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Abstract

Background: Unsupervised compression algorithms applied to gene expression data
extract latent or hidden signals representing technical and biological sources of
variation. However, these algorithms require a user to select a biologically
appropriate latent space dimensionality. In practice, most researchers fit a single
algorithm and latent dimensionality. We sought to determine the extent by which
selecting only one fit limits the biological features captured in the latent
representations and, consequently, limits what can be discovered with subsequent
analyses.

Results: We compress gene expression data from three large datasets consisting of
adult normal tissue, adult cancer tissue, and pediatric cancer tissue. We train many
different models across a large range of latent space dimensionalities and observe
various performance differences. We identify more curated pathway gene sets
significantly associated with individual dimensions in denoising autoencoder and
variational autoencoder models trained using an intermediate number of latent
dimensionalities. Combining compressed features across algorithms and
dimensionalities captures the most pathway-associated representations. When
trained with different latent dimensionalities, models learn strongly associated and
generalizable biological representations including sex, neuroblastoma MYCN
amplification, and cell types. Stronger signals, such as tumor type, are best captured
in models trained at lower dimensionalities, while more subtle signals such as
pathway activity are best identified in models trained with more latent
dimensionalities.

Conclusions: There is no single best latent dimensionality or compression algorithm
for analyzing gene expression data. Instead, using features derived from different
compression models across multiple latent space dimensionalities enhances
biological representations.

Keywords: Machine learning, Dimensionality reduction, Latent space, Gene
expression, Autoencoders, Compression, Neural network interpretation
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Background Dimensionality reduction algorithms compress input data into feature

representations that capture different sources of variation. Applied to gene expression

data, compression algorithms can identify latent technical and biological representa-

tions. These biological representations reveal important information about the samples

and can help to generate hypotheses that are difficult or impossible to observe in the

original genomic space. For example, linear methods such as principal component

analysis (PCA), independent component analysis (ICA), and non-negative matrix

factorization (NMF) have been applied to large transcriptomic compendium to reveal

the influence of copy number alterations on gene expression measurements, to identify

coordinated transcriptional programs, and to estimate cell-type proportion in bulk

tissue samples [1–5]. Additionally, nonlinear methods such as denoising autoencoders

(DAE) and variational autoencoders (VAE) have revealed latent signals characterizing

oxygen exposure, transcription factor targets, cancer subtypes, and drug response

[6–9]. Other latent variable approaches have been used to detect and remove tech-

nical artifacts, including batch effects [10, 11]. Here, we focus on using compres-

sion algorithms to identify biological representations by analyzing processed data

with batch effect already mitigated.

A major challenge to all compression applications is the fundamental requirement

that a researcher must determine the number of latent dimensions (k) to compress in-

put data. It is possible that different biological representations are best captured using

models trained at different latent space dimensionalities. To test this, we trained and

evaluated various compression models across a wide range of latent space dimensional-

ities, from k = 2 to k = 200. Specifically, we trained PCA, ICA, NMF, DAE, and VAE

models using three different gene expression datasets. We selected these methods be-

cause they are either widely established in practice (PCA, ICA, NMF) or use neural net-

works that are rapidly growing in popularity (DAE, VAE). Furthermore, it is well

known that PCA will identify a unique and deterministic solution that represents com-

pressed features with a decreasing amount of variance explained [12]. However, the

other models do not share this property. In these other models, different latent space

dimensionalities and model initializations will identify different feature representations,

and the feature number has no inherent ordering [13]. We applied these methods to

processed RNAseq data from The Cancer Genome Atlas (TCGA) PanCanAtlas [14],

the Genome Tissue Expression Consortium Project (GTEx) [15], and the Therapeutic-

ally Applicable Research To Generate Effective Treatments (TARGET) Project [16].

The paper is divided into two parts. First, we describe model performance in different

contexts. We observed differences in reconstruction cost, stability, and gene set cover-

age across datasets, algorithms, and latent dimensionalities. Second, we present a series

of vignettes highlighting differences in biological representations driven by the number

of latent dimensionalities used during model training. We observed that distinct gene

expression representations are best captured in different models spanning low, inter-

mediate, and high latent dimensionalities. Our primary finding is that there is no single

algorithm or dimensionality that is best for all purposes: Instead, using various latent

dimensionalities and algorithms optimizes biological representations. Researchers who

plan to apply these algorithms to gene expression data should consider training mul-

tiple models over multiple latent dimensionalities to optimize and avoid missing im-

portant biological representations.
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We name this multiple compression approach “BioBombe” after the large mechanical

device developed by Alan Turing and other cryptologists in World War II to decode

encrypted messages sent by Enigma machines. Using the BioBombe approach, we com-

press gene expression input data using different latent dimensionalities and algorithms

to enhance discovery of biological representations. We show that different biological

features are best extracted by different models trained with different latent

dimensionalities.

Results
BioBombe implementation

We compressed processed RNAseq data from TCGA, GTEx, and TARGET using

PCA, ICA, NMF, DAE, and VAE across 28 different latent dimensionalities (k) ran-

ging from k = 2 to k = 200. We split each dataset into 90% training and 10% test

sets balanced by cancer type or tissue type and trained models using only the

training data. We used real and permuted data and initialized each model five

times per latent dimensionality resulting in a total of 4200 different compression

models (Additional file 1: Figure S1). We evaluated hyperparameters for DAE and

VAE models across dimensionalities and trained models using optimized parameter

settings (Additional file 2; Additional file 1: Figure S2). See Fig. 1 for an outline of

our approach. We provide full BioBombe results for all compression models across

datasets for both real [17–19] and permuted data [20–22] in both training and test

sets as publicly available resources (see https://greenelab.github.io/BioBombe/).

Assessing compression algorithm reconstruction performance

In the first part of the paper, we report specific and commonly applied performance

metrics for all algorithms and latent dimensionalities. Reconstruction cost, a measure-

ment of the difference between the input and output matrices, is often used to describe

the ability of compression models to capture fundamental processes in latent space fea-

tures that recapitulate the original input data. We tracked the reconstruction cost for

Fig. 1 Overview of the BioBombe approach. We implemented BioBombe on three datasets using five
different algorithms. We compressed input data into various latent dimensionalities. We calculated various
metrics that describe different benefits and trade-offs of the algorithms. Lastly, we implemented a network
projection approach to interpret the compressed latent features. We used MSigDB collections and xCell
gene sets to interpret compressed features
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the training and testing data partitions for all datasets, algorithms, latent dimensional-

ities, and random initializations. As expected, we observed lower reconstruction costs

in models trained with real data and with higher latent dimensionalities (Add-

itional file 1: Figure S3). Because PCA and ICA are rotations of one another, we used

their identical scores as a positive control. All the compression algorithms had similar

reconstruction costs, with the highest variability existing in low latent dimensionalities

(Additional file 1: Figure S3).

