HS regions

identified a higher number of trait associations for TBN (n = 72) and ERN (n = 49)

(Fig. 6a). In addition, QTL identified using the reduced, MNase-based SNP set were

generally positioned closer to known PCGs; i.e., the median distance from a trait-

associated SNP to the nearest gene model was 649 and 2273 bp for TBN and ERN, re-

spectively, compared to 4.8 and 6.7 kb when using the entire v3 SNP set (Add-

itional file 15: Dataset S14; Additional file 16: Dataset S15). This result was not

surprising given that MNase HS regions are largely proximal to genes, however, it sug-

gests that a reduced SNP set guided by accessible chromatin data could resolve novel

associations that contribute to a phenotypic trait, which may not survive a more strin-

gent multiple testing correction when a larger SNP set is used.

There were nine trait-associated SNPs found in common between the two GWAS

analyses for TBN, suggesting these are likely high-confidence associations that may

contribute to phenotypic variation in tassel branching. One of these was located in

the first large intron of GRMZM2G004690, an ortholog of the ULTRAPETALA1

gene from Arabidopsis implicated in floral meristem determinacy [64] (Add-

itional file 15: Dataset S14). In other cases, the two analyses identified unique SNPs

that associated with the same protein-coding locus. For example, both analyses

identified SNPs associated with ERN in the second to last intron of

GRMZM2G049269, a gene annotated as a methyltransferase; this gene immediately

flanks Gibberellic acid (GA) 20-oxidase 5 (GRMZM2G049418), which we showed

to be differentially regulated between tassel and ear (Fig. 2d). SNP-trait associations

with key developmental genes implicated in maize inflorescence architecture were

identified with the MNase HS-guided GWAS analysis, but not when using the en-

tire v3 SNP set. For example, barren inflorescence 1 (bif1), a classical maize gene

that plays a major role in tassel branching [65], harbored a SNP association for

Parvathaneni et al. Genome Biology          (2020) 21:165 Page 15 of 33



TBN. Another gene that regulates inflorescence branching in maize, ramosa enhan-

cer locus 2 (rel2; GRMZM2G042992) [66], was identified as associated with a SNP

for ERN (Fig. 6b). A SNP-trait association for TBN was identified at sbp3

(GRMZM2G101499) using only MNase SNPs (Fig. 6c). This SBP TF was co-

expressed with lncRNA21521 positioned immediately downstream, and both were

part of a co-expression module associated with meristem determinacy (Fig. 5e).

Fig. 6 Novel trait-SNP associations for inflorescence architecture traits revealed using MNase-seq guided
GWAS. Results from GWAS for inflorescence architecture traits, Ear Row Number (ERN) and Tassel Branch
Number (TBN), comparing two sets of SNP markers, all HapMap v3 SNPs and the subset residing in MNase
HS regions, revealed common and novel trait-SNP associations with candidate genes. a Significant SNP
associations for ERN and TBN that were included in stepwise GWAS models using both marker sets
displayed as a Z-browse view across the genome. Novel marker associations were found using the SNPs
within MNase HS only for each trait. These include (b} ramosa enhancer locus 2 (rel2), which was adjacent to
a SNP associated with ERN and (c) sbp3, an SBP TF in immediate proximity of a SNP association for TBN and
just up-stream of co-expressed lncRNA21521. The gray track beneath the GWAS SNPs defines the MNase HS
portion of the genome (tassel and ear combined), which was used to subset the SNP set
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Since this analysis was performed using the NAM population, we expect that the

haplotype blocks will limit our ability to resolve causal SNPs, regardless of subsetting

the functional genome. We also tested this approach in a small association panel, the

282 line Goodman-Buckler maize diversity panel [67], using GWAS results for TBN

from [68]. For the subset of markers present in tassel MNase HS regions (n = 71,024),

new False Discovery Rate (FDR)-adjusted P-values were calculated using the Benjamini

and Hochberg [69] procedure. Overall, markers within tassel MNase regions showed a

greater reduction in adjusted p-values compared to the genome-wide analysis (Add-

itional File 1: Fig. S16). Since a decrease in FDR-adjusted p-values could be due to the

reduced number of marker association tests, we calculated new FDR adjusted p-values

for 1000 random samples of 71,024 markers. For each replicate, we calculated a statistic

we denote as lambda (λ; see Methods and Additional File 1: Fig. S16 for equation),

which is a ratio of the FDR adjusted p-value for a given marker when a reduced marker

set is used, compared to the full marker set. Overall, the markers in tassel MNase re-

gions had greater reductions in adjusted p-values compared to random samples (four

standard deviations from the mean of random iterations; Additional File 1: Fig. S16).

This result suggests that markers present in early tassel MNase HS regions could be of

higher biological relevance for phenotypic variation in TBN than those scattered ran-

domly across the genome. It also demonstrates how the reduction in total number of

markers tested can facilitate identification of less significant, but potentially biologically

interesting, associations. This approach for reducing markers could improve the effi-

ciency for marker assisted selection.

