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Abstract

Background: The traditional approach to studying the epigenetic mechanism CpG
methylation in tissue samples is to identify regions of concordant differential
methylation spanning multiple CpG sites (differentially methylated regions). Variation
limited to single or small numbers of CpGs has been assumed to reflect stochastic
processes. To test this, we developed software, Cluster-Based analysis of CpG
methylation (CluBCpG), and explored variation in read-level CpG methylation
patterns in whole genome bisulfite sequencing data.

Results: Analysis of both human and mouse whole genome bisulfite sequencing
datasets reveals read-level signatures associated with cell type and cell type-specific
biological processes. These signatures, which are mostly orthogonal to classical
differentially methylated regions, are enriched at cell type-specific enhancers and
allow estimation of proportional cell composition in synthetic mixtures and
improved prediction of gene expression. In tandem, we developed a machine
learning algorithm, Precise Read-Level Imputation of Methylation (PReLIM), to
increase coverage of existing whole genome bisulfite sequencing datasets by
imputing CpG methylation states on individual sequencing reads. PReLIM both
improves CluBCpG coverage and performance and enables identification of novel
differentially methylated regions, which we independently validate.

Conclusions: Our data indicate that, rather than stochastic variation, read-level CpG
methylation patterns in tissue whole genome bisulfite sequencing libraries reflect cell
type. Accordingly, these new computational tools should lead to an improved
understanding of epigenetic regulation by DNA methylation.

Keywords: DNA methylation, Read-level, WGBS, Imputation, Machine learning,
Random forests, Deconvolution, Bisulfite-seq
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Background
DNA methylation, which occurs predominantly at CpG dinucleotides in mammals,

is a stable epigenetic mechanism that regulates cell type-specific gene expression

[1]. Accordingly, different cell types exhibit differential DNA methylation at many

genomic regions [2–5]. Whole genome bisulfite sequencing (WGBS), the current

gold standard for the study of DNA methylation, provides single-nucleotide

resolution at all cytosines in the genome. The mean methylation level is typically

reported at each cytosine, but in bulk tissues comprised of multiple cell types, this

value is a weighted average across all cells in the sample, obscuring cell type-

specific differences. While single-cell WGBS theoretically overcomes this problem

[6, 7], technical and practical limitations result in low mapping efficiencies and

poor genomic coverage, typically less than 0.5X [8, 9].

Computational solutions to identify cell type-specific signals within bulk WGBS

data would offer two major advantages: high genomic coverage and applicability to

existing datasets. Previous approaches to quantify read-level heterogeneity in WGBS

data involved the development of various metrics, each yielding a single numeric

value for any genomic region. Epipolymorphism [5] quantifies the proportion of dis-

tinct read-level patterns of methylation (referred to as epi-haplotypes) by calculating

the probability that two randomly sampled reads contain different epi-haplotypes.

Another metric, methylation entropy [10], assesses read-level heterogeneity by an

“information-theoretic” approach based on Shannon’s entropy. Neither of these

techniques, however, considers patterns of co-methylation within reads. Guo et al.

[11] introduced methylation haplotype load (MHL) to quantify the fraction of fully

methylated haplotypes of all lengths. Although a potential improvement over epipo-

lymorphism and methylation entropy due to its ability to distinguish different

combinations of methylation haplotypes, MHL fails to distinguish cell type-specific

methylation patterns in certain contexts (Supplementary Figure 1). Importantly,

none of these metrics captures the numbers, proportions, or specific patterns of

unique epi-haplotypes. Another method, epiG [12], does utilize methylation patterns

in WGBS reads, but identifies only one dominant epi-haplotype in each sample,

essentially disregarding cell type heterogeneity. Other attempts at exploring read-

level information in WGBS data sets have focused on minority regions such as those

exhibiting “bipolar methylation” [13] or containing “hypo-methylated alleles” [14],

rather than assessing the full breadth and depth of potential cell type-specific

signals.

To overcome these limitations, we developed a new analytical approach to

explore the information content of WGBS read-level heterogeneity. Our approach

identifies read-level clusters of methylation patterns which associate with cell type-

specific biological processes. We demonstrate the cell type specificity of these

patterns by utilizing them to estimate proportions within synthetic mixtures of

cells and improve the performance of methylation-based gene expression predic-

tions. A requirement of any read-level analysis (including ours) is adequate

genomic coverage of fully informative reads. We therefore developed an ancillary

machine learning tool to accurately impute “missing” CpG methylation values at

the read level and show that this not only improves cluster-level analysis but also

substantially increases the information yield from existing WGBS datasets.
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Results
A new approach for identifying read-level DNA methylation patterns within WGBS data

We developed a software package called Cluster-Based analysis of CpG methylation

(CluBCpG). CluBCpG operates on the BAM files generated by mapping WGBS reads

with Bismark [15] and standard preprocessing tools (see the “Methods” section).

CluBCpG segments the genome into 100-bp non-overlapping bins [16]; analysis is re-

stricted to all such bins containing ≥ 2 CpGs (hereafter referred to as “bins”). The ana-

lysis considers only reads that overlap all CpG sites within each bin (informative reads).

Reads of identical methylation patterns are grouped into “clusters” (Fig. 1a). CluBCpG

is configured to operate on one or two aligned BAM files (WGBS libraries). In the two-

library (comparative) analysis, reads are indexed by library then combined, enabling the

identification of both shared and sample-specific clusters (Fig. 1b). CluBCpG produces

a genome-wide summary of read clusters annotated by bin and detailing genomic loca-

tion, methylation patterns, number of reads, and sample of origin. All analyses de-

scribed herein are based on default settings, evaluating bins covered by at least 10

informative reads per library, and requiring at least 4 reads of identical methylation pat-

tern to comprise a cluster (P < 0.01, χ2 test). However, CluBCpG allows these settings

to be adjusted by the user.

CpG read clusters provide cell type-specific information

Because each read originates from a DNA molecule in one cell, we hypothesized that

read clusters carry cell type-specific information. To test this, we employed CluBCpG

in the two-library mode to compare publicly available WGBS data of human B cells

and monocytes (from ENCODE), each containing 30X genome-wide coverage [17]. We

performed 10 random splits of each dataset into two equal parts and performed

CluBCpG analysis on B cell vs. B cell, monocyte vs. monocyte, and B cell vs. monocyte

(Fig. 2a). Relative to analyses comparing a single cell type to itself, CluBCpG identified

> 20-fold more sample-specific read clusters when comparing different cell types (P =

6 × 10−52, one-way ANOVA with Tukey post hoc test) (Fig. 2b). We performed an

analogous analysis using WGBS data from human neurons and glia [18] (15X genome-

wide coverage) and found a similar result (P = 2.2 × 10−31) (Fig. 2c). Importantly, the B

cells and monocytes were isolated from one individual (a 37-year-old male) (Supple-

mentary Table 1), and the neuron and glia samples were likewise isolated from one in-

dividual (a 40-year-old male), ruling out potential confounding by age, sex, etc. These

data therefore support the hypothesis that, rather than arising by chance or reflecting

stochastic processes, most sample-specific clusters identified by CluBCpG are associ-

ated with cell type.

