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Abstract

Bulk chromatin motion has not been analyzed at high resolution. We present Hi-D, a
method to quantitatively map dynamics of chromatin and abundant nuclear proteins
for every pixel simultaneously over the entire nucleus from fluorescence image series. Hi-D
combines reconstruction of chromatin motion and classification of local diffusion processes
by Bayesian inference. We show that DNA dynamics in the nuclear interior are spatially
partitioned into 0.3–3-μm domains in a mosaic-like pattern, uncoupled from chromatin
compaction. This pattern was remodeled in response to transcriptional activity. Hi-D can be
applied to any dense and bulk structures opening new perspectives towards
understanding motion of nuclear molecules.
Introduction
Spatial organization and dynamics of chromatin correlate with cell function and fate

[1]. On the coarsest level, chromosomes occupy territories in mammalian cells [2]. The

relative proportion of dense heterochromatin and open euchromatin regions reflect

cellular activity [3]. Transitions within and between eu- and heterochromatin involve

the remodeling of multiple hierarchical levels of chromatin organization from domain

folding and long-range looping to nucleosome density to adapt to and enable DNA

processing [4]. Structural models derived from contact and crosslinking frequencies

[5–7] are consistent with the view that the genome is partitioned into functional com-

partments and sub-compartments [8]. It is now becoming increasingly clear that such

nuclear compartments are also dynamic entities whose conformational changes impact

mechanisms and function of genome folding [9]. Tracking of labeled single DNA loci

[10–14] or chromatin domains [15, 16] demonstrated that chromatin motion is highly

heterogeneous at short time intervals. Sparse loci, however, are difficult to place in the

context of global chromatin organization [17] and locally restrained genomic processes

can also not be inferred from quantities averaged over the entire nucleus [18, 19]. A

first study analyzing bulk chromatin motion at nanoscale resolution revealed dynamic

partitioning of chromatin into a number of nuclear sub-regions with correlated motion

of chromatin in the micrometer range [20]. However, the cause and/or effect of (corre-

lated) chromatin dynamics is not yet clear. Likewise, whether compaction of chromatin
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determines its spatial coherence or whether chromatin dynamics are distinct in open

and closed chromatin is still a matter of debate.

To tackle this need, we developed a new approach called high-resolution diffusion

mapping (Hi-D) that overcomes the limitations of sparse and ensemble approaches. Hi-

D combines a dense optical flow reconstruction to first quantify the local motion of

chromatin and other abundant nuclear constituents at sub-pixel accuracy within a

series of images, and a Bayesian inference approach in the second step to precisely clas-

sify local types of diffusion. Biophysical properties such as diffusion constants and

anomalous exponents are determined for each pixel to create two-dimensional maps of

chromatin dynamics at single pixel resolution in living single cells. Hi-D created

spatially resolved maps show that DNA compaction and dynamics do not necessarily

correlate. Instead, the maps suggest that chromatin dynamics are dictated by DNA-

DNA contacts and protein binding to DNA, rather than chromatin density.
Results
Hi-D maps genome dynamic properties at nanoscale resolution in living cells

Motion of densely distributed fluorescent molecules was quantitatively reconstructed from a

series of conventional confocal fluorescence microscopy images by a dense optical flow

method [20]. By integrating the resulting flow fields, a trajectory was computed for each pixel

(Fig. 1a; Additional file 1: Note S1; Additional file 1: Fig. S1). The type of diffusion characteriz-

ing each pixel’s chromatin motion was chosen in an unbiased manner using a Bayesian infer-

ence from a set of five common models to fit each trajectory’s mean squared displacement

(MSD) [21] (Fig. 1b, left panel; Additional file 1: Fig. S2). The best fitting models were directly

mapped onto the nucleus (Fig. 1b; right panel) (“Methods” section). We found that only a

small fraction of trajectories displayed directed diffusion (Fig. 1b), while the bulk of chromatin

exhibited sub-diffusive behavior. Distinguishing between the comparable cases of anomalous

and confined diffusion is a challenging task, given the limited duration of the experiment.

After examination of a range of parameters governing these different types of diffusion, our re-

sults suggest that chromatin diffusion in human U2OS cells can be adequately described as

anomalous to avoid misinterpretation (Additional file 1: Note S2; Additional file 1: Fig. S3).

The resulting biophysical parameters calculated for each pixel by Hi-D (diffusion constant D,

anomalous exponent α, and drift velocity V) are presented in color-coded 2D heatmaps

(Fig. 1c) (“Methods” section). They are distributed in a mosaic of irregular shape and dimen-

sions of similar values (Fig. 1c). These parameter maps clearly demonstrate that chromatin dy-

namics are spatially heterogeneous and partitioned. These maps also illustrate the notion that

chromatin dynamics are spatially correlated in the micrometer range [18, 20]. To further

characterize this heterogeneous distribution, the parameter distributions were deconvolved

into discrete subpopulations using a general mixture model (GMM) (Fig. 1c; “Methods”; and

Additional file 1: Fig. S4). The GMM identified three populations of chromatin mobility re-

ferred to as slow, intermediate, and fast (“Methods”; exemplary in Fig. 1c), irrespective of the

parameter under consideration (diffusion constant or anomalous exponent) or transcriptional

state of the cell. We found that chromatin dynamics characterized by directed motion involv-

ing a drift velocity (V) was less present than free and anomalous diffusion and provided signifi-

cantly less data for V than for the other two parameters (Fig. 1c). Hence, drift velocity was not

retained for further analysis.