Evaluating model stability and similarity within and across latent dimensionalities

We applied singular vector canonical correlation analysis (SVCCA) to algorithm weight

matrices to assess model stability within algorithm initializations and to determine

model similarity between algorithms [23]. Briefly, SVCCA calculates similarity between

two compression algorithm weight matrices by learning appropriate linear transforma-

tions and iteratively matching the highest correlating features. Training with TCGA

data, we observed highly stable models within algorithms and within all latent dimen-

sionalities for PCA, ICA, and NMF (along the matrix diagonal in Fig. 2a). VAE models

were also largely stable, with some decay in higher latent dimensionalities. However,

DAE models were unstable, particularly when trained with low latent dimensionalities

(Fig. 2a). We also compared similarity across algorithms. Because PCA and ICA are ro-

tations of one another, we used the high stability as a positive control for SVCCA esti-

mates. NMF was also highly similar to PCA and ICA, particularly in models trained

with intermediate and high latent dimensionalities (Fig. 2a). VAE models were more

similar to PCA, ICA, and NMF than DAE models, particularly at low latent dimension-

alities, and the instability patterns within DAE models also led to large differences

across algorithms (Fig. 2a). We observed similar patterns in GTEx and TARGET data,

despite TARGET containing only about 700 samples (Additional file 1: Figure S4).

We also used SVCCA to compare the similarity of weight matrices extracted from

models trained with different latent dimensionalities. Both PCA and ICA found highly

similar solutions (Fig. 2b). This is expected since PCA solutions are deterministic and

are arranged with decreasing amounts of variance, and ICA is a rotation of PCA space.

We do not observe these patterns for the other compression algorithms. While NMF

identified highly similar solutions in models trained with low dimensionalities, solutions

were less similar in models with higher dimensionalities. DAE solutions were the least

similar, with intermediate dimensionality models showing the lowest mean similarity.

VAE models displayed relatively high similarity, but there were regions of modest

model stability in intermediate and high dimensionalities (Fig. 2b). We observed similar

patterns in GTEx and TARGET data (Additional file 1: Figure S5).

Different latent space dimensionalities and algorithms capture specific gene expression

representations at variable resolution

In the second part of the paper, we tested the ability of different latent space dimen-

sionalities and algorithms to capture various biological signals. We first tested the abil-

ity of all BioBombe features to differentiate common and well-characterized biological

representations. We describe the ability of BioBombe features to isolate sample sex,

which has been previously observed to be captured in latent space features [8, 24, 25].
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Using BioBombe sample activation scores across all initializations, algorithms, and la-

tent dimensionalities, we performed two-tailed t-tests comparing male and female sam-

ples in the GTEx test set. Sample activation scores represent the activity of specific

samples for a given compressed feature. We identified this phenotype with the highest

enrichment in NMF and VAE models trained with higher latent dimensionalities

(Fig. 3a). The top feature separating GTEx males and females was NMF feature 111 in

k = 200 (t = 44.5, p = 7.3 × 10− 176) (Fig. 3b). We examined the genes that contributed

with high weight to this feature and found only three genes had substantial influence.

Fig. 2 Assessing algorithm and dimensionality stability with singular vector canonical correlation analysis
(SVCCA). a SVCCA applied to the weight matrices learned by each compression algorithm in gene
expression data from The Cancer Genome Atlas (TCGA). The mean of all canonical correlations comparing
independent iterations is shown. The distribution of mean similarity represents a comparison of all pairwise
iterations within and across algorithms. The upper triangle represents SVCCA applied to real gene
expression data, while the lower triangle represents permuted expression data. Both real and permuted
data are plotted along the diagonal. b Mean correlations of all iterations within algorithms but across k
dimensionalities. SVCCA will identify min(i, j) canonical vectors for latent dimensionalities ki and kj. The
mean of all pairwise correlations is shown for all combinations of k dimensionalities
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These three genes all had high positive weights and were encoded on the Y chromo-

some. We performed the same approach using BioBombe features to identify sex fea-

tures in TCGA test data (Fig. 3c). The top latent dimensionality identified was not

consistent across algorithms. The top feature distinguishing TCGA males and females

was ICA feature 53 in the k = 90 model (t = 4.9, p = 2.0 × 10− 6) (Fig. 3d). The separation

was not as strong using the more complex TCGA data, but the top 10 gene weights

were all encoded on the X chromosome. While this analysis demonstrates that sex is

identified with varying signal strength across algorithms and latent dimensionalities, it

also highlights that compression algorithms do not completely capture all genes that

differentiate sex into a single feature. To identify genes with expression that varies by

sex, it would be best to apply a differential expression analysis [26, 27].

We also tested the ability of BioBombe features to distinguish MYCN amplification

in neuroblastoma (NBL) tumors. MYCN amplification is a biomarker associated with

Fig. 3 Exploring the ability of BioBombe features across algorithms and latent dimensionalities to detect
biological representations. Detecting GTEx sample sex across a various latent dimensionalities and
algorithms, and b the latent feature with the highest enrichment. Detecting TCGA patient sex across c
various latent dimensionalities, and d the latent feature with the highest enrichment. Detecting TARGET
MYCN amplification in neuroblastoma (NBL) tumors e across various latent dimensionalities, and f the latent
feature with the highest enrichment. g Applying the MYCN representation to an external dataset of NBL
cell lines implicates MYCN amplified cell lines
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poor prognosis in NBL patients [28]. Again using all BioBombe sample activation

scores, we performed a two-tailed t-test comparing MYCN amplified vs. MYCN not

amplified NBL tumors in the full set of TARGET samples. Each algorithm best isolated

MYCN amplification signal at different latent dimensionalities, but the top scoring fea-

tures were generally identified in VAE and NMF models trained with large latent

spaces (Fig. 3e). Although there were some potentially mischaracterized samples, fea-

ture 12 in VAE k = 50 robustly separated MYCN amplification status in NBL tumors

(t = − 18.5, p = 6.6 × 10− 38) (Fig. 3f). This feature also distinguished MYCN amplifica-

tion status in NBL cell lines [29] that were previously not used in training the compres-

sion model or for feature selection (t = − 3.2, p = 4.2 × 10− 3) (Fig. 3g). Taken together,

these analyses demonstrate that different compression models best identify specific bio-

logical representations when trained with different latent space dimensionalities.

Large-scale interpretation of BioBombe compressed features: assessing gene set

coverage

The BioBombe approach generates many different features associated with various

biological representations. As part of our rigorous evaluation, we generated 30,850

features per dataset. The features are generated in an unsupervised fashion, and, in

order to maximize utility, they require interpretation. One interpretation approach

involves projecting gene weights onto existing biological networks (see Fig. 1a).

This approach not only calculates enrichment scores of specific biological gene sets

and pathways for individual BioBombe features, but also enables us to track how

these enrichment scores evolve across latent dimensionalities, and to quantify the

percentage of characterized gene sets in each collection. We define this percentage

as “gene set coverage.”

