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Abstract
Genome replication mapping methods profile cell populations, masking cell-to-cell
heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map
replication of single DNA molecules at 200-nucleotide resolution. By quantifying BrdU
incorporation along pulse-chased replication intermediates from Saccharomyces
cerevisiae, we orient 58,651 replication tracks reproducing population-based replication
directionality profiles and map 4964 and 4485 individual initiation and termination
events, respectively. Although most events cluster at known origins and fork merging
zones, 9% and 18% of initiation and termination events, respectively, occur at many
locations previously missed. Thus, FORK-seq reveals the full extent of cell-to-cell
heterogeneity in DNA replication.

Keywords: DNA replication, Nanopore sequencing, Bromodeoxyuridine,
Single-molecule analysis, S. cerevisiae, Convolutional neural network, Replication origins

Introduction
Eukaryotic DNA replication initiates at multiple replication origins and terminates
wherever converging replication forks happen to meet. Understanding this process is
essential as replication perturbations can threaten genome stability. DNA microarrays
and massive DNA sequencing techniques have triggered an explosion of genome-wide
replication mapping studies in the last decade. However, these cell population-based
methods only provide an average profile of DNA replication where cell-to-cell hetero-
geneity is masked. A high-throughput single-molecule method is required to reveal this
heterogeneity.
DNA combing, the modern, fluorographic version of DNA fiber autoradiography, relies

on antibody detection of nucleotide analogs incorporated during replication, combined
with in situ hybridization of stretched DNA molecules with DNA probes, to reveal
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the replication pattern of single copies of a locus of interest [1, 2]. While this method
has produced valuable information at selected loci, it is technically difficult and very
low throughput. Recent improvements were achieved by using fluorescent dNTPs to
directly label newly replicated DNA and barcode total DNA at nicking endonuclease
sites [3] followed by DNA stretching in nanochannel arrays developed for automated
genome assembly [4, 5]. Nevertheless, DNA stretching inhomogeneities, optical reso-
lution, and image processing challenges still restrain the power of optical replication
mapping.
MinION nanopore sequencing (Oxford Nanopore Technologies, ONT) has the poten-

tial to bypass these limitations. This novel technology produces long (up to 2.3 Mb
[6]) reads of native single-stranded DNA molecules by measuring changes in ionic cur-
rent across a nanopore through which DNA is translocated. Importantly, the nanopore
sequencer can detect base modifications on long RNA and DNA molecules [7, 8];
for review [9]. In particular, we and others reported the detection of bromodeoxyuri-
dine (BrdU) or other thymidine analogs incorporated during DNA replication in yeast
or mouse DNA [10–12]. Using Saccharomyces cerevisiae cells synchronously progress-
ing through S phase in conditions of limiting BrdU concentrations, Müller et al. [11]
detected gradients of BrdU incorporation along single DNA molecules at 2-kb resolu-
tion. Importantly, most but not all peaks of BrdU incorporation mapped near known
origins, suggesting the existence of dispersed origins too rarely used to be detected by cell
population methods.
Here, by precisely quantifying BrdU incorporation at 200 nucleotide resolution, we

detected, mapped, and oriented short BrdU incorporation tracks synthesized during a
brief (4 min) pulse followed by a chase in asynchronously growing S. cerevisiae cells. We
named this method FORK-seq. Analysis of 58,651 oriented tracks not only reproduced
replication fork directionality (RFD) profiles independently obtained by sequencing of
Okazaki fragments (OK-seq) but also identified 4964 and 4485 individual initiation and
termination events, respectively. The majority of initiation events formed clusters that
coincided with known origins. However, 9% of initiation events mapped away from
known origins, at mainly dispersed locations that typically lacked the consensus sequence
and origin recognition complex (ORC) and Mcm2-7 binding peaks found at known ori-
gins. Termination events were more dispersive than previously recognized, as a large
number of them occurred outside fork merging zones previously detected in cell pop-
ulation studies [13, 14]. These results illustrate the power of nanopore sequencing for
mapping genome replication by single-molecule analysis, providing information unreach-
able by cell population methods. They support a model in which replication of eukaryotic
chromosomes combines clustered initiation at efficient sites associated with specific DNA
sequences, with dispersed initiation at inefficient sites that lack sequence specificity and
inefficiently recruit ORC and Mcm2-7.

Results
BrdU produces a distinct nanopore electrical signal

The ONT MinION instrument measures changes in electrical current as a single DNA
strand is translocated through a protein pore to reveal DNA sequence. Several consec-
utive nucleobases in the narrowest region of the pore can influence the ionic current.
Translating a sequence of current values into a DNA sequence is therefore a non-trivial
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task typically solved using hidden Markov models [15, 16] or recurrent neural networks
[17, 18]; for review [9]. Importantly, such approaches can discriminate methylated and
hydroxymethylated from unmodified cytosines [7, 8], suggesting that detection of mod-
ified nucleobases incorporated in newly replicated DNA should be feasible. To measure
the effect of BrdU incorporation on the current signal, we generated control or BrdU-
hemisubstituted DNA duplexes by primer extension of linearized plasmid DNA in the
optional presence of dTTP or BrdUTP, followed by exonuclease degradation of the non-
template strand (Fig. 1a). Bioanalyzer and Qubit analyses (Fig. 1b) revealed a high yield of
primer extension and an electrophoretic shift of BrdU-substituted DNA. A small amount
of duplex DNA was observed in the absence of dTTP and BrdUTP, likely due to partial
plasmid renaturation before exonuclease degradation.
The primer extension products were sequenced using the MinION (R9 chemistry) and

the “2D” protocol where the two strands of a DNA duplex are consecutively read thanks
to a hairpin adapter. Sequencing information is summarized in Additional file 1: Table
T1. The raw data were basecalled with Metrichor (ONT), and the sequences of the two
complementary strands were independently aligned to the plasmid using BWAMEM [19]
with parameters adapted to the sequencing error rate (see the “Materials and methods”
section, Additional file 2: Fig. S1). Since Metrichor was devised to detect canonical
bases, the presence of BrdU may affect basecalling and mapping. Indeed, only 49% of the
BrdUTP vs. 60% of the dTTP reads could be mapped (Additional file 1: Table T2). In the
2D protocol, Metrichor classifies the reads into “pass” and “fail” based on the presence
of a second strand read and its complementarity to the first strand. While the fraction

Fig. 1 Effect of BrdU incorporation into DNA on nanopore sequencing current signal. a Scheme of sample
preparation. F, forward strand; R, reverse strand. b Bioanalyzer size control of the samples, with Qubit yield
indicated. pTYB21, linearized plasmid; water, primer extension in the absence of dTTP and BrdUTP; dTTP,
primer extension using canonical dNTPs; BrdUTP, primer extension using BrdUTP instead of dTTP. c Example
of a 30-bp sequence of the forward (F) strand (positions 1000–1029) with current distribution of 500 reads at
each position. Upper panel: sample obtained using canonical dNTPs. Lower panel : dTTP was replaced by
BrdUTP. Blue rectangles highlight some current shifts due to the presence of BrdU. BrdU did not induce a
current shift at all thymidine sites. d Current distribution for the “GATAA” pentamer for the dTTP (top) and the
BrdUTP (bottom) samples on the forward (F, modified strand, left) and the reverse (R, native strand, right)
strands. e Principal component analysis using as inputs 1-kb-long current value sequences (positions
100–1100 on the reference plasmid sequence) from 1000 reads for dTTP (black) and BrdUTP (brown) samples
(F strand). The first two components are represented. Only “pass” reads were used in c, d,and e
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of 2D reads was similar for both samples (57% vs. 59%), the percentage of “pass” reads
was lower for BrdUTP (13%) than for dTTP (18%), indicating lower read complemen-
tarity. Importantly, 99% of the “pass” reads were successfully mapped for both samples
(Additional file 2: Fig. S1b and Additional file 1: Table T2). However, the parental (reverse,
R) and newly replicated (forward, F) strand miscall rates were similar for dTTP (7% vs.
7%) but not for BrdUTP (7% vs. 11%, respectively, Additional file 2: Fig. S1c), confirming
that BrdU affects the current in the pore. In conclusion, current alterations due to BrdU
reduce Metrichor basecalling accuracy but to an extent that does not strongly affect read
alignment to the reference sequence.
Python scripts were then developed to realign current steps to the reference DNA