Fig. 1 Hi-D enables spatially resolved mapping of genome dynamic properties at nanoscale resolution in
living cells. Workflow: a A series of N = 150 confocal microscopy images acquired at 5 fps (left) (here SiR-
DNA stained living U2OS cells). Dense optical flow was applied to define (N-1) flow fields of the images
(center, color coded) based on fluorescence intensity of each pixel (size = 65 nm). Individual trajectories are
reconstructed over the duration of acquisition (right). b MSD model selection (left): Trajectories of a 3 × 3
neighborhood of every pixel are used to calculate a mean MSD curve and its corresponding covariance
matrix. By a Bayesian inference approach, the type of diffusion fitting each individual curve is chosen (free
diffusion (D), anomalous diffusion (DA), directed motion (V), or a combination (DV) or (DAV). The spatial
distribution of the selected models for each pixel is shown as a color map. c Maps of biophysical parameters
(D, α, and V) extracted from the best describing model per pixel reveal local dynamic behavior of DNA in large
domains. The distribution is deconvolved using a general mixture model
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Validation of the Hi-D approach in simulation and experiment

In order to examine the suitability of calculated trajectories and associated diffusion

constants by Hi-D to whole-chromatin imaging conditions, we compared Hi-D to dy-

namic multiple-target tracing (MTT), a single-particle tracking (SPT) method which is

commonly used for dense molecule tracking [22] (Fig. 2a,b; Additional file 1: Note S3;

Additional file 1: Fig. S5; Additional file 1: Fig. S7). While the SPT method outperforms

the Hi-D approach in scenarios of sparsely labeled molecules (Fig 2a), Hi-D analysis

provided considerably more accurate estimates of local diffusion constants than SPT in

scenarios of densely labeled molecules or structures of heterogeneous label density such

as chromatin (Fig. 2b). Hi-D therefore constitutes an approach to extract dynamic pa-

rameters of biomolecules with dense labeling where SPT is unsuitable. One should,

however, keep in mind that SPT and Hi-D are meant to analyze images from drastically



Fig. 2 Experimental validation of the Hi-D approach. a Exemplary frame of a simulated time series with low density
(0.001/px3) of emitters undergoing Brownian motion convolved by a typical point spread function (left). The time series
is subject to Hi-D and single-particle tracking estimating the trajectories of emitters. From the estimated trajectories, the
MSD is computed and compared to the ground truth diffusion constant. The relative error in the determined diffusion
constant is shown. b High density (0.02/px3) of emitters with patches of super-high density (0.035/px3) encircled for
visualization, imitating regions of densely packed chromatin. Dashed lines show the optimal value, i.e., perfect
agreement between estimation and ground truth. Red lines indicate the median value. Data from 10 independent
simulations. Statistical significance assessed by a two-sample Kolmogorov-Smirnov test (***: p<0.001). cMSD curves
computed in fixed (n=13) and living quiescent (− serum; n=13) and serum stimulated (+ serum; n=14) U2OS cells.
Diffusion constants for the three average curves were derived by regression yielding D= (0.87± 0.1) · 10−3 μm2/s for
quiescent, D= (2.6 ± 0.1) · 10−4 μm2/s for stimulated, and D= (6.1 ± 0.1) · 10−6 μm2/s for fixed cells. MSD curves show
considerably higher MSD values for living cells and diffusion constants are two orders of magnitude higher for living
cells thus confirming the detection of motion well above noise background. d Diffusion constants derived from a
nucleus corrupted with varying levels of signal-to-noise ratio. Results are consistent up to a lower bound of ~ 20dB.
eMap of diffusion constants computed by Hi-D (left) and iMSD (right). Diffusion constants are color coded from their
minimum to their maximum value (blue to yellow; for absolute values see f). Red arrows indicate regions of high
mobility detected by both methods. f Diffusion constants shown in e and g corresponding values of the anomalous
exponent computed by Hi-D (blue) and iMSD (red)
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different labeling conditions and should thus refrain from a direct comparison between

single-locus dynamics analyzed by SPT and local bulk chromatin dynamics by Hi-D

(Additional file 1: Note S4; Additional file 2: Movie S1).

To ensure that the calculated dynamics are not a consequence of imaging noise, we ex-

perimentally validated the sensitivity of the approach by calculating the MSD for formal-

dehyde fixed and living U2OS cells labeled by SiR-DNA in quiescence (− serum) or

normal growth (+ serum). Diffusion constants derived from the MSD curves by Bayesian

inference were about two orders of magnitude greater in living cells than in fixed cells

(Fig. 2c) confirming that Hi-D enables quantifying DNA dynamics well above the noise

background. To confirm the robustness of extracted parameter values with respect to

varying levels of imaging noise, Hi-D was applied to nuclei to which noise was artificially

added. The signal-to-noise ratio (SNR) of the original nuclei were about 26 dB and subse-

quently reduced stepwise down to 16 dB. The distributions of computed diffusion con-

stants were consistent up to a lower limit of about 20 dB, below which the distribution is

considerably biased towards larger values and broadens (Fig. 2d, Additional file 1: Fig. S8).

Likewise, features of the spatial map of diffusion constants were equally conserved for

SNR values as low as 20 dB, demonstrating the robustness of Hi-D for varying imaging

noise (Additional file 1: Fig. S8). In analogy to the robustness to varying SNR levels, Hi-D

is thus robust to photobleaching effects (if SNR ≥ 20 dB) since flow fields are only esti-

mated between consecutive images, for which illumination changes due to photobleaching

are usually negligible. Furthermore, Hi-D was also shown to be robust to small variations

in time intervals of acquired time series as long as the expected motion between frames

was in the order of the pixel size (Additional file 1: S9). We further validated Hi-D against

iMSD, a well-established method to extract dynamic information of dense molecules,

based on the spatial correlation function of intensity fluctuations caused by diffusing mol-

ecules, which are recorded using camera-based systems [23]. Using successive calculations

of iMSD to overlap regions of interest, we computed a diffusion map similar to Hi-D-

derived maps (Additional file 1: Note S5). Quantitatively, both methods yield diffusion

constants of the same order of magnitude (Hi-D (1.6 ± 0.8) · 10−3 μm2/s , iMSD (2.2 ±

4.5) · 10−3 μm2/s, mean ± standard deviation), which are consistent with reported values

using SPT and correlation spectroscopy methods applied to interphase chromatin [14,

18]. However, the distribution of values derived by iMSD was considerably broader than

the distribution revealed by Hi-D (Fig. 2f). The distribution of anomalous exponents com-

puted by iMSD showed many spurious values at the limit of the scale, while Hi-D consist-

ently returns reasonable values (Fig. 2g). We thus conclude that Hi-D reveals dynamic

parameters of the same order of magnitude as iMSD but is advantageous in the estimation

of multiple parameters simultaneously, by virtue of the featured Bayesian model selection.