Specifically, we used gene sets from Molecular Signatures Database (MSigDB) and

xCell [30–32] to interpret biological signals activated in compressed features across all

latent dimensionalities, algorithms, and initializations. We applied a network projection

approach to all compression algorithm weight matrices to determine gene set coverage.

Briefly, we projected all compressed features onto a gene set network and assigned gene

sets with the highest enrichment that passed an adjusted statistical significance thresh-

old to each compressed feature (see “Methods” for more details). We tracked coverage

of three MSigDB gene set collections representing transcription factor (TF) targets,

cancer modules, and Reactome pathways across latent dimensionalities in TCGA data

(Fig. 4). In all cases, and as expected, we observed higher gene set coverage in models

trained with larger latent space dimensionalities. Considering individual models, we ob-

served high coverage in PCA, ICA, and NMF. In particular, ICA outperformed all other

algorithms (Fig. 4a). However, while these methods showed the highest coverage, the

features identified had relatively low enrichment scores compared to AE models

potentially indicating that they captured the biological signals to a weaker degree

(Additional file 1: Figure S6).

An additional approach to interpreting individual models is to interpret “ensem-

ble” models, which consist of features derived from all five algorithm initializations

within each latent dimension (see Additional file 1: Figure S1). Aggregating all five

random initializations into ensemble models, we observed substantial coverage
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increases, especially for AEs (Fig. 4b). This is expected behavior since AE-based

models generally have higher instability across initializations, and therefore have

more capacity to identify different biological representations. VAE models had high

coverage for all gene sets in intermediate dimensions, while DAE improved in

higher dimensions. However, at the highest dimensions, ICA still demonstrated the

highest coverage. NMF consistently had the highest enrichment scores, but the

lowest coverage (Fig. 4b). When considering all models combined (forming an en-

semble of algorithm ensembles) within latent dimensionalities, we observed sub-

stantially increased coverage of all gene sets. However, most of the unique gene

sets were contributed by the AE models (Fig. 4c). Lastly, when we aggregated all

BioBombe features across all algorithms and all latent dimensionalities together

into a single model, we observed the highest absolute gene set coverage (Fig. 4c).

These patterns were consistent across other gene set collections and datasets (Add-

itional file 1: Figure S7). In general, while models compressed with larger latent

space dimensionalities had higher gene set coverage, many individual gene sets

were captured with the highest enrichment in models with low and intermediate

dimensionalities (Additional file 1: Figure S8). These results did not reveal a best

Fig. 4 Assessing gene set coverage of specific gene set collections. Tracking results in TCGA data for three
gene set collections representing transcription factor (TF) targets (C3TFT), Reactome pathways
(C2CPREACTOME), and cancer modules (C4CM). a Tracking coverage in individual models, which represents
the distribution of scores across five algorithm iterations. b Tracking coverage in ensemble models, which
represents coverage after combining all five iterations into a single model. The size of the point represents
relative enrichment strength. c Tracking coverage in all models combined within k dimensionalities. The
number of algorithm-specific unique gene sets identified is shown as bar charts. Coverage for all models
combined across all k dimensionalities is shown as a dotted navy blue line
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method or dimensionality: Various biological representations are best discovered by

using various compression algorithms with various latent space dimensionalities.

Observing strongly associated latent dimensionalities for capturing specific tissue and

cell type signals

Next, we closely tracked the ability of compression models to capture specific informa-

tion about sample composition across latent dimensionalities. We measured the

Pearson correlation between all samples’ gene expression input and reconstructed out-

put. Like reconstruction, we use sample correlation to determine how well the com-

pressed features describe the given sample. Overall, we observed increased mean

correlation and decreased variance as the latent dimensionalities increased in TCGA

data (Fig. 5a). We also observed similar patterns in GTEx and TARGET data (Add-

itional file 1: Figure S9). Correlation was not consistent across algorithms as PCA, ICA,

and NMF generally outperformed the AE models. Across all datasets, in randomly per-

muted data, we observed correlations near zero (Additional file 1: Figure S9).

Correlation with reconstructed output can be measured for individual samples. We

tracked correlation across latent dimensionalities to determine which latent feature
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captures specific tissue types. In most cases, we observed small increases in sample cor-

relation with increasing latent dimensionality. For example, breast-invasive carcinoma

(BRCA) and colon adenocarcinoma (COAD) displayed relatively gradual increases in

sample correlation as the latent dimensionality increased (Fig. 5b). However, in other

cancer types, such as low-grade glioma (LGG), pheochromocytoma and paraganglioma

(PCPG), and acute myeloid leukemia (LAML), we observed large correlation gains with

a single increase in latent dimensionality (Fig. 5c). We also observed similar perform-

ance spikes in GTEx data for several tissues including liver, pancreas, and blood

(Fig. 5d). This sudden and rapid increase in correlation in specific tissues occurred at

different latent dimensionalities for different algorithms, but was consistent across algo-

rithm initializations.

To determine if this rapid increase was a result of models learning specific biological

representations or if this observation represented a technical artifact, we more closely

examined the sharp increase in GTEx blood tissue correlation between latent space di-

mensionalities 2 and 3 in VAE models (See Fig. 5d). We hypothesized that a difference

in sample correlation for a specific tissue at such a low dimensionality could be driven

by a change in the cell types captured by the model. We applied network projection of

xCell gene sets to all compressed features in both VAE models. xCell gene sets repre-

sent computationally derived cell type signatures [31]. The top features identified for

the VAE k = 2 model included skeletal muscle, keratinocyte, and neuronal gene sets

(Fig. 6a). Skeletal muscle was the most significant gene set identified likely because it is

the tissue with the most samples in GTEx. Similar gene sets were enriched in the k = 3

model, but we also observed enrichment for a specific neutrophil gene set (“Neutro-

phils_HPCA_2”) (Fig. 6a). Neutrophils represent 50% of all blood cell types, which may

explain the increased correlation in blood tissue observed in VAE k = 3 models. The

features implicated using the network projection approach were similar to an overrep-

resentation analysis using high weight genes in both tails of the VAE k = 3 feature

(Additional file 1: Figure S10).

We also calculated the mean absolute value z-scores for xCell gene sets in all compres-

sion features for both VAE models with k = 2 and k = 3 dimensionalities (Fig. 6b). Again,

we observed skeletal muscle, keratinocytes, and neuronal gene sets to be enriched in both

models. However, we also observed a cluster of monocyte gene sets (including “Mono-

cytes_FANTOM_2”) with enrichment in k = 3, but low enrichment in k = 2 (Fig. 6b).

Monocytes are also important cell types found in blood, and it is probable these signals

also contributed to the increased correlation for the reconstructed blood samples in VAE

k = 3 models. We provide the full list of xCell gene set genes for the neutrophil and mono-

cyte gene sets that intersected with the GTEx data in Additional file 3.