sequence. To allow comparisons between multiple experiments, we normalized each pro-
file by subtracting its mean current intensity. As shown on Fig. 1c and d, thymidine (T)
was associated in most cases with the highest current values in native DNA, and its sub-
stitution by BrdU further increased the current at these sites but not at other bases.
This probably explains why BrdU did not cause systematic basecalling errors at T sites
(Additional file 2: Fig. S1c). We extracted for each pentamer the difference in median cur-
rent value between BrdUTP and dTTP samples (Additional file 2: Fig. S1d). Almost all
F-strand pentamers with a T in their middle displayed a positive current shift in the pres-
ence of BrdU, with 60% showing a shift > + 3 pA. This effect was not seen when the T
was at another position, and most pentamers lacking this central T showed a small neg-
ative shift in the BrdU sample, due to subtraction of a higher mean current than in the
dTTP sample during normalization. Importantly, only the BrdU-substituted (F) strand
was perturbed, while the complementary native (R) strand gave an identical signal to the
thymidine control (Fig. 1d, Additional file 2: Fig. S1c,d). A principal component anal-
ysis of current values aligned on a 1-kb reference fragment showed a clear separation
of BrdU-substituted and control fragments (1000 of each, Fig. 1e). The small number
of BrdUTP sample reads that clustered with control reads most likely originated from
unsubstituted DNA duplexes formed by partial renaturation of the native plasmid strands
(visible in Fig. 1b, “water” lane). Overall, these results indicate that BrdU detectably alters
the nanopore electric signal and that its signature should be identifiable using appropriate
algorithms. Since our preliminary report [10], other laboratories also reported detection
of BrdU [11] or multiple thymidine analogs [12] in synthetic DNA templates.

Detecting BrdU incorporation in genomic DNA

To determine whether BrdU can also be detected in labeled genomic DNA, we used
the MCM869 yeast strain, which has been genetically modified to depend on exogenous
thymidine for growth [20]. Adding BrdU to a culture medium allowed cell growth, albeit
at a slower rate than thymidine (Additional file 2: Fig. S2). Cells stopped proliferating
after 3 cycles. We therefore expected ∼ 87.5% of genomic DNA strands to contain only
BrdU, with the remaining ∼ 12.5% corresponding to the starting parental strands con-
taining thymidine. Accordingly, the total BrdU content of this sample measured by mass
spectrometry was 91% (Additional file 1: Table T3). We also prepared a thymidine-only
control and 3 samples of intermediate BrdU content (see the “Materials and methods”
section), the total BrdU contents of which were 0%, 9%, 38%, and 69%, respectively, as
determined by mass spectrometry (Additional file 1: Table T3). The five samples were
sequenced on the MinION using R9.4.1 pore version. Replicates of the unsubstituted and
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highly substituted samples were also sequenced using the R9.5 version (discontinued).
Reads were basecalled by Albacore (ONT) and aligned on the S288C reference genome
using Tombo (ONT) which uses minimap2. We obtained 93k–600k reads per sample,
54 to 88% of which being mapped (Additional file 1: Table T3). Tombo resquiggle com-
mand also realigned current intensities on the reference genome. As seen for the in
vitro template, the current was positively shifted by the presence of BrdU (Additional
file 2: Fig. S3a).
To estimate BrdU incorporation along DNA molecules, we developed two indepen-

dent methods based on normalized current shifts between successive current plateaus
(Fig. 2a) that we integrated in a software called RepNano (the “Materials and methods”
section, [21]). We first implemented a machine learning approach to convert a segment
of 96 consecutive current shifts and their aligned reference sequence into the proportion
of T sites that incorporated a BrdU in the segment. We adopted a convolutional neu-
ral network (CNN) architecture with 3 convolutional layers (Additional file 2: Fig. S4).
The learning was performed using 4000 reads from each sample described above (28,000
reads in total). Training reads were presented as sets of non-overlapping 96-bp segments
associated with their respective BrdU content. We then used the trained network to esti-
mate BrdU content in the remaining reads. To reduce the noise level, we computed BrdU
content in overlapping 96-bp windows shifted by 10 bases and averaged the results at
each base. We plotted the distributions of measured BrdU content by 500-bp windows
(Additional file 2: Fig. S3b). The sample containing 0% of BrdU showed a single peak of
low BrdU content while the sample with 91% showed two peaks of high and low BrdU
content, corresponding to replicated and parental DNA, respectively. Therefore, the CNN
resolved substituted from non-substituted strands according to their BrdU content. Over-
all, the mean BrdU content estimated from sequence reads was in good agreement with
the mass spectrometry measurement for every sample (Additional file 2: Fig. S3c).
The second method implemented in RepNano to estimate BrdU content is based

on the calculation of the average current shift for every pentamer-to-pentamer transi-
tion in either thymidine or fully substituted BrdU reads (Fig. 2a). This produced two
transition matrices (TM) that were used to predict, for every read and at each T posi-
tion in the reference, if the measured current was most probably coming from a T or
a B. Overall, distinction between BrdU and thymidine could be clearly made at one
fifth of the T positions on the reference (Additional file 2: Fig. S3d). The remaining
indeterminate positions were labeled X and treated as non-assigned bases. We then
estimated BrdU content in the 0% and 91% samples (Additional file 2: Fig. S3b). The
resulting distributions were more spread than with the CNN, but otherwise similar. As
for CNN, there was a good correlation between TM estimates of the mean BrdU con-
tents and mass spectrometry measurements for every sample, although both methods
tended to underestimate BrdU content (Additional file 2: Fig. S3c). In conclusion, these
results suggest that both CNN and TM methods can measure BrdU abundance along
sequence reads.

Detection of individual replication forks

We then tested whether our BrdU detection procedures were sufficiently precise to
monitor replication fork progression during brief pulse-chase experiments. Exponen-
tially growing MCM869 cells were pulsed with 100 μM BrdU for 2 min, added with
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Fig. 2 Detection of individual replication forks. a BrdU content estimation methods. b Scheme of sample
preparation. c Exemplary BrdU content profiles (B/(B+T) ratio; B, BrdU, T, thymidine) along nanopore reads
using CNN (pink) or TM (green). Shown are examples for rightward- (1, 2) and leftward-moving (3, 4) forks,
initiation (5, 6) and termination (7, 8) events, and multi-replicon patterns (9–11). d Venn diagram of the
overlap between the CNN- and TM-detected forks. e Spearman correlation coefficients between four RFD
profiles of the whole genome at 1 kb smoothing obtained by the indicated methods. Top to bottom:
FORK-seq TM and CNN, sequencing of EdU-labeled Okazaki fragments from MCM869 (OK-seq) and of
accumulated Okazaki fragments from a ligase mutant [14]. f RFD profiles from the four different methods for
chromosome V. Bottom, known origins from OriDB [23] (violet, late, cyan, early; color intensity reflects OriDB
classification: bright, confirmed, medium, likely, light, dubious). Vertical dotted line, confirmed origins

33 μM thymidine for 2 min, and chased with 1 mM thymidine for 45 min (Fig. 2b).
The low thymidine pulse preceding the chase was designed to obtain an intermedi-
ate incorporation of BrdU, allowing to determine the direction of fork progression.
Genomic DNA was extracted and sequenced on the MinION (Additional file 1: Table
T4) and BrdU content profiles were computed using CNN and TM. Both methods
gave highly similar signals, reciprocally validating each other (Fig. 2c). The signals did
not display plateaus, as it could have been expected if external nucleoside transport
and phosphorylation were instantaneous. Instead, they showed a continuous variation
of BrdU content, with a steep increase from ∼ 0 to 60–80% BrdU and a shal-
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lower decrease to ∼ 10% BrdU. We interpret the steep segments to reflect a rapid
increase in the intracellular BrdUTP/dTTP ratio during the BrdU pulse, and the shal-
low segments to reflect a progressive decrease in this ratio during the final chase.
Therefore, signal asymmetry may immediately reveal the direction of replication fork
progression.
To test this interpretation, we developed Python scripts to automatically detect and