Hi-D is thus an accurate, robust, fast, and easy to use tool to determine dynamics of mac-

romolecules nucleus-wide.
Single-cell biophysical property maps of genome conformation and behavior

To concomitantly monitor position and distribution of the DNA mobility populations

under different biological conditions, we determined Hi-D maps of the same serum-

starved and then stimulated cell (Fig. 3a). Transcription is largely inhibited in cell-cycle

arrested cells grown in a serum-free medium (Additional file 1: Fig. S10). Adding serum



Fig. 3 Hi-D maps single-cell biophysical properties of genome conformation and behavior. a Diffusion constant
spatially mapped onto the nucleus of a quiescent cell (left) and the same nucleus upon serum stimulation b Spatial
distribution of populations found by the GMM for the diffusion constant for quiescent (left) and actively transcribing
cells (right). c Relative share of populations on the cell volume (n=12). Numbers in percent. d For each population in
b, the relative share of chosen MSD models is represented as a stacked histogram in the quiescent state (left bars) and
actively transcribing state (right bars). e Spatial distribution of populations for the anomalous exponent for quiescent
(left) and actively transcribing cells (right). f Detailed insight into the spatial patterning of the low population of the
anomalous exponent. The intermediate and high population is shown in light and dark red respectively
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to the medium stimulates mRNA production through transcriptional activity [20, 24–26].

As above, diffusion constants of DNA motion were calculated for each pixel based on the

model selected by Bayesian inference. Small diffusion constants characterized motion of

chromatin prominently located at the nuclear envelope (dark blue). Plotting the average

diffusion constants versus the distance from the nuclear periphery showed that the mobil-

ity within a rim of 1 μm from the periphery increases linearly before adopting a nearly

constant value in the inner volume of the nucleus (Additional file 1: Fig. S11). At numer-

ous sites across the remaining nuclear volume, fast diffusive areas of irregular dimensions

spanning 0.3 − 3 μm in diameter (yellow areas in Fig. 3a) are embedded in the bulk of

moderately dynamic chromatin. Areas of different parameter values seamlessly transition

into one another without clearly defined boundaries, reminiscent of spatially correlated

chromatin dynamics [20]. Upon serum stimulation, the spatial distribution of high and

low diffusion constants was largely conserved (compare the presence of yellow regions in

the quiescent and serum-stimulated cell in Fig. 3a), but the diffusion constant was globally

strongly reduced by nearly one order of magnitude. Deconvolution of the distribution of

diffusion constants and labelling of pixels according to the mobility population deter-

mined by the GMM (Fig. 3b; slow—red, intermediate—orange, and fast—yellow) yields a

map in agreement with this observation. Deconvolution hence classifies regions according

to the values of a given parameter compared to other regions within the same nucleus.

When nuclear activity is modulated, changes in this classification can be measured. In

particular, the fast diffusing population with respect to the bulk chromatin in quiescent

cells is reduced upon serum stimulation (Fig. 3c) and re-classified as intermediate popula-

tion. Connected areas with high mobility appear eroded (Fig. 3b). In contrast, the slow

population occupying ~ 6% of the nuclear area, which is almost exclusively located at the

nuclear periphery, was invariant to transcriptional changes (Fig. 3b, c). Despite consider-

able reorganization of the relative distribution of mobility populations and overall reduced

intensity of motion, the type of diffusion governing the nuclear parameter maps showed

only moderate changes upon stimulation of transcriptional activity (Fig. 3d).

Anomalous diffusion dominated across the entire nucleus (0.3≤α≤0.73) forming a mosaic-like

pattern, which underwent, compared to maps of diffusion constants, considerable remodeling

upon transcriptional activation (Fig. 3e, f). Within this pattern, patches of super-diffusive (red: α>

1) motion segregated into distinct islands which became more fragmented upon serum stimula-

tion. Random contacts or re-distribution of existing contacts of the chromatin with itself may give

rise to such variations in anomalous exponent upon serum stimulation [27]. Because the diffusion

constant of chromatin fibers appears unaffected for moderate degrees of crosslinking [28], we ex-

pect that association of proteins with DNA upon serum stimulation could favor global decrease of

mobility in vivo. Hi-D reveals high-resolution spatial changes in mobility and in anomaly of chro-

matin diffusion in single cells. Further investigation may tell us if all or a subset of visible physical

domains correspond to the ones determined using chromosome conformation capture (Hi-C).
Transcription modulates chromatin and RNA polymerase II motion

To further explore the relationship between global chromatin dynamics and transcrip-

tional activity, we examined the dynamics of RNA polymerase II (RPB1-Dendra2; RNA

Pol II) in live U2OS cell nuclei (Fig. 4a) at different transcriptional states. Hi-D analysis

resolved three mobility populations of RNA Pol II (Fig. 4b), which is consistent with



Fig. 4 Biophysical properties of chromatin are sensitive to transcriptional activity. a Fluorescence image of RPB1, a RNA
polymerase II subunit, fused to Dendra2 (left), the spatial mapping of the diffusion constant (middle) and population
deconvolution (right). b Violin plots of the mean diffusion constant of RNA Pol II for all three mobility groups in
quiescent (− serum; n=18), actively transcribing (+ serum; n=20) and elongation inhibited (+ DRB; n=21) cells are
shown; dark blue, light blue and green denote the slow, intermediate, and fast population, respectively. c Relative share
of the populations on the cell volume for starved (n=13), stimulated (n=14) and DRB-treated (n=18) cells. Numbers
in percent. d As b for the diffusion constant and d the anomalous exponent of DNA dynamics (n=13 cells), red, gold,
and yellow denote the slow, intermediate, and fast population, respectively. Statistical significance assessed by a
Friedman test (*p<0.05, **p<0.01, ***: p <0.001)
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the existence of three kinetically different groups of RNA Pol II based on the half-life

of chromatin-binding [29, 30]. Diffusion constants of the three dynamic populations in

actively transcribing cells (grown in normal condition) were significantly greater com-

pared to transcriptionally less-active cells (serum-starved cells) (Fig. 4b). In quiescent

cells, the fraction of quickly diffusing RNA Pol II complexes was reduced compared to

actively transcribing cells. Upon elongation inhibition using 5,6-dichloro-1-β-D-ribofur-

anosylbenzimidazole (DRB), the slowly diffusing fraction was greater than in untreated

cells, indicating tenacious immobilization of RNA Pol II on the DNA template after ini-

tiation (Fig. 4c). The average diffusion constants in serum-starved and DRB-treated

cells stayed roughly unchanged in all three populations, suggesting that RNA Pol II is

unbound in the absence of serum [25].