We scanned all other algorithms and latent dimensionalities to identify other com-

pression features with high enrichment scores in the “Neutrophils_HPCA_2” (Fig. 6c)

and “Monocytes_FANTOM_2” gene sets (Fig. 6d). We observed stronger enrichment

of the “Neutrophil_HPCA_2” gene set in AE models compared to PCA, ICA, and

NMF, especially at lower latent dimensionalities. In addition to observing sharp in-

creases in score between VAE k = 2 and VAE k = 3 models, we also observed that VAE

k = 14 models produced the highest score for the “Neutrophil_HPCA_2” gene set

(Fig. 6c). The top VAE feature at k = 14 correlated strongly with the VAE feature

learned at k = 3 (Additional file 1: Figure S10). Conversely, PCA, ICA, and NMF
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identified the “Monocytes_FANTOM_2” signature with higher enrichment than the AE

models (Fig. 6d). We observed a performance spike at k = 7 for both PCA and NMF

models, but the highest enrichment for “Monocytes_FANTOM_2” occurred at k = 200

in NMF models.

Figure 6 c and d provide concrete examples of differences across algorithm and latent

space dimensionalities. Specifically, PCA identifies both neutrophil and monocyte gene

sets at k = 6, and then does not identify any other feature with more signal. This is ex-

pected since PCA solutions are deterministic and ordered by decreasing variance ex-

plained. However, we do not observe this pattern in other algorithms. The AE models

capture the neutrophil representation early and then fluctuate in isolating its signal

(Fig. 6c). Furthermore, while all algorithms capture monocytes around k = 6, NMF in-

creases signal capture in larger latent dimensionality models and ICA decreases signal

capture. Lastly, PCA captures this monocyte gene set as well as other algorithms for

Fig. 6 Interpreting blood cell types in GTEx using xCell gene sets. a Comparing BioBombe scores of all
compressed latent features for variational autoencoder (VAE) models when bottleneck dimensionalities are
set to k = 2 and k = 3. b Comparing mean BioBombe z-scores of aggregated latent features across two VAE
models with k dimensionalities 2 and 3. Tracking the BioBombe z-scores of c “Neutrophils_HPCA_2” and d
“Monocytes_FANTOM_2” gene sets across dimensionalities and algorithms. Only the top scoring feature per
algorithm and dimensionality is shown. e Projecting the VAE feature k = 3 feature and the highest scoring
feature (VAE k = 14) that best captures a neutrophil representation to an external dataset measuring
neutrophil differentiation treatments (GSE103706). f Projecting the VAE k = 3 feature that best captures
monocytes and the feature of the top scoring model (NMF k = 200) to an external dataset of isolated
hematopoietic cell types (GSE24759)
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most dimensionalities, but the opposite is true for the neutrophil gene set. A researcher

selecting only a single compression model at one latent space dimensionality might

clearly observe certain features while others could be obscured.

Validating neutrophil and monocyte representations in external datasets

In order to demonstrate that these neutrophil and monocyte features represent real

biology, we applied them to two external datasets that captured each signal using

unique experiments. We downloaded a processed gene expression dataset (GSE103706)

that applied two treatments to induce neutrophil differentiation in two leukemia cell

lines [33]. We hypothesized that projecting the dataset on the “Neutrophil_HPCA_2”

signature would reveal differential scores in the treated cell lines. We observed large

differences in sample activations of treated vs untreated cell lines in the top neutrophil

representation (VAE k = 14) (Fig. 6e). We also tested the “Monocytes_FANTOM_2”

signature on a different publicly available dataset (GSE24759) measuring gene expres-

sion of isolated cell types undergoing hematopoiesis [34]. We observed increased scores

for an isolated monocyte cell population (MONO2) and relatively low scores for several

other cell types for implicated VAE and top NMF features (Fig. 6f). We observed vari-

able enrichment patterns across different algorithms and latent dimensionalities (Add-

itional file 1: Figure S11a). These separation patterns were associated with network

projection scores in NMF models, but were not consistent with other algorithms (Add-

itional file 1: Figure S11b). Taken together, in this analysis, we determined that (1) add-

ing a single latent dimensionality that captured neutrophils and monocytes improved

signal detection in GTEx blood, (2) these cell-type representations are enhanced at dif-

ferent latent dimensionalities and by different algorithms, and (3) these representations

generalized to external datasets that were not encountered during model training.

Detecting both strong and subtle signals by compressing gene expression data

We tested the ability of BioBombe features to capture cancer type and genetic alter-

ations in two distinct supervised machine learning experiments. Cancer-type represents

a strong signal, while genetic alterations are typically subtle [35]. In both experiments,

we trained logistic regression models with an elastic net penalty using compressed Bio-

Bombe features as input. First, we trained models to predict each of the 33 different

TCGA cancer types. Using BioBombe features across algorithms and latent dimension-

alities, nearly all cancer types could be predicted with high precision and recall (Add-

itional file 1: Figure S12). We observed multiple performance spikes at varying latent

dimensionalities for different cancer types and algorithms, which typically occurred in

small latent dimensionalities (Fig. 7a). Next, we trained models to predict alterations in

the top 50 most mutated genes in TCGA (Additional file 1: Figure S13). We focused

on predicting four cancer genes and one negative control; TP53, PTEN, PIK3CA, KRAS,

and TTN (Fig. 7b). TTN is a particularly large gene and is associated with a high pas-

senger mutation burden and should provide no predictive signal [36]. As expected, we

did not observe any signal in predicting TTN (Fig. 7b). Again, we observed performance

increases at varying latent dimensionalities across algorithms. However, predictive sig-

nal for mutations occurred at higher latent dimensionalities compared to cancer types

(Fig. 7c). This result suggests that more subtle features are captured only when a
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compression algorithm is provided enough latent dimensions to describe the signal.

Compared to features trained within algorithm and within iteration, an ensemble of five

VAE models and an ensemble of five models representing one iteration of each algo-

rithm (PCA, ICA, NMF, DAE, and VAE) identified cancer type and mutation status in

earlier dimensionalities compared to single model iterations (Fig. 7c). We also tracked

the logistic regression coefficients assigned to each compression feature. DAE models

Fig. 7 Using BioBombe compressed features as input in supervised machine learning tasks. Predicting a
cancer type status and b gene mutation status for select cancer types and important cancer genes using
five compression algorithms and two ensemble models in TCGA data. The area under the precision recall
(AUPR) curve for cross validation (CV) data partitions is shown. The blue lines represent predictions made
with permuted data input into each compression algorithm. The dotted lines represent AUPR on
untransformed RNAseq data. The dotted gray line represents a hypothetical random guess. c Tracking the
average change in AUPR between real and permuted data across latent dimensionalities and compression
models in predicting (top) cancer types and (bottom) mutation status. The average includes the five cancer
types and mutations tracked in panels a and b. d Tracking the sparsity and performance of supervised
models using BioBombe compressed features in real and permuted data. e Performance metrics for the all-
compression feature ensemble model predicting TP53 alterations. (left) Receiver operating characteristic
(ROC) and (right) precision recall curves are shown. f The average absolute value weight per algorithm for
the all-compression-feature ensemble model predicting TP53 alterations. The adjusted scores are acquired
by dividing by the number of latent dimensionalities in the given model
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consistently displayed sparse models, and the VAE ensemble and model ensemble also

induced high sparsity (Fig. 7d).