orient BrdU tracks and compared the resulting replication fork directionality (RFD) pro-
files with independent RFD profiles generated by sequencing purified Okazaki fragments
[14, 22]. Two biological replicates of the pulse-chase experiment were sequenced three
times each (MinION, R9.4.1) to yield 1.4 million reads (Additional file 1: Table T4), 2.3%
of which showed replication signals. A geometric method that approximates the signal
by piecewise linear segments was used to detect replication tracks and infer orientation
(the “Materials and methods” section), yielding 44,517 CNN and 44,412 TM oriented
tracks, respectively, with 28,384 (64%) shared tracks (Fig. 2d). The incomplete overlap
of the two track populations was due to the stringent thresholds used for detection and
orientation. Of note, when run on native DNA with no BrdU, our algorithm output
no fork, showing that the false-positive rate was null. Replicate RFD profiles assembled
from oriented BrdU tracks were well correlated to each other for each method (Spear-
man correlation 0.66 for TM and 0.75 for CNN for RFD computed from 1-kb smoothed
data). The reads from the two replicates were therefore merged for further analyses.
CNN- and TM-based RFD profiles were compared to each other and to two indepen-
dent RFD profiles obtained by (i) sequencing overaccumulated Okazaki fragments from
a ligase mutant [14] and (ii) sequencing purified, ethynyl-deoxyuridine (EdU)-labeled
Okazaki fragments (OK-seq) [22] from the MCM869 strain (Fig. 2e, f ). The four RFD
profiles were strikingly similar (Spearman pairwise correlations 0.69 to 0.91, Fig. 2e). The
correlation between the TM and CNN profiles (0.86) was almost as high as between
the two OK-seq profiles (0.91). As expected, the TM and CNN profiles were better
correlated to the MCM869 OK-seq profile (0.77 and 0.81, respectively) than to the ligase-
deficient profile (0.69 and 0.73, respectively, Fig. 2e). As previously shown [14], initiation
regions detected as ascending RFD segments coincided with the position of known
yeast origins (from OriDB [23], Fig. 2f ). These results demonstrate that our BrdU detec-
tion methods (CNN and TM) and track orientation procedures are robust and precise
and that nanopore sequencing of pulse-chase-labeled BrdU replication tracks, hereafter
referred to as FORK-seq, is a valid alternative to OK-seq to produce genome-wide RFD
profiles.
For comparison purposes, we attempted to use the D-NAscent software [11] to detect

BrdU tracks on the same reads as CNN and TM. Although significant BrdU incorporation
was detected at similar positions to CNN andTM, the signal was weaker (Additional file 2:
Fig. S5). Using the same algorithm as for CNN or TM signals, most D-NAscent tracks
could be neither detected nor oriented even after trying to optimize the detection param-
eters (Additional file 2: Fig. S5). The RFD profile assembled from the oriented D-NAscent
tracks we obtained was of very poor quality, showing very low correlation coefficients to
the other RFD profiles: FORK-seq TM, 0.15; FORK-seq CNN, 0.13; OK-seq MCM869,
0.12; and OK-seq ligase mutant, 0.11. Therefore, in our hands, RepNano outperforms
the D-NAscent tools for precise measurements of BrdU incorporation and RFD profile
establishment.
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FORK-seq precision

The first source of error in BrdU track detection comes from estimating BrdU incorpora-
tion along reads. Thus, we looked at the average and standard deviation of CNN signals
at track positions (Additional file 2: Fig. S6a). We found that the transition from low to
high BrdU content occurred within a very short distance (∼ 100 bp), indicating that the
precision of our estimation of BrdU amount along DNA is in the range of 100 bp. The
second source of error comes from replicative track detection. As we run it on BrdU
profiles obtained by two methods, TM and CNN, we checked the concordance between
them (Additional file 2: Fig. S6b). We found that the median distance between BrdU track
starts detected by both methods was 125 bp. We also generated in silico chimeric reads
for which the transition from low to high BrdU content was known, and we computed the
distance between the starting point detected by our algorithms and the theoretical posi-
tion (Additional file 2: Fig. S6c). We obtained a median distance of 120 and 136 bp using
CNN and TM, respectively. Together, these results show that the precision of track start
detection by FORK-seq is better than 200 nucleotides.

Detection of individual initiation and termination events

We then focused on reads containing pairs of divergent or convergent BrdU tracks to
map single initiation and termination events (Fig. 3a). We detected 3606 or 3877 (2519
shared) initiation events and 2953 or 2784 (1252 shared) termination events using TM
or CNN, respectively. Visual inspection convinced us that events detected with only one

Fig. 3 Detection of initiation and termination events. a Top to bottom: FORK-seq RFD profile obtained
merging data obtained from CNN and TM, replication timing profile [24], known origins from OriDB [23] (see
Fig. 2 legend), detected initiation (blue triangles) and termination (red inverted triangles) events of
chromosome IX. Dotted vertical lines: confirmed origins [23]. b Zoom-in of all initiation events (CNN in pink,
TM in green) of the indicated 120-kb segment of chromosome IX (red area)
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of the methods were of similar quality to shared events. We thus pooled all detected
(4964 initiation and 4485 termination) events for subsequent analyses. Please note that
all detected initiation and termination events can be viewed on a web-based interface
available at https://www.biologie.ens.fr/~hennion/forkseq.html. Rapid data examination
showed that, as expected, most initiation sites (defined as the midpoints between
diverging forks) coincided with known origins [23], ascending RFD segments, and early-
replicating peaks on a reported replication timing profile [24], while the termination
sites (midpoints between converging forks) were more dispersively located, yet enriched
in descending segments of the RFD profile corresponding to late-replicating valleys
(Fig. 3a, see below for precise quantification). The FORK-seq results were therefore in
good agreement with all available cell population data on the replication program of S.
cerevisiae.
In addition, we observed rare (246/4964) initiation events lacking any known origin

(confirmed, likely or dubious origins from OriDB [23]; n = 829) between the diverging
forks (Fig. 3b, reads 27, 30, 31, Additional file 2: Fig. S7a,b). Importantly, the visual aspect
and the mapping quality scores of these reads were not different from those of initia-
tion events at known origins (Additional file 2: Fig. S7). We consider unlikely that events
far from OriDB origins could arise by DNA repair. Nucleotide or base excision or sin-
gle strand break repair would produce much shorter BrdU tracks (tens of nucleotides
at best). Double strand break repair tracks may be longer but should be unidirectional
and much rarer than the events here detected. We also observed termination events
outside descending RFD segments, of similar quality to events inside these segments
(Additional file 2: Fig. S7d; see below).

Distribution of initiation events in S. cerevisiae

A clustering of initiation events is apparent on Fig. 3 (please note that “clustering” is used
as per its meaning of “grouping” and should not be confused with the classical “origin
clusters” designating multiple initiation events on the same DNAmolecule). The proxim-
ity of initiation events was objectively assessed by computing the cumulative distribution
of all inter-event distances (IEDs) over the genome. The IED distribution was strongly
shifted toward short distances compared to a random distribution of the same number of
events (Additional file 2: Fig. S8a). We then clustered events at different maximal allowed
IED (mIED, the “Materials and methods” section) and computed the number of clusters
and their dimensions (d, number of events per cluster) as a function of mIED (Fig. 4,
Additional file 2: Fig. S8b). As expected, as the mIED increased, the number of iso-
lated events (d = 1) decreased, while the number of clusters (d > 1) first increased then
decreased until all events in each chromosome formed a single cluster. This behavior
was observed for both the experimental and a control (random) distribution of initia-
tion events. However, the experimental curves differed from the random control by the
presence of an extended plateau of stable cluster number at mIEDs of 1–5 kb (Fig. 4a,
Additional file 2: Fig. S8b). The distance between the two outmost events in a cluster,
or cluster width, also showed a plateau at ∼ 2 kb over the same mIED range (Fig. 4b),
not observed for the random control (Fig. 4d). We concluded that most initiation events
tended to cluster within ∼ 2 kb of each other and that most clusters were separated
from each other by > 10 kb. An exemplary chromosomal segment is presented in
Additional file 2: Fig. S8b.

https://www.biologie.ens.fr/~hennion/forkseq.html
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Fig. 4 Clustering of individual initiation events. a–d Number of clusters of indicated dimensions (a, c) and
cluster width (d > 1) distribution (b, d) against mIED for experimental (a, b) and randomized (c, d)
distribution of initiation events. Box-and-whisker plots (b, d) show median, 2nd and 3rd quartile, and range of
each distribution. Red numbers (b, d) indicate the number of clusters (d > 1) for each mIED