We then compared the effect of transcriptional activity on chromatin dynamics in

serum-starved and serum-stimulated cells. In contrast to RNA Pol II mobility, the average

diffusion constant of DNA in serum-starved U2OS nuclei decreased by nearly one order

of magnitude for all three populations upon addition of serum. Arresting RNA Pol II be-

fore elongation did not change the observed diffusion constants, compared to undisturbed
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transcription (Fig. 4d). These cell-population results are consistent with results from

single-cell analyses (Fig. 3) and strengthen our hypothesis that nuclear processes consider-

ably hamper diffusion of chromatin. In a quiescent state, only essential nuclear processes

are maintained. Fewer protein complexes acting upon DNA in a could facilitate motion of

the chromatin fiber. Upon serum stimulation, binding of transcription factor complexes

and other proteins to DNA increase crowding and reduce the freedom to move and hence

the apparent chromatin dynamics, at least in a subset of domains. Increased DNA-protein

interactions and interchromatin contacts also enhance spatial correlation of chromatin

dynamics in serum supplemented compared to quiescent cells [20]. Serum addition to

starved cells likely stimulated RNA Pol II binding to DNA. When inhibiting elongation,

transcription factories are still present [24] and, in agreement with chromatin coherence,

DNA mobility remains constrained [20].

Independently of the culture conditions, a ground-state Rouse-like behavior charac-

terizes chromatin in the examined nuclei (MSD fit with α close to 0.5) [31, 32]. Upon

serum stimulation of starved cells, anomalous diffusion became predominant and its

value (α~ 0.33) is indicative of entangled polymers [33]. This behavior was also deter-

mined for a single labeled site next to an actively transcribing gene [13]. Entanglement

could stem from random DNA-protein contacts, a model coherent with polymer simu-

lations inspired by chromosomal capture data [34]. Hindered motion of chromatin and

RNA Pol II is thus a direct consequence of forming transcription “hubs” or factories to

which chromatin is tethered [25].
Chromatin dynamics is uncoupled from compaction

We next asked if chromatin dynamics are influenced by the compaction of chromatin

since heterochromatin is widely believed to be less dynamic than euchromatin [16]. Eu-

and heterochromatin domains were determined in serum-starved and serum-stimulated

cells by quantifying fluorescence intensity as described in [35] (Fig. 5a). We found that the

average flow magnitude between successive frames was independent of the compaction

state of chromatin (Fig. 5b). Likewise, the distribution of diffusion constants did not cor-

relate with chromatin density or euchromatin and heterochromatin (Fig. 5c). Peripheral

heterochromatin overlapped with the slow motion domain at the nuclear rim (Fig. 5d)

consistent with previous findings [16]. In the inner nuclear volume however, we did not

observe any tendency of heterochromatin being associated with a specific mobility popu-

lation. Instead, we observed that mobility populations were distributed randomly among

euchromatin and heterochromatin regions (Fig. 5e) with the exception that in serum-

starved cells, the heterochromatin fraction was slightly enriched in the slow diffusing

population at the nuclear periphery. Furthermore, we found that regions characterized by

a specific anomalous exponent did not preferentially overlap with either eu- or hetero-

chromatin (Fig. 5f, g). These results also hold for MCF7 cells and different fluorescent

markers for chromatin (Additional file 1: Fig. S12). These findings were confirmed in

NIH3T3 cells expressing GFP-HP1α, a well-established marker for heterochromatin

(Additional file 1: Fig. S13). In addition, Hi-D analysis of HP1α hints towards previously

proposed liquid phase separation [36]. Our results thus suggest that chromatin undergoes

diffusion processes which are, in general, unrelated to the compaction level of chromatin.

However, compact chromatin is characterized by increased contact frequency of the



Fig. 5 Chromatin compaction and dynamics do not spatially correlate. a Spatial classification of signal intensity into
euchromatin and heterochromatin [35] overlaid on an exemplary fluorescence image for quiescent (left) and stimulated
(right) cells. b Average flow magnitude and c diffusion constant (n=12) in euchromatin and heterochromatin for
starved (left) and serum-stimulated cells (right). Statistical significance assessed by a two-sample t-test. d Overlay with the
diffusion populations found by Hi-D. Black solid line corresponds to eu-/heterochromatin region boundaries. e Diffusion
populations show a similar distribution over hetero- and euchromatin. The colors refer to the slow, intermediate, and
high population respectively and each point corresponds to one nucleus. Statistical significance assessed by a
two-sample t-test (*p < 0.05, **p < 0.01, ***p < 0.001). f–g Anomalous exponent as d–e. h Spatial autocorrelation
at euchromatin (green) and heterochromatin (purple) of the flow magnitude between all accessible time lags
in quiescent and serum-stimulated cells
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chromatin fiber with itself, which could enhance the extent of coherent chromatin mo-

tion. To test this hypothesis, we calculated Moran’s Index of Spatial Autocorrelation [37]

for the flow magnitude assessed at different time lags in eu- or heterochromatin (Fig. 5h).