Discussion
Precise developmental transitions, such as those underlying distinct branching morph-

ologies of maize tassel and ear, are regulated through dynamic interactions between

TFs and non-coding elements of the genome. Regulatory variation across spatial and

temporal scales underpins morphological diversity in evolution, and can be harnessed

to achieve optimized phenotypic outputs in crops through precision breeding and/or

engineering. In maize, several core regulatory factors that control inflorescence pattern-

ing have been identified through classical mutagenesis studies. However, most of these

genes have not been associated with natural variation in inflorescence architecture, des-

pite the high heritability of these traits in large association panels [70]. Since perturba-

tions in these core regulators typically result in extreme and/or pleiotropic phenotypes

[33, 71], it is likely that natural variation in cis-regulatory sequences modulate these

genes and/or their targets. A major challenge in genomics-enabled crop improvement

is functional annotation of cis-regulatory elements in crop genomes, and the ability to

harness these sequences to fine-tune specific pathways with little perturbation to the

complex networks within which they reside [72]. These genome-wide analyses of chro-

matin accessibility and nucleosome occupancy, tissue-specific regulatory RNAs and TF-

DNA predictions provide a foundation for exploring the functional maize genome that

underlies early developmental decisions in tassel and ear organogenesis.

Maize is unique among the major cereal crops in having separate male and female

structures, which has facilitated hybrid seed production. Over the past century, maize

improvement has gone hand-in-hand with selection of smaller tassels that take up

fewer resources and less real estate (in terms of light interception), and larger, more
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productive ears [73]. Since the tassel and ear develop by way of a common develop-

mental program, further improvement of ear traits by advanced breeding and engineer-

ing will require decoupling of this program, for example, via tassel- or ear-specific

promoters or regulatory elements. Therefore, understanding how the same genes are

regulated differently in tassel and ear, and harnessing this specificity to control one over

the other, will advance breeding efforts in maize. In addition to agronomic applications,

the maize tassel and ear represent an ideal system for studying the control of meri-

stem determinacy and regulation of axillary branching in plant development. The

core developmental program that underlies the two maize inflorescences is also

shared with those of other grasses; the same meristem types progress in sequential

order, but with variation on determinacy and fate. For example, the indeterminate

branch meristems (BMs) that grow out into long branches at the base of the tassel,

are determinate in the ear.

Our analysis of differentially regulated genes between tassel and ear was consistent

with a determinacy program imposed on BMs in the ear, allowing for kernels born on

short branches in organized rows. We have some understanding of the key players that

suppress branching in the inflorescence such as the ramosa (ra) genes [32, 71] and tb1,

however little is known about the mechanisms or what other factors they interact with.

A number of other transcriptional regulators were preferentially expressed in the ear

during early development, and there was tissue-specific chromatin accessibility associ-

ated with them. Among the most differentially regulated genes were five TCP TFs, in-

cluding tb1 and four others that have not yet been functionally characterized. We also

found that TCP binding motifs were enriched in promoters that were more accessible

in ear. TCPs are among the bHLH (basic Helix-Loop-Helix) family of TFs, and are fur-

ther grouped into class I or class II TCPs. Aside from tb1, the other four TCPs that

were differentially regulated in ear are class I.

There are several examples of class II TCPs regulating plant form in crops; suppres-

sion of axillary meristem or tiller outgrowth in grasses by tb1 [27, 74], lateral branch

angle in maize tassels by wavy auricle on blade 1/ branch angle defective 1 (wab1/

bad1) [75, 76], and floral symmetry in sunflower by HaCYC2 [77]. Recently, it was

shown that a class II TCP, MULTISEEDED 1 (MSD1), regulates floral fertility and

therefore grain number in sorghum, by mediating accumulation of jasmonic acid in the

panicle [78]. Class I TCPs have been largely implicated in both abiotic and biotic stress

responses [79, 80], and there is evidence emerging for their role in hormone pathways

that intersect developmental processes. In Arabidopsis, TCP14 and 15 are class I TCPs

that physically interact with SPINDLY (SPY) to activate cytokinin response genes in

leaves and flowers [81], and TCP20 binds and regulates LIPOXYGENASE 2 (LOX2),

which encodes a key enzyme in JA biosynthesis [82]. In our findings, genes implicated

in JA biosynthesis were overrepresented among those up-regulated in tassel compared

to ear. TCPs can form homo- and hetero-dimers to achieve different binding specific-

ities to target genes [83, 84]. Class I TCPs 20, 6 and 11, predicted to be functionally re-

dundant, bind a conserved sequence GCCCR [85], which closely matches the de novo

PWM enriched in ear accessible footprints (RGCCS; Additional file 1: Table S5).