Setting themaximal IED at 1.5 kb, 4602 out of 4964 initiation events formed 417 clusters
(d > 1) while 362 events remained single (sporadic events; 7.3% of all events, Addi-
tional file 1: Table T5). The clusters’ widths ranged from 34 to 7701 bp (median 1579 bp)
and their dimension from 2 to 45 (median 7), excluding the rDNA cluster (d = 140).
Eighty-five percent of the 417 clusters, but only 35% of sporadic events (extended to 2 kb
windows), overlapped with a known origin [23]. Among the OriDB origins, 57% (473/829)
overlapped with FORK-seq origins; this fraction was 79% (326/410) for the confirmed
OriDB origins, 44% (95/216) for the likely origins, and 26% (52/203) for the dubious
ones. The overlap was defined after resizing all objects to 2 kb. We plotted for clusters of
increasing dimension the cumulative distribution of the distance from their median point
to the middle of the closest known origin (Fig. 5a). The distance distribution of sporadic
events with respect to known origins was not different from random (median distance
∼ 4 kb). In contrast, 69%, 97%, and 100% of the clusters of dimension 2–4, 5–12, and
>12, respectively, were ≤ 2 kb from a known origin center (Additional file 1: Table T5).
Therefore, most of the d > 1 clusters coincided with known origins and this coincidence
increased with cluster dimension. Only 48 clusters (d > 1) totalling 134 initiation events
were located > 2 kb away from known origins (Additional file 1: Table T5, Fig. 3b, reads
30 and 31, Additional file 2: Fig. S7b). These represent weakly preferential initiation sites
that escaped detection in previous assays, due to low efficiency (only 4 out of those 48
clusters had d > 4).
Origin efficiency is defined as the fraction of cell cycles in which an origin is active.

This parameter can be estimated from cell population RFD profiles by the amplitude
of the RFD upshift at the origin. To check if the number of initiation events per clus-
ter also reflected origin efficiency, we computed mean RFD profiles obtained from CNN
data around clusters of increasing dimension (Fig. 5b). As expected, the amplitude of
the RFD shifts increased with cluster dimension. The RFD profiles around the sporadic
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Fig. 5 Landscape of individual initiation events. a Empirical cumulative distribution function (ECDF) of the
distances between cluster median points, grouped according to cluster dimension, and the closest known
origin (ORI, confirmed, likely and dubious origins from OriDB [23]) center. Black, random elements; red,
sporadic initiation events; light, median, and dark green, initiation clusters of dimension d = 2–4, d = 5–12, and
d > 12, respectively. The number of elements in each category is written next to each curve. b Averaged RFD
profile for the clusters grouped according to their dimension (− 10 kb, + 10 kb from the cluster median). rDNA
cluster was excluded. c Density distribution of normalized replication timing (0 = start and 1 = end of S phase)
for the whole genome (black) and the clustered (green) and sporadic (red) initiation events. d ACS-motif
containing fraction of the indicated elements: randomized initiation events; confirmed, likely and dubious
origins from OriDB [23]; sporadic (d = 1) and clustered (d = 2–4; d = 5–12; d > 12) initiation events. For
randomized elements, the randomization was repeated 1000 times and the median and [0.01,0.99] percentile
interval are shown (red bar). e–f ECDF of the distance between sporadic (red), clustered (green), and randomly
shuffled (black) initiation events, and the center of the closest ORC [25] (e) or Mcm2-7 [27] (f) binding site

events were null on average, in accordance with their dispersed location in the genome.
Origin efficiency has been related to origin firing time. We confirmed that clustered
initiation events predominantly occurred in early-replicating regions (Fig. 5c). In con-
trast, the sporadic events followed the same distribution of replication times as the whole
genome (Fig. 5c). Altogether, the FORK-seq results show that replication of the S. cere-
visiae genome combines clustered initiation events at known origins of variable efficiency
with a novel class of dispersed initiation events at inefficient sites.
The precision of initiation event detection is similar to the one of individual replicative

tracks, the median distance between initiation events detected by TM and CNNmethods
being 137 bp (Additional file 2: Fig. S6b). To estimate the precision of origin detection, we
performed the same clustering procedure independently on the two biological replicates
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(Additional file 2: Fig. S6d). We obtained 275 clusters common to both replicates, and
the median distance between their centers was 219 bp. This variability between biological
replicates is consistent with the above stated technical precision of track start detection.

Characterisation of the sporadic initiation events

We assessed whether the sporadic initiation events occurred in a different sequence
context than the clustered events. One important feature of the known S. cerevisiae ori-
gins is the presence of an ARS (autonomously replicating sequence) consensus sequence
(ACS). We computed an extended consensus sequence motif from 253 high-confidence
origins described in [25] and identified 5858 genomic sites matching this motif (see
the “Materials and methods” section). In order to compare objects of similar size, we
examined the presence of this motif in a 2-kb window centered on either the mid-
point of OriDB origins or the median point of our initiation clusters. The motif was
found in 82%, 55%, and 38% of confirmed, likely, and dubious OriDB origins, respec-
tively; in 91%, 78%, and 62% of d > 12, d = 5–12, and d = 2–4 clusters, respectively;
in 39% of sporadic events (d = 1); and in 33% of random 2-kb windows (Fig. 5d).
Thus, the presence of the consensus motif at sporadic initiation events was much rarer
than in clusters, and barely more frequent than in random sequences (p value = 0.03,
non-parametric test).
The ACS provides a binding site for ORC. Other required elements specify a

nucleosome-free gap that facilitates ORC binding and subsequent loading of the Mcm2–
7 complex, a core component of the replicative helicase required for initiation [25, 26].
Using published datasets, we computed the distance between our initiation events and
ORC [25] (Fig. 5e) or Mcm2-7 [27] (Fig. 5f ) binding sites. As expected, the clustered ini-
tation events were found much closer to known ORC and Mcm2-7 binding sites than
random genomic positions. On the contrary, the sporadic events behaved very similarly
to random sequences (Fig. 5e, f ), meaning that there was no detectable enrichment of
ORC or Mcm2-7 at these sites. Since no replication can take place in the absence of ORC
or Mcm2-7 proteins [28–35], the low firing efficiency of sporadic origins is likely due
to a low efficiency of ORC and Mcm2-7 recruitment rather than to the inhibition of a
later origin activation step. This interpretation is reinforced by the lack of sporadic origin
enrichment with ACS.

A two-process model for S. cerevisiae genome replication initiation

To summarize, our ab initio analysis of 4964 initiation events detected by FORK-seq
demonstrated that 93% (4602/4964) were clustered and 7% (362/4964) occurred singly
(Additional file 1: Table T5). Ninety-five percent (4389/4602) of the clustered events, but
only 30% (106/362) of the sporadic events, totalling 91% (4495/4964) of all events, were
found at ≤ 2 kb from a known OriDB origin. The remaining 9% (469/4964) of initiation
events found > 2 kb away from known origins include 213 clustered and 256 sporadic
events, and half (114/213) of these clustered events belonged to low-dimension clusters
(d ≤ 4). All these figures are consistent with a model in which 91% of initiation events
coincide with previously known origins, most often clustering in the vicinity of an ACS,
while 9% of initiation events occur away from known origins, predominantly dispersively
and away from ACSs, forming a novel class of initiation events.
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Distribution of termination events in S. cerevisiae