Lastly, we trained logistic regression classifiers using all 30,850 BioBombe features

generated across iterations, algorithms, and latent dimensionalities. These models were

sparse and high performing, comparable to logistic regression models trained using raw

features (Fig. 7e). Of all 30,850 compressed features in the model predicting TP53 alter-

ations, only 317 were assigned non-zero weights (1.03%). We applied the network pro-

jection approach using Hallmark gene sets to interpret the biological signals of the top

supervised model coefficients. The top positive feature was derived from a VAE trained

with k = 200. The top hallmarks of this feature included “ESTROGEN_RESPONSE_

EARLY,” “ESTROGEN_RESPONSE_LATE,” and “P53_PATHWAY.” The top negative

feature was derived from a VAE trained with k = 150 and was associated with hallmark

gene sets including “BILE_ACID_METABOLISM,” “EPITHELIAL_MESENCHYMAL_

TRANSITION,” and “FATTY_ACID_METABOLISM.” Additional file 4 includes a full

list of logistic regression coefficients and hallmark network projection scores. Overall,

the features selected by the supervised classifier were distributed across algorithms and

latent dimensionalities suggesting that combining compression features across dimen-

sionalities and algorithms provided the best representation of the signal (Fig. 7f).

Discussion
Our primary observation is that compressing complex gene expression data using mul-

tiple latent dimensionalities and algorithms improves discovery of biological representa-

tions. Across different latent dimensionalities and algorithms, we identified optimal

features to stratify sample sex, MYCN amplification, blood cell types, cancer types, and

mutation status. These features generalized to other data, providing additional evidence

for the intrinsic qualities of biological representations embedded in gene expression

data [25, 37–39]. Furthermore, the complexity of biological features was associated with

the number of latent dimensionalities used. We predicted gene mutation using models

with high dimensionality, but we detected cancer type with high accuracy using models

with low dimensionality. In general, unsupervised learning algorithms applied to gene

expression data extract biological and technical signals present in input samples. How-

ever, both the latent dimensionality and algorithm selected contribute strongly to the

biological representations that are identified.

When applying these algorithms, researchers must determine how many latent di-

mensions to compress their input data into and different studies can have a variety of

goals. For example, compression algorithms used for visualization can stratify sample

groups based on the largest sources of variation [40–45]. In visualization settings,

selecting a small number of latent dimensions is often best, and there is no need to

compress data across multiple latent dimensionalities. However, if the analysis goal in-

cludes learning biological representations to identify more subtle patterns in input sam-

ples, then there is not a single optimal latent dimensionality nor optimal algorithm. For

example, though ICA and PCA represent rotations of each other, we found that the

methods varied in their ability to capture specific biological signals into single features,

which highlights the challenge of picking only a single algorithm. While compressing

data into a single latent dimensionality will capture many biological signals, the

Way et al. Genome Biology          (2020) 21:109 Page 14 of 27



“correct” dimensionality is not always clear, and several biological representations may

be better revealed by alternative latent dimensionalities.

If optimizing a single model, a researcher can use one or many criteria to select an

appropriate latent dimensionality. Measurements such as Akaike information criterion

(AIC), Bayesian information criterion (BIC), stability, and cross validation (CV) can be

applied to a series of latent dimensionalities [13, 46, 47]. Other algorithms, like Dirich-

let processes, can naturally arrive at an appropriate dimensionality through several al-

gorithm iterations [48]. Hidden layer dimensions of unsupervised neural networks are

tunable hyperparameters defined by expected input data complexity and performance.

However, applied to gene expression data, these metrics often provide conflicting re-

sults and unclear suggestions. In genomics applications, the method Thresher uses a

combination of outlier detection and PCA to identify the optimal number of clusters

[49]. Compression model stability can also be used to determine an optimal latent di-

mensionality in gene expression data [50]. By considering only reproducible features,

ICA revealed 139 modules from nearly 100,000 publicly available gene expression pro-

files [51]. However, we argue that these metrics can be misleading. Rather than using

heuristics to select a biologically appropriate latent dimensionality, a researcher may in-

stead elect to compress gene expression data into many different latent space dimen-

sionalities to generate many different feature representations.

There are many limitations in our evaluation. First, our approach takes a long time to

run. We are training many different algorithms across many different latent dimension-

alities and iterations, which requires a lot of compute time (Additional file 1: Figure

S14). However, because we are training many models independently, this task can be

parallelized. Additionally, we did not evaluate dimensionalities above k = 200. It is likely

that many more representations can be learned, and possibly with even higher associ-

ation strengths in higher dimensionalities for certain biology. We also did not focus on

detecting compressed features that represent technical artifacts, which has already been

widely explored [52, 53]. Furthermore, the BioBombe approach is not a replacement

for differential gene expression analysis in implicating genes associated with a specific

phenotype. For example, if a scientist’s goal was to identify all genes contributing to sex

differences or MYCN amplification, then they would apply a differential expression

analysis. We used these vignettes to demonstrate trade-offs in how well different algo-

rithms and latent dimensionalities capture these signals. Moreover, we did not explore

adding hidden layers in AE models. Many models trained on gene expression data have

benefited from using multiple hidden layers in neural network architectures [7, 54].

Additional methods, like DeepLift, can be used to reveal gene importance values in in-

ternal representations of deep networks [55, 56].

An additional challenge is interpreting the biological content of the compressed gene

expression features. Overrepresentation analysis (ORA) and gene set enrichment ana-

lysis (GSEA) are commonly applied but have significant limitations [30, 57]. ORA re-

quires a user to select a cutoff, typically based on standard deviation, to build

representative gene sets from each feature. ORA tests also do not consider the weights,

or gene importance scores, in each compression feature. Conversely, GSEA operates on

ranked features, but often requires many permutations to establish significance. Fur-

thermore, ORA requires each tail of the compressed feature distribution to be inter-

preted separately in algorithms that also learn negative weights. The weight distribution
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is dependent on the specific compression algorithm, and the same cutoff may not be

appropriate for all algorithms and all compressed features. Here, we present a novel op-

tion to rapidly interpret compressed features based on network projection [58, 59]. The

approach is applied to the full and continuous distribution of gene weights, operates in-

dependently of the algorithm feature distribution, does not require arbitrary thresholds,

and obviates the need to consider both tails of the distribution separately. Nevertheless,

additional downstream experimental validation is necessary to determine if the con-

structed feature actually represents the biology it has been assigned.