TCP20 also directly binds the promoter of TCP9, another class I TF [82]. We observed

multiple occurrences of TCP binding sites in the promoters of class I TCPs preferen-

tially transcribed in ear, indicating several layers of control by TCP family members.
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Of the five TCP TFs that we identified as being differentially regulated in the ear,

only the well-characterized tb1 gene was associated with any functional data in maize.

This highlights the utility of genomics-enabled research for gene discovery, particularly

when viewed in a context-specific manner. There are approximately 2700 TFs in the

maize genome and we only have experimental evidence on how a small fraction of

them function [3, 86]. Context-specific gene regulatory networks (co-expression and

TF-DNA binding data) can help in predicting functions of uncharacterized TFs and

other genes of unknown function based on their position in the network [18, 87].

Genome-wide TF-DNA binding data have been limited in plants, especially in crop spe-

cies, largely due to inherent difficulties in performing in planta methods such as ChIP-

seq [88]. We showed here that there is extensive overlap of in planta TF binding data

with MNase HS in the same tissue type, suggesting that accessible regions can be

viewed as a proxy for TF binding. We also observed increased accessibility in pro-

moters of genes bound by two TFs based on experimental data, indicating that degree

of accessibility scaled with number of binding factors. Therefore, these tissue-specific

accessibility maps can help drive computational-based predictions of TF binding and

refine results from in vitro methods such as DNA Affinity and Purification sequencing

(DAP-seq) [9, 89]. Along with co-expression networks of genes from the same tissue

type, the accessible chromatin maps provide a basis for strengthening TF-DNA inter-

action predictions.

There is increasing evidence for lncRNA-mediated regulation of genome structure in

both plants and animals, e.g., through nucleosome positioning, interaction with chro-

matin remodelers and chromatin looping [53, 55, 90]. In animal systems, it has been

demonstrated that lncRNAs transcribed from enhancer loci, called enhancer RNAs

(eRNAs), can modulate the expression of target genes [50, 91]. While regulation of

PCGs by lncRNAs can occur in both cis and trans, several studies have highlighted

control of the local regulatory “neighborhood” by lncRNAs [91–93]. Various mecha-

nisms by which lncRNAs regulate expression of proximal PCGs have been reported

[94], as well as transcriptional regulation by the same ‘divergent’ promoter [95, 96]. In

Arabidopsis, expression of an intergenic lncRNA locus, APOLO, is auxin-dependent

and destabilizes a chromatin loop to the promoter of PINOID (PID), a key regulator of

polar auxin transport [53], allowing its expression.

LncRNAs in both plants and animals tend to share little evolutionary origin, bio-

logical function, or molecular mechanism [58]. Therefore, context specificity is critical

to elucidating the function of these non-coding elements in growth and development.

The set of 2679 lncRNAs annotated for early stages of developing inflorescence primor-

dia extend lncRNA catalogs described from other maize tissues [97, 98]. LncRNAs have

also been implicated in fine-tuning homeostasis and developmental programs. For ex-

ample, in embryonic stem cells, massive coordinated changes in expression of proximal

lncRNAs and PCGs off of divergent promoters underpinned organ differentiation pro-

grams [96] and in mouse, lncRNAs flanking HOX gene clusters were shown to modu-

late specificity of HOX gene expression during development [99]. In our analyses, we

observed modules of co-expressed PCG-lncRNA pairs, including one module that ex-

hibited an expression profile that was coordinated with spikelet pair meristem deter-

minacy [32]. Within this module, an SBP TF, sbp3, was co-expressed with a lncRNA

immediately downstream. SBP TFs play key roles in developmental processes, however
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sbp3 has not been functionally characterized. Further, its association with a GWAS

SNP for TBN and its enhanced expression in ear, suggest that sbp3 and the co-

expressed lncRNA are potential candidates for regulating branching (Fig. 6c). A

genome-wide study for associations with complex traits in humans uncovered numer-

ous lncRNAs, which were often associated with control of adjacent PCGs [100]. Further

experimental validation is necessary to link specific gene regulation to proximal

lncRNAs in maize inflorescence development.

The ENCODE project revealed that much variation attributable to major human

disease is associated with accessible regions in the human genome [22]. Since then,

work in maize showed that MNase HS regions explained 40% of the heritable vari-

ation in complex traits [17] and in Arabidopsis, DNase I HS regions were enriched

for GWAS hits [18]. Our rationale for performing GWAS using only markers

within MNase accessible DNA was to test whether we could recover variants that

fell within functional regions of the genome, and potentially even pinpoint causal

variants that would otherwise be removed from the stepwise selection model in

favor of a different SNP in linkage disequilibrium, or fall below the significance

threshold of multiple testing with large numbers of markers. Furthermore, the

MNase HS regions used reflect chromatin accessibility in the tissue type affected

by the inflorescence traits of interest. By limiting HapMapv3 SNPs to MNase HS

regions, we used only 19% of the markers. The resulting SNP-trait associations that

were uncovered using the reduced marker set were different from our GWAS re-

sults using the entire set of 83 million markers. Since a stepwise model selection

procedure was used, we would not expect the genome-wide model to include all

SNPs from the MNase-guided model. Among trait-associated SNPs in the reduced

set GWAS model were several that resided either within or proximal to known de-

velopmental genes that have been implicated in inflorescence architecture. One of

these was rel2, a gene that encodes a TOPLESS-like co-repressor that was identi-

fied in a modifier screen as an enhancer of ramosa 1 (enhanced branching [66]).

