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Abstract

Background: mRNA can form local secondary structure within the protein-coding sequence, and the strength of
this structure is thought to influence gene expression regulation. Previous studies suggest that secondary structure
strength may be maintained under selection, but the details of this phenomenon are not well understood.

Results: We perform a comprehensive study of the selection on local mRNA folding strengths considering variation
between species across the tree of life. We show for the first time that local folding strength selection tends to
follow a conserved characteristic profile in most phyla, with selection for weak folding at the two ends of the
coding region and for strong folding elsewhere in the coding sequence, with an additional peak of selection for
strong folding located downstream of the start codon. The strength of this pattern varies between species and
organism groups, and we highlight contradicting cases.
To better understand the underlying evolutionary process, we show that selection strengths in the different regions
are strongly correlated, and report four factors which have a clear predictive effect on local mRNA folding selection
within the coding sequence in different species.

Conclusions: The correlations observed between selection for local secondary structure strength in the different
regions and with the four genomic and environmental factors suggest that they are shaped by the same
evolutionary process throughout the coding sequence, and might be maintained under direct selection related to
optimization of gene expression and specifically translation regulation.

Keywords: Protein-coding sequence evolution, mRNA secondary structure, Gene expression regulation,
Comparative genomics, Codon usage

Background
There is growing evidence that local mRNA folding (i.e.,
short-range secondary structure) inside the coding region
is often stronger or weaker than expected, but the explan-
ation for this phenomenon is yet to be fully understood.
mRNA folding strength affects many central cellular pro-
cesses, including the transcription rate and termination
[1–3], translation initiation [4–14], translation elongation

and ribosomal traffic jams [15–18], co-translational fold-
ing [19–21], mRNA aggregation [22], mRNA stability [23,
24], and mRNA splicing [10, 25] (reviewed in [26–28]).
Many of these effects are mediated by interactions of
mRNA within the CDS (protein-coding sequence) with
proteins and other RNAs and may include structure-
specific or non-structure-specific interactions.
In recent years, several studies showed evidence for selec-

tion acting directly to affect mRNA folding strength within
the CDS (Fig. 1a). Studies looking at the CDS as a whole
found selection for strong mRNA folding in most species
[22, 29–32]. Studies focusing on the beginning of the
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coding region (i.e., the first 40–50 nucleotides) found evi-
dence for the inverse, with selection acting to weaken
mRNA folding in that region [30, 32–34]. In addition, there
is some evidence for specifically strong folding in nucleo-
tides 30–70, which may slow down translation elongation
near the 5′ end of the mRNA, possibly to prevent riboso-
mal traffic jams [18, 35, 36]. Finally, it has been suggested
that folding is weakened in the region leading to the stop
codon [32–34], but not in a way that attributes this weak-
ening to direct selection on folding strength rather than a
side effect of some other bias in this region. These results
are generally in agreement with available small-scale (e.g.,
[13, 14]) and large-scale [10–12, 24, 37–39] experimental
validation performed in model organisms. Some of these
characteristic regions were found to be correlated with gen-
omic GC-content and to be stronger in highly expressed

genes [29, 36, 40–42]. However, the previous studies cited
did not systematically examine how the selection on folding
strength changes along the coding sequence and how this
phenomenon varies across the tree of life. In this study,
using high-resolution analysis of the folding selection pro-
files in over 500 organisms from the three domains of life,
we examine all data under a common framework and
under more stringent controls (including accounting for
the evolutionary distances between species), to determine
which correlations are likely to stem from causal relation-
ships involved in maintaining mRNA folding. We show that
the previously proposed patterns of local selection on
mRNA folding are not universal and examine their associ-
ation with genomic and environmental factors in different
taxonomic groups to better understand the underlying
evolutionary processes.

Fig. 1 Common regions of folding bias (ΔLFE) are present across the tree of life, but are not universal. There is correlation between the strengths
of these regions in different species, indicating there are factors influencing the bias throughout the coding sequence. a Summary of profile
features with the fraction of species in which each feature appears in each domain (based on model 1 rules; see “Analysis” under the “Methods”
section for details). The results based on the less restrictive model 2 rules (with weaker ΔLFE near the CDS edges not required to be positive; see
“Analysis” under the “Methods” section) are shown in bright blue below each bar. References shown here are based on comparison to
randomized sequences (i.e., equivalent to ΔLFE). b Scheme illustrating profile features reported separately in previous studies within the CDS,
showing features [A]–[D] from a. c Observed distribution of ΔLFE profile values at different positions relative to CDS start (left) and end (right). d
The distances (in nt) from the start codon where ΔLFE transitions from positive to negative, for species belonging to different domain. The
lengths of the initial weak folding region range up to 150 nt in some bacteria. e Spearman’s correlations between mean ΔLFE profile values in
regions [A], [C], and [D]. White dots indicate significant correlation (p value < 0.01)
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Results
To test different hypotheses related to direct selection act-
ing on the local folding energy (LFE) in different regions of
the coding sequence, we measured the mean deviation in
LFE between the native and randomized sequences (main-
taining the amino acid sequence of all CDSs as well as
codon and nucleotide composition including the GC-
content, see “Analysis” under the “Methods” section for
more details). The resulting deviation values, denoted
ΔLFE, measure the increase or decrease in local mRNA
folding energy relative to what we expect based on the
encoded protein and codon frequencies. Any significant
deviation from random can be attributed to a specific

arrangement of codons that supports increased or de-
creased base-pairing and folding strength along the mRNA
strand (Fig. 2a).
Specifically, if the null hypothesis used to generate the

randomized sequences holds for the native sequences at
some position, we expect ΔLFE to be 0. Otherwise, a sig-
nificant deviation from ΔLFE = 0 indicates that the local
folding energy values cannot be explained by selection on
amino acid content, codon bias, or GC-content alone and
serves as evidence for direct selection on local folding en-
ergy (Fig. 2a). Positive ΔLFE indicates putative selection
for weaker secondary structure, while negative ΔLFE cor-
responds with selection for stronger secondary structure.

Fig. 2 Overview of the computational analysis to measure ΔLFE while controlling for other factors known to be under selection at different
regions of the coding sequence and find factors correlated with it. a The variables and concepts involved in determining local folding strength
and calculating ΔLFE. The effects of the compositional factors on the left side are removed in order to specifically measure the contribution of
codon arrangements to the native folding energy. Blue arrows indicate possible selection forces. b The different steps in the computational
pipeline used to estimate ΔLFE and the factors affecting it (see “Analysis” under the “Methods” section). For each genome, the CDSs are
randomized based on each null model (CDS-wide and position specific), to calculate a mean ΔLFE profile based on that null model. At the next
step, based on GLS, correlations between features of the ΔLFE profile and genomic/environmental features are computed. Input data sources
(native CDS sequences, species trait values, species tree) are shown in green. c The distributions of some genomic properties within the
dataset—CDS count, genomic GC-content, and genomic ENc′ (measure of CUB). The dataset was designed to represent a wide range of values
(among other considerations; see “Species selection and sequence filtering” under the “Methods” section)
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We specifically aimed at finding nearly universal patterns
in ΔLFE, as well as groups of organisms and specific or-
ganisms with profiles deviating from such patterns. The
resulting ΔLFE profiles were subsequently used with the
evolutionary tree of the analyzed organisms to detect asso-
ciation between ΔLFE and genomic and environmental
traits that cannot be explained by taxonomic relatedness
alone and therefore may hint at underlying causal rela-
tions. We discuss the influence of genomic features such
as codon usage bias (see the “Correlation between codon
usage bias and ΔLFE” section) and GC-content (see the

“Correlation between GC-content and ΔLFE” section),
and of environmental features like intracellular life (see
the “Weak ΔLFE in endosymbionts and intracellular
organisms” section) and growth temperature (see the
“Weak ΔLFE in hyperthermophiles” section).