To assess the frequency of cell type-specific signals throughout the genome, we cal-

culated the number of clusters containing B cell-specific reads, monocyte-specific reads,

or both in the full B cell and monocyte datasets; the vast majority of clusters are com-

mon to both cell types (Supplementary Figure 2a). Genome-wide, across 4.1M inform-

ative bins, CluBCpG detected an average of 1.7 clusters per bin (Supplementary Figure

2b). Only 8% of bins contained a B cell- and/or monocyte-specific cluster, and these

were generally exclusive; only 5% of bins with a cell type-specific cluster had clusters

specific to both cell types (Fig. 2d). Despite its lower sequencing depth (15X), the
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neuron vs. glia data set yielded similar results, with 9% of covered bins containing

neuron- and/or glia-specific clusters, and 4% of these containing both (Fig. 2e). Inter-

estingly, comparing read cluster patterns unique to a cell type vs. shared by both cell

types showed that shared patterns tend to be fully methylated, whereas cell type-

specific patterns are broadly biased towards other states (Supplementary Figure 3).

One might suppose that many of the regions detected by CluBCpG correspond to

conventional cell type-specific differentially methylated regions (DMRs). To test this,

Fig. 1 Rationale behind Cluster-Based analysis of CpG methylation (CluBCpG). a Each WGBS read originates
from a DNA molecule within a single cell (filled and empty circles in tanghulu plots represent methylated
and unmethylated CpG sites; columns and rows represent CpG sites and WGBS reads, respectively). The
dotted-outline box represents a tissue sample, and colored shapes represent different cell types.
Conventionally, methylation is measured by averaging methylated and unmethylated reads at each CpG
site. Instead, CluBCpG groups reads based on methylation patterns. (Note: By default, 4 reads of identical
methylation pattern are required to comprise a cluster; single-read “clusters” are depicted here for
simplicity.) b Conceptually, CluBCpG can be utilized to compare two samples (dotted boxes) to find cell
type-specific differences by identifying patterns that are unique to one of the input samples
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Fig. 2 CluBCpG identifies unique read clusters that associate with cell type. a Schematic depicting how
data were iteratively divided into random splits to perform cell type comparisons using CluBCpG. b, c Bar
graphs representing the average proportion of clusters unique to either input across 10 rounds of random
sampling; comparisons were performed for b human B cells and monocytes and c human neurons and
glia. Error bars represent the standard deviation from the mean; statistical test: one-way ANOVA, f-statistics
are 83,978 (b) and 6725 (c), 2 degrees of freedom. In both cases, > 20-fold more unique clusters were
identified when different cell types are compared. d, e Venn diagrams of all genomic bins with a cell type-
specific cluster identified in d the full data set B cell vs. monocyte comparison and e the neuron vs. glia
comparison. f In the B cell vs. monocyte comparison, < 10% of bins with a cell type-specific cluster overlap
with a B cell vs. monocyte DMR. g Histogram showing the proportional representation of sample reads per
B cell-specific cluster in the B cell vs. monocyte comparison. Clusters comprising ≥ 50% or < 50% of the B
cell reads in that bin are termed “major” and “minor” clusters, respectively. Inset illustrates the concept. h, i
Heatmaps showing the top 10 GO biological process terms associated with bins containing h a B cell- or
monocyte-specific cluster or i a neuron- or glia-specific cluster. j Heatmap of the top 10 GO biological
process terms from B cell and monocyte bins containing a major cluster. Colors in all heatmaps represent
the -log10 of the q value calculated by GREAT
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we identified B cell vs. monocyte DMRs using Dispersion Shrinkage for Sequencing

data (DSS) [19, 20], a state-of-the-art, statistically rigorous software package to identify

DMRs in WGBS data without the requirement of sample replicates. Using DSS thresh-

olds of a minimum DMR length ≥ 50 bp and ≥ 2 CpGs per DMR (P < 10−8), we find that

< 10% of bins with B cell- or monocyte-specific clusters overlap DMRs (Fig. 2f). Even

after applying a greatly relaxed P value significance threshold within DSS (P < 0.05),

70% of bins identified by CluBCpG are not found in DMRs (Supplementary Figure 4a-

c). To test whether cell type-specific clusters might simply correspond to very short

DMRs, we ran DSS using various minimum DMR length requirements and found a

similarly low overlap of clusters with DMRs (Supplementary Figure 4d). Together, these

results indicate that genomic regions exhibiting cell type-specific read patterns are

largely distinct from DMRs. Indeed, relative to gene regions, the distribution of bins

with cell type-specific clusters is significantly different from that of DMRs (P < 7.9 ×

10−252–6.8 × 10−42, χ2 test) (Supplementary Figure 4e-f).

Given the enrichment of cell type-specific bins in intergenic regions (Supplementary

Figure 4f), we hypothesized that these may correspond to enhancers. We compared the

number of bins with a cell type-specific cluster overlapping active enhancer regions

[21] to a random, background set of bins and found that in both the brain (neuron/glia)

and blood (B cell/monocyte) datasets the bins are indeed enriched at corresponding cell

type-specific active enhancers (Supplementary Figure 4g; all bins; P < 1 × 10−300). These

enrichments remain after excluding bins overlapping a DMR (Supplementary Figure

4g; non-DMR bins; P = 1.6 × 10−157 for neuron/glia and P = 5.1 × 10−266 for B cell/

monocytes). We further tested the cell type specificity of these enrichments, finding

that brain enhancers overlap more with the neuron/glia clusters, while blood enhancers

overlap more with the B cell/monocyte clusters (Supplementary Figure 4h).

For all cell type-specific clusters, we assessed the proportional representation of sample

reads per clusters (i.e., within each bin, the number of sample-specific reads in a cluster

divided by all reads from that sample) (Fig. 2g). Most sample-specific clusters comprise a

minority (< 50%) of the reads from that sample (which we call minor clusters). Major clus-

ters, comprising a majority (≥ 50%) of reads from that sample, are relatively rare. One in-

terpretation is that cell type-specific major clusters may reflect genomic regions that

distinguish the two cell types in a comparison, whereas minor clusters may reflect cellular

sub-types (different B cell sub-types for example). In support of this, we found that the en-

richment of cluster bins with enhancers is almost entirely driven by major clusters, in

both tissues (Supplementary Figure 4g; P < 1 × 10−300).