Notably, here rel2 associated with ERN, which is consistent with recent work that

showed mutants in this gene also display a fasciated ear phenotype, which is devel-

opmentally linked to ERN [101]. Experimental validation is needed in order to test

whether the other trait-SNP associations identified by the MNase-seq driven

GWAS analysis underlie variation in maize inflorescence morphology. We

hypothesize that with a large association panel, reducing the marker set to those in

functional regions could improve resolution of genomic selection models by i) pri-

oritizing functional SNPs, ii) lowering the significance threshold required to declare

a marker significant, and iii) reducing the computational load.

In summary, the functional maps described here provide a foundation for pinpointing

key regulatory signatures that underlie growth, development, and morphological diver-

sity in reproductive structures of maize, the most important cereal crop. The MNase-

seq profiles offer genome-wide views of the regulatory space, including both TF binding

sites as well as nucleosome occupancy, which can be leveraged for making informed

predictions on functional DNA, and as a complement to many other genomics analyses.

One timely application is guiding gene editing strategies by determining accessibility of

target regions. Our integrated analyses of gene regulation during early inflorescence or-

ganogenesis defined targets for manipulating architecture, and provided insights into
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tassel- and ear-specific developmental programs that can be harnessed for crop

improvement.

Conclusions
Our ability to predict and achieve desired crop phenotypes through alteration of gen-

etic elements is enhanced by context-specific regulatory maps targeted to traits of inter-

est. The systems-level analyses presented here explore the cis-regulatory landscape

underlying developmental transitions that occur during differentiation of male and fe-

male inflorecences of maize. Chromatin accessibility and nucleosome occupancy maps

in these young, meristematic tissues revealed regulatory signatures specific to tassel and

ear development including differentially regulated members of certain TF families, and

predicted TF binding sites to footprint level resolution. On a genome-wide scale, differ-

ences in accessibility were observed with tassel-specific HS signatures enriched in inter-

genic regions while ear-specific HS were more prominent in gene body features. Several

intergenic accessible sites coincided with predicted promoters of spatiotemporally

expressed lncRNAs, combinatorial TF binding, and trait-SNP associations from GWAS,

prioritizing them as potential long-range regulatory elements. These integrated functional

maps and associated analyses can be directly leveraged for targeted crop improvement in

maize and are readily translatable to other economically important cereal crops.

Methods
Plant material

Maize (Zea mays) B73 plants were grown in a greenhouse environment (27 °C/23 °C

day/night) at the DDPSC Integrated Plant Growth Facility. Three seedlings per 2 gal

pot (in Pro-Mix BRK-20 soil) were harvested 4–5 weeks and 6–7 weeks after sowing to

collect tassel and ear primordia, respectively. For each tissue type, approximately 170

inflorescence primordia (between 1 and 5mm in size) were hand-dissected and pooled

into each of two biological replicates. Primordia were immediately flash frozen in liquid

nitrogen, and stored at − 80 °C.

Nuclei isolation

Nuclei were isolated as previously described [17]. Briefly, one gram of tissue was

ground in liquid nitrogen with a mortar and pestle. Cross-linking was performed using

10ml ice-cold fixation buffer (15 mM Pipes·NaOH at pH 6.8, 0.32M sorbitol, 80 mM

KCl, 20 mM NaCl, 0.5 mM EGTA, 2 mM EDTA, 1 mM DTT, 0.15 mM spermine, and

0.5 mM spermidine) containing 1% formaldehyde (10 min incubation with rotation) at

room temperature and fixation was stopped using 0.5 mL of 2.5M glycine. Triton X-

100, a non-ionic surfactant, was added and the tube rotated for 10 min to release nuclei

from the cells. The μsuspension was filtered through one layer of Miracloth, placed in a

15ml falcon tube, and then split into two tubes. A percoll gradient separation using

50% (vol/vol) percoll in phosphate buffer saline (PBS) followed by low speed centrifuga-

tion at 3000×g for 15 min at 4 °C was used to enrich for nuclei. Using a serological pip-

ette extended to the bottom of the tube, 4 mL of 50% (vol/vol) percoll was slowly

added underneath the filtered nuclei suspension in PBS. Phase separation of nuclei was

performed by centrifugation at 3000×g for 15 min at 4 °C, and nuclei at the percoll-PBS
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interface were transferred to a 15 ml falcon tube. PBS was added to dilute the nuclei

suspension to a final volume of 15 ml. Nuclei were then pelleted by centrifugation at