Conserved regions of folding bias (ΔLFE)
We observed that significant ΔLFE is present in most
species and in most regions of the CDS (Fig. 3, Fig. 1a,
c). The mean ΔLFE profiles of most species share the
same structure (Fig. 3a, Fig. 1b, c), as follows. The region

Fig. 3 Two summaries of the ΔLFE profiles demonstrate the consistency and diversity found. a Characteristic ΔLFE profiles for species belonging
to different taxons. The format of the plots appears in the upper left corner: ΔLFE bias is shown (by color) for windows starting in the range 0–
150 nt relative to the CDS start, on the left, and CDS end, on the right; red denotes negative ΔLFE (stronger-than-expected folding) while blue
denotes positive ΔLFE (weaker-than-expected folding; see the scale at the upper-right corner). The characteristic profiles for each taxon were
calculated using clustering analysis, by grouping similar species according to the correlation between their profiles (see “Visualization” under the
“Methods” section for details). The bars (in turquoise) appearing to the right of each characteristic profile indicate the relative number of species it
represents. The full ΔLFE profiles for all species appear in Additional file 1: Figure S7. b. Summary of ΔLFE profile diversity for all species using
dimensionality reduction to 2 dimensions with PCA (see explanations about PCA in the main text), with similar values (profiles) mapped to
nearby positions. Background shading (blue) indicates density (see “Visualization” under the “Methods” section for details). This shows most
species have similar profiles (located near the center), but different kinds of less typical profiles are also represented. Top, CDS start; bottom, CDS
end. Short species names are listed in Additional file 1: Table S3
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immediately following the CDS start (typically extending
through the windows starting at positions 0–20 nt (Fig. 1a,
region A), with a median of 20 nt/10 nt/20 nt in bacteria/
archaea/eukaryotes, respectively) has positive mean ΔLFE
(evidence of selection for weak folding), usually followed
by a transition to negative mean ΔLFE (indicating selec-
tion for strong folding) within the first 50 nt and main-
tained throughout most of the CDS (Fig. 1a region C,
Fig. 1c, d). The negative ΔLFE tends to weaken in the area
immediately preceding the last codon (typically nucleo-
tides 50–0 nt with median of 50/90/40 nt in bacteria/ar-
chaea/eukaryotes, respectively, Fig. 1d) in 83% of the
species, and ΔLFE becomes positive there (indicating
weaker-than-expected folding) in 37% of the species (in-
cluding 68% of eukaryotes). This evidence of selection for
weak mRNA folding near the stop codon in many organ-
isms across the tree of life is reported here for the first
time; two previous studies [18, 32] reported that the local
folding energy (LFE) is weak near the start codon in three
organisms and without showing that it cannot be ex-
plained by direct selection on the amino acid sequence
(e.g., using computation of ΔLFE as was done here).
To measure how frequently these elements appear to-

gether within the same species, we tested them against a
model, based on two variants. The stricter variant, model
1, counts species in which the regions of weak folding at
the beginning and end of the CDS have, on average,
weaker than expected folding, i.e., significantly positive
ΔLFE. The less restrictive model 2 requires folding in
these regions to be significantly weaker than in the middle
of the CDS, but not necessarily significantly weaker than
random (see “Analysis” under the “Methods” section for
details). Since the models are applied to the mean ΔLFE of
a population of genes which may vary greatly in their indi-
vidual values, both estimates of the adherence to the
model are informative. The combined models (composed
of the three regions described) are found in 23% (model 1)
and 69% (model 2) of the species analyzed (Fig. 1a),
appearing very frequently in bacteria but also commonly
in archaea and eukaryotes. The conservation of the ΔLFE
profile structure in species across the tree of life is evi-
dence of its biological significance.
GC-content and LFE both change during evolution, and

it is worthwhile to compare their level of conservation in
related species. LFE is to a large degree determined by
GC-content (as evident by the almost perfect correlations
found between GC-content and native or randomized
LFE, Additional file 1: Figure S1), so one might argue the
observed ΔLFE is a side effect of selection acting on GC-
content. However, we found that the ΔLFE profile is more
conserved than genomic GC-content at any phylogenetic
distance within the same domain (Additional file 1: Figure
S2). We also found that the profile does not consistently
correlate with local variation in CUB (Additional file 1:

Figure S3), demonstrating that the results reported here
are not side effects of selection on codon bias (e.g., due to
adaptation to the tRNA pool).
Additional tests also support direct selection acting to

maintain folding strength. ΔLFE profile features are also
preserved when calculated using a null distribution that
maintains the codon distribution at any position in the
CDS relative to the CDS start; thus, local (position-spe-
cific) genomic amino acid or codon distributions are not
enough to explain the ΔLFE profile (Additional file 1: Fig-
ure S4). These features appear in many cases to be stron-
ger in highly expressed genes, genes coding for highly
abundant proteins, and genes with a strong codon adapta-
tion to translation elongation, I_TE [43] (see Add-
itional file 1: Figure S5). Finally, these results remain after
controlling for the strength of the Shine-Dalgarno binding
in the 5′-UTR [44] (Bahiri Elitzur S, Cohen-Kupiec R,
Fine L, Yacobi D, Apt B, Diament A, et al.: Prokaryotic
rRNA-mRNA interactions are involved in all translation
steps and shape bacterial transcripts, Manuscript submit-
ted for publication 2020) and for genes with short or over-
lapping 5′-UTRs (see, for example, [45]). Together, these
results show that the ΔLFE profiles are unlikely to be ex-
plained as side effects of selection for a genomic or CDS
position-dependent compositional bias in nucleotide,
codon, or amino acids acting alone, although many such
biases have been reported and are believed to have im-
portant biological effects [36].
Note that the randomized LFE profiles also are not al-

ways flat, revealing some residual influence on LFE,
caused by the amino acid frequencies at different regions,
remains even after randomization. ΔLFE controls for this
by separately measuring the folding energy biases found in
each position.
The different elements making up the model profile

structure have functions associated with them. The weak
folding region at the beginning of the coding region may
improve access to the regulatory signals in this region
(e.g., the start codon) [5, 36]. The region of positive ΔLFE
preceding the CDS end may help recognition of the stop
codon and ribosomal dissociation from the mRNA and
prevent ribosomal read-trough. Strong folding in the mid-
dle of the coding sequence may assist co-translational
folding [19–21] by slowing down translation in specific
positions to allow protein folding or other co-translational
processes to take place, as well as regulate mRNA stability
[23] or prevent mRNA aggregation [22].
The division of the profile into the three regions de-

scribed here is also apparent when the data is analyzed
in an unsupervised manner via principal component
analysis (PCA) [46] (Fig. 3b and Additional file 1: Figure
S6). This arranges species on a two-dimensional plane
according to their ΔLFE profiles, so species with more
similar ΔLFE profiles are placed closer together. The
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resulting plots (for the beginning and end of the coding
sequence) show the majority of species have similar
ΔLFE profiles (located very close to each other near the
center of the plot), with positive ΔLFE near the ends of
the coding sequence and negative ΔLFE in the middle of
the coding sequence. Groups of species containing other
types of profiles are arranged around them on the plots.
At either end of the coding sequence, 2 variables (princi-
pal components) are sufficient to describe at least 85%
of the variability between all ΔLFE profiles, supporting
the division of the ΔLFE into three regions (since the
mid-CDS region appears in both analyses, see Fig. 1e).
In 45% of the organisms, we found an additional fea-