To test whether bins with cell type-specific clusters play a regulatory role, we utilized

the Genomic Regions Enrichment of Annotations Tool (GREAT) [22] to perform gene

ontology (GO) analysis on bins containing sample-specific clusters. Several of the most

statistically significant biological process terms were common to bins containing B cell-

and monocyte-specific clusters and were consistent with these cell type’s shared roles

in immune function (Fig. 2h). But each was also enriched for terms that associate spe-

cifically with their cellular identity, such as B cell receptor signaling in B cells and

leukocyte degranulation in monocytes. Top GO process terms associated with genomic

bins containing neuron- and glia-specific clusters showed no overlap and were likewise

associated with their cell type, including retrograde transport in neurons and granule

cell precursor proliferation in glia (Fig. 2i).
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We repeated the B cell vs. monocyte GO analysis including only the 25,429 and 22,

932 bins containing B cell- or monocyte-specific major clusters, respectively (Fig. 2j).

Compared to the analysis including all bins with unique clusters (Fig. 2h), more top

process terms were unique to one of the two cell types and all were directly related to

B cell or monocyte functions, consistent with our interpretation that major clusters

correspond to regions that best discriminate two cell types in a comparison.

Together, these data support the hypothesis that, within bulk WGBS data, read-level

CpG methylation patterns identified by CluBCpG are indicative of different cell types.

Of note, whereas conventional analysis of WGBS data is largely based on calculation of

average methylation levels at specific CpG sites or regions, the above analyses are based

solely on differences in read-level methylation patterns, without regard to average

methylation levels of clusters or bins.

Accurate imputation of CpG methylation values on individual WGBS reads

A limitation of CluBCpG is that, due to the random nature of shotgun sequencing,

many WGBS reads do not cover all CpG sites within a bin and are not fully utilized.

Since the number of informative bins decreases dramatically with lower genome-wide

sequencing depth (Supplementary Figure 5), identifying cell type-specific signals in

WGBS data requires high sequencing depth. To make CluBCpG amenable to a wide

range of existing WGBS datasets, we wished to impute methylation values at “missing”

CpGs on reads partially overlapping each 100-bp bin. Machine learning tools have been

developed to predict DNA methylation at un-assayed CpG sites in WGBS experiments,

but these predict a methylation value at the sample library level, not on individual reads

[23–26]. We set out to create a model which could learn from the millions of reads

within each WGBS data set and impute “missing” CpG methylation values at the read

level (Fig. 3a).

The result is a software package called Precise Read-Level Imputation of Methylation

(PReLIM), which implements a random forest machine learning model. PReLIM was

initially developed using publicly available WGBS data from mouse neurons and glia

[27] (see the “Methods” section for a detailed description). In short, we generated train-

ing data for each cell type individually by identifying all bins with at least 10 inform-

ative reads. To mimic actual patterns of “missingness,” where the ground truth is

known, we used bins containing incomplete reads to generate masks and overlaid these

on fully covered bins. Each CpG site was encoded into a 1D vector (Fig. 3b) including

data such as the adjacent CpG state, mean methylation of all CpGs at that genomic

position, number of CpGs on that read, and the proportions of all CpG patterns within

the bin. These encoded data were split and used for 5-fold cross-validation. We tested

multiple machine learning algorithms: K-nearest neighbors, logistic regression, random

forest, and neural networks. As random forest and neural networks both performed the

best and at similar levels (Supplementary Figure 6a-b), we opted to employ random for-

est as it is less computationally intensive. We additionally tested if PReLIM provides

better predictions than simply using the column mean (average methylation at a given

CpG site) as the predictor. Indeed, PReLIM’s predictions yielded a significantly higher

area under the receiver operating characteristic curve (AUC) (P < 0.01) when tested in

both neurons and glia (Supplementary Figure 6c).
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Across all CpGs, PReLIM delivers an AUC of 0.85 or better, and performance in-

creased with bin CpG density (Fig. 3c); the area under the precision-recall curve

(AUPRC) was 0.96 (Fig. 3d). Recognizing that attempting to impute all CpGs

Fig. 3 Precise Read-level Imputation of Methylation (PReLIM) imputes missing methylation values at the
read level. a Conceptual illustration of PReLIM. During training, PReLIM learns about associations of CpG
methylation patterns within and among millions of reads from a given dataset. PReLIM then uses this
knowledge to impute missing CpG values for all reads overlapping each 100-bp bin, enabling the
generation of complete matrices that can be used by CluBCpG. b PReLIM expands each individual CpG site
to a 1D vector which contains all the information for that CpG site in the context of all other reads in that
bin. Read encodings are the relative proportions of each possible type of methylation pattern found in the
matrix. c Receiver operating characteristic plot showing PReLIM’s performance on the 20% of mouse
neuron data held out during training. d Corresponding precision-recall plot. e Trade-off plot illustrating
associations between prediction confidence, prediction accuracy, and proportion of imputations achieved.
Dotted lines show that, for this data set, considering only predictions with confidence > 0.6 enables 90% of
missing values to be imputed at 95% accuracy. f Line plots (scale on left axis) show that imputation by
PReLIM enables substantial gains in the proportion of genomic bins meeting CluBCpG coverage
requirements on the ENCODE B cell data. Bar plot (scale on right axis) shows estimated coverage level of
WGBS libraries currently deposited in the NCBI SRA; libraries with less than 5X coverage are not shown. For
the majority of these datasets, PReLIM can increase coverage by 50–100%
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compromises overall performance, we opted to achieve higher accuracy by limiting

methylation calls to CpG sites with a high prediction confidence C = | 2 (y − 0.5) |,

where y is the probability of methylation (from 0 to 1) predicted by the model. Consid-

ering only predictions with a confidence of > 0.6 enables imputation of 90% of the miss-

ing values, with 95% accuracy (Fig. 3e); this approach was utilized to maintain

prediction accuracies at 95% in subsequent analyses.

Without utilizing confidence cut-offs, we asked whether a model trained on one li-

brary could be used to impute methylation on WGBS reads from a different library and

found that, while possible, performance is generally best when each model is trained on

the library of interest (Supplementary Figure 7a). We also tested if models need to be

trained in a chromosome-specific fashion but observed similar performances across

chromosomes (Supplementary Figure 7b) and therefore opted to train the models

genome-wide for each sample.

To determine the gains in coverage attainable by PReLIM, we created a downsampled

version of the ENCODE B cell data [17] and calculated the numbers of fully covered

bins (i.e., ≥ 10 complete reads) before and after imputation. The biggest proportional

gains from imputation are achieved when genome-wide read depth is between 7X

(390% gain) and 20X (37% gain) (Fig. 3f, green and orange lines, left axis). Many WGBS

datasets in the NCBI sequence repository archive (SRA) fall within this range (Fig. 3f,

blue bars, right axis). Similar gains from imputation were observed on the human

neuron and glia datasets [18] (Supplementary Figure 8). Together, these results demon-

strate that PReLIM can efficiently and accurately impute read-level CpG methylation

values, suggesting the potential to recover substantial latent information in existing and

future WGBS datasets.