Conclusions
To enhance biological representations discovered in a given dataset, it is best to com-

press gene expression data using several algorithms and many different latent space di-

mensionalities. These compressed gene expression features represent important

biological signals, including various cell types, phenotypes, biomarkers, and other sam-

ple characteristics. We showed, through several experiments tracking lower dimen-

sional gene expression representations, gene set coverage, and supervised learning

performance, that optimal biological features are learned using a variety of latent space

dimensionalities and different compression algorithms. As unsupervised machine learn-

ing continues to be applied to derive insight from biomedical datasets, researchers

should shift focus away from optimizing a single model based on certain mathematical

heuristics, and instead towards learning good and reproducible biological representa-

tions that generalize to alternative datasets regardless of compression algorithm and la-

tent dimensionality.

Methods
Transcriptomic compendia acquisition and processing

We downloaded transcriptomic datasets from publicly available resources. We down-

loaded the batch-corrected TCGA PanCanAtlas RNAseq data from the National Can-

cer Institute Genomic Data Commons (https://gdc.cancer.gov/about-data/publications/

pancanatlas). These data consisted of 11,069 samples with 20,531 measured genes

quantified with RSEM and normalized with log transformation. We converted Hugo

Symbol gene identifiers into Entrez gene identifiers and discarded non-protein-coding

genes and genes that failed to map. We also removed tumors that were measured from

multiple sites. This resulted in a final TCGA PanCanAtlas gene expression matrix with

11,060 samples, which included 33 different cancer types, and 16,148 genes. The break-

down of TCGA samples by cancer type is provided in Additional file 5.

We downloaded the TPM normalized GTEx RNAseq data (version 7) from the GTEx

data portal (https://gtexportal.org/home/datasets). There were 11,688 samples and 56,

202 genes in this dataset. After selecting only protein-coding genes and converting

Hugo Symbols to Entrez gene identifiers, we considered 18,356 genes. There are 53 dif-

ferent detailed tissue types in this GTEx version. The tissues types included in these

data are provided in Additional file 5.

Lastly, we retrieved the TARGET RNAseq gene expression data from the UCSC Xena

data portal [60]. The TARGET data was processed through the FPKM UCSC Toil

RNAseq pipeline and was normalized with RSEM and log transformed [61]. The
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original matrix consists of 734 samples and 60,498 Ensembl gene identifiers. We con-

verted the Ensembl gene identifiers to Entrez gene names and retained only protein-

coding genes. This procedure resulted in a total of 18,753 genes measured in TARGET.

There are 7 cancer types profiled in TARGET and the specific breakdown is available in

Additional file 5. All specific downloading and processing steps can be viewed and repro-

duced at https://github.com/greenelab/BioBombe/tree/master/0.expression-download.

Training unsupervised neural networks

Autoencoders (AE) are unsupervised neural networks that learn through minimizing

the reconstruction of input data after passing the data through one or several inter-

mediate layers [62]. Typically, these layers are of a lower dimensionality than the input,

so the algorithms must compress the input data. Denoising autoencoders (DAE) add

noise to input layers during training to regularize solutions and improve generalizability

[63]. Variational autoencoders (VAE) add regularization through an additional penalty

term imposed on the objective function [64, 65]. In a VAE, the latent space dimensions

(k) are penalized with a Kullback-Leibler (KL) divergence penalty restricting the distri-

bution of samples in the latent space to Gaussian distributions. We independently opti-

mized each AE model across a grid of hyperparameter combinations including six

representative latent dimensionalities (described in Additional file 2 and Additional file 1:

Figure S2).

Training compression algorithms across latent dimensionalities

Independently for each dataset (TCGA, GTEx, and TARGET), we performed the fol-

lowing procedure to train the compression algorithms. First, we randomly split data

into 90% training and 10% testing partitions. We balanced each partition by cancer type

or tissue type, which meant that each split contained relatively equal representation of

tissues. Before input into the compression algorithms, we transformed the gene expres-

sion values by gene to the [0, 1] range by subtracting the minimum value and dividing

by the range for each specific gene. We applied this transform independently for the

testing and training partitions. We selected this range because it was compatible with

all of the algorithms. We used the training set to train each compression algorithm.

We used the scikit-learn implementations of PCA, ICA, and NMF, and the Tybalt

implementations of VAE and DAE [8, 66].

After learning optimized compression models with the training data, we transformed

the testing data using these models. We assessed performance metrics using both train-

ing and testing data to reduce bias. In addition to training with real data, we also

trained all models with randomly permuted data. To permute the training data, we ran-

domly shuffled the gene expression values for all genes independently. We also trans-

formed testing partition data with models trained using randomly permuted data.

Training with permuted data removes the correlational structure in the data and can

help set performance metric baselines.

One of our goals was to assess differences in performance and biological signal detec-

tion across a range of latent dimensionalities (k). To this end, we trained all algorithms

with various k dimensionalities including k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20,

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, and 200 for a total of 28 different
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dimensionalities. All of these models were trained independently. Lastly, for each k di-

mensionality, we trained five different models initialized with five different random

seeds. In total, considering the three datasets, five algorithms, randomly permuted

training data, all 28 k dimensionalities, and five initializations, we trained 4200 different

compression models (Additional file 2: Figure S1). Therefore, in total, we generated

185,100 different compression features.

Evaluating compression algorithm performance

We evaluated all compression algorithms on three main tasks: reconstruction, sam-

ple correlation, and weight matrix stability. First, we evaluated how well the input

data is reconstructed after passing through the bottleneck layer. Because the input

data was transformed to a distribution between 0 and 1, we used binary cross en-

tropy to measure the difference between algorithm input and output as a measure

of reconstruction cost. The lower the reconstruction cost, the higher fidelity recon-

struction, and therefore the higher proportion of signals captured in the latent

space features. We also assessed the Pearson correlation of all samples comparing

input to reconstructed output. This value is similar to reconstruction and can be

quickly tracked at an individual sample level. Lastly, we used singular vector ca-

nonical correlation analysis (SVCCA) to determine model stability within and

model similarity between algorithms and across latent dimensionalities [23]. The

SVCCA method consisted of two distinct steps. First, singular value decomposition

(SVD) was performed on two input weight matrices. The singular values that com-

bined to reconstruct 98% of the signal in the data were retained. Next, the SVD

transformed weight matrix was input into a canonical correlation analysis (CCA).

CCA aligned different features in the weight matrix based on maximal correlation

after learning a series of linear transformations. Taken together, SVCCA outputs a

single metric comparing two input weight matrices that represents stability across

model initializations and average similarity of two different models. Because we

used the weight matrices, the similarity describes gene expression representation

discovery. We use the distribution of SVCCA similarity measures across all pair-

wise algorithm initializations and latent dimensionalities to indicate model stability

[23].