ture: a peak of selection for strong mRNA folding
around 30–70 nt downstream of the start codon (Fig. 1a,
region B). It was suggested ([34, 35], based solely on evi-
dence in Eschericia coli and Saccharomyces cerevisiae)
that this peak is responsible for increasing translation
throughput, by minimizing ribosomal traffic jams occur-
ring because of uneven translation elongation rates
throughout the CDS. There is also some evidence [4, 9]
that strong secondary structure downstream of the start
codon can enhance translation. Whatever the mechan-
ism responsible for it, the results here show that this fea-
ture is common across the tree of life. This feature was
also shown previously to be stronger in highly expressed
genes in 3 species [45], and our results extend this claim
(see Additional file 1: Figure S5).
The ΔLFE profiles of eukaryotes are much more diverse

than those found in prokaryotes. One striking observation
is that significant positive ΔLFE throughout the mid-CDS
region, present in 13% of the eukaryotes tested, is not ob-
served in any of the 371 bacterial species tested except in
Deinococcus puniceus (Additional file1: Figure S8, see also
Fig. 1a). This seemingly universal rule hints at a constraint
on bacterial CDSs not obeyed in eukaryotes and is one of
two major differences observed between the domains
(along with the correlation with genomic-GC, see the
“Correlation between GC-content and ΔLFE” section).
Despite these general trends, there is also significant

variation in the ΔLFE profiles across and within taxo-
nomic groups. In the subsequent sections, we discuss gen-
omic and environmental factors that explain some of the
variation between mean ΔLFE profiles in different species.

Correlations between ΔLFE regions
The strengths of the three major regions of the ΔLFE pro-
file described above are strongly correlated (Fig. 1e): or-
ganisms with relatively stronger ΔLFE (in absolute value)
in one model region appear to also have stronger ΔLFE in
other regions. For example, the 0–20-nt region has a
strong negative correlation with the 150–300-nt region
(Spearman’s ρ = − 0.46; p value < 1e−8). This correlation
remains highly significant for different ranges and when

testing using GLS (Additional file 1: Fig. S9). The two
mid-CDS regions (relative to CDS start and end) are posi-
tively correlated (ρ = 0.84, p value < 1e−8), as are the CDS
start and end regions (ρ = 0.52, p value < 1e−8). These cor-
relations indicate ΔLFE profiles of different species can
generally be ordered by magnitude from species having
strong (positive or negative) ΔLFE features throughout
the CDS to those showing weak or no ΔLFE. In eukary-
otes, the negative correlation between the CDS start
and mid-CDS regions is not present (results not
shown), but in this case, neither do the ΔLFE profiles
generally follow the structure of positive start ΔLFE
and negative mid-CDS ΔLFE and the profile values may
continue to change farther away from the CDS edges.
Together, these results suggest that the different ele-

ments making up the typical profile structure are influ-
enced at the genome level by a factor or combination of
factors acting jointly on all regions and strengthening or
weakening |ΔLFE|, as well as distinct factors acting on
each region differently. Some factors contributing to this
scaling effect are discussed in the following sections.

Correlation between codon usage bias and ΔLFE
Codon usage bias is generally correlated with adaptation
to translation efficiency [47–50]. If ΔLFE is also related to
selection for translation efficiency, it is reasonable to ex-
pect it would correlate with CUB. To test this hypothesis,
we used ENc′ (ENc prime, [51, 52]), a measure of codon
usage bias (CUB) that compensates for the influence of
extreme GC-content values that skew standard ENc (ef-
fective number of codons) scores. Indeed, such a correl-
ation is found (Fig. 4, Additional file 1: Figure S10b)—
ΔLFE tends to be stronger (in absolute value) in species
having strong CUB (low ENc′), and this holds both near
the CDS edges and in the mid-CDS regions. Similar re-
sults were obtained when using other measures of CUB
(CAI [53] and DCBS [49], Additional file 1: Figure S11),
and these correlations persist within many individual tax-
ons (Fig. 9, Additional file 1: Figure S10b). In addition,
species with strong CUB tend to have ΔLFE profiles that
closely match the model elements (Fig. 4b, c), and further
analysis shows the correlation of CUB with the ΔLFE
profiles is due to correlation with the magnitude of the
profiles and not due to specific profile regions
(Additional file 1: Figure S12). Since ΔLFE is computed
while controlling for the CUB of each sequence, the re-
ported results suggest that organisms with higher selection
on CUB also have, “independently” from a statistical point
of view, higher selection on ΔLFE.
Using genomic CUB as measure of optimization for

efficient translation elongation, we found that it is also a
good predictor of the strength of ΔLFE. One interpret-
ation of this is that the genomic variation in ΔLFE can
largely be explained not by different species having
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distinct “target” ΔLFE levels, but by different species
having varying “abilities” to maintain ΔLFE in the pre-
sence of mutations and drift because the selection
pressure is insufficient under their effective population
size (either because the selection pressure is low or
because the effective population size is low).

Correlation between GC-content and ΔLFE
GC-content is a fundamental genomic feature and is corre-
lated with many other genomic traits and environmental
aspects [54, 55]. It might be a trait maintained under direct
selection, or merely a statistical measure of the genome that
other traits evolve in response to because of its biological

Fig. 4 Folding bias (ΔLFE) is positively correlated with genomic CUB (measured as ENc′) throughout the CDS. This correlation indicates stronger
folding bias exists in species with stronger CUB at all regions of the CDS. a Correlation strength (R2, measured using GLS regression) between
genomic ENc′ and ΔLFE at different positions relative to the CDS start (left) and end (right). R2 values below the X-axis indicate negative
regression slope (i.e., negative correlation with ΔLFE). The regression slope generally has the opposite sign as ΔLFE, indicating strong ΔLFE is
correlated with strong codon bias throughout the CDS. Major taxonomic groups are plotted as different colored lines. White dots indicate
regression p value < 0.01. b Comparison of ΔLFE profile values in species with strong vs. weak CUB. Species with strong CUB (yellow, ENc′≤ 56.5)
tend to have more extreme ΔLFE and show the conserved ΔLFE regions more clearly, while species with weak CUB (blue, ENc′ > 56.6) tend to
also have weak ΔLFE. c Genomic ENc′ values plotted using coordinates determined by ΔLFE profiles. Species with strong CUB (left plot, lower left
quadrant and right plot, right side) have stronger ΔLFE profiles that more strongly adhere to the conserved ΔLFE regions. Coordinates are based
on PCA for profile positions 0–300 nt relative to CDS start (left) and end (right). The PCA coordinates are the same as those in Fig. 3b
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and thermodynamic consequences. GC-content is also the
strongest factor determining the native LFE (Add-
itional file 1: Figure S1a), since G-C base pairs are more
stable than A-T pairs (due to the increase in the number of
hydrogen bonds and more stable base stacking). Selection
on folding strength (measured by ΔLFE) also influences
folding strength, and we would like to measure the correl-
ation between these two factors that influence the folding
strength (namely, GC-content and ΔLFE). This is made

possible since ΔLFE is calculated relative to the baseline
maintaining the GC-content of the original coding regions
in the randomized ones (see “Randomization procedures”
under the “Methods” section for a description of the null
models). This controls for the direct effect of GC-content,
allowing us to directly study the interaction between ΔLFE
and GC-content (see also Additional file 1: Figure S1a).
The correlations (expressed as R2) between genomic