2000×g for 10 min at 4 °C, and pellets resuspended in 2.1 mL MNase digestion buffer

(MDB, sterilized with 0.2 μm filter, 50 mM HEPES-NaOH pH 7.6, 12.5% glycerol, 25

mM KCl, 4 mM MgCl2, 1 mM CaCl2). Nuclei were flash frozen in liquid nitrogen and

stored at − 80 °C until use. To check nuclei quality, the remaining 100 μl were stained

with DAPI and imaged as follows: 8 μL of DAPI-stained nuclei in MDB were mounted

on a glass slide in VectaShield+DAPI medium and subjected to 3D deconvolution im-

aging using a DeltaVision (GE Healthcare) equipped with a 60X lens. Images of nuclei

preps were produced using maximum intensity projections of the 3D datasets.

MNase digestion, DNA extraction, and library preparation and sequencing

Intact nuclei were digested with a range of MNase concentrations in order to deter-

mine the optimal enzyme concentration for heavy and light digests, as described by

[34]. After MNase titration, nuclei were digested by adding MNase to 30 U/ml (light)

or 7290 U/ml (heavy), and incubated for 5 min at room temperature. Digestion reac-

tions were terminated by adding 10mM EGTA. Nuclei were reverse cross-linked with

1% SDS and 100 mg/mL proteinase K by incubation overnight at 65 °C. Then, DNA

was extracted using 25:24:1 phenol-chloroform-isoamylalcohol, ethanol precipitation

and finally resuspended in TER (TE with 40 μg/mL RNase A). Mononucleosome-sized

DNA fragments (~ 150 bp) and smaller were size-selected using AMPure XP beads by

adding 90% sample volume of beads (Additional file 1: Fig. S1). Size-selected DNA frag-

ments were used to prepare eight MNase sequencing libraries with the NEBNext Ultra

DNA Library Prep Kit for Illumina (NEB), following manufacturer’s instructions (2 bio-

logical replicates × 2 MNase concentrations × 2 tissues). For tassel and ear, the four li-

braries were barcoded and pooled into four lanes of sequencing on the HiSeq2500 at

the FSU sequencing facility.

MNase-seq data mapping and analyses

Paired-end reads were trimmed and mapped to the maize B73 AGPv3 reference gen-

ome as described in the MNase-seq processing pipeline [34] (Additional File 1: Table

S1). Read coverage (in reads per million (RPM)) was calculated in 25 bp windows as de-

scribed in [34] for input into bedtools. DNS was calculated as the difference of mean

normalized depth (RPM) between the light and heavy digests. Positive values corres-

pond to accessible chromatin and negative values correspond to closed regions. Read

coverages were highly correlated between biological replicates for both light (r > 0.9)

and heavy (r > 0.73) digested libraries. The read coverage for the MNase datasets (DNS

and LCS) calculated in sliding windows (window size = 1Mb and step size = 100 kb)

was used to visualize accessible regions across the genome using Circos [102]. Positive

and negative values were plotted for DNS and positive Z-scores were plotted for the

LCS data.

MNase HS regions were identified in each of the biological replicates and combined

data sets using the genomic segmentation algorithm, iSeg [38] and output files were

processed using custom scripts. Our analysis applied a range of biological cutoff (bc)

stringencies in calling MNase HS or resistant regions; from bc 0.5 (lowest stringency)
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to bc 3.0 (highest stringency) (Additional file 1: Tables S2 and S3; Additional files 2 and 3:

Datasets S1 and S2). To validate results from iSeg, we also performed MACS2 [103] using

the light digest as “treatment” and heavy digest as “control”, and parameters “-g 2.3e9 –

nolamda –q 0.01”. Using a bc of 2.0 on DNS data, iSeg identified > 90% of the HS regions

called by MACS2, in addition to many more putative regulatory regions (Additional file 1:

Tables S2 and S3). Comparing these accessible regions with ChIP-seq data for FEA4, 85%

of high-confidence FEA4 binding sites overlapped with accessible regions called by iSeg in

tassel compared to 42% called by MACS2 (Additional file 1: Fig. S2). Decreasing the iSeg

peak-calling stringency from bc 3.0 to 2.0 increased the overlap with TF-bound regions,

but did not significantly increase noise (Additional file 1: Fig. S2). Therefore, bc 2.0 was

chosen as the default cut-off used for analyses in the manuscript.