Assessing gene expression representations present in BioBombe features

We tested BioBombe sequentially compressed features to distinguish sample sex in

GTEx and TCGA data, and MYCN amplification in TARGET NBL data. We tested

all compression algorithms and latent space dimensionalities to determine the con-

ditions in which these features were best captured. First, we selected tissue types

and cancer types in the GTEx and TCGA sex analyses that were balanced by sex

by selecting tissues with male to female ratios between 0.5 and 1.5. We performed

a two-tailed independent t-test assuming unequal variance comparing male and fe-

male samples, and NBL samples with and without MYCN amplification. We ap-

plied the t-test to all compression features identified across algorithms,

initializations, and dimensionalities. Shown in the figures are the top scoring fea-

ture per latent space dimensionality and algorithm.
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We applied the optimal MYCN representation learned in TARGET to an alternative

dataset consisting of a series of publicly available NBL cell lines [29]. The data were

processed using STAR, and we accessed the processed FPKM matrix from figshare

[67]. We transformed the dataset with the identified representations using the following

operation:

RT
g 0 �Dg 0x n ¼ D

0
r x n

where D represents the respective RNAseq data to transform, R represents the specific

compressed feature representation, g’ represents the overlapping genes measured in

both datasets, n represents samples, and D’r represents the compression feature scores

in the transformed dataset. Of the 8000 genes measured in TARGET data, 7653 were

also measured in external NBL cell line dataset (95.6%).

Using the sample activation scores for each of the top scoring features for sample sex

in TCGA and GTEx, and MYCN amplification in TARGET and the validation set, we

performed two-tailed t-test with unequal variance comparing each group. For the

TCGA and GTEx sex comparison, our t-test compared male vs. female activation

scores. For the TARGET and NBL cell line analyses, our t-test compared MYCN ampli-

fied NBL samples vs. MYCN non-amplified NBL samples. We add t-test statistics and

p values in each subfigure.

Gene network construction and processing

We constructed networks using gene set collections compiled by version 6.2 of the

Molecular Signatures Database (MSigDB) and cell types derived from xCell [30–32].

These gene sets represent a series of genes that are involved in specific biological pro-

cesses and functions. We integrated all openly licensed MSigDB collections which in-

cluded hallmark gene sets (H), positional gene sets (C1), curated gene sets (C2), motif

gene sets (C3), computational gene sets (C4), Gene Ontology (GO) terms (C5), onco-

genic gene sets (C6), and immunologic gene sets (C7). We omitted MSigDB gene sets

that were not available under an open license (KEGG, BioCarta, and AAAS/STKE).

The C2 gene set database was split into chemical and genetic perturbations (C2.CPG)

and Reactome (C2.CP.Reactome). The C3 gene set was split into microRNA targets

(C3.MIR) and transcription factor targets (C3.TFT). The C4 gene set was split into can-

cer gene neighborhoods (C4.CGN) and cancer modules (C4.CM). Lastly, the C5 gene

set was split into GO Biological Processes (C5.BP), GO Cellular Components (C5.CC),

and GO molecular functions (C5.MF). xCell represents a gene set compendia of 489

computationally derived gene signatures from 64 different human cell types. The num-

ber of gene sets in each curation is provided in Additional file 6. In BioBombe network

projection, only a single collection is projected at a time.

To build the gene set network, we used hetnetpy [68]. Briefly, hetnetpy builds net-

works that include multiple node types and edge relationships. We used hetnetpy to

build a single network containing all MSigDB collections and xCell gene sets listed

above. The network consisted of 17,451 unique gene sets and 2,159,021 edges repre-

senting gene set membership among 20,703 unique gene nodes (Additional file 6). In

addition to generating a single network using curated gene sets, we also used hetnetpy

to generate 10 permuted networks. The networks are permuted using the XSwap
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algorithm, which randomizes connections while preserving node degree (i.e., the num-

ber of gene set relationships per gene) [69]. Therefore, the permuted networks are used

to control for biases induced by uneven gene degree. We compared the observed score

against the distribution of permuted network scores to interpret the biological repre-

sentations in each compression feature.

Rapid interpretation of compressed gene expression data

Our goal was to quickly interpret the automatically generated compressed latent fea-

tures learned by each unsupervised algorithm. To this end, we constructed gene set ad-

jacency matrices with specific MSigDB or xCell gene set collections using hetnetpy

software. We then performed the following matrix multiplication against a given com-

pressed weight matrix to obtain a raw score for all gene sets for each latent feature.

Hc x n �Wn x k ¼ Gc x k

where H represents the gene set adjacency matrix, c is the specific gene set collection,

and n represents genes. W represents the specific compression algorithm weight matrix,

which includes n genes and k latent space features. The output of this matrix multipli-

cation, G, is represented by c gene sets and k latent dimensions. Through a single

matrix multiplication, the matrix G tracks raw BioBombe scores.

Because certain hub genes are more likely to be implicated in gene sets and longer

gene sets will receive higher raw scores, we compared G to the distribution of per-

muted scores against all 10 permuted networks.

Hp
1−10
c x n �Wn x k ¼ Gp

Gz−score ¼ Gc x k−Gp

σ Gp
� �

where HP
1–10 represents the adjacency matrices for all 10 permuted networks and Gp

represents the distribution of scores for the same k features for all permutations. We

calculated the z-score for all gene sets by latent features (Gz-score). This score represents

the BioBombe Score. Other network-based gene set methods consider gene set influ-

ence based on network connectivity of gene set genes [58, 59]. Instead, we used the la-

tent feature weights derived from unsupervised compression algorithms as input, and

the compiled gene set networks to assign biological function.

We also compared the BioBombe network projection approach to overrepresentation

analyses (ORA). We did not compare the approach to gene set enrichment analysis

(GSEA) because evaluating single latent features required many permutations and did

not scale to the many thousands of compressed features we examined. We imple-

mented ORA analysis using Fisher’s exact test. The background genes used in the test

included only the genes represented in the specific gene set collection.

Calculating gene set coverage across BioBombe features

We were interested in determining the proportion of gene sets within gene set collec-

tions that were captured by the features derived from various compression algorithms.

We considered a gene set “captured” by a compression feature if it had the highest

positive or highest negative BioBombe z-score compared to all other gene sets in that
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collection. We converted BioBombe z-scores into p values using the pnorm() R func-

tion using a two-tailed test. We removed gene sets from consideration if their p values

were not lower than a Bonferroni adjusted value determined by the total number of la-

tent dimensionalities in the model.

We calculated coverage (C) by considering all unique top gene sets (U) identified by

all features in the compression model (w) and dividing by the total number of gene sets

in the collection (TC).

C ¼ Uw

Tc

We calculated the coverage metric for all models independently (Ci), for ensembles,

or individual algorithms across all five iterations (Ce), and for all models across k di-

mensions (Ck).