GC-content and ΔLFE at different points near the CDS

Fig. 5 Folding bias (ΔLFE) is positively correlated with genomic GC-content throughout the CDS. a The effect of genomic-GC on ΔLFE at each
position along the CDS start (left) and end (right), measured using GLS regression R2 values. R2 values above the X-axis indicate positive
regression slope (indicating moderating effect of GC-content); R2 values below the X-axis indicate negative regression slope (i.e., reinforcing effect
of GC-content). Near the CDS edges (where ΔLFE is usually positive), genomic-GC generally has a moderating effect on ΔLFE. In the mid-CDS
region (where ΔLFE is usually negative), genomic-GC generally has a reinforcing effect on ΔLFE. Major taxonomic groups are plotted as different
colored lines. White dots indicate regression p value < 0.01. b Comparison of ΔLFE profile values in species with high vs. low genomic GC-
content. Species with high GC-content (blue, genomic-GC > 45%) tend to have more extreme ΔLFE and show the conserved ΔLFE regions more
clearly, while species with low GC-content (yellow, genomic-GC≤ 45%) tend to also have weak ΔLFE. c. Genomic GC-content for all species
plotted on the PCA coordinates of their ΔLFE profiles (same coordinates as in Fig. 3b. N = 513) for CDS start (left) and end (right). Low-GC species
are generally clustered in a small region, indicating they have similar ΔLFE profiles, and that region is characterized by weak ΔLFE. d Qualitative
summary of ΔLFE in relation to GC-content in the mid-CDS
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start and end are shown in Fig. 5a. This dependence
shows a similar pattern to that seen in the ΔLFE profiles
themselves (Fig. 1c, Fig. 5a, and for the correlation with
CUB, see the “Correlation between codon usage bias and
ΔLFE” section), with significant correlations appearing
in roughly the same CDS regions described for the ΔLFE
profiles. The correlation takes the opposite directions in
the CDS edges than that maintained throughout the
inner CDS region, which means GC-content is positively
correlated with the strength of ΔLFE (in absolute value)
throughout the CDS (like CUB is).
Near the CDS start, positive correlation (indicating a

moderating effect) exists in the windows starting at 0–60
nt (Fig. 5a, Additional file 1: Figure S10a). This effect ap-
pears in almost all taxons analyzed, with R2 values be-
tween 0.2 and 0.9 and significant p values in most taxons,
and may be explained as counteracting the strengthening
influence of GC-content on secondary structures to
prevent them from hindering the translation initiation
process.
The opposite effect exists in the mid-CDS: negative (re-

inforcing) dependence on genomic GC-content appears in
the region at 70–300 nt after CDS start in most bacterial
and archaeal taxons (Fig. 5a–c, Fig. 9, Additional file 1:
Figure S10a) and is generally maintained throughout the
length of the CDS (excluding the edge regions). As men-
tioned above, selection for strong mRNA folding and
mRNA structures inside the coding may be related to tran-
scription elongation [2], co-translational folding [19–21,

26], and mRNA stability [23]. The observed ΔLFE in this
region is indeed negative in nearly all bacterial and archaeal
species; it is possible that the folding is further reinforced in
species higher GC-content since they are under stronger se-
lection for these processes. Note that the effects of genomic
GC-content and CUB (see the “Correlation between codon
usage bias and ΔLFE” section) are somewhat overlapping,
but each factor significantly contributes to the total
observed effect (Additional file 1: Figure S13).
In eukaryotes, we observed a wider variation in mid-CDS

ΔLFEs (which is not found in other groups), from strongly
positive to strongly negative, with a non-linear dependence
on genomic-GC (Fig. 6, Fig. 9). Low-GC eukaryotes tend to
have weak ΔLFE in the mid-CDS region, while high-GC eu-
karyotes tend to have strong positive or negative ΔLFE in
the same region. To evaluate this relation, which is not lin-
ear, we used maximal information coefficient (MIC) [56,
57], a measure that can capture any statistical dependence
including non-linear dependencies. We found that this rela-
tion is quite significant (MIC = 0.54, p value ≤ 2e−5; see
“Analysis” under the “Methods” section). Fungi, however,
show a strong positive (moderating) correlation between
genomic-GC and ΔLFE (Fig. 5a, Fig. 6a; Eremothecium
gossypii, GC%= 51.7, is the only observed fungus with
GC%> 45 and negative ΔLFE in the mid-CDS region).
There are also clear internal disparities in ΔLFE among
fungi families (Additional file 1: Figure S7). Note that in
some species (e.g., Zymoseptoria tritici), the positive ΔLFE
seems to extend throughout the CDS. In other species,

Fig. 6 Genomic-GC effect on ΔLFE in eukaryotes shows divergence in high GC-content species that is not observed in other domains, while low
GC-content species have weak ΔLFE. a mean ΔLFE values for eukaryotes in the range 100–300 nt from CDS start, plotted against genomic-GC.
Fungi are highlighted in blue. There is no linear relation between the variables (R2 = 0.01), but there is strong statistical dependence nevertheless
(MIC = 0.582, p value < 2e−5, N = 78); see some explanation on MIC in the main text. b PCA plot for the same species shows the same two classes
of ΔLFE profiles in eukaryotes having high genomic-GC (top and bottom regions; see “Visualization” under the “Methods” section for details). On
the left, ΔLFE profiles are plotted in the positions given by their first 2 PCA components. On the right, genomic-GC values for the profiles plotted
at the same coordinates. Short species names are listed in Additional file 1: Table S3
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there is a transition to negative ΔLFE further downstream
(as much as 500 nt from CDS start, results not shown).
The group of fungi and other eukaryotes having strong

selection for weak local mRNA folding in the mid-CDS re-
gion (all of which have high genomic GC-content) runs
counter to the general trend in prokaryotes. It is possible
that these species are under selection for higher translation
elongation speeds, which tend to be hindered by stron-
ger mRNA folding [15–18]; however, it is not clear why
such cases are not observed in other groups like
bacteria. The correlation with GC-content reported
here may also be partially explained by the fact that
both GC-content and ΔLFE are affected by common
factors such as the ability to maintain the selected
sequences under the effective population size. The wide
range of ΔLFE values for eukaryotic species and the
absence of linear correlation with GC-content (in
general) reveal additional factors are involved in this
aspect of gene expression.