PReLIM improves power of multiple downstream analyses

To evaluate this capability, we reanalyzed the human neuron and glia datasets [18] after

imputation with PReLIM, achieving a 104% increase in the number of bins passing

CluBCpG coverage criteria (Supplementary Figure 9a). Even for the ENCODE B cell

and monocyte datasets (with their higher initial read depth), CluBCpG coverage in-

creased by 22% (Supplementary Figure 9b). Repeating our GO analysis on the aug-

mented neuron and glia datasets showed that imputation generally increased the

statistical significance of the term enrichments (P < 2.5 × 10−67 and P < 1.2 × 10−36; Wil-

coxon signed rank test) (Supplementary Figure 9c-d), indicating that imputed data gen-

erally agrees with and strengthens the results obtained without imputation.

In addition to improving coverage for CluBCpG, we hypothesized that PReLIM might

increase the power of conventional WGBS analyses such as identification of DMRs.

Using publicly available WGBS data of mouse neuron and glia from Lister et al. [27],

we utilized DSS to identify DMRs before and after imputation. Setting a conservative

significance threshold within DSS (P < 10−8), PReLIM enabled the identification of 41%

more DMRs (Fig. 4a). As a negative control, we generated multiple splits and evaluated

the CpG-specific P value distribution from DSS for neuron vs. neuron and glia vs. glia,

before and after imputation. The results (Supplementary Figure 10) show that PReLIM

does not introduce inflation under the null. We used GREAT to perform GO analysis

on the DMRs identified before and after imputation, finding higher statistical
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significance following imputation (P < 1.3 × 10−4 and P < 4.3 × 10−4; Wilcoxon signed

rank test) (Fig. 4b, c). To visualize how PReLIM enables identification of more DMRs,

we generated tanghulu plots of some regions before and after imputation (Fig. 4d),

demonstrating large information gains of both methylated and unmethylated states. To

Fig. 4 PReLIM increases power and coverage of WGBS datasets. a Differentially methylated regions (DMRs)
identified in the mouse neuron vs. glia WGBS dataset before and after imputation. b, c Heatmap showing
the top 10 GO biological process terms for DMRs with b lower methylation in neurons and c lower
methylation in glia, before and after imputation by PReLIM; analysis was conducted using GREAT, color
represents the -log10 q value. PReLIM generally increases the statistical significance of the GO terms. d
Examples of tanghulu plots showing WGBS reads at DMRs identified only post-imputation; rows and
columns represent reads and CpG sites, respectively. Filled and empty circles represent methylated and
unmethylated CpGs. e Examples of bisulfite pyrosequencing results of DMRs identified only post-
imputation. Each point represents a single CpG site in the pyro assay, within the DMR. Horizontal dotted
lines indicate average cell type-specific methylation across the DMR, from the WGBS data following PReLIM
imputation. DMR positions relative to genes are depicted below each plot. Black box indicates DMR
location, blue gene-body schematic is oriented 5′ to 3′
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independently validate these newly identified DMRs, we used NeuN immunolabeling

and FACS sorting to isolate neuronal and non-neuronal DNA from mouse cortex and

evaluated methylation by bisulfite pyrosequencing [28]. Of 10 regions for which pyrose-

quencing assays passed quality control, 100% validated as DMRs, with correct polarity

(Fig. 4e, Supplementary Figure 9e). Overall, these data demonstrate that PReLIM can

uncover substantial latent information from WGBS datasets. It not only provides in-

creased coverage for read-level analyses (such as CluBCpG), but also increases the ef-

fective read depth of WGBS data, increasing the power of other downstream analyses.

CpG read clusters precisely estimate proportions of cell mixtures

If the read patterns being identified by ClubCpG are indeed cell type-specific signa-

tures, we hypothesized that these patterns would enable estimation of cell proportions

in mixtures of cells. To test this, we created multiple in silico mixtures of cells by com-

putationally mixing WGBS reads of B cells and monocytes [17] randomly in propor-

tions ranging from 10:90 to 90:10 (Fig. 5a). As in the previous analysis (Fig. 2), these

ENCODE data are based on B cells and monocytes isolated from one human subject.

We performed analysis with CluBCpG on each mixture and used the identified num-

bers of reads in each cluster as features in a model to predict the B cell to monocyte

proportion (Fig. 5b) (recall that each cluster has a specific CpG methylation pattern

and genomic location). To make our analysis orthogonal to DMRs, we excluded all fea-

tures from bins overlapping a DMR. We performed dimensionality reduction using

principal component analysis (PCA) and kept the top 20 components for use in a

multivariate linear regression model (Supplementary Figure 11a-b). To verify our model

is not overfitting, we carried out 5-fold cross-validation, consistently obtaining a root

mean squared error (RMSE) of 0.001 (Fig. 5c) on each testing set which was held back

from training. We then assessed the external validity of this model based on ENCODE

data, testing if it could accurately predict cellular composition in an independent B cell

and monocyte WGBS dataset from the Blueprint Epigenome project [29] (different do-

nors; WGBS performed by a different lab) (Supplementary Table 1). Using the linear

regression model trained on ENCODE data to predict the proportions in the Blueprint

data achieved near-perfect accuracy (RMSE = 0.011) (Fig. 5d, Supplementary Figure 11c).

Note that the ENCODE B cell and monocyte data are from one (37-year-old male)

individual, and the Blueprint data are from at least one female (65–70 years old)

(Supplementary Table 1); hence, the agreement of these models cannot be ex-

plained by confounders such as age or sex. We next tested if minor clusters

(Fig. 2g) carry cell type-specific information, fitting another linear model using only

minor cluster information, not overlapping a DMR, from the Encode data. Testing

it against the Blueprint data, the model performed with a RMSE of 0.068 (Fig. 5e),

indicating that, although a subset may reflect stochastic variants, some minor clus-

ters do contain cell type-specific information. As negative controls, we generated

random data and permuted the proportion labels of the Blueprint data. In both

cases, testing on the ENCODE-trained model showed no predictive relationship

(RMSE = 0.31 and 0.37, Supplementary Figure 11d-f). These results provide compel-

ling evidence that, independent of cell type DMRs, read clusters identified by

CluBCpG represent cell type-specific signatures within WGBS data.
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CpG read clusters improve prediction of gene expression

To directly test their role in epigenetic regulation, we asked whether the read clusters in-

ferred by CluBCpG could be used to predict gene expression. Gene expression data were

obtained for the ENCODE B cell and monocyte samples [17]. We focused our analysis on

the promoters of 3750 genes with differential expression. Our analysis builds upon a previ-

ously reported approach for predicting expression differences in a binary fashion (i.e., pre-

dicting which cell type has higher expression of a given gene) using a random forest model