At bc 2.0, ~ 77% of DNS peaks overlapped between biological replicates and high-

confidence HS regions were called if their midpoints were within 300 bp of each other

(Additional file 4: Dataset S3). Manual inspection in a genome browser revealed several

cases where MNase HS was visible in the two biological replicates, but only called as a

peak in one likely due to coverage threshold (Additional file 1: Fig. S3). To enhance

depth of coverage for resolution of dynamic accessibility and footprints of bound TFs,

we also combined reads from the two replicates and iSeg was used to call MNase HS

on the combined datasets as well as for individual replicates. The MNase-seq data were

also mapped to the maize RefGen_v5 genome, and iSeg coordinates for both DNS and

LCS are available in GEO (Additional File 5: Dataset S4).

To map distributions of MNase HS sites across genomic features, we used the Bio-

conductor packages IRanges, GenomicRanges, and GenomicFeatures [104]. A transcripts

database object was generated based on the AGPv3.31 reference gene annotation using

the function makeTxDbFromGFF, and coordinates of genomic features were deter-

mined corresponding to PCG models. For each gene model, only primary transcripts

were used and duplicated 5′ UTRs were removed. The total length of each genomic re-

gion (in bp) was calculated using the function sum. The midpoint of the MNase HS

sites were computed in R, converted to a GRanges object, and intersected with respect-

ive genomic regions using the function findOverlaps with the options type = within,

ignore.strand = F. Intergenic MNase HS sites falling within the reference repeats anno-

tation file (AGPv3.31) were excluded from the analysis.

Transposable element content

The maize TE annotation file (AGPv4) was downloaded from Gramene release 61 [41].

TEs annotated on chromosomes 1 to 10 were selected and converted to AGPv3 using

the tool CrossMap v.0.3.7 [105] and the chain file from Gramene release 61. The result-

ing TE coordinates projected to AGPv3 scaffolds were removed and not considered in

the downstream analysis. TE coordinates with unassigned strand “*” were considered as

located on the sense strand. Intergenic TEs were selected, calssified and intersected

with the midpoints of ear and tassel MNase HS regions (DNS) using the R package

GenomicRanges (options: type = ‘within’, ignore.strand = T). The enrichment analysis

was conducted using the Bioconductor package regioneR [106] based on permutation

tests (n = 1000). A randomization strategy to compare intergenic genomic regions was

performed using the function circularRandomizeRegions.
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RNA-seq data analysis

Publicly available RNA-seq data from developing maize tassel and ear primordia were

downloaded from the NCBI Sequence Read Archive (SRA) database, BioProject

PRJNA219741 (Run IDs: SRR999054, SRR999053, SRR999052, SRR999045, SRR999044,

SRR999043, SRR999042, SRR999041, SRR999040, SRR999039, SRR999038, SRR999037,

SRR999036, SRR999035, SRR999034, SRR999033, SRR999032) [32] and re-analyzed.

We used ~ 500M high-quality reads from these libraries to reconstruct the maize tran-

scriptome using a genome-guided approach with HISAT2 v2.0.6 [107] and StringTie

v1.2.3 [108]. Two mapping iteration steps were performed on each library: a first round

of mapping to the reference B73 maize genome (AGPv3.31) from Ensembl Genomes

[109] with options ‘--novel-splicesite-outfile, −-dta’ and without a reference gene anno-

tation file. Based on information from this first alignment, a database of unique splice

junctions was created to maximize the number of mapped reads in the second mapping

iteration using the option ‘--novel-splicesite-infile’. Then for each library we used the

reference gene models (AGPv3.31) to guide the transcriptome reconstruction (assem-

bly) and merged (using option --merge) all assemblies to create a non-redundant refer-

ence for this dataset. The transcript sequences (FASTA) and the gene models (GFF)

were extracted using the gffread utility distributed with the program Cufflinks [110].

MNase HS and expression data for each PCG were correlated using the mean nor-

malized depth (reads per million) for the heavy and light MNase digests and the String-

Tie v1.3.5 TPM values for 1–2 mm tassel and ear data. Using the R package travis

(https://github.com/dvera/travis), the normalized coverage (RPM) was calculated for

light digests, heavy digest and the differential (light -heavy) at the midpoint for 25 bp

genomic windows.

Differential DNS analysis

Differential accessibility within 500 bp upstream of the TSS of PCGs was calculated be-

tween tassel and ear was by computing the MNase HS value (tassel DHS - ear DHS) in

25 bp windows. Based on these values, changes of > 1 or < − 1 were defined as differen-

tially accessible in tassel or ear, respectively. Genes characterized by differential accessi-

bility in their promoter were filtered to include those with > 100 read coverage selected

based on the RNA-seq data. A fold change of |1.5| between the two tissues was used to

exclude genes with minimal expression changes [111].

Analysis of regulatory elements within MNase HS regions

ChIP-seq data for FEA4 and KN1 are publicly available in the NCBI Gene Expression

Omnibus (accession numbers GSE61954 and GSE39161, respectively). Genome-wide

binding sites were determined for FEA4 using MACS v2 [103] with parameters ‘-f

BAM -g 2.3e9 -B -m 10 30 -p 1.00e-5’. High-confidence peaks were called if peak sum-

mits from two biological replicates were within 300 bp. For KN1, peak coordinates were

lifted to maize AGPv3 using the ‘liftOver’ function in the UCSC genome browser.