Weak ΔLFE in endosymbionts and intracellular organisms
Many endosymbionts and other species with intracellular
life stages have low effective population sizes, because their
life cycle includes recurring population bottlenecks [58, 59]
or has lower selective pressure due to reliance on the host
[60]. These species generally have weaker ΔLFE compared
to their relatives, as can be clearly seen from their ΔLFE
profiles (Fig. 7, also see Additional file 1: Figure S7, e.g.,
Richelia intracellularis, Blattabacterium sp.). The apparent
disparity between endosymbionts and their relatives is
strongest near the CDS start. Taken as a whole, the differ-
ence in ΔLFE is small (Fig. 7a), but when comparing within
smaller taxons, the difference is much more noticeable
(e.g., gammaproteobacteria in Fig. 7b–d). Endosymbionts
also tend to have lower GC-content and CUB [60], but the
results are still generally significant after considering this at
least in proteobacteria, where we have a sufficient sample
size (Additional file 1: Figure S14). The dichotomic group-
ing of species as endosymbionts is an oversimplification

Fig. 7 Endosymbionts and other intracellular species have generally weak ΔLFE. a Comparison of ΔLFE values at different CDS positions between
endosymbionts (green) and other species (pink). The ΔLFE values are less extreme in endosymbionts, indicating lower selection on local folding
strength. b Comparison of ΔLFE distributions at different CDS positions between endosymbionts (green) and other species (pink) within
gammaproteobacteria (N = 44). c ΔLFE for species included in the tree within gammaproteobacteria; the endosymbionts and intracellular species
(marked) have weaker ΔLFE bias compared to their relatives. d PCA plot for ΔLFE profiles (left, see “Visualization” under the “Methods” section)
and the intracellular classification (right) for the species in gammaproteobacteria (N = 44). For clarity, overlapping profiles are hidden on the left
(as in all PCA plots for ΔLFE profiles); all species are plotted on the right. Short species names in the PCA plot on the left panel are listed in
Additional file 1: Table S3
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and ignores the variety of species with intracellular stages,
including obligate and facultative intracellular parasites
(and our annotation of species as endosymbionts, based on
the literature, may not be complete). Indeed, some species
we classify as endosymbionts (e.g., Halobacteriovorax mari-
nus SJ) nevertheless have low genomic ENc′ and strong
ΔLFE.

Weak ΔLFE in hyperthermophiles
In temperatures approaching the RNA melting
temperature, base-pairing is destabilized and it is likely
that codon arrangement and ΔLFE can no longer

significantly affect the secondary structure. We found
hyperthermophilic archaea and bacteria to have weaker
(closer to 0) ΔLFE in the mid-CDS region (Fig. 8). This
effect is not apparent at lower temperatures (below
65 °C) or across all temperatures, with temperature hav-
ing no significant correlation with ΔLFE (Fig. 8e, Fig. 9)
when controlling for species relatedness. Our results are
consistent with [40], which argued for negative correl-
ation with growth temperature, but that paper only ana-
lyzed the beginning of the coding region and did not
control for the evolutionary relations among organisms.
Based on our analysis, the linear relation between

Fig. 8 Hyperthermophiles have weak ΔLFE. a ΔLFE profiles (for CDS beginning and end) for members of euryarchaeota covered by the
phylogenetic tree (N = 28) and their annotated optimum growth temperature classification (mesophile—green, moderate thermophile—orange,
hyperthermophile—red) and genomic GC-contents. Hyperthermophiles have weak ΔLFE that cannot be explained by the tree topology or their
genomic GC-contents. b ΔLFE profiles (left) and optimum growth temperatures (right) for all members of euryarchaeota having annotated
optimum growth temperatures (N = 25), plotted using their PCA coordinates (see “Visualization” under the “Methods” section). Hyperthermophiles
seem to be clustered in a small region characterized by weak ΔLFE. c ΔLFE profiles (left) and optimum growth temperature (right) for all species
having annotated optimum growth temperature (N = 173), plotted using their PCA coordinates (see “Visualization” under the “Methods” section).
Short species names from PCA plots are listed in Additional file 1: Table S3. d Comparison of ΔLFE values for species having optimum
temperature above (blue) or below 75 °C (yellow), for positions relative to CDS start (left) or end (right). e Regression for optimum growth
temperature vs. mean ΔLFE (average for positions 100–300 nt after CDS start) using GLS (green regression line, N = 96, R2 = 0.004, p value = 0.6)
and OLS (red regression line, N = 173, R2 = 0.45). The apparent linear relation is no longer significant when controlling for the phylogenetic
relationships. Points plotted in red are included only in OLS
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temperature and ΔLFE is not generally supported by
GLS (Fig. 8e, Fig. 9, Additional file 1: Figure S10c); how-
ever, since species tend to have similar temperature
requirements as their close relatives, it is hard to conclu-
sively decide if any similarity in ΔLFE is derived from
association with temperature or the evolutionary
relationship without having considerably more data. In
hyperthermophiles (species with optimum growth
temperature above 75 °C), however, there is a significant
decrease in ΔLFE (even when the folding strengths are
predicted at room temperature, Additional file 1: Figure
S15). These results suggest that mRNA folding is not
effective in higher temperatures (in general), and con-
sequently, ΔLFE is not preserved. In moderate thermo-
philes, ΔLFE may follow the precedence of genomic GC-
content, which previous studied concluded is not an
adaptation to high temperatures at the genomic level,
but may still be part of such an adaptation at specific
rRNA and tRNA sites where secondary RNA structure is
particularly important [61, 62].

Discussion
The results we presented here provide a wide integrated
view on the way evolution shapes local mRNA secondary
structures in the coding regions of organism across the
tree of life. In addition, the results include novel attempts

to tie this phenomenon to genomic, evolutionary, and en-
vironmental variables in the hope of further clarifying the
processes involved. In this section, we will summarize and
discuss key results.
First, we show that selection on mRNA folding strength

in most (but not all) species follows a conserved structure
with three distinct regions (Fig. 1)—decreased local folding
strength at the beginning and end of the coding region and
increased folding strength in mid-CDS. The fact that this
structure is more conserved than other genomic traits like
GC-content (Additional file 1: Figure S2), as well as its
alignment to the coding regions, suggests these features
are related, at least in part, to translation regulation.
Our statistical tests demonstrate that these features
cannot be merely side effects of factors known to be
under selection like codon usage bias and amino acid
composition.
In general, the model features for the beginning and

mid-CDS appear much more frequently in the analyzed
organisms (appearing in around 80% of the organisms),
while selection for weak folding near the stop codon,
first demonstrated here, is comparatively rare (it appears
in around 37% of the organisms). This may suggest that
generally, the first two features tend to be under stron-
ger selection (possibly since they tend to contribute
more significantly to organism fitness).

Fig. 9 Summary of trait correlations with ΔLFE in the mid-CDS region for different taxonomic groups. Many of these correlations are discussed in
the previous sections. For each taxonomic group and trait combination, correlations are measured using R2 with GLS (phylogenetically corrected,
green bars) and OLS (uncorrected linear relationship, red bars). Significant correlations are marked with “∗” (p value < 0.05) or “∗∗” (p value<
0.001). Correlations with genomic-GC% and genomic-ENc′ are robust in prokaryotes, whereas other traits do not have consistent linear
relationships. All correlations are for the region 100–300 nt after CDS start. (a) No linear dependence, but a significant relationship does exist (see
Fig. 6). (b) Linear dependence appears in GLS but not in OLS. Small sample size exists in some taxons. (c) No significant linear relationship found
over the entire range of values, but hyperthermophiles have significantly lower ΔLFE (see the “Weak ΔLFE in hyperthermophiles” section)
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Conformance to different model elements varies signifi-
cantly between the three domains: weak folding at the be-
ginning of the coding regions appears in the great
majority of bacterial species (88%) but only in 56%/60% of
eukaryotes/archaea, respectively (Fig. 1a, Fig. 3a). These
differences may be related to polycistronic gene expres-
sion (see Additional file 1: Figure S16) or to generally
higher effective population sizes and selection for high
growth rate in bacteria; they may also indicate comple-
mentary constraints imposed by eukaryotic gene expres-
sion mechanisms (e.g., Cap-dependent translation
initiation) and unique environmental constrains in ar-
chaea. On the other hand, selection for weak mRNA fold-
ing at the end of coding region (first conclusively shown
here) is much more frequent in eukaryotes (appearing in
68% of the analyzed organism) than in the prokaryotes
(20% in archaea and 33% in bacteria). This may be related
to alternative mechanisms for efficient translation termin-
ation fidelity in prokaryotes (including mRNA folding out-
side the boundaries of the CDS) and/or to translation of
polycistronic transcripts (see [63] for related observations
in the 3′-UTR).
Second, we found that in some eukaryotes (in 13% of the