[30]. For each gene, we constructed a set of features detailing the identified clusters around

its promoter (Supplementary Table 2). For a baseline comparison, the initial model was

based on average promoter methylation, without considering clusters. Promoter methyla-

tion alone achieved a mean AUC of 0.69 (Fig. 6a, b, green). Including cluster information

increased the mean AUC to 0.75 (Fig. 6a, b, purple; P = 2.7 × 10−56). As a negative control,

we permuted the class label of our full training data set; as expected, no predictive relation-

ship was observed (AUC= 0.5, Fig. 6a, dark gray). To further verify that the models are not

overfitting the data, we implemented a 10-fold nested cross-validation procedure in which

Fig. 5 CluBCpG enables proportional estimation of in silico cell mixtures. a Illustration of how individual
reads from pure B cell and monocyte WGBS libraries were mixed computationally to create synthetic cell
mixtures. b Examples of data columns from the ENCODE training data used to fit a linear model. B cell to
monocyte proportion is the dependent variable. Each column represents a read-level methylation pattern
within a bin, and the number of reads showing that pattern in the bin. c Predicted B cell to monocyte
proportion vs. the true proportion on a subset of 20% ENCODE data held out from training of the linear
regression model; note at each position 10 points are overlapping one another. d Predicted B cell to
monocyte proportion vs. true proportion for all Blueprint B cell and monocyte data. Predictions were based
on the linear model fit on the ENCODE data. e Predicted B cell to monocyte proportion vs. true proportion
for all Blueprint B cell and monocyte data using only minor clusters. For c–e, the diagonal, red dotted line
is the line of identity
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models are independently optimized for each fold of training data [31]. The results (Fig. 6c)

mirrored the original analysis (Fig. 6b), corroborating that cluster information increases

predictive performance.

Based on studies evaluating associations between regional methylation and gene expres-

sion [30], our expression analyses utilized a promoter window of ± 3 kb. However, to ensure

this promoter window is not too large (potentially diluting the functional methylation differ-

ences), we compared our baseline model (transcription start site (TSS) ± 3 kb) against a

model trained using average methylation levels in a window encompassing 500 bp upstream

of the TSS. The baseline model using the larger promoter window possessed more predict-

ive power (mean AUC 0.70 vs. 0.63; P = 5.8 × 10−58) (Supplemental Figure 12a-b). This find-

ing is consistent with other studies [30] and suggests that the ability of cluster information

to improve expression predictions is not dependent on the choice of promoter window.

Fig. 6 CluBCpG read clusters improve prediction of gene expression. a Receiver operating characteristic
(ROC) curves of a random forest model trained on promoter average methylation alone (green line),
promoter average methylation plus cluster information (purple line), promoter average methylation plus
cluster information on the subset of gene promoters containing a major cluster (orange line), and promoter
average methylation plus cluster information in which the class labels were permuted (gray line). Shading
represents the 95% confidence interval of 100 random train-test splits. b–d Box and whisker plot overlaid
with individual points showing the area under the ROC curve for train-test splits. Whiskers extend to 1.5x
the intra-quartile range. c AUC results from a 10-fold nested cross-validation strategy that was used to
ensure the models were not overfitting. d Downsampled data were the full B cell vs. monocyte dataset
randomly reduced to 9X genome-wide coverage. Statistical tests: t test, two-tailed
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We wished to test whether the improved ability to predict expression is inherent to

the methylation patterns within the clusters, or simply reflects the inclusion of CpG-

level data. We therefore calculated the frequencies of CpG methylation-deciles for each

gene promoter and included these in the baseline random forests model (Supplemen-

tary Table 3). Surprisingly, the inclusion of these data decreased the performance of the

model (AUC 0.65 vs. 0.73) (Supplementary Figure 12c), indicating that the cluster pat-

tern information does indeed contain cell type-specific information beyond that in the

individual CpG methylation levels.

Given our hypothesis that major clusters (Fig. 2g) best distinguish predominant cell

types in a sample, we predicted that bins with major clusters would yield better gene

expression predictions. Indeed, evaluating only the 716 gene promoters that include a

major cluster improved model accuracy to a median AUC of 0.86 (Fig. 6a, b, orange;

P = 4.1 × 10−80 vs. all clusters). Conversely, no improvement was found when evaluating

the gene promoters containing only minor clusters (Fig. 6b, red).

Lastly, we tested whether applying PReLIM to low-coverage datasets can improve

cluster-based prediction of gene expression. We downsampled the ENCODE dataset to

9X average read depth and performed CluBCpG analysis before and after imputation.

Remarkably, the reduced performance of the downsampled data set was partially res-

cued following imputation by PReLIM (P = 1.2 × 10−85) (Fig. 6d). In addition to provid-

ing further evidence that PReLIM improves the ability to draw biological inferences

from WGBS data, these analyses indicate that the cell type-specific methylation pat-

terns identified by CluBCpG play a role in regulating cell type-specific gene expression,

above and beyond that which can be predicted by promoter methylation alone.

Discussion
Current understanding of mammalian developmental epigenetics holds that, following

lineage-specific transcriptional activation, de novo DNA methylation occurs as a long-

term silencing mechanism, resulting in DMRs within gene regulatory elements [1, 32].

Here we demonstrate that, in WGBS data on synthetic mixtures of isolated cell types,

read-level patterns of CpG methylation, which are largely distinct from DMRs, associ-

ate with cell type. Our findings align with previous studies indicating that methylation

at individual CpG sites can regulate gene expression [33–36], and suggest that regula-

tion of gene expression by CpG methylation is more complex than has been generally

appreciated. For example, it is possible that in addition to transcriptional silencing at

DMRs, single CpG dinucleotides could be targeted for methylation, blocking (or enab-

ling) recognition by specific DNA binding proteins in a lineage-specific fashion.

One remarkable finding from our study is that many of the genomic bins containing

cell type-specific clusters do not overlap cell type-specific DMRs. However, given that

DMRs are first identified by performing a statistical test at each CpG site [19], it is

understandable that read-level heterogeneity causes high variance, compromising statis-

tical significance. Since DMR finding methods were not developed to detect this type of

in-library heterogeneity, CluBCpG complements traditional DMR analyses.

Previous reports have analyzed individual reads from WGBS or RRBS data to develop

more fine-grained analytical approaches that go beyond locally averaged methylation

[5, 10]. These, however, all build upon the conjecture that read-level methylation vari-

ation largely reflects stochastic processes [37]. Disorder is implicit, for example, in the
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term “methylation entropy.” In contrast, our data provide support for the hypothesis that

intermolecular variations in CpG methylation patterns carry information, are established

during differentiation, and reflect heterogeneity of cell types (and sub-types). Some of the

variation detected as minor clusters in our CluBCpG analysis could reflect stochastic pro-

cesses. However, in multiple instances, our findings demonstrate that some minor clusters

contain cell type-specific information. We show that using only minor cluster bins still en-

ables accurate estimation of cellular proportions in synthetic mixtures (Fig. 5e). Minor

clusters also enable improved prediction of gene expression, beyond promoter methyla-

tion alone (Fig. 6b). While our analyses do not rule out that some of this variation arises

stochastically, they do demonstrate that the heterogeneity of site-specific CpG methyla-

tion patterns in WGBS data is strongly associated with cell type, suggesting a previously

unrecognized level of complexity in epigenetic regulation by CpG methylation.