We found that heterochromatin exhibits enhanced spatial autocorrelation compared to

euchromatin across all accessible time lags. Furthermore, the spatial autocorrelation de-

creases with increasing time lags in serum-starved cells, while in serum-stimulated cells,

autocorrelation is enhanced in the long-time limit (over 30 s). This finding points to active

processes establishing spatial coherence in the long term [18, 20] while random processes

such as thermal fluctuations decrease autocorrelation at time scales greater than 10 s in

serum-starved cells.
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Discussion
Hi-D enables analyzing the dynamics of dense structures such as chromatin and RNA Pol II

directly in single cells without losing active fluorophore density and with no need for prior ex-

perience in sophisticated labelling preparations or advanced microscopy [38]. We show that

Hi-D is an accurate and robust read-out of chromatin dynamics and that the information gain

through image analysis afforded by Hi-D alleviates the incompatibility of conventional micros-

copy for nanoscale mapping of properties of nuclear dynamics in living cells.

Hi-D analysis revealed that DNA dynamics can be classified into three subpopulations

within the mammalian nucleus. The use of three distinct populations does not reflect real,

likely fluctuating transitions between the populations, but is a handy means to characterize

the highly complex and heterogeneous dynamic landscape of chromatin. The first population,

a slow mobility fraction prominently located at the nuclear rim, is reminiscent of lamina-

associated domains (LADs) [39]. The dynamic response of this population to transcriptional

stimuli supports the hypothesis that LADs play an important role in attenuating transcription

activity and in controlling gene expression [40]. Although less mobile chromatin at the nuclear

periphery largely overlapped with long known perinuclear heterochromatin [41, 42], Hi-D

analysis remarkably points to an overall absence of correlation between chromatin compaction

and mobility. Indeed, two non-peripheral chromatin subpopulations which display intermedi-

ate and highly diffusive regimes are distributed in a mosaic-like pattern throughout the nu-

cleus and include sections of intranuclear heterochromatin. Heterochromatin therefore does

not exhibit low mobility in nuclear space in general, but may be divided into a more viscous

component with reduced mobility due to anchoring to a nuclear lamina and a more rigid

LAD component tethered to nuclear structures [39, 43–45]. These results are coherent with

the hypothesis that heterochromatin domains are formed by a liquid phase-separation mech-

anism characteristic of mobility reduction across phase boundaries [36]. The extent of the

third, highly mobile fraction, which dominated in the quiescent state, decreased dramatically

when cells were serum stimulated. This switch in chromatin mobility is suggestive of altered

DNA-protein interactions and accrued local concentration of proteins in a highly transcribing

nucleus [25].

Heterogeneous chromatin motion arises due to irregular protein binding along the

chromosomes and can lead to thermodynamic or electrostatic self-organization of nu-

clear compartments [46, 47]. Local patches of large anomalous exponents indicate

super-diffusive behavior of chromatin which may result, among others, from active

noise acting on the chromatin fiber [48, 49], even in quiescent cells. Chromatin patches

with α < 0.3 and α > 1 respectively correspond in size to one or a few DNA loops [50].

These two types of patches are present as islands within the general chromatin fraction

governed by an anomalous exponent 0.3 < α < 1. This organization is also in good

agreement with the chromosome territory—interchromatin compartment model [2]. In

conclusion, the combination of diffusion constant and anomalous exponent maps pro-

vides an integrated view on chromatin dynamics and yields insights into possible mech-

anisms driving dynamics as well as the local chromosomal organization and

reorganization during genomic processes.

Our results support the hypothesis that a short treatment of DRB is sufficient to halt

most of a cell’s transcription [51], but it is believed to have a limited effect on chromatin

configuration of promoters, or on upstream events and assembly dynamics of the preini-

tiation complex (PIC) [52]. Our results suggest that a few minutes of DRB treatment
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affects only the assembly dynamics of the RNA Pol II itself. In contrast, longer treatment

with DRB as well as prolonged serum starvation is expected to result in massive PIC disas-

sembly. We believe therefore that increased chromatin mobility upon serum starvation

correlates with PIC breakdown. Conversely, when serum is present in the medium, activ-

ity of RNA Pol II and of PIC enzymes is restored and PIC will assemble onto DNA, both

pervasively across the genome at background levels (pervasive transcription) and more

stably at genes [53, 54]. Reduced mobility of chromatin in the presence of serum suggests

that stable PIC binding may serve as an anchoring function for individual chromatin fi-

bers, on top of its essential function in transcription initiation.

Hi-D can be applied to real-time imaging of any abundant fluorescent molecule to

obtain comprehensive maps of their dynamic behavior in response to stimuli, inhibi-

tors, or disruptors of nuclear functions and integrity.

Methods
Cell culture

A Human U2OS osterosarcoma cell line (for DNA imaging) and MCF-7 cells (ATCC)

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing phenol

red-free and DMEM-12 (Sigma-Aldrich), respectively. For RNA Pol II imaging, a U2OS

cell line stably expressing RPB1 (subunit of RNA Pol II) fused with Dendra2 was con-

structed as previously described in [55]. Medium was supplemented with Glutamax

containing 50 μg/ml gentamicin (Sigma-Aldrich), 10% fetal bovine serum (FBS), 1 mM

sodium pyruvate (Sigma-Aldrich), and G418 0.5 mg/ml (Sigma-Aldrich) at 37 °C with

5% CO2. Cells were plated for 24 h on 35-mm petri dishes with a #1.5 coverslip like

bottom (μ-Dish, Ibidi, Biovalley) with a density of about 105 cells/dish.

DNA staining

U2OS and MCF-7 cell lines were labeled by SiR-DNA (SiR-Hoechst) kit (Spirochrome AG).

DNA was labeled as described in [56]. Briefly, we diluted 1mM stock solution in cell culture

medium to 2 μM and vortexed briefly. On the day of the imaging, the culture medium was

changed to medium containing SiR-fluorophores and incubated at 37 °C for 30–60min. Before

imaging, the medium was changed to L-15 medium (Liebovitz’s, Gibco) for live imaging.

Cell starvation and stimulation

For starvation mode, cells were incubated for 24 h at 37 °C before imaging with serum-

free medium (DMEM, Glutamax containing 50 μg/ml gentamicin, 1 mM sodium pyru-

vate, and G418 0.5 mg/ml). Just before imaging, cells were mounted in L-15 medium.