analyzed eukaryotes and in one bacteria: D. puniceus), there
is significant positive ΔLFE throughout the mid-CDS region
(i.e., opposite to the general trend in prokaryotes, Fig. 1a,
Fig. 6, Additional file 1: Figure S8). This phenomenon,
more widespread than previously reported, may be related
to selection improving elongation speed [18]. It is currently
not clear why this type of selection appears only in these
eukaryotes and is extremely rare in the other domains.
Third, we show that the “transition peak,” a region of se-

lection for strong mRNA folding beginning around 30–70
nt downstream of the start codon that was reported else-
where to be associated with translation efficiency [18, 35,
36, 45], appears frequently (45%) in the analyzed organisms,
indicating this mechanism is common (Fig. 1a, c). This fea-
ture appears much more frequently in eukaryotes (73%)
than in prokaryotes (22% in archaea and 43% in bacteria).
Here, too, it is possible the lower frequency in prokaryotes
hints at a complementary mechanism for translation initi-
ation and elongation efficiency and fidelity in prokaryotes.
Forth, despite these differences, we found strong correl-

ation between the strengths of three profile elements
(found at the beginning, middle, and end of the coding re-
gions, Fig. 1e) across the analyzed organisms. This supports
the conjecture that much of the variation in their strength
among organisms is caused by common factors acting
jointly on the level of ΔLFE at all regions of the CDS.
Fifth, we discussed several variables that correlate with

ΔLFE (and account for much of the variation mentioned
above). The variables showing the strongest correlation
are genomic GC-content (despite being explicitly con-
trolled for by our randomizations as explained above,

Fig. 5) and CUB (measured using ENc′, Fig. 4). Strong
CUB and higher GC-content tend to be associated with
more efficient selection on translation efficiency (see, for
example, [64, 65]), and the fact that ΔLFE is correlated
with them suggests the same underlying mechanism (or
mechanisms) contributes to their selection.
The influence on ΔLFE of all traits analyzed in the

mid-CDS region can be compared in Fig. 9. Other gen-
omic and environmental traits analyzed (including gen-
ome size and growth time) were not found to have
significant linear interaction with ΔLFE at the domain
level. In many cases, there appears to be potential inter-
action with ΔLFE in smaller taxons (which may or may
not be due to real interactions specific to those taxons,
Additional file 1: Figure S10).
Sixth, we proposed four specific characteristics of spe-

cies having weak ΔLFE (separately and together), demon-
strating the conditions in which ΔLFE cannot be
effectively maintained (or does not yield sufficient benefit
to be maintained). The first two characteristics are based
on the correlated traits described above: low GC-content
and low CUB. Another characteristic is optimum growth
temperature, since in higher temperatures, base-pairing is
weakened, and consequently, the influence of codon ar-
rangement and composition must also be reduced, and so
is any possible effect of ΔLFE. The last disrupting factor,
an intracellular life phase, stems from the fact that such
organisms generally have lower effective population size
(due to recurring population bottlenecks) and lower selec-
tion pressure on gene expression (because they partly rely
on the host, [58, 59]). A binary classification model based
on these four features has precision 0.66 and recall 0.82 in
classification of ΔLFE strength (see “Analysis” under the
“Methods” section and Fig. 10). Note that this binary clas-
sification discriminates species with very weak ΔLFE
and has weak predictive value for ΔLFE strength in
species where none of the factors hold, giving R2 = 0.2
(p value = 5e−25, OLS, all species) against mean
|ΔLFE| in the 150–300-nt region relative to CDS start.
These conditions support the proposed mechanism of
ΔLFE being the result of selection on secondary
structure strength related to gene expression regulation
and efficiency.
Our results point to cases where evolutionarily close or-

ganisms exhibit very different ΔLFE patterns and selection
levels. For example, in fungi, members of Pezizomycotina
(such as Aspergilus niger or Zymoseptoria brevis) have
much more positive ΔLFE compared to members of Sac-
charomycotina (including Eremothecium gossypii and
Candida albicans). Notably, a few eukaryotic species (e.g.,
the unrelated species Fonticula alba and Saprolegnia
parasitica) have a ΔLFE profile that looks typical for bac-
teria (Additional file 1: Figure S7). This highlights the var-
iety of gene expression mechanisms in eukaryotes, as well
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as the risk in generalizing about disparate groups based on
observations on model organisms.
We would also like to emphasize the fact that ΔLFE has

been considered a direct result of selection by previous
studies cited here; we believe our results further support
this hypothesis, for example, by showing ΔLFE is more
conserved than genomic GC-content and demonstrating
biologically reasonable trait interactions that may indicate
a (direct or indirect) causal link. We should note however
that our methodology does not assume any specific evolu-
tionary process at work to produce the measured ΔLFE
and this is an additional topic for further research.
Finally, we should note our analysis is based on aver-

age values over entire genomes. This provides important
statistical power and reduces the random effects of other
factors on specific genes. It is important to remember,
however, that some of the gene-level factors filtered this
way are nevertheless important and there is considerable
variation between genes. This means that the reported
features should be further analyzed in higher resolution,
as well as validated experimentally to understand their
origin. For example, ΔLFE in the mid-CDS region was
suggested to be influence by both global factors like
mRNA aggregation and local factors, like co-
translational folding [29, 31], which may cause non-
uniform selection pressure across the CDS. These differ-
ences may allow the effect of each factor to be experi-
mentally validated separately. In addition, in future
studies, it will be helpful and challenging to study the re-
lation between ΔLFE and the position of genes in the
operon (see [63]), and the influence of ΔLFE on the out-
comes of translation initiation, termination, and splicing.

Conclusions

1. The previously proposed regions of selection on
local mRNA folding strength are widespread and
appear in many species across domains. For two
such regions (strong folding downstream of the
beginning of the CDS and weak folding near the
CDS end), this is first conclusively demonstrated
here. However, none of these regions is universal
and exceptions, which sometimes run opposite to
the common trend, are quite common.
Nevertheless, the CDS in most species does contain
consistent regions of tendency for increased or
decreased secondary structure strength. These
regions coincide with parts of the CDS involved in
different gene expression processes and in
particular different stages of mRNA translation
(initiation, elongation, and termination), supporting
the conjecture that mRNA folding strength has a
role in these stages of mRNA translation. In
addition, stark differences in the prevalence of the
regions suggest interactions with domain-specific
regulatory mechanisms: For example, the selection
for weak folding at the end of the coding region
seems to be more common in eukaryotes while the
selection for weak folding at the beginning of the
coding region appears more commonly in
prokaryotes.

2. The tendencies for increased or decreased
secondary structure strength in different parts of
the coding sequence are correlated among species
across the tree of life, indicating common factors

Fig. 10 Classification model for weak ΔLFE based on four species traits. a PCA plot of ΔLFE profiles relative to CDS start (see “Visualization” under
the “Methods” section). Short species names are listed in Additional file 1: Table S3. b ΔLFE profile strength, measured using standard deviation,
for profile positions 0–300 nt relative to CDS start. c Predicted ΔLFE strength for each species using binary model for weak ΔLFE (precision = 0.66,
recall = 0.82, N = 513, see “Binary classifier for ΔLFE strength” under the “Methods” section)
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are affecting them throughout the coding sequence.
We present four factors that predict the strength of
local mRNA folding selection within the coding
sequence—GC-content, CUB, intracellular life
stage, and a hyperthermophilic environment. These
factors are characteristic of species with strong
optimization for gene expression efficiency or
fidelity, suggesting mRNA folding strength also
contributes to this optimization.