In addition to enabling such novel theoretical insights, CluBCpG has many potential

practical applications. An early version of this approach was successfully utilized to infer

cell type-specific methylation differences among mouse hypothalamic neurons, a subset of

which were affected by cell type-specific knockout of Dnmt3a [38]. With sufficient high-

quality WGBS data to construct cell type-specific references, CluBCpG could be utilized

to develop a new state-of-the-art, highly accurate cellular deconvolution approach. Add-

itionally, CluBCpG patterns from consecutive bins could potentially be linked together to

construct and identify methylation haplotypes present over genomic long genomic dis-

tances [12]. Such future applications, however, are beyond the scope of this report.

Our analyses also demonstrate the remarkable ability of our new software tool, PReLIM,

to impute unknown CpG methylation values at the read level. Previous methods to impute

CpG methylation have focused on predicting at the sample level [23, 26, 39]. To our know-

ledge, PReLIM is the first machine learning tool to impute unknown CpG states on individ-

ual WGBS reads. Because it enables construction of “complete” matrices for all reads within

each genomic bin, PReLIM will enable future computational innovations employing matrix

operations on WGBS data. Our extensive work developing this tool provided a few “key in-

sights” that enable PReLIM to deliver outstanding prediction accuracy: (1) training occurs

on a random sample of the entire genome (separately for each CpG density) providing the

classifier access to extensive information about heterogeneity of methylation patterns across

a wide range of genomic contexts; (2) by automatically optimizing model hyperparameters,

PReLIM requires no user-input during training; (3) by restricting predictions to only high-

confidence methylation calls, PReLIM enables excellent accuracy while still imputing the

vast majority of missing CpG methylation values. We are providing CluBCpG and PReLIM

as open-source tools to the scientific community and anticipate that they will effectively

complement existing and future WGBS analytical approaches.

Methods
CluBCpG and PReLIM availability

The source code (along with installation and usage instructions) is available on

the Waterland lab GitHub repo at the following URLs: https://github.com/water-

landlab/CluBCpG and https://github.com/waterlandlab/PReLIM. Full documenta-

tion and user guides are also available at https://clubcpg.readthedocs.io/ and

https://PReLIM.readthedocs.io/.
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WGBS preprocessing and analysis pipeline

A standard WGBS data analysis pipeline was followed. First, raw fastq files were quality

trimmed using TrimGalore (v0.4.3) with default settings. Reads were aligned to the full

genome (mm10 for mouse and hg38 for human) using Bismark (v0.18.1) [15]. Mapped

BAM files were then query name sorted and deduplicated using Picard (v0.2.10.10) and

finally coordinate sorted using samtools (v1.9) [40].

CluBCpG analytical approach

CluBCpG runs its analysis in two phases. Phase 1 calculates the number of reads fully

covering each bin. The output from phase 1 is then used in phase 2 where reads are ex-

tracted from each bin and clustered together. Phase 1 allows the acceleration of phase

2. Both phases of analysis can be parallelized across multiple CPUs and/or CPU cores.

Phase 1

Each chromosome is divided into 100-bp non-overlapping bins. For each bin, all reads

are extracted, and the number of informative reads is calculated and reported.

CluBCpG considers only reads mapping onto the reference genome without indels, e.g.,

either perfect matches or allowing for mismatches within the default parameters for

Bismark. This phase makes no assumption about the chromosome sizes or number of

chromosomes, allowing it to be performed on WGBS data from any species. The out-

put from phase 1 can be filtered for a desired coverage level or CpG density. This out-

put is then used as an input for phase 2.

Phase 2

Reads from each bin are extracted from one or two bam files. If two bam files are pro-

vided, sufficient read coverage is verified from the second bam file. If read coverage is

met, reads are combined into one matrix and their sample of origin is tracked. The

DBSCAN method from scikit-learn [41] is used to rapidly cluster reads by identity.

Identified clusters and corresponding data are all saved to an output file.

A detailed user guide along with usage examples is available at https://clubcpg.

readthedocs.io/.

Splitting samples and performing sample-type comparisons

Samtools was used to split reads from each bam file into two different fractions, each

containing 50% of the mapped reads. Each random split was seeded with a different in-

teger starting at one and incrementing by one each time. Bin coverage was calculated

using CluBCpG’s “clubcpg-coverage” tool, and this output was filtered for bins contain-

ing ≥ 10 reads and ≥ 2 CpGs. CluBCpG’s “clubcpg-cluster” tool was then used to per-

form read analysis between each pair of sampled BAM files.

GREAT analysis

Bins of interest were exported as a BED file. UCSC’s “liftOver” command-line tool was

used to convert the hg38 coordinates in the BED files to hg19 coordinates. These con-

verted BED files were uploaded to GREAT (v3.0.0) [22] for analysis. GREAT was run on

its default settings. Due to a large number of regions being analyzed, the “region-based
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binomial view” was used, as suggested by the developers. Significant GO Biological

Process terms were exported.

DSS analysis

Bismark methylation extraction was used to generate coverage files from the Bismark-

aligned BAM files. The coverage files were utilized to prepare a DSS input file contain-

ing four columns as instructed by the DSS user guide: chromosome, CpG position, total

number of reads, and number of methylated reads. DSS [19] was run using a minimum

DMR length of 50 bp and a minimum of 2 CpGs per DMR. Unless otherwise noted, we

applied a P value of < 10−8 as a threshold for significance within the DSS software

package.

PReLIM training and validation

Data collection

We used WGBS data from Lister et al. [27] from mouse neuron and glia. WGBS reads

were prepared in the aforementioned fashion, resulting in coordinated sorted BAM

files. We then partitioned the genome into 100-bp bins. Segments of reads overlapping

the CpG loci in a bin were placed into that bin. We represented the reads overlapping

each bin using a matrix, where columns are CpG loci and rows are individual reads.

We represented a methylated CpG with a 1 and an unmethylated CpG with a 0. If a

read did not cover a CpG in the bin, we represented the missing CpG with a − 1. In this

way, we obtained a list of CpG matrices. To train PReLIM to predict the methylation

status of missing individual CpGs at the read level, we needed a way to know the true

methylation status of a CpG. We achieved this by first creating a set of “masks” to arti-

ficially hide data. In order to create a set of masks that were representative of the data,

we looked at all the CpG matrices in the data and recorded the positions of the missing

CpGs in each matrix. We only recorded masks that had at least 1 missing CpG. We

then needed a set of matrices that had no missing values in them that we could apply

our masks to. To collect these complete matrices, we looked at all the matrices in the

data and removed any reads with missing values in them. For each of these complete

matrices, we found a mask that had the same dimensions. We then used our masks to

artificially cover up values in the complete matrices, and for each CpG that was covered

up, we recorded its known methylation state. For each artificially missing CpG in a matrix,

we used the artificially masked matrix and recorded the mean methylation in the corre-

sponding row and column, the current column and row index of the CpG, the methyla-

tion states of every CpG in the current row, and the “read encodings,” which are the

relative proportions of each type of methylation pattern found in the matrix (see example

in Fig. 3b). These values constituted the feature space data corresponding to each of the

missing CpGs, serving to capture as much local methylation information as possible while

still allowing the same model to be used on bins with different read coverages.