We also calculated the total coverage of all BioBombe features combined in a single

model (Call). A larger coverage value indicated a model that captured a larger propor-

tion of the signatures present in the given gene set collection.

Downloading and processing publicly available expression data for neutrophil GTEx

analysis

We used an external dataset to validate the neutrophil feature learned by compressing

GTEx gene expression data into three latent dimensionalities. We observed that this

feature contributed to improved reconstruction of blood tissue. To assess the perform-

ance of this neutrophil representation, we downloaded data from the Gene Expression

Omnibus (GEO) with accession number GSE103706 [33]. RNA was captured in this

dataset using Illumina NextSeq 500. The dataset measured the gene expression of sev-

eral replicates of two neutrophil-like cell lines, HL-60 and PLB-985, which were origin-

ally derived from acute myeloid leukemia (AML) patients. The PLB-985 cell line was

previously identified as a subclone of HL-60, so we expect similar activity between the

two lines [70]. Gene expression of the two cell lines was measured with and without

neutrophil differentiation treatments. Though DMSO is frequently used to solubilize

compounds and act as an experimental control, it has been used to create neutrophil-

like cells [71]. The validation dataset we used was generated to compare DMSO activity

with untreated cells and cells treated with DMSO plus Nutridoma [33]. We tested the

hypothesis that our neutrophil representation would distinguish the samples with and

without neutrophil differentiation treatment. We transformed external datasets with

the following operation:

WT
k x g 0 � Dg 0x n ¼ D

0
k x n

where D represents the processed RNAseq data from GSE103706. Of 8000 genes

measured in W, 7664 were also measured in D (95.8%). These 7664 genes are rep-

resented by g’. All of the “Neutrophils_HPCA_2” signature genes were measured in

W. D’ represents the GSE103706 data transformed along the specific compression

feature. Each sample in D’ is then considered transformed by the specific represen-

tation captured in k. The specific genes representing “Neutrophils_HPCA_2” is pro-

vided in Additional file 3.
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Downloading and processing publicly available expression data for monocyte GTEx

analysis

We used an additional external dataset to validate the identified monocyte representa-

tion. We accessed processed data for the publicly available GEO dataset with accession

number GSE24759 [34]. The dataset was measured by Affymetrix HG-U133A (early ac-

cess array) and consisted of 211 samples representing 38 distinct and purified popula-

tions of cells, including monocytes, undergoing various stages of hematopoiesis. The

samples were purified from 4 to 7 independent donors each. Many xCell gene sets were

computationally derived from this dataset as well [31]. Not all genes in the weight

matrices were measured in the GSE24759 dataset. For this application, 4645 genes

(58.06%) corresponded with the genes used in the compression algorithms. Addition-

ally, 168 out of 178 genes (94.38%) in the “Monocyte_FANTOM_2” gene set were mea-

sured (Additional file 3). We investigated the “Monocytes_FANTOM_2” signature

because of its high enrichment in VAE k = 3 and low enrichment in VAE k = 2.

Machine learning classification of cancer types and gene alterations in TCGA

We trained supervised learning classifiers using raw RNAseq features and BioBombe-

derived features. In general, we trained supervised machine learning models to predict

cancer type from RNAseq features in TCGA PanCanAtlas RNAseq data. We imple-

mented a logistic regression classifier with an elastic net penalty. The classifiers were

controlled for mutation burden. More details about the specific implementation are de-

scribed in Way et al. [72]. Here, we predicted all 33 cancer types using all 11,060 sam-

ples. These predictions were independent per cancer type, which meant that we trained

models with the same input gene expression or BioBombe feature data, but used 33 dif-

ferent status matrices.

We also trained models to predict gene alteration status in the top 50 most mutated

genes in the PanCanAtlas. These models were controlled for cancer type and mutation

burden. We defined the status in this task using all non-silent mutations identified with

a consensus mutation caller [73]. We also considered large copy number amplifications

for oncogenes and deep copy number deletions for tumor suppressor genes as previ-

ously defined [74]. We used the threshold GISTIC2.0 calls for large copy amplifications

(score = 2) and deep copy deletions (score = − 2) in defining the status matrix [75]. For

each gene alteration prediction, we removed samples with a hypermutator phenotype,

defined by having log10 mutation counts greater than five standard deviations above

the mean. For the mutation prediction task, we also did not include certain cancer

types in training. We omitted cancer types if they had less than 5% or more than 95%

representation of samples with the given gene alteration. The positive and negative sets

must have also included at least 15 samples. We filtered out cancer types in this man-

ner to prevent the classifiers from artificially detecting differences induced by unbal-

anced training sets.

We trained models with raw RNAseq data subset by the top 8000 most variably

expressed genes by median absolute deviation. The training data used was the same

training set used for the BioBombe procedure. We also trained models using all Bio-

Bombe compression matrices for each latent dimension and using real and permuted

data. We combined compressed features together to form three different types of
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ensemble models. The first type grouped all five iterations of VAE models per latent di-

mensionality to make predictions. The second type grouped features of five different al-

gorithms (PCA, ICA, NMF, DAE, VAE) of a single iteration together to make

predictions. The third ensemble aggregated all features learned by all algorithms, all ini-

tializations, and across all latent dimensionalities, which included a total of 30,850 fea-

tures. In total, considering the 33 cancer types, 50 mutations, 28 latent

dimensionalities, ensemble models, raw RNAseq features, real and permuted data, and

5 initializations per compression, we trained and evaluated 32,868 different supervised

models.

We optimized all of the models independently using fivefold cross validation (CV).

We searched over a grid of elastic net mixing and alpha hyperparameters. The elastic

net mixing parameter represents the tradeoff between l1 and l2 penalties (where mix-

ing = 0 represents an l2 penalty) and controls the sparsity of solutions [76]. Alpha is a

penalty that tunes the impact of regularization, with higher values inducing higher pen-

alties on gene coefficients. We searched over a grid for both hyperparameters (alpha =

0.1, 0.13, 0.15, 0.2, 0.25, 0.3 and mixing = 0.15, 0.16, 0.2, 0.25, 0.3, 0.4) and selected the

combination with the highest CV AUROC. For each model, we tested performance

using the original held out testing set that was also used to assess compression model

performance.

Evaluating model training time

We evaluated the execution time of training each compression algorithm for all three

datasets across several latent dimensionalities. We used 8 representative latent dimen-

sionalities: k = 2, 4, 10, 16, 25, 50, 80, and 200. We conducted the time analysis using a

CPU machine with an Intel Core i3 dual core processer with 32 GB of DDR4 memory.

Reproducible software

All code to perform all analyses and generate all results and figures is provided with an

open source license at https://github.com/greenelab/biobombe [77]. All resources can

be viewed and downloaded from https://greenelab.github.io/BioBombe/.
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