High-confidence peaks required a minimum overlap of 50% between two biological

replicates. Regions were designated as co-bound by FEA4 and KN1 if midpoints of

high-confidence peaks were within 500 bp.
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The MEME suite v5.0.5 (www.meme-suite.org/; [112]) was used for motif analyses.

The consensus binding site for FEA4 was determined using MEME-ChIP with default

settings to mine genomic regions 200 bp around summits of high-confidence FEA4

ChIP-seq peaks (n = 2163). Random 200 bp maize genomic DNA fragments were used

as background. The resulting FEA4 PWM was located within FEA4 ChIP-seq peaks

using Find Individual Motif Occurrences (FIMO; threshold = 0.0005) in MEME. The

custom R package genmat (https://github.com/dvera/genmat) was used to generate

density plots of MNase HS around FEA4 binding. HS regions overlapping FEA4 bind-

ing sites called by iSeg (bc 2.0) in tassel and ear were used to scan for enriched prox-

imal motifs using two de novo motif finding tools: MEME-ChIP and Hypergeometric

Optimization of Motif EnRichment (HOMER; http://homer.ucsd.edu/). MEME-ChIP

was used with settings ‘-ccut 0’ and inputting a random set of genomic sequences as a

control. A parallel analysis used a random set of iSeg-called maize sequences as the in-

put compared to random genomic controls. Input and control sequences were repeat-

masked. The Tomtom function in MEME was used to assign resulting motifs to best

matches in the JASPAR core plant PWMs (2018; http://jaspar.genereg.net). We used

the findmotifsgenome.pl function in HOMER with setting ‘-size given’ to report best

matches to known plant motifs within the HOMER database. Resulting PWMs from

HOMER were also matched to the JASPAR core plant PWMs.

To resolve locations of putative TF footprints we mapped the midpoints of small (<

131 bp) fragments reads generated from light MNase digests. To find the fragment cen-

ter hot spots, we converted the single-base fragment center data using a sliding window

average, where the total number of fragment centers in a 21 bp window was assigned to

the central 5 bp in that 21 bp window, followed by repeating a 5 bp step size. To aid

visualization of the fragment center populations on a genome browser, this procedure

was also performed for the 5′ and 3′ ends of the light digest MNase fragments (0–130

bp). The resulting fragment center values showed local peaks that were segmented

using the iSeg peak-calling program. De-novo motif discovery using these footprints

was performed using Discriminative Regular Expression Motif Elicitation (DREME) in

the MEME suite using default settings. Random background sequences of equal size

from the same promoters were used as control. Tomtom was used to find the best

matches to motifs in the JASPAR plant database. The resulting PWMs were located

within footprints using FIMO (threshold = 0.005).

Annotation and quantification of long non-coding RNAs

High-confidence lncRNAs were annotated according to De Quattro et al. [56, 113].

Non-redundant transcripts assembled from the RNA-seq data were scanned using pub-

lished criteria for defining lncRNA transcripts [58, 114]: we filtered out sequences that

i) were less than 200 bp, ii) were open reading frame encoding proteins with more than

100 amino acids, iii) were known functional protein domains deposited in the database

Pfam v30 [115] (BLASTX cutoff E-value ≤1.0E − 3), iv) had the potential to encode

functional proteins based on the program CPC [116], and/or v) had homology with

maize structural RNA domains deposited in the database Rfam v12 [117] (BLASTN

cutoff E-value 1.0E ≤ − 10). 15,606 potential noncoding transcripts were discarded due

to protein coding capacity. To exclude potential small RNA precursors from our
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analysis (e.g., microRNAs and phasiRNAs), transcripts passing these filters were further

processed using publicly available small RNA datasets (> 37M processed small RNA

reads) from immature B73 tassel and ear (~ 0.5–2 cm) [118] (SRA BioProject

PRJNA119855, run ID: SRR032087, SRR03209) and A619 tassel primordia (0.5–1 cm)

[119] (SRA BioProject PRJNA230402, run ID: SRR1041542, SRR1041543, SRR1041544).

Small RNA reads (18–34 nt in length) were mapped against the lncRNA sequences

using PatMaN [120] and processed with custom scripts in R. LncRNA sequences host-

ing ≥20 different small RNA reads were discarded. To reduce noise from spuriously

transcribed RNAs, we considered only transcripts with a sum expression cut-off equal

to or greater than 10 TPM across the entire dataset. Ten percent of lncRNA prediction

was supported by Sanger sequencing (> 80% alignment identity and 50% alignment

coverage) using maize NCBI ESTs (n = 393,418) (Additional file 13: Dataset S12).