Weperformed a clustering analysis of termination events detected by FORK-seq as we did
for initiation events. Computing the cumulative distribution of all IEDs over the genome,
we found that the distribution was shifted toward short distances compared to a random
control, but to a lower extent than for initiation events (Additional file 2: Fig. S8a). This is
in line with termination events within clusters being more scattered than initiation events
as seen on Fig. 3 for the exemplary chromosome IX (see also Additional file 2: Fig. S7d).
Setting the maximal IED at 1.5 kb as for initiation events, 3508 out of 4485 termination
events formed 785 clusters (d > 1) while 977 events remained single (sporadic events;
22% of all events). The clusters’ widths ranged from 9 to 14,976 bp (median 1223 bp)
and their dimension from 2 to 39 (median 3), excluding the rDNA cluster (d = 80). As
expected, termination events were located within later-replicating regions than initiation
events (Additional file 2: Fig. S9a).
We computed the mean RFD profiles from combined CNN and TM FORK-seq data

around termination clusters of increasing dimension (Fig. 6a). As expected, themean RFD
shift was negative around termination clusters, and its amplitude increased with cluster
dimension. In contrast, the mean RFD shift was null around sporadic termination events.
The distribution of termination events in S. cerevisiae has been previously investigated

by cell population methods [13, 14]. Fachinetti et al. [13] reported 71 specific termination
zones (TERs) defined as regions that are unreplicated late in S phase when replication
is slow (i.e., in the presence of hydroxyurea or at temperatures below 16 °C). We found
that 66/71 TERs overlapped with FORK-seq termination clusters (Fig. 6b) and that the
RFD shift at these TERs was equal to that observed at the strongest clusters (d > 4;
Additional file 2: Fig. S9b). McGuffee et al. [14] used OK-seq to identify 346 descending
RFD segments that encompass most (60/71) TERs but are broader. Similarly, we used the
previously defined [14] origin efficiency metric (OEM) to measure RFD slope. We identi-
fied 341 negative OEM (NOEM), i.e., descending RFD segments, that encompass 67 TERs
but are broader (Fig. 6b). The 341 NOEM segments overlapped 3630 individual termina-
tion events, including 495 within TERs. Importantly, 855 termination events (including 9
within TERs) mapped outside the NOEM segments, i.e., in positive RFD slopes.

Fig. 6 Landscape of individual termination events. a Averaged RFD profile for the clusters grouped
according to their dimension (− 10 kb, + 10 kb from the cluster median). rDNA cluster was excluded. Red,
sporadic termination events; light, median (dotted line), and dark green, termination clusters of dimension
d = 2–4, d = 5–12, and d > 12, respectively. b Venn diagram showing the overlap between FORK-seq
termination events, TERs [13], and negative OEM (NOEM) segments. The number of elements in each area are
indicated in the same color as each class of objects



Hennion et al. Genome Biology          (2020) 21:125 Page 14 of 25

Resolving the contributions of initiation and termination events to RFD

The above results suggest that a minority of termination events occur in positive RFD
slopes and, reciprocally, that a minority of initiation events occur in negative RFD slopes.
To address this point, we used theOEM tomeasure RFD slopes at individual initiation and
termination events (Additional file 2: Fig. S9c, d). We indeed found that 11% of initiation
(resp. 18% of termination) events were associated with a negative (resp. positive) OEM.
These events were predominantly sporadic: 60% of the sporadic, vs. 8% of the clustered,
initiation events had a negative OEM, and 41% of the sporadic, vs. 12% of the clustered,
termination events had a positive OEM. Therefore, FORK-seq is able to detect a large
number of initiation and termination events that are inevitably missed in cell population
analyses.
Strictly speaking, the shift in RFD over a considered segment should be proportional to

the difference between the number of initiation and termination events over that segment
[36]. To verify this point, we computed this difference profile from the 4964 initiation
events and 4485 termination events. The profile was strikingly similar (Spearmann cor-
relation 0.80) to the OEM profile computed from the assembled RFD profile from the
58,651 oriented BrdU tracks (Fig. 7). Therefore, there is a high consistency between the
full dispersion of initiation and termination revealed by analysis of individual events and
the statistical average of fork direction measured by population analysis of all the oriented
BrdU tracks.

Discussion
We have developed a novel method, termed FORK-seq, to map DNA replication genome-
wide at the single-molecule level, based on in vivo replicative incorporation and nanopore
sequencing detection of BrdU, a thymidine analog widely used in cell proliferation stud-
ies. Several important points made FORK-seq possible. First, nanopore sequencing can
read native single DNA strands in the absence of intermediate amplification steps. This
allowed direct detection of the in vivo incorporated BrdU, revealing the replication
pattern and genomic position of each sequenced strand. Second, the use of a thymidine-
auxotroph yeast strain with reconstituted thymidine import and salvage pathway allowed
efficient BrdU labeling of replication tracks during brief pulse-chase experiments. The

Fig. 7 Similarity of initiation minus termination efficiencies computed from the FORK-seq RFD profile or from
the individual initiation and termination events. Top to bottom: OriDB origins (black, confirmed, dark gray,
likely, light gray, dubious [23]). RFD profile from FORK-seq data; OEM computed from RFD profile; density
profile of initiation minus termination events (I-T); individual initiation events; individual termination events
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short pulse duration (4 min) combined with long read lengths (10–140 kb; Additional
file 2: Fig. S10) permitted visualization of mostly complete BrdU tracks along single
molecules. Third, we developed and validated against each other two independent meth-
ods (CNN and TM) to precisely measure BrdU content variation along the reads, allowing
to orient BrdU tracks according to their direction of synthesis. Track orientation was
further validated by independent OK-seq data. Fourth, many reads were long enough to
contain multiple BrdU tracks, allowing high precision mapping of individual initiation
and termination events.
FORK-seq precision was assessed at different levels of analysis. The precision of the

transition from low to high BrdU content was ∼ 100 bp. The median CNN-to-TM dis-
tance between BrdU track starts and initiation events was 125 bp and 137 bp, respectively.
Using chimeric reads, the distance between the detected and theoretical track start was
120 and 136 bp using CNN and TM, respectively. Therefore, the technical precision of
FORK-seq is better than 200 nucleotides. The variability of origin detection between two
biological replicates, which reflects both the technical imprecision of FORK-seq and the
true biological dispersion of initiation events, was 219 bp.
Eukaryotic DNA replication has been best studied in the yeast S. cerevisiae [35].

Yeast origins were first identified as ARSs using plasmid replication assays [37]. Phys-
ical mapping of replication intermediates in cell populations confirmed that ARSs act
as chromosomal replication origins with variable efficiency and failed to detect initia-
tion elsewhere than at ARSs [14, 24, 38–40]. Genome-wide replication profiles have now
attained high spatial (1 kb) and temporal (5 min) resolution and their mathematical anal-
ysis suggests that origins fire stochastically and independently of each other [41, 42],
as first proposed based on a single-molecule (DNA combing) analysis of yeast chromo-
some VI replication [43]. A few studies reported that the sequence requirements for
yeast origin function can be more flexible than previously thought. Notably, an in vivo
study showed that replication of an origin-depleted chromosome can initiate from non-
canonical sites around deleted origins [44]. In vitro reconstitution experiments of plasmid
replication using yeast extracts [45, 46] or purified proteins [47, 48] showed that repli-
cation can initiate in an ARS-independent manner at high ORC/DNA ratio, although
ARS-independent initiation is suppressed by competitor DNA or when nucleosomes
are preassembled on the template. Very recently, Müller et al. developed a nanopore
sequencing-based, single-molecule replication mapping method termed D-NAscent that
suggests that up to 20% of all initiation events may occur dispersed through the yeast
genome [11]. Using FORK-seq, we report here independent evidence for dispersed ini-
tiation, although we find that only 9% of all initiation events occur > 2 kb from a
known origin (see below). From the point of view of origin efficiency, only 7% of all
initiation events occurred singly, and these appear to be randomly dispersed along the
genome.
The distribution of termination events in S. cerevisiae has been previously investi-

gated by Fachinetti et al. [13] in the presence of conditions of slowed replication and by
McGuffee et al. [14] by OK-seq in unperturbed cells, but was not further analyzed using
D-NAscent. Here, we confirm that termination does occur at the locations previously
reported [13, 14] and that TERs are particularly efficient termination regions, but we also
find that termination is even more dispersive than previously thought [14], with 18% of
termination events located in segments where cell population methods could only detect
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a predominance of initiation events. This further illustrates the power of FORK-seq for
replication profiling.
FORK-seq and D-NAscent are similar in principle but differ in details. Detection of