PReLIM training and testing

PReLIM uses scikit-learn’s [41] random forest implementation. We performed a grid

search to find the optimal hyperparameters for the model (number of trees [10, 50,

100, 500, 1000], maximum depth of trees [1, 5, 10, 20, 30]). We split the data into two
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partitions: training data (80%) and validation data (20%). Scikit-learn’s standard 5-fold

validation was used for each hyperparameter setting. We created a model for the most

common CpG densities, that is, 100-bp bins with 2, 3, 4, and 5 CpGs.

Comparison to Naïve Bayes model

We trained both PReLIM and a Gaussian Naive Bayes (NB) model on mouse neuron

and glia datasets. For all of these datasets, we considered only bins with 2 CpGs. For all

models, 10,000 data points were included in the data set. The NB model was trained

only on the observed mean of each CpG site, while PReLIM was trained on all features.

The NB model thus tries to predict the methylation of an individual CpG site at the

read level given the observed mean of the other CpGs at this site. The prior for the NB

model is learned from the training data. For each data set, we used 5-fold cross-

validation to evaluate the performance of both models. We used the area under the re-

ceiver operating characteristic curve as a metric to compare the performance of the

models.

Accuracy evaluation

PReLIM emits the estimated probability that a given CpG is methylated. A probability

close to 1 means that PReLIM is more confident that the CpG is methylated, and a prob-

ability closer to 0 indicates that PReLIM is more confident that the CpG is unmethylated.

A probability close to 0.5 means that PReLIM is unsure. We evaluated PReLIM’s accuracy

performance as a function of confidence. We defined “confidence” as the absolute value

of twice the distance of the probability to 0.5, i.e., C = | 2 (y − 0.5) |, where y is the esti-

mated probability of methylation.

Imputation

To impute missing data from a trained PReLIM model, PReLIM collects the observed

features of a missing CpG site in a matrix, feeds these features through its model, and

returns the estimated probability of methylation.

Testing for DMR inflation under the null following PReLIM

To test whether PReLIM might create inflation of the DSS test statistic under the null,

we used the same neuron and glia datasets from before [27] and, for each tissue type,

split the reads randomly into two files and applied PReLIM to both. DSS was used to

compare the two downsampled files (self vs. self) both before and after imputation; ten

such random splits were evaluated for each tissue type. After imputation, a coverage file

was created that had the same format as described under the “DSS analysis” section.

Since DSS does not report the P value of DMRs, we examined the P values used by

DSS to call differentially methylated loci (DML). DSS was used as previously described,

except for changing the significance threshold to P < 1 to capture the full range of

CpG-level P values.

Pyrosequencing

Quantitative analysis of novel DMRs identified post-imputation was performed using

bisulfite pyrosequencing as previously described [16]. Prior to use, all assays were
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quantitatively validated against a set of mouse genomic DNA methylation standards.

Assay primers and QC data are included in Supplementary Table 4.

Proportion estimation of in silico cell mixtures

Feature collection

Independent B cell and monocyte datasets were obtained from ENCODE [17] and

Blueprint [29], both at approximately 30X average sequencing depth. Samtools was

used to randomly sample varying proportions of reads from B cell and monocytes and

merge them to create an in silico mixture of cells while keeping the same overall aver-

age sequencing depth of 30X. Each proportion was created 10–15 times, each time be-

ing initialized with a different random seed. Each one of these synthetic mixtures was

analyzed using CluBCpG. A total of 7 million read clusters were identified genome-

wide. Using the ENCODE B cell and monocyte data, a training set was constructed

with each row representing one synthetic mixture and each column (a feature) an ob-

served CpG pattern in a specific 100-bp bin. The value was the number of reads

present with that pattern. When constructing the Blueprint data, any feature not found

in ENCODE was dropped, and any ENCODE feature not found in Blueprint was added

and set to 0. In total, 5.2 million features existed after adjustments. Additionally, ap-

proximately 115,000 features present bins that were also identified in DMRs were re-

moved. Principal component analysis (PCA) was performed using scikit-learn with “n_

components” = 20.

Training and testing for the ENCODE data

Using scikit-learn, 5-fold cross-validation was performed using a linear regression

model. The linear model was initialized using scikit-learn default parameters. After

cross-validation, a final model was fit on the full ENCODE dataset.

Validation on Blueprint data

PCA was applied to the Blueprint data keeping the top 20 components. The model fit

to the full ENCODE data was then used to predict the Blueprint proportions. The root

mean square error (RMSE) value was calculated by taking the squared root of the out-

put from scikit-learn’s “mean_squared_error” function on the predicted vs. true Blue-

print proportions.

Random forest prediction of gene expression

Fully processed B cell and monocyte expression data were obtained from ENCODE

[17]. We selected a set of differentially expressed genes by calculating the

Δlog2FPKM by log2 normalizing the FPKM values and subtracting monocytes from

B cells. These values were fit to a normal distribution, and genes with a

Δlog2FPKM ± 2 standard deviations from the mean were selected. We focused our

analysis on gene promoters (transcription start site ± 3 kb) in which we identified

cell type-specific clusters. The mean promoter methylation value was calculated by

averaging the CpG methylation values for all CpGs within the promoter window.

Using CluBCpG results, we created features for each gene, which included the

mean promoter methylation value and one column for each CpG pattern observed

Scott et al. Genome Biology          (2020) 21:156 Page 19 of 23



and its cell type specificity (Supplementary Table 2). Scikit-learn’s RandomForest-

Classifer was used to build and test each model. The hyperparameters of every

random forest model utilized in our study were each tuned independently by per-

forming a grid search along with 10-fold cross-validation testing combinations of

various parameters, i.e., numbers of decision trees (n_estimators, 1–100), the func-

tion to evaluate the quality of a split (criterion, “gini” and “entropy”), and the max-

imum depth of a tree (max_depth, 1–100 or none) were evaluated. The optimal

parameters for each model were then utilized in the 100 random train-test splits:

80% training and 20% testing. For the nested cross-validation [31], a grid search

was utilized on each fold to identify the best performing model. The AUC for each

test-fold was then calculated using the optimal model parameters from that fold.