For stimulation, 10% FBS was added to the L-15 medium for 10–15min.

Flow cytometry analysis with Hoechst and Pyronin Y staining

To differentiate cells in G0 versus G1, double staining of Hoechst 33324 and Pyronin Y

was used, as previously described [26, 57]. Briefly, U2OS cells representing each condi-

tion (with serum, without serum during 24 h, and without serum during 24 h + 15min

serum) were trypsinized, and cells were collected into phosphate-buffer saline (PBS) at

a concentration of 2 × 106 cells/ml, then added to a fixative of ice-cold 70% ethanol.

Cells were fixed for at least 2 h and washed twice with FACS buffer (1× PBS supple-

mented with 2% (v/v) heat-inactivated, sterile-filtered fatal bovine serum, 1 mM EDTA).
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Cells were then incubated in a water bath pre-adjusted to 37 °C for 45 min in the dark

with 2 μg/ml of Hoechst 33324 (Invitrogen, H3570) diluted in FACS buffer, then incu-

bated to 37 °C for 30 min in the dark with 4 μg/ml of Pyronin Y (abcam, ab146350), di-

luted in FACS buffer. The samples were kept in the dark at 4 °C until analyzed using a

LSR II flow cytometer (BD Biosciences). Hoechst 33342 and Pyronin Y staining were

measured with UV (350 nm) and yellow green (561 nm) lasers, respectively. DNA con-

tent was determined by Hoechst 33342 and RNA content was determined by Pyronin

Y. Cells in G0 were identified as the population with 2N DNA content and RNA con-

tent lower than the level of cells assigned to the G1 phase. Medians of Pyronin Y stain-

ing for each condition were compared to assess the increase in mRNA production after

serum addition.
DRB treatment

The U2OS cells for both DNA and RNA Pol II images were treated with 100 μM 5,6

dichlorobenzimidazole 1-β-D-ribofuranoside (DRB; Sigma-Aldrich) for transcription in-

hibition prior to live-cell image acquisition. DRB was diluted in the L-15 (Leibovitz) im-

aging medium that was supplemented with 10% FBS, DMEM, Glutamax containing

50 μg/ml gentamicin, 1 mM sodium pyruvate, and G418 0.5 mg/ml. The imaging

medium was changed with fresh L-15 medium containing DRB and incubated under

the microscope for 15 min before imaging.
Cell fixation

U2OS cells were washed with a pre-warmed (37 °C) phosphate buffered saline (PBS)

and followed by fixation with 4% (vol/vol) paraformaldehyde in PBS for 10–20 min at

room temperature. Images were recorded at room temperature in PBS, after washing

the cells with PBS (three times, 5 min each).
DNA live-cell imaging

Cells were placed in a 37 °C humid incubator by controlling the temperature and CO2

flow using H201-couple with temperature and CO2 units. Live chromatin imaging was

performed using a DMI8 inverted automated microscope (Leica Microsystems) featur-

ing a confocal spinning disk unit (CSU-X1-M1N, Yokogawa). An integrated laser en-

gine (ILE 400, Andor) was used for excitation with a selected wavelength of 647 nm

and 140 mW as excitation power. A 100× oil immersion objective (Leica HCX-PL-

APO) with a 1.4 NA was chosen for a high-resolution imaging. Fluorescence emission

of the SiR-Hoechst was filtered by a single-band bandpass filter (FF01-650/13-25, Sem-

rock, Inc.). Image series of 150 frames (5 fps), with exposure time of 150 ms per frame,

were acquired using Metamorph software (Molecular Devices) and detected using

sCMOS cameras (ORCA-Flash4.0 V2) and 1 × 1 binning, with sample pixel size of 65

nm. All series were recorded at 37 °C.
RNA pol II live-cell imaging

Image series of 150 frames were recorded with an exposure time of 200 ms using a

Nipkow-disk confocal system (Revolution, Andor) featuring a confocal spinning disk

unit (CSU22, Yokogawa). A diode-pumped solid-state laser with a single wavelength of
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a 488 nm (Coherent) at 5–10% laser power was used for excitation of RPB1 fused to

Dendra2. A × 100 oil immersion objective (Plan Apo 1.42, Nikon) was used for imaging.

The fluorescent emission signal was filtered through an emission filter (ET525/30-25,

Semrock, Inc.) and detected at 512/18 nm on a cooled electron multiplying charge-

coupled device camera (iXon Ultra 888), with sample pixel size of 88 nm.

Image processing

Denoising

Raw images were denoised using non-iterative bilateral filtering [58]. While Gaussian

blurring only accounts for the spatial distance of a pixel and its neighborhood, bilateral

filtering additionally takes the difference in intensity values into account and is there-

fore an edge-preserving method. Abrupt transitions from high- to low-intensity regions

(e.g., heterochromatin to euchromatin) are not over-smoothed. Images of varying noise

levels were treated with a bilateral filter with half-size of the Gaussian bilateral filter

window of 5 pixels, the spatial-domain standard deviation value was set to 5 pixels, and

the intensity-domain standard deviation was varied from 0.3 to 0.8 for decreasing levels

of the signal-to-noise ratio from 26 to 16 dB (SNR = 10log10(I
2/σ2), with the signal

power I2 and the noise variance σ2).

MSD analysis and model selection by using Bayesian inference

In order to carry out a MSD analysis locally, the spatial dependency of the mean

squared displacement (MSD) can be written explicitly:

MSD r!0; τ
� � ¼ ξ

!
ro t þ τð Þ− ξ

!
r0 tð Þ

��� ���2
� �

t

;

where ξ
!

r0ðtÞ is the position at time t of a virtual particle with initial position r!0 ,

τ = {Δt, 2Δt,…, (N − 1)Δt} are time lags where Δt is the time difference between subse-

quent images and the average < · >t is taken over time. The resulting MSD is a function

of the initial position r!0 and the time lag τ.