BrdU in D-NAscent relies on the identification of thymidine-containing hexamers where
the distribution of electrical currents is significantly affected by the presence of BrdU,
allowing assessment of BrdU incorporation on average every 21 nucleotides in the yeast
genome. This is related to RepNano TM strategy where we identified pentamer-to-
pentamer transitions whose current shift was significantly affected by BrdU, allowing
assessment of BrdU content every 18 nucleotides on average. RepNano second, CNN-
based, strategy does not attempt to call individual bases but estimates BrdU content for
96-nucleotide sliding windows. Importantly, CNN estimates nicely correlate with TM-
based measurements. The BrdU signal obtained by D-NAscent software detection was
located at similar positions to RepNano but was weaker, precluding automatic BrdU
track detection and orientation and assembly of a valid RFD profile. The number of
B calls was about 4 times lower in D-NAscent than in TM: in the highly substituted
sample, TM and D-Nascent called 10.3% and 2.6% of all T sites, respectively. This rep-
resents a significant difference between the D-NAscent and FORK-seq computational
methodologies. The other significant difference between the D-NAscent and FORK-
seq experiments is the replication labeling strategy. Müller et al. labeled replication by
synchronizing thymidine-prototroph cells in G1 and releasing them in the presence of
limiting BrdU concentrations. They found that the level of BrdU incorporation decreased
as S phase progressed, suggesting that the intracellular ratio of BrdUTP to dTTP declined
due to increasing activation of endogenous thymidine synthesis and/or declining rate
of BrdU import. They measured gradients of BrdU incorporation along single reads by
computing a z-score of BrdU incorporation by non-overlapping 2-kb windows and used
these gradients to deduce replication direction and to map initiation events. In contrast,
our FORK-seq experiments were carried out using asynchronously growing, thymidine-
auxotroph cells subjected to a brief BrdU pulse followed by a chase with a 10-fold excess of
thymidine. This strategy allowed a much more precise control of the intracellular ratio of
BrdUTP to dTTP and allowed us to map the start of BrdU tracks with a ∼ 200 nucleotide
resolution, a much better precision than D-NAscent. In addition, we found a more even
distribution of early and late initiation events than Müller et al. (Additional file 2: Fig.
S11a). Our interpretation is that in D-NAscent experiments, the change in the intracel-
lular ratio of BrdU to thymidine is steeper in early than in late S phase due to the use
of synchronized cells, whereas in FORK-seq experiments there is an unbiased represen-
tation of replication tracks regardless of replication time due to the avoidance of cell
synchronization.
We found a tighter distribution of initiation events around known origins

(Additional file 2: Fig. S11b; 91% of all events at ≤ 2 kb from a known origin, median dis-
tance 434 bp) than Müller et al. (57% at ≤ 2 kb, median distance 1746 bp). This result
likely comes from the better spatial precision of FORK-seq which can explain in part the
discrepancy between the two studies regarding the fraction of initiation events judged
to map significantly away from known origins (20% at > 3.9 kb vs. 9% at > 2 kb). It
is also possible that the different genetic backgrounds of the thymidine-prototroph and
auxotroph strains and the different synchronization and labeling procedures affect the
prevalence of dispersive vs. site-specific initiation by perturbation of dNTP pools and
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fork progression or by other mechanisms. Further studies are required to resolve these
questions. This discrepancy left aside, both studies demonstrate the power of nanopore
sequencing for replication studies and reveal the existence of dispersed replication ini-
tiation throughout the yeast genome. In addition, we provide evidence that dispersed
initiation events are barely if at all enriched in ACS motifs typical of site-specific initia-
tion events and inefficiently recruit ORC and Mcm2-7 complexes and that termination
is more dispersive than previously thought. Together with previous in vitro [45–48] and
in vivo [44] studies, these results indicate that many genomic locations can function as
replication origins at low frequency. The superposition of efficient initiation at few spe-
cific sites with inefficient initiation at widely dispersed sites is reminiscent of the strategy
proposed for mammalian genome replication [22] and leads to a more unified view of
eukaryotic DNA replication.
FORK-seq relies on the incorporation of BrdU in replicating DNA, which is achiev-

able in many experimental systems. All the sequencing reads used in this study were
obtained with only six runs on the MinION sequencing apparatus, and we now rou-
tinely obtain the same number of reads with one sequencing run. When applied to
mammalian cells, with larger genomes and wider spaced origins, both the length and
number of sequenced DNA molecules may become limiting. However, read lengths of
up to 2.3 Mb have been reported [6] so there is no absolute technological limitation
to improve read length. As to throughput, the recent availability of the PromethION,
which delivers 10 times more data per single flow cell and can run 48 flow cells in
parallel, should allow high coverage studies of human genome replication in the near
future.

Conclusions
This work demonstrates the power of nanopore sequencing to study DNA replication at
the single-molecule level following replicative incorporation of BrdU. FORK-seq allows
to reproduce genome-wide RFD profiles and to rediscover ab initio the known replica-
tion origins and termini of S. cerevisiae. In addition, it maps low efficiency origins as
well as dispersive initiation and termination events undetectable by population methods.
This high-resolution genome-wide method represents a major step forward compared to
current single-molecule methods and will likely transform this research field.

Materials andmethods
Synthetic template construction

pTYB21 plasmid (New England Biolabs, NEB) was linearized with EcoRV (NEB)
and purified using home-made SPRI (Solid Phase Reversible Immobilization)
beads. After initial denaturation for 5 min at 94 °C, primer extension was per-
formed on 200 ng of linear plasmid, using 0.5 U/μL LongAmp Taq DNA poly-
merase (NEB) with 300 μM of each dNTP (with either dTTP or BrdUTP
(Thermo Fisher Scientific, TFS)) and 400 nM of NanoP-pTYB-F primer (5′-
ATCGTCGACGGATCCGAATTCCCTGCAGGTAATTAAATAACTAGTTGATC
CGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGC
T-3′; Eurofins) for 20 min at 65 °C. A control (“water” lane in Fig. 1b) with only dATP,
dGTP, and dCTP was also included. The ssDNA was then digested by ExoSAP iT (TFS)
for 30 min at 37 °C, and the DNA was purified using SPRI beads. The size of the product
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was assessed using an Agilent DNA 12000 chip on a Bioanalyzer, and its amount was
quantified using Qubit dsDNA HS Assay (TFS).

Samples used for CNN learning

MCM869 genotype is MATa ade2-1 trp1-1 can1-100 leu2-3 his3-11,15 ura3-1::URA3-
GPD-TK7x aur1::AUR1-C-ADH-hENT1 bar1::LEU2 cdc21::kanMX [20]. PSL geno-
type is MATa trp1-1 leu2-3,112 his3-11,15 ura3-1::URA3-GPD-TK aur1::ADH-hENT1
bar1::LEU2. MCM869 and PSL were grown at 30 °C in YPD with 100 μM thymidine
(Sigma-Aldrich). We used 7 samples for the training of the CNN (see Additional file 1:
Table T3): two negative controls withMCM869 grown in 100 μM thymidine (Thy_R1 and
Thy_R2), two samples with intermediate BrdU amount prepared from PSL strain (CDC21
proficient) grown for 24 h in 100μM(BrdU_9) or 1mM (BrdU_38) BrdU, one sample with
intermediate BrdU amount obtained from MCM869 grown in a mixture (75:25) of BrdU
and thymidine for 24 h (BrdU_69), and two highly substituted samples from MCM869
grown in 100 μM BrdU for 24 h (BrdU_R1 and BrdU_R2). The naming follows the BrdU
content as measured by mass spectrometry (Additional file 1: Table T3; see below).

Pulse-chase labeling

MCM869 grown for 3 h in fresh YPD medium with 100 μM thymidine were washed
and transferred in YPD for 30 min, pulsed with 100 μM BrdU for 2 min, added with
33 μM thymidine for 2min, chased with 1mM thymidine for 45min, pelleted, and frozen.
DNA was purified by Zymolyase, RNAse A, and proteinase K digestion followed by Qia-
gen Genomic-tips according to the manufacturer instructions. The size of the DNA was
checked by agarose gel electrophoresis and on an Agilent TapeStation.