High-confidence lncRNAs were classified based on their relative genomic location to

protein coding genes. We defined overlaps between lncRNAs and PCGs using the Bio-

conductor package, GenomicRanges. LncRNAs were considered genic if they were lo-

cated i) entirely within exons, ii) entirely within introns, or iii) spanning exon-intron

boundaries. LncRNAs overlapping a PCG model in the antisense orientation were clas-

sified as antisense. Expression profiles of lncRNAs were determined by calculating

TPM values across the eight stages of maize inflorescence development using Salmon

v0.8.2 in mapping-based mode [121] and the sequences derived from the transcriptome

reconstruction. Default parameters were used except the option --numBoostraps 30.

Salmon output files were imported into R and processed using the Bioconductor pack-

age tximport [122]. Meristem-specific expression of lncRNAs was assessed by the Shan-

non Entropy (SH) metric using the Bioconductor package BioQC [123] and the TPM

expression data.

To correlate expression levels of the lncRNAs with their closest PCGs, pairwise co-

expression analyses were performed across each lncRNA - PCG pair independently for

each of these four classes of lncRNAs: intronic-lncRNAs and intergenic lncRNAs < 2 kb,

< 10 kb, and > 10 kb. First, expression values of PCGs and lncRNAs were normalized by

log transformation using the function rlog in the Bioconductor package DESeq2 [124]. For

each of the four lncRNA types, a matrix of lncRNA-PCG pairs was generated. For each

pair, their expression profiles and correlation between them were determined using a

biweight mid-correlation method with the function bicor from the Bioconductor package

WGCNA [125]. The lncRNA-PCG pairs with a correlation coefficient > |0.8| were kept

and hierarchically clustered to determine modules of co-expressed pairs.

Analysis of whole genome bisulfite sequencing data

Public raw data from whole-genome bisulfite sequencing (paired-ends; 100 bp) of B73

immature ears (~ 5 mm in length) were downloaded from the NCBI Sequence Read

Archive using the run ID SRR2079442 [60]. Raw data were processed for quality using

the program trim_galore (v.0.4.4_dev) with the parameters ‘-q 20 --length 75 --trim-n

--retain_unpaired’. Quality reads were mapped to the maize AGPv3 reference genome

using the program BSMAP [126] with the options ‘-r 2 -v 5’. DNA methylation level at

single cytosine in the three methylation contexts (mCG, mCHG, mCHH) was extracted

using the script methratio.py included in BSMAP.
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Functional enrichment analysis

Maize-GAMER [46] AGPv3 aggregate annotation file was downloaded from Cyverse

(DOI: doi.org/10.7946/P2S62P) and used as input for the gene set enrichment analysis.

The function enricher from the Bioconductor package clusterProfiler [127] was used

with default parameters and Benjamini-Hochberg multiple test correction. Annotation

of GO terms were retrieved from the database QuickGO (https://www.ebi.ac.uk/

QuickGO/). Maize TF annotations were downloaded from Grassius [86] and

PlantTFDB [128]. The two databases were merged and filtered for duplicated entries

and used as input in the enrichment analysis by hypergeometric test as described earlier

for the GO terms.

Genome-wide association study for TBN and ERN

The dependent variable for each GWAS model was the residuals from a joint linkage

analysis model fitted in [129] containing all quantitative trait loci associated with the

trait of interest except for those on the given chromosome. Because the SNP markers

were genotyped on only the NAM founders, we used a procedure similar to that de-

scribed in [129–131] to project these markers onto the entire NAM population.

For each set of markers, a stepwise model selection procedure implemented in the

software TASSEL v5.0 [132] was used. Entry and exit criteria for each marker set was

determined through a permutation procedure described in [133], where 100 permuta-

tions were conducted. To ensure the detection and quantification of both large- and

moderate-effect genomic signals, the empirical entry/exit thresholds were determined

at α = 0.20. Data were visualized in Zbrowse, an interactive GWAS viewer (www.baxter-

lab.org) [134].

To test the performance of MNase SNPs within the 282 Goodman-Buckler maize di-

versity panel, we used GWAS results from Rice et al. (2020 [68];) for TBN and calcu-

lated new False Discovery Rate (FDR)-adjusted p-values for SNPs within tassel MNase

HS regions and 1000 random subsets (n = 71,024) using the Benjamini and Hochberg

procedure ([69]; alpha = 0.05). For each of the 1000 replicate iterations, we calculated

the following statistic, lambda (λ):

λ ¼ 99thPercentile − log Reduced FDR Adjusted p−valuesð Þð Þ
99thPercentile − log Genomewide FDR Adjusted p−valuesð Þð Þ

A λ of one means that there was no change in the 99th percentile, i.e., the top 1%

most significant SNPs, compared to the values in a genome-wide analysis. The higher

the λ, the greater the FDR-adjusted p-value of the 99th percentile decreased.
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