MSD models

The MSD can be expressed analytically for anomalous diffusion (DA), confined diffu-

sion (DR), and directed motion (V) in two dimensions as

MSDDA τð Þ ¼ 4Dατα ð1Þ

MSDDR τð Þ ¼ R2
C 1−e

−4Dτ
R2
C

� �
ð2Þ

MSDV τð Þ ¼ v2τ2 ð3Þ

where Dα is the diffusion constant in units of μm2/sα , α is its anomalous exponent,

v [μm/s] is its velocity, and RC [μm] is the radius of a sphere within the particle is con-

fined [59]. The case α = 1 is known as free diffusion, 0 < α < 1 corresponds to anomal-

ous diffusion and 1 < α ≤ 2 corresponds to superdiffusion. Strictly speaking, each

generalized diffusion constant Dα has different units, corresponding to the specific

value of α. However, we refer to it as the diffusion constant D throughout the text for

simplicity. Additionally to Eqs. (1)–(3), different types of motion can appear overlaying,
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resulting in a linear combination of the equations above. For example, anomalous mo-

tion can be superimposed on an underlying drift and the resulting MSD reads

MSDDAV(τ) =MSDDA(τ) +MSDV(τ). We found that anomalous and confined diffusion

appears very similar in experimental data and therefore decided in favor for anomalous

diffusion to describe our data (Additional file 1: Note S3). The abbreviations used in

this study are summarized in Table 1. As experimental data is usually subject to noise,

a constant offset ο is added to every model.

MSD model selection

The MSD is calculated for every pixel independently, resulting in a space- and time lag-

dependent MSD. It is known that living cells can behave largely heterogeneous [3, 60]. Ad

hoc, it is not known which diffusion model is appropriate. Fitting an MSD curve with a

wrong model might result in poor fits and highly inaccurate determination of the men-

tioned parameters. For this reason, we use a Bayesian inference approach to test different

models for any given MSD curve as proposed by Monnier et al. [21]. Given the data

Y = {Y1,…, Yn} and K model candidates M = {M1,…,MK}, each with its own (multidimen-

sional) parameter set θ = {θ1,…, θK}, we want to find the model Mk(Y, θk) such that the

probability that Mk(Y, θk) describes the data, given the set of models to test, is maximal.

By Bayes’ theorem, the probability for each model is given by

P Mk jYð Þ ¼ P Y jMkð ÞP Mkð Þ
P Yð Þ

If there is no reason to prefer one model over the other, the prior probability of each

model P(Mk) is equal. The parameter set which is used to describe the data, given a

fixed model, strongly influences the probability. Therefore, it is crucial to estimate the

optimal parameters for every model in order to calculate the model probabilities. The

probability that the data Y is observed, given the model Mk described by the model

function Mk(x; θk) and any parameter set θk, is approximated by a general multivariate

Gaussian function [61].

P Y jθk ;Mkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn det Cð Þ

p � exp −
1
2
Y−Mk x; θkð Þ½ �T � C−1 � Y−Mk x; θkð Þ½ �


 �

where C is the empirical covariance matrix of the data and the prefactor is a normaliz-

ing factor. This equation has an intuitive meaning. Assume we test a model Mk param-

etrized by θk to find out if it describes the data Y. The exponential function consists of

the term [Y −Mk(x; θk)], i.e., the residuals of the data and the describing model. If the

residuals are small, i.e., the model describes the data well, the exponent is small and

the probability P(Y| θk, Mk) seeks 1. On the other hand, the worse the fit, the greater
Table 1 Overview over possible mean squared displacement models

Abbreviation Model Formula

D Free diffusion MSDD(τ) = 4Dτ + o

DA Anomalous diffusion MSDDA(τ) = 4Dατα + o

V Drift MSDV(τ) = v2τ2 + o

DV Free diffusion + drift MSDDV(τ) = 4Dτ + v2τ2 + o

DAV Anomalous diffusion + drift MSDDAV(τ) = 4Dατα + v2τ2 + o
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the resulting residuals and the probability seeks asymptotically to 0. The factor C−1 ac-

counts for the covariance in the data. The covariance matrix for a set of MSD curves

normally shows large values for large time lags as the uncertainty increases and MSD

curves diverge. The covariance matrix implicitly introduces a weight to the data, which

is small for large variances and large where the data spreads little. This fact avoids cut-

ting of the MSD curve after a specific number of time lags, but instead includes all

available time lags weighted by the covariance matrix. The approach is illustrated in

Additional file 1: Fig. S2b with the covariance matrix exemplary shown in the inset. In

case of uncorrelated errors, non-diagonal elements are zero, but the approach keeps its

validity [62] and follows an ordinary least-squares regression.

Given the best estimate of the parameter set for a model, the model and its corre-

sponding parameters are chosen so that their probability to describe the data is max-

imal: θ̂k;MLE ¼ arg max
θk

PðY jθk ;MkÞ. It has to be stressed that values of the anomalous

exponent scatter around 1, but do not assume the value 1 (e.g., Figure 1c, middle

panel). This is due to the model selection procedure, selecting the simplest model

which is consistent with the data. In the case that the underlying motion is well de-

scribed by free diffusion, α is inherently set to 1 and classified as free diffusion rather

than anomalous diffusion. The descriptions of free diffusion or anomalous diffusion

with α = 1 are equivalent, but the free diffusion model contains one parameter less and

is therefore preferred leading to “missing” α values close to 1 in the parameter maps

and histograms. To carry out the MSD analysis locally, we choose to take the 3 × 3

neighborhood of a pixel, detect possible outliers therein by the interquartile range cri-

terion [63], and calculate the error covariance matrix of the data within the pixel’s

neighborhood. The restriction to a single pixel and its neighborhood allows us to carry

out the MSD analysis of trajectories locally, in contrast to an ensemble MSD in previ-

ous studies [18], revealing only average information over many trajectories. The choice

of a 3 × 3 window is reasonable with regard to the equivalently chosen filter size in the

optical flow estimation. The flow field in this region is therefore assumed to be suffi-

ciently smooth. All calculations, except for the general mixture model analysis, were

carried out using MATLAB (MATLAB Release 2017a, The MathWorks, Inc., Natick,

Massachusetts, USA) on a 64-bit Intel Xeon CPUE5-2609 1.90 GHz workstation with

64 GB RAM and running Microsoft Windows 10 Professional.

Deconvolution of subpopulations

Regarding the distribution of diffusion constants, an analytical expression can be found

assuming that the diffusion constant was calculated from a freely diffusing particle (α = 1)