3. A “transition peak” of selection for strong mRNA
folding around 30–70 nt downstream of the start
codon appears in ~ 50% of the analyzed organisms,
showing this phenomenon (suspected of being
linked to optimization of translation elongation) is
widespread.

4. The statistical framework we proposed for studying
position-specific selection effects on traits like local
mRNA folding across taxonomic groups, while con-
trolling for confounding factors such as amino acid
bias, codon, and evolutionary distance, enables in-
ferring factors that may directly affect these traits.

Methods
Analysis
Species selection and sequence filtering
The set of species included in the dataset (Additional file 1:
Table S1, Additional file 2) was chosen to maximize taxo-
nomic coverage, include closely related species which differ
in GC-contents and other traits (Fig. 2c), and take advantage
of the limited overlap between available annotated genomes,
NCBI environmental traits data, and the phylogenetic tree
(see below). To prevent under-representation of taxons in
the dataset, included species were tabulated by phylum and
species from missing phyla and classes were added if pos-
sible (Additional file 1: Table S2). Over-representation of
closely related species is controlled by GLS (see below).
CDS sequences and gene annotations for all species

were obtained from Ensembl genomes [66], NCBI [67],
JGI [68], and SGD [69] (Additional file 1: Table S3). CDS
sequences were matched with their GFF3 annotations to
filter suspect sequences, as follows. The dataset excludes
CDSs marked as pseudo-genes or suspected pseudo-
genes, incomplete CDSs, and those with sequencing ambi-
guities, as well as CDSs of length < 150 nt. If multiple iso-
forms were available, only the primary (or first) transcript
was included. Genes annotated as belonging to organelle
genomes were also excluded. Genomic GC-content,
optimum growth temperatures, and translation tables
were extracted from NCBI Entrez automatically, using a
combination of Entrez and E-utilities requests (Add-
itional file 1: Table S3). A few general characteristics of
the included CDSs are shown in Fig. 2c.
The taxonomic hierarchy and classifications used to

analyze and present the data were obtained from NCBI

Taxonomy. Endosymbionts were annotated using a lit-
erature survey (Additional file 1: Table S3). Growth rates
were extracted from [52] (Supplementary Table A1).

Randomization procedures
To test different hypotheses regarding local folding energy
(LFE), native sequences were compared against randomized
sequences preserving attributes as defined by each null hy-
pothesis, as follows (Fig. 2a, b):
To test the hypothesis that the native arrangement of

synonymous codons causes a significant bias in LFE,
synonymous codons were randomly permuted within
each CDS (i.e., all codons encoding for the same amino
acid within a given CDS are randomly rearranged). This
“CDS-wide” randomization preserves the encoded pro-
tein sequence, nucleotide frequencies (including GC-
content), and codon frequencies of each CDS (but gen-
erally disrupts longer-range dependencies). Synonymous
codons were determined according to the nuclear gen-
etic code annotated for each species in NCBI genomes.
To test the contribution of position-specific biases in

amino acid composition, nucleotide frequencies, and codon
frequencies including CUB (factors that are equalized at the
CDS level by the CDS-wide randomization) on the ob-
served LFE, a second “position-specific” randomization was
used. In this randomization, synonymous codons were ran-
domly permuted between codons found at the same pos-
ition (relative to the CDS start) across all CDSs in each
genome. This randomization preserves the amino acid
sequence of each CDS, while nucleotide (including GC-
content) and codon frequencies are preserved at each
position across a genome.

LFE profile calculation
Local folding energy (LFE) profiles were created by calcu-
lating the folding energy of all 40-nt-long windows, at 10-
nt intervals, relative to the CDS start and end, on each na-
tive and randomized sequence. This measure estimates
local secondary structure strength (ignoring the specific
structures) and reflects (among other considerations) the
structure of mRNA during translation, which prevents
long-range structures but allows formation of local sec-
ondary structure and generally agrees with existing large-
scale experimental validation results [37]. Previous studies
(e.g., [35]) showed that this measure is robust to changes
in the window size. The coordinates shown always refer to
the window start position relative to the CDS start (e.g.,
window 0 includes the first 40 nt in the CDS) or to the
window end position relative to the CDS end. Estimated
folding energies were calculated for each window using
RNAfold from the ViennaRNA package 2.3.0 [70], with the
default settings. All folding energies were estimated at
37 °C so as to compare equivalent quantities between all
genomes (but see below under native-temperature
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profiles). The ΔLFE profile for each protein, defined as the
estimated excess local folding energy caused by the
arrangement of synonymous codons at any CDS position,
was created by subtracting the average profile of 20
randomized sequences for that protein from the native
LFE profile:

ΔLFEi ¼ nativeLFEi−
1
N

X

1≤n≤N

randomizedLFEi nð Þ

(i—CDS position, N—number of randomized
sequences)
The mean ΔLFE profile for each species was created

by averaging each position i over all proteins of suffi-
cient length (so a different number of sequences may be
averaged at each position). Note that while the native
LFE of different CDSs within each genome varies con-
siderably, the LFE of each native CDS is compared to its
own set of randomized sequences.
To determine if the mean ΔLFE for a species in pos-

ition i (relative to CDS start or end) is significantly
different than 0, the differences di(p, n) between LFE of
the native and randomized sequences for each CDS p at
position i were collected:

di p; nð Þ ¼ nativeLFEi pð Þ−randomizedLFEi p; nð Þ
(p—CDS index, 1 ≤ n ≤N = 20—number of random-

ized sequences, i—CDS position)
The Wilcoxon signed-rank test was used on all values

di(p, n) (with the null hypothesis implying that the distri-
bution is symmetrical).

Native-temperature profiles
The predicted folding energy calculations for native and
randomized sequences for a sample of N = 71 bacterial
and archaeal species were repeated using the same pro-
cedure but with folding predicted at the optimal growth
temperature specified for that species (instead of 37 °C).

Phylogenetic tree preparation
To study the relation between ΔLFE profiles and other
traits, the profiles were analyzed using a phylogenetic
tree as follows. The phylogenetic tree is based on [71]
(Supplementary Dataset 2 and Supplementary Table 1)
and contains species from our dataset across the three
domains of life. Since there are slight discrepancies in
some node identifiers between the tree ([71] Supplemen-
tary Dataset 2) and accession table ([71] Supplementary
Table 1), species names were matched by hand. Tree
nodes and profiles were then matched by NCBI tax-ID
at the species or lower level between the available ge-
nomes and phylogenetic tree nodes (e.g., when the tree
species a species, and there is only one genome available
for a specific strain of this species). The tree distances

were converted to approximate relative ultrametric dis-
tances using PATHd8 [72] version 1.9.8 with the default
settings. Finally, the tree was pruned to the set of leaf
nodes found in the dataset (or a subset of them which
has data for both variables being correlated), by remov-
ing unused inner and leaf nodes and merging single-
child inner nodes by summing distances. The resulting
ultrametric tree (Additional file 3) was used to create a
covariance matrix using a Brownian process (to reflect
the null hypothesis that a trait is not under selection),
using the ape package [73] in R.