MCM869 OK-seq

Freshly inoculated MCM869 cells in 10 L of YPD + 100 μM thymidine were grown to an
OD600 of 0.7 (200 × 109 cells), pelleted at 4000g at 30 °C for 10 min, resuspended and
shaken in 8 × 100 mL flasks of prewarmed YPD + 100 μM 5-ethynyl-2′-deoxyuridine
(EdU) for 2 min, added with 2.5 mL of 0.5 M EDTA per flask, chilled on an ice-water
bath, and pelleted at 4000g for 10 min at 4 °C. Cells were rinsed twice with ice-cold water,
resuspended at 1.5 − 2 × 109/mL in ice-cold nuclear isolation buffer (NIB; 17% glyc-
erol, 50 mM MOPS, 150 mM potassium acetate, 2 mM magnesium chloride, 500 μM
spermidine, and 150 μM spermine, pH 7.2), dispensed in 50-mL plastic centrifuge tubes
(< 13 mL of cell suspension per tube), mixed with an equal volume of glass beads (0.45–
0.52 mm diameter), and subjected to 15 cycles of high speed vortexing for 30 s followed
by> 30-s incubation on ice in a 4 °C cold room. The supernatant was collected andmixed
with two rinses of the beads with NIB and pelleted at 5500g for 10 min at 4 °C to collect
nuclei. Subsequent DNA extraction, heat denaturation, size fractionation on sucrose gra-
dients, and Okazaki fragment purification and sequencing were as described previously
for human cells [22] with the following minor modifications. Biotinylation was conducted
with 0.1x PBS pH 7.2, 2 mM CuSO4 freshly pre-mixed with 10 mM Tris((1-hydroxy-
propyl-1H-1,2,3-triazol-4-yl)methyl)amine (THPTA), and 10 mM sodium ascorbate for
45 min in dark. To maintain a high ratio of DNA to streptavidin beads, only 100 μg
Dynabeads MyOne Streptavidin T1 were used to capture the biotinylated Okazaki
fragments.
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Mass spectrometry

LC-MS/MS was performed using a TSQ Quantiva triple quadrupole mass spectrometer
(Thermo Scientific) coupled to an UltiMate 3000 XRS HPLC system (Dionex, Thermo
Scientific). Metabolites were quantified with mass spectrometry, using selected reaction
monitoring (SRM) in the positive ion mode. In source generated ions were used as quan-
tifiers using the following SRMs (dT m/z 127 to 54; BrdU m/z 191 to 118, and m/z 193
to 120). One microgram of genomic DNA was digested by 10 U of DNA Degradase Plus
(Zymo Research) overnight at 37 °C. Before analysis, formic acid in water was added to
0.1%. Metabolites were separated using an 8-min gradient starting at 1% mobile phase A
(0.1% formic acid in water) and ramping up to 60% A in phase B (0.1% formic acid in ace-
tonitrile) using a C18 reversed phase column (Kinetex 2.6 μm C18 100 Å, LC Column
150× 2.1mm; Phenomenex) and employing a flow rate of 100 μL/min. Samples were ana-
lyzed in technical duplicates, and MS data were analyzed using the software TraceFinder
(Thermo Scientific). A defined mixture of BrdU and dT was used for measuring the com-
bined relative ionization and fragmentation efficiencies of these ions used for calculating
the percentage of BrdU incorporation at native thymidine sites.

Nanopore sequencing and data preprocessing

MinION sequencing libraries were prepared according to the manufacturer protocols
using the 2D low input kit with R9 chemistry for the plasmid experiments and the 1D
ligation kit with R9.5 or R9.4.1 chemistry for the yeast experiments. ONT protocol and
software versions used for the different samples are listed in Additional file 1: Table T1,
T3 and T4.
For the plasmid experiments, raw reads were basecalled using Metrichor (ONT) with

default parameters and aligned on the reference using BWAMEM [19] with the -x ont2d
option (-k14 -W20 -r10 -A1 -B1 -O1 -E1 -L0). The event sequences were extracted using
poretools [49] and aligned on the reference using the sam file information and custom
Python scripts. Current values were normalized by subtracting the whole read average
current. The PCA plot was generated with R pcaMethods library using as inputs 1-kb-
long current sequences (positions 100–1100 on the reference plasmid sequence) from
1000 reads of each sample.
For the yeast experiments, raw reads were basecalled using Albacore (ONT). We used

Tombo (ONT) preprocess annotate_raw_with_fastqs to add the DNA sequence obtained
from Albacore into the raw fast5 file. The sequence was then mapped and corrected
using the reference genome, and the current signal was segmented and assigned to each
base using Tombo resquiggle command (which calls minimap2). These two steps output
a sequence of bases associated with its average current (Ni,mi). Next steps are integrated
in the RepNano software (available at https://github.com/organic-chemistry/RepNano or
https://doi.org/10.5281/zenodo.3743241 [21]). RepNano first computed the current shifts
δi = mi − mi+1 and used (Ni, δi) as the input of further processing steps.

Current shift normalization and computation of reference transition matrices

In order to remove possible drifts in current values between reads, we defined a two-step
normalization and filtering procedure as follows. Using 4000 reads of a given experiment,
we computed the average current shift value associated to each possible pentamer-to-
pentamer transition (i.e., for each hexamer N (6)) and obtained a first transition matrix,

https://github.com/organic-chemistry/RepNano
https://doi.org/10.5281/zenodo.3743241
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TM, such as TM[N (6)]= 〈δN (6)〉 (step 1). Second, for each read, this matrix was used to
determine the sequence of expected current shifts δ

(e)
i = TM[N (6)

i ]. We determined the
drift for each read by determining the linear transformation of the experimental signal
(αδi + β) that minimized the difference with the expected signal disregarding transition
with a T in the center of either pentamer ((α0,β0) = arg min

(α,β)

∑
i(αδi + β − δ

(e)
i )2). Reads

where the quadratic optimized distance was greater than 0.25 were discarded. Finally, the
dataset was updated with the drift normalized current shift signals obtained for each read:
δnormalized
i = α0δi + β0 (step 2).
We applied this procedure twice on the two thymidine samples (Thy_R1 and Thy_R2),

and the two BrdU-rich samples (BrdU_R1 and BrdU_R2), removing 4% of the thymi-
dine sample reads and 12% of the BrdU sample reads. We then averaged the 2 resulting
thymidine (resp. BrdU) transition matrices to determine the matrix TMT (resp. TMB)
containing the expected normalized current shift for transition in the thymidine and BrdU
context (δTN (6) , δBN (6) ), respectively. In the same manner, we applied the second step of
the normalization procedure using TMT as the reference transition matrix to all samples
resulting in homogeneously normalized data used in all subsequent analysis steps. At this
point, each read was represented by a sequence (Ni, δNormalised

i ).

BrdU content determination using transition matrices

As expected from the in vitro experiment (Additional file 2: Fig. S1d), the difference
between TMT and TMB for transition involving a pentamer having a T in its middle
position was much larger than for the other transitions (Additional file 2: Fig. S3d);
|δTN (6) − δBN (6) | > 0.4 being (514 transitions) almost exclusive of transitions involving pen-
tamers with a T in the middle position (507 transitions). Hence, we used the following
strategy to call B or T at T sites (considering the hexamers where Ts are in position 3).
We looked up in TMT and TMB for the expected current shift for the site: δTi and δBi .
If |δTi − δBi | > 0.4, we called a T or a B according to the shortest distance between the
observed δi and either δTi or δBi . If the difference was ≤ 0.4, we called the indeterminate
base a X.

Neural network architecture

RepNano CNN architecture was designed so as to directly estimate BrdU content in
a given window thus avoiding calling individual incorporation of BrdU. This approach
entails dimensionality reduction from the window size to 1. This is achieved by the action
of several layers each performing a fraction of the required dimensionality reduction. We
therefore implemented a 1D convolutional neural network (Additional file 2: Fig. S4) to
predict the average BrdU content for a segment of 96 (Ni, δNormalised

i ) plateaus (see below).
Each base was encoded using one hot encoding ( A = (1,0,0,0), T = (0,1,0,0), C=(0,0,1,0),
G=(0,0,0,1)). Each plateau was converted to a 5-dimensional vector, where the four first
dimensions accounted for the base in the one-hot encoding scheme and the last one was
δNormalised
i . This gave an input of shape (96,5). The neural network consisted in three con-
volutional layers with 32 filters of kernel size 5. After each of the two first convolutional
layers, we used a layer of maxpooling over 4 consecutive values that each reduces the size
of the vectors by a factor of 4, so that their combined action is a 16-fold dimensionality
reduction. This implies the input window size to be a multiple of 16. Moreover, it must
contain enough informative transitions to reliably train the neural network. We evaluated
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using the TM method that 514 (12.5%) of the 4096 pentamer-to-pentamer transitions
were informative for BrdU incorporation. The CNN window size was therefore chosen
to be 96 bp as this is a multiple of 16, containing 14 informative transitions on average,
which we reasoned was enough. After the third convolutional layer, we obtained a vector
of shape (6,32). On the first dimension, we applied a dense network with a sigmoid activa-
tion and one output leading to a vector of shape (6,1) that was then averaged on the first
dimension. CNN was implemented in Python with the Keras library [50].