[64]. However, we find anomalous diffusion to a large extent in our data (e.g., Figure 1c,

Fig. 2g, Fig. 3f, Fig. 4e, and Fig. 5g), and to our knowledge, an analytical expression cannot

be found for distributions of anomalous exponent, radius of confinement and drift vel-

ocity. We therefore deconvolved the parameter sets in a rather general manner, for which

we use a general mixture model (GMM), a probabilistic model composed of multiple dis-

tributions and corresponding weights. We describe each data point as a portion of a nor-

mal or log-normal distribution described by

f N Y jμ; σ2
� � ¼ 1ffiffiffiffiffiffi

2π
p

σ
e−

Y−μð Þ2
2σ2 and
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f L Y jμ; σ2
� � ¼ 1

Y
ffiffiffiffiffiffi
2π

p
s
e−

ln Yð Þ−mð Þ2
2s2 ;

respectively. The logarithmic mean m and standard deviation s are related to the mean

and standard deviation of the normal distribution via [65].

μ ¼ exp mþ s2

2

� �

σ2 ¼ exp 2mþ s2
� �

eσ
2
−1

� 

We consider up to three subpopulations to be found in our data and model the total
density estimate as a superposition of one, two or three subpopulations, i.e., the mix-

ture model reads

f GMM Yð Þ ¼
X

k
wk f k Y jμk ; σ2k

� �

for both normal and log-normal distributions, where to sum goes to 1, 2, or 3, respect-

ively. The variable wk describes the weights for each population (or component), which

satisfy 0 ≤wk ≤ 1 and sum up to unity. The weights of each component are directly pro-

portional to the area of the histogram covered by this component and therefore its ex-

istence in the data set.

General mixture model analysis

Let Y = {Y1,…, Yn} denote n data points. For the scope of this description, assume Y to

be a one-dimensional variable. Further assume that the data cannot be described by a

single distribution, but by a mixture of distributions. A deconvolution of the data into

subpopulations faces the following problem: Given a label for each data point, denoting

the affiliation to a population, one could group corresponding data points and find the

parameters of each population separately using a maximum likelihood estimation or

other methods. On the other hand, if we had given the model parameters for each

population, labels could in principle be inferred from the likelihood of a data point be-

ing described by a population or another. The problem can be formulated by Bayes’

rule (M indicates model, D indicates data)

P MjDð ÞP Dð Þ ¼ P DjMð ÞP Mð Þ:

Here, P(M|D) is the posterior probability of the model given the data, which is the
aim to calculate. We assign a data point to the component, which maximizes P(M|D).

The probability to observe the data given a model is described by P(D|M), i.e., the like-

lihood function. P(M) is the prior for the models to be chosen from. In our case, we

have no prior beliefs on the models (all models are equally likely) such that P(M) is uni-

form. Lastly, the probability P(D) does not depend on the models and can therefore be

dropped.

Neither labels, that is P(M|D), nor model parameters and weights are known a priori.

The problem can be approached by an expectation-maximization (EM) scheme: With-

out any prior beliefs about the data distribution, one starts with a simple estimate of

model parameters, e.g., a k-means clustering estimate and iterates subsequently be-

tween the two following steps until convergence:
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Expectation step: Calculation of the probability that the component with the current

parameter estimate generated the sample, i.e., P(D|M).

Maximization step: Update the current parameter estimate for each component by

means of a weighted maximum likelihood estimate, where the weight is the probability

that the component generated the sample.

We illustrate the results of the EM algorithm exemplary in Additional file 1:

Fig. S4. From the input data (Additional file 1: Fig. S4a), represented as histo-

gram, both the likelihood P(D|M) (Additional file 1: Fig. S4b) and the posterior

(Additional file 1: Fig. S4c) are obtained. The sum of subpopulations corresponds

to the overall probability distribution (shown in black) with different model pa-

rameters and weights found by maximizing the likelihood function. The posterior

describes the probability of data points to fall under each population, i.e.,

∑kP(Mk| D) = 1. The data points are assigned to those population, for which

P(Mk| D) is maximum, resulting in labeled data. The labels are subsequently

mapped in two dimensions, visualizing spatial correspondence of slow, intermedi-

ate and fast subpopulations (Additional file 1: Fig. S4d). The GMM analysis is

carried out using the pomegranate machine learning package for probabilistic

modeling in Python [66].
Selection of subpopulations by the Bayesian information criterion (BIC)

A priori, it is not unambiguously clear from how many populations the data is sampled

and which form the subpopulations take. We therefore assess the suitability of each model

by means of the Bayesian Information Criterion (BIC), which is calculated by [67].

BIC ¼ −2 ln L̂
� �þ p ln nð Þ; ð4Þ

where L̂ is the maximum likelihood of the maximum likelihood estimation (MLE) esti-

mate, p denotes the number of parameters in the model and n is the number of data

points used for the fit. Among a family of models, the one with the lowest BIC is con-

sidered to describe the data best, taking into account competing complexity of models.

A large likelihood of a model favors it to describe the data well, while on the other

hand the model is penalized if many parameters are involved in the model by the sec-

ond term in Eq. (4). Therefore, the BIC prevents overfitting. In order to judge which

model is appropriate for our data, we tested all considered models for each histogram

and assessed the optimal model by means of the BIC. The fraction of all histograms

which described best by one of the six models considered is given in Table 2. Based on

the objective judgment of the fit using the BIC, we chose for each parameter the model

which best describes the largest fraction of histograms (Table 2, bold cells).
Table 2 Fraction of histograms over all parameters best described by one of the six models
considered. The highest fraction is shown in bold

Normal distribution Log-normal distribution

#populations 1 2 3 1 2 3

D 0.01 0.01 0.06 0.01 0.40 0.51

α 0 0.05 0.68 0.02 0.03 0.22
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