Phylogenetically controlled regression
To test for correlations between traits among species
while controlling for the similarity expected to exist be-
tween related species even in the absence of selection on
either trait, generalized least-squared (GLS) regression
was performed [74, 75] with the nlme package [76] in R
and using REML optimization. Each regression included
the subset of species for which data for both correlated
traits was available, and which were also included in the
tree. Regression p values are based on the null hypoth-
esis that the slope of the explanatory variable is 0 (i.e.,
that the variables are independent), and estimated using
the t test. Coefficient of determination (R2) values were
calculated according to [75, 77]:

R2 ¼ 1−
û0V −1û

Y−Ye
� �0

V −1 Y−Ye
� �

û—residuals, V—variance-covariance matrix, Y—ob-
servations, Y —intercept of equivalent intercept-only
model, and e—first column of design matrix.
For continuous traits, regression formulas included an

intercept term. Discrete traits were represented by or-
dered or unordered factors, and the intercept term was
omitted from the regression formula. For discrete traits,
values of the explained variable (such as ΔLFE) were
centered to have mean 0 (so regression is based on a
null hypothesis that all levels have the same mean).

Regression robustness verification
To test the robustness of a correlation between traits at
different CDS regions, the regression was repeated at all
profile positions starting between 0 and 300 nt (relative
to CDS start and end) and all contiguous subranges
(using the mean ΔLFE value in each range) and reported
only if consistent over the relevant range of positions
(Additional file 1: Figure S17).
To test for specific trait correlations in individual tax-

ons, the regression procedure was repeated for each
taxonomic group (at any rank) containing at least 9 spe-
cies (Additional file 1: Figure S10). For each taxonomic
group, the value shown is the median R2 value for
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positions within the relevant range. The significance p
value threshold was determined by applying FDR correc-
tion according to the number of taxonomic groups
(treating them as independent to get a “worst-case”
result).

Model element definition rules
Elements of the ΔLFE profile model were formalized as
follows to allow estimation of their prevalence (Fig. 1a).
Significance for all rules is defined using the Wilcoxon
signed-rank test (see above) having p value < 0.05 at all
positions within the range specified.
Model 1 (positive ends)

A. Positive start: ΔLFE value at positions 0–10 nt
relative to CDS start is positive and significant.

B. Transition peak: the position of the minimum ΔLFE
value in the range 0–300 nt, i*, is located in the
range 20–80 nt relative to CDS start, and is
significantly lower compared to all points in the
ranges 0–10 nt and 100–200 nt relative to CDS
start.
To determine if the mean ΔLFE for a species in a
given position i is significantly higher than the
minimum (i*), the differences wi(p, n) between
ΔLFE at the peak position and ΔLFE at the tested
position were collected:

wi p; nð Þ ¼ di� p; nð Þ−di p; nð Þ

(p—CDS index, N ≤ 20—number of randomized
sequences, i—position in CDS relative to start)

The Wilcoxon signed-rank test was used on all values
wi(p, n).

C. Negative mid: ΔLFE values at each position in the
range 200–300 nt relative to CDS start and in the
range 300–200 nt relative to CDS end are all
negative and significant.

D. Positive end: ΔLFE value at positions 10–0 nt
relative to CDS end is positive and significant.

E. Model structure: A + C + D

Model 2 (weak ends)

A. Weak start: ΔLFE value at position 0 nt relative to
CDS start is significantly higher than at positions
200–300 nt.

B. Same as in model 1.
C. Same as in model 1.
D. Weak end: ΔLFE value at position 0 nt relative to

CDS end is significantly higher than at positions
200–300 nt.

E. Model structure: A + C + D

Binary classifier for ΔLFE strength
To measure the performances of several criteria in pre-
dicting ΔLFE strength, the following simple model was
used. ΔLFE values for all species were divided into weak
and strong groups based on the standard deviation of
the mean ΔLFE at positions 0–300 nt. Species with
standard deviation < 0.14 were included in the “weak
ΔLFE” group. The binary classification of each species is
based on 4 species traits as inputs, using the following
rule (optimized using grid search):

PredictedWeakLFE ¼ ðEndosymbiont ¼ TrueÞ or
ðGenomic GC < 38%Þ or
ðGenomic ENc

0
> 56:5Þ or

ðOptimum temp > 58∘CÞ

Maximal information coefficient
Maximal information coefficient (MIC, [56, 57]) is a stat-
istical measure of general (not necessarily linear) de-
pendence between two variables. Informally, it is a
generalization of R2 and also has values in the range
0.0–1.0, with high values indicating knowing the value of
one variable allows inferring the value of the other. MIC
was calculated using the minerva [78] package in R. p
values were estimated using 10,000 random samples.

Correlogram plot
Correlogram plot (Additional file 1: Figure S2) was pre-
pared using the phylosignal package in R.

Codon-bias metrics
Codon-bias metrics (CAI, CBI, Nc, Fop) were calculated
for each genome using codonW [79] version 1.4.4. ENc′
[80] was calculated using ENCprime (github user jno-
vembre, commit 0ead568, October 2016) using the de-
fault settings. I_TE [43] was calculated using DAMBE7
[81], based on the included codon frequency tables for
each species. DCBS was calculated according to [49].

Shine-Dalgarno binding strength
The Shine-Dalgarno (SD) strength for each gene was
calculated according to, based on the minimal anti-SD
hybridization energy found in the 20-nt region upstream
of the start codon.

Visualization
Taxon characteristic profile chart
The mean ΔLFE profiles for CDS positions 0–300 nt rela-
tive to the CDS start and end within each taxon were
summarized (Fig. 3a) by grouping species with similar
profiles and plotting one profile representing each group.
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The grouping was achieved by clustering the ΔLFE pro-
files (as vectors of length 31) using K-nearest neighbors
agglomerative clustering with correlation distances, using
SciKit Learn [82]. The profile plotted to represent each
group is the centroid (mean) of each cluster. To allow easy
viewing of the region of interest, only positions 0–150 nt
are shown for each cluster. K, the number of clusters for
each taxon, was chosen (separately for the start and end
profiles) to be the smallest value for which the maximum
distance of any profile to the centroid cluster mean (i.e.,
the profile shown) was smaller than 0.8 for the start-
referenced profiles and 1.3 for the end-referenced profiles.
The full ΔLFE profiles for all species appear in
Additional file 1: Figure S7.

PCA display for ΔLFE profiles
To summarize ΔLFE profiles and show how different values
related to different profile types, we used PCA to obtain a
two-dimensional arrangement in which similar ΔLFE pro-
files are mapped to nearby positions (see, for example,
Fig. 3b). Also shown are the amounts of variance explained
by each of the first two principal components.
PCA for the ΔLFE profiles (treated as vectors of length

31) was performed using SciKit Learn [82]. Analysis was
limited to the first 3 components, and only the first two
components are displayed (Additional file 1: Figure S6a,b).
To verify the robustness of the PCA results, they were re-
peated using 500 samples with replacement from the same
PCA input vectors and of the same size, and the angles be-
tween the component were verified to be approximately
equal (Additional file 1: Figure S6c). To reduce clutter,
overlapping profiles are hidden and the relative density at
each position is shown in the background as blue shading
(estimated as bivariate KDE with bandwidth determined by
Scott’s rule using seaborn [83]) and also plotted on the
axes.
Evolutionary and taxonomic trees were plotted using

the ETE toolkit [84].
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