CpG promoter methylation-decile analysis

Methylation levels of individual CpG sites present within a gene promoter were ex-

tracted from the coverage files produced by Bismark. We next quantified the number

of CpG sites within each promoter which fell into decile-methylation ranges (0–9.9%,

10–19.9%, etc.) for both B cells and monocytes. The total number of CpGs for each cat-

egory was then divided by the total number of CpGs within each promoter to produce

a normalized proportion of the levels of CpG methylation in each promoter. These data

for each gene promoter were then added as additional features to the random forest

model data which contained only the average promoter methylation level at each gene

promoter.
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Additional file 5: Supplementary Figures. Supplementary Figure 1. Comparison of existing read-based met-
rics. Schematic depicting a genomic region containing two CpG sites with different patterns of methylation, but
same average methylation, in two different samples. Calculated methylation haplotype load, methylation entropy,
and epi-polymorphism metrics are shown to compare how they differentiate (or fail to differentiate) the two sam-
ples. Supplementary Figure 2. Genome-wide calculation of sample-specific CluBCpG clusters. (a) Bar chart show-
ing total numbers of clusters identified genome wide between ENCODE B cells and monocytes. Bars show total
number of clusters found in both samples, B cell only, and monocyte only. (b) Histogram depicting the distribution
of the number of clusters per bin from ENCODE B cells and monocytes; x-axis truncated at 10 for clarity. Supple-
mentary Figure 3. Predominant CpG patterns differ between shared and cell type-specific clusters. Bar plots
showing the total counts of different CpG patterns identified across the full genome. Shared clusters (left) were
clusters with patterns found in both B cells and monocytes. Unique clusters (right) were found only in one cell
type. Plots are separated by CpG density (i.e. 2, 3, or 4 CpGs/bin). On the y-axes a number 1 indicates a methylated
CpG site, 0 is unmethylated. Supplementary Figure 4. CluBCpG identified regions are predominantly found out-
side of DMRs. (a) Venn diagram showing the overlap of CluBCpG-identified bins with read clusters and DSS-
identified DMRs using different p-value thresholds. Size of circles scale with number of regions. (b-c) Bar plots
showing the ratio of overlapping regions in (a) to (b) total bins with B cell or monocyte specific read clusters and
(c) the ratio of overlapping regions to total DMRs. (d) Venn diagrams depicting the overlap between DMRs and
bins when adjusting the minimum length threshold within DSS. (e) Bar plot showing the percentage of bins with a
cell type-specific cluster (green) and DMRs (purple) overlapping annotated genic features. (f) Bar plot of the odds
ratio calculated from the overlaps in (d); annotated genomic features are defined as: promoter = transcription start
site (TSS) +/− 3 kb; intragenic = TSS- transcription end site (TES); 3′ = TES +/− 3 kb; intergenic = all other genomic re-
gions. (g) The odds ratio of the overlap between cell type-specific bins and enhancer regions. Non-DMR bins have
had all bins overlapping a DMR removed from the analysis. (h) Odds ratio of the overlap between cell type-specific
clusters and cell type-specific active enhancers. Supplementary Figure 5. CluBCpG informative bins as a function
of read coverage. Proportion of bins with ≥10 fully covered reads vs. average read depth of the sequencing data.
Calculations were performed on chromosome 19 from ENCODE B cells. Supplementary Figure 6. Comparison of
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multiple machine learning algorithms. Box and whisker plots showing the area under the receiver operating char-
acteristic curve (AUC) for imputation by multiple machine learning algorithms; KNN=K nearest neighbors, LR = lo-
gistic regression, NN = neural network, RF = random forest, NB=Naive Bayes. AUCs were calculated from 5-fold
cross validation of each model on data from mouse neurons (a) and glia (b). (c) PReLIM was compared against a
Naive Bayes model which uses only the Column mean (average methylation at each CpG site) as a feature. No con-
fidence filtering was performed for these comparisons. Supplementary Figure 7. PReLIM cross-tissue and cross-
chromosome performance. (a) Heatmap showing how a PReLIM model trained on one library performs when pre-
dicting on a different library. (b) Heatmap showing accuracy of PReLIM when trained on one mouse neuron
chromosome and predicted on all other chromosomes. Supplementary Figure 8. Imputation gains in inform-
ative bins vs. average sequencing depth. (a-b) Line graphs showing the proportion of bins with ≥10 reads covering
all CpGs before and after imputation with PReLIM on human (a) neurons and (b) glia. Calculations were performed
using chromosome 19. Supplementary Figure 9. Genome-wide imputation gains in informative bins. (a-b) Bar
plots showing the number of bins with ≥10 reads genome-wide when analyzing human neuron and glia (a) and
human B cells and monocytes (b) before and after imputation. (c-d) Heatmap showing the top 30 GO biological
process terms with bins unique to either neuron (c) or glia (d) before and after imputation. Analysis was performed
using GREAT, colors represent -log10 of the q-value. (e) Pyrosequencing plots of novel DMRs found only post-
imputation using PReLIM on the mouse neuron and glia WGBS data. Each point represents one CpG site and are
connected by a line. Horizontal dotted lines indicate average cell type-specific methylation across the DMR, from
the WGBS data following PReLIM imputation. Supplementary Figure 10. No effect of imputation on DSS P-value
distribution under the null. P value distributions for differentially methylated locus (DML) test statistic from DSS, in
self vs. self comparisons before and after imputation by PReLIM. Each histogram shows the mean and standard de-
viation (error bars) across 10 random 50:50 splits of WGBS reads from mouse neuron or glia [27]. In each panel, the
full P value distribution (0–1) is shown on the left and the low range (0–0.1) on the right. (a) Neuron vs. neuron. (b)
Neuron vs. neuron following imputation by PReLIM. (c) Glia vs. glia. (d) Glia vs. glia following imputation by PReLIM.
Supplementary Figure 11. Deconvolution PCA and permutation analyses. (a) Scree plot with bars showing pro-
portion of explained variance provided by each of the 20 principal components (PCs). (b-c) Scatter plot of PC1 vs
PC2 of the B cell:monocyte synthetic mixtures from ENCODE (b) and Blueprint (c). Colors represents the proportion
of the mixture. (d) Scatter plot of PC1 vs PC2 on randomly generated data. (e-f) The predicted proportion vs true
proportion on the randomly generated data (e) and Blueprint data with permuted proportion labels (f). Supple-
mentary Figure 12. Evaluating alternate strategies to predict gene expression from promoter methylation. Ran-
dom forest models using methylation data from promoter windows of +/− 3 kb from the transcription start site
(TSS) (green) and 500 bp upstream of the TSS (purple) were compared against each other. Box and whisker plots
overlaid with individual points showing the area under the ROC curve (AUC) for 100 random train-test splits (a)
and 10-fold nested cross validation (b). To test the effect of including methylation levels at each of the individual
CpG sites, the +/− 3 k promoter window was broken down into methylation frequencies in decile blocks at the in-
dividual CpG-level and tested using 100 random train-test splits (c). Whiskers extend to 1.5x the intra-quartile
range.
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