CNN learning

We used 4000 reads of each of the 7 samples described above for CNN learning. The
learning was done splitting the mapped reads into sequences of length 96, and the error
between the prediction and the correct sequence was minimized using a stochastic gra-
dient descent optimizer implemented in Keras [50] using default parameters, a learning
rate of 0.1, a decay rate of 10−6, and a momentum of 0.9. The learning dataset was ran-
domly split in 90% training and 10% validation sequences. After each epoch, the loss was
evaluated on the validation set, and after 5 consecutive steps with no improvement of the
validation loss, the learning was stopped. We then computed the average BrdU content
for the reads coming from the BrdU-rich samples, which allowed us to separate BrdU-
substituted reads from parental thymidine reads. We then used this cleaned dataset to
perform the learning again.

CNN calling

RepNano uses the CNN to predict for each read the BrdU content by 96-nucleotide
overlapping windows shifted by 10 bases. Then, the average BrdU content is computed
per 10-nucleotide segment by averaging on the 96-nucleotide windows containing this
segment.

D-NAscent calling

We downloaded D-Nascent from https://github.com/MBoemo/DNAscent (20 November
2019). After compilation, we used the detect function to call BrdU from our fast5 files.
As described in [11], we called a BrdU when the log-likelihood was > 2.5 and we used as
input for subsequent track detection the number of B per 100-bp windows.

BrdU track calling and orientation

Ahome-made Python script was used to detect and orient replication tracks. It is included
in the RepNano package. Reads < 5 kb were not used for this analysis. For CNN and TM,
BrdU content along the reads was smoothed over 30 consecutive positions corresponding
to a B or a T after TM basecalling (present on average every 18 bases). For D-NAscent, we
smoothed on two 100-bp windows.We discarded reads with no tracks by filtering on both
a minimal standard deviation of the BrdU proportion on the whole read (0.115 for CNN,
0.3 for TM, 0.02 for D-Nascent) and a minimal signal amplitude (0.4 for CNN, 0.5 for
TM, 0.08 for D-Nascent). The signal was rescaled between 0 and 1 and subjected to piece-
wise linear segmentation using the Ramer–Douglas–Peucker algorithm implemented in
the Python module simplification. A track was detected when an upward shift (amplitude
> 0.44) was followed by a downward shift (amplitude > 0.26). The track was then ori-
ented according to the different shift slopes (−slope1/slope2 > 1.5) or BrdU content of the

https://github.com/MBoemo/DNAscent
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preceding and following minima (minf − minp > 0.075; the level of BrdU decays during
the chase but remains higher than before the pulse). A bed file containing the coordinates
of all oriented tracks was output and used to compute RFD profiles. We added two scores
quantifying the fork asymmetry (Ascore) and the amplitude of the starting jump (Jscore)
for subsequent filtering. Initiation (termination) events were determined by the presence
of two consecutive high confidence (|Ascore| > 2 and Jscore > 1) diverging (converging)
tracks. In addition, a minimal gap of 1 kb between fork starts and a maximal value (0.14
for CNN, 0.12 for TM) for the plateau (mean value) between the forks were required for
initiation calling. We imposed the same maximal value for the fork starts to call termi-
nation events. Events were considered as shared between CNN and TM if the midpoints
between fork starts obtained by the two methods were within 2 kb.

RFD profiles

All following procedures are presented in the script RepNanoScript.r. CNN and TM
fork data were imported into R as GenomicRanges aligned to the SacCer3 version of the
yeast genome. OK-seq data from our lab were imported in R as GenomicAlignments, and
paired-end reads were converted into GenomicRanges. Duplicates were removed at this
step. OK-seq data from the ligase mutant [14] were downloaded from NCBI GEO web-
site (GSE33786) and also converted intoGenomicRanges. RFD was computed using R (see
RepNanoFunction.r script) as the difference between rightward- and leftward-fork cover-
age normalized by total coverage. The data were smoothed using a running mean with a
1-kb window. RFD profiles were exported into bigwig files using the export function from
the rtracklayer package. Spearman correlations between RFD profiles were computed
with the base R cor function, and a heatmap was produced with ggcorplot package.

Analysis of initiation and termination events

Initiation events defined as themidpoints between diverging forks obtained fromCNN or
TM were merged and imported into R as GenomicRanges. Known origins were imported
from OriDB 2.1.0 [23](http://cerevisiae.oridb.org/) into GenomicRanges objects. Inter-
event distance and distance to the nearest origin center were computed using the
distanceToNearest function from the GenomicRanges package. Empirical cumulative dis-
tribution function (ECDF) was computed using the Ecdf function fromHmisc. For control
analyses, initiation events were randomly redistributed by shuffling them while keeping
constant the number of initiation events per chromosome. The randomized events were
subjected to the same analyses as the experimental events. Clustering of initiation events
was performed by sorting events by chromosomal order and computing the next neigh-
bor distance. Neighboring events closer than the clustering limit (mIED) were assigned to
the same cluster. The width of a cluster was defined as the distance between its outmost
elements and its dimension d as its number of events. For further analyses, the mIED
was set to 1.5 kb. Clusters were binned according to their dimension into isolated events
(d = 1), and three groups of similar size (d = 2–4, d = 5–12, and d > 12, ∼ 130 clusters in
each group). ECDF was computed with the distances from the cluster median point to the
nearest known origin center for each cluster. ECDF for each group was then compared to
the global ECDF of the clusters of shuffled events. Mean RFD profiles from Figs. 5b and 6a
were computed using RFD calculated with oriented forks from FORK-seq merged (CNN
and TM) data and centered on the median position of clusters. Replication timing data

http://cerevisiae.oridb.org/
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was taken from [24] using the GSM1180749_T9475_Illumina_normalised.wig file, lifted
over from SacCer1 to SacCer3 version of the genome, binned in non-overlapping 1-kb
windows and normalized between 0 and 1 (start and end of S phase, respectively). The
timing density plot shown on Fig. 5c was created using the densityplot function from the
lattice R-package. The position weighted matrix (PWM) for the ACS was computed by
realigning the ORC-ACS coordinates from [25] with AlignSeqs function from DECIPHER
R-package. The PWM matrix was generated with the seqLogo R-package. The genomic
map of all positions matching this PWM (score >80%) was generated with matchPWM
from BioStrings package and compared to known origins and clusters’ positions. To per-
form the random control, coordinates from the 362 isolated events were shuffled 1000
times, and the median and [0.01,0.99] percentile interval were computed. ORC and
Mcm2-7 position were extracted from published data and imported asGenomicRanges in
R (GSM424494_wt_G2_orc_chip_combined.bed [25] and GSM932790_Hu-MCM-Comb-
Norm-Peaks-WT.bed [27], respectively). Distance to their centers and ECDF were com-
puted as previously described. TER data were manually copied from the supplementary
table S3 in [13] and imported in R as GenomicRanges. Euler plot for Fig. 6b was gen-
erated using EulerAPE_3.0.0.jar application (http://www.eulerdiagrams.org/eulerAPE/)
using intersection provided by the overlapsAny function from the GenomicRanges pack-
age. OEM (Origin Efficiency Metric) were computed as described in [14] from the
FORK-seq oriented forks on 10-kb sliding windows. NOEM corresponds to the area
of strictly negative OEM. D-NAscent called origins were imported from GEO data
(GSM3450332_1x_BrdU_final.calledOrigins.bed). Distance to OriDB origins’ centers was
computed as described before using the middle of D-NAscent called origins. Replication
timing for D-NAscent origins, FORK-seq initiation, and termination events was affected
as described before (replication timing data from [24]). The density profile of initiation
minus termination events shown on Fig. 7 was computed by binning initiation minus ter-
mination events in non-overlapping 5-kb windows and smoothed using a 10-kb running
mean.
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