
RESEARCH Open Access

Distinct epigenetic features of tumor-
reactive CD8+ T cells in colorectal cancer
patients revealed by genome-wide DNA
methylation analysis
Rui Yang1†, Sijin Cheng1†, Nan Luo2,3†, Ranran Gao1, Kezhuo Yu4, Boxi Kang1, Li Wang1, Qiming Zhang1,
Qiao Fang4, Lei Zhang4, Chen Li5, Aibin He5, Xueda Hu1, Jirun Peng2,3*, Xianwen Ren1* and Zemin Zhang1,4*

Abstract

Background: Tumor-reactive CD8+ tumor-infiltrating lymphocytes (TILs) represent a subtype of T cells that can
recognize and destroy tumor specifically. Understanding the regulatory mechanism of tumor-reactive CD8+ T cells
has important therapeutic implications. Yet the DNA methylation status of this T cell subtype has not been
elucidated.

Results: In this study, we segregate tumor-reactive and bystander CD8+ TILs, as well as naïve and effector memory
CD8+ T cell subtypes as controls from colorectal cancer patients, to compare their transcriptome and methylome
characteristics. Transcriptome profiling confirms previous conclusions that tumor-reactive TILs have an exhausted
tissue-resident memory signature. Whole-genome methylation profiling identifies a distinct methylome pattern of
tumor-reactive CD8+ T cells, with tumor-reactive markers CD39 and CD103 being specifically demethylated. In
addition, dynamic changes are observed during the transition of naïve T cells into tumor-reactive CD8+ T cells.
Transcription factor binding motif enrichment analysis identifies several immune-related transcription factors,
including three exhaustion-related genes (NR4A1, BATF, and EGR2) and VDR, which potentially play an important
regulatory role in tumor-reactive CD8+ T cells.

Conclusion: Our study supports the involvement of DNA methylation in shaping tumor-reactive and bystander
CD8+ TILs, and provides a valuable resource for the development of novel DNA methylation markers and future
therapeutics.

Keywords: Colorectal cancer, Tumor-reactive T cells, Bystanders, Transcriptome, Methylome, Transcription factor, T
cell exhaustion

Background
Colorectal cancer (CRC) is one of the most common
cancers globally. CRC incidence has traditionally been
the highest in affluent western countries, but it is now
increasing rapidly in other countries with economic

development. CRC treatment usually involves surgical
removal of the tumor followed by adjuvant chemother-
apy. In recent years, various kinds of immunotherapies,
such as checkpoint blockade immunotherapy, have been
used to enhance the antitumor potential. However, the
responses to these treatments vary among patients. Re-
cent literatures supported the notion that not all tumor-
infiltrating lymphocytes (TILs) are tumor reactive [1–4].
Rather, bystander cells exist, which recognize a wide
range of epitopes unrelated to cancer [1–4]. For tumor
immunotherapy, it is valuable to target those cells of
which the T cell receptor (TCR) repertoire is
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intrinsically tumor reactive. Co-expression of CD39
(ENTPD1) and CD103 (ITGAE) identifies such a unique
T cell population [1, 3]. These cells have a tissue-
resident memory (RM) signature with high expression of
exhaustion markers, such as PDCD1 and HAVCR2 (also
known as Tim-3). Interestingly, these TILs also exhibited
low expression of CCR7, CD127, and CD28, indicative of
an effector memory (EM) phenotype [3, 5]. Understand-
ing the molecular basis of memory CD8+ T cells is key
to developing effective therapies against cancers. Further
investigation is needed to better distinguish the molecu-
lar natures of TEM and this tumor-reactive T cell
subtype.
Gene expression patterns, a key determinant for a cel-

lular feature, are believed to be controlled by epigenetic
changes [6]. Decoding the epigenome specific to tumor-
reactive T cells is a pivotal step toward understanding
the activation and expansion of this T cell population in
cancer. However, how they are regulated epigenetically
has not been addressed thus far. DNA methylation, a co-
valent modification of the DNA molecule, is a stable and
heritable form of epigenetic modifications which partici-
pates in establishing and maintaining chromatin struc-
tures and regulates gene transcription [7]. In general,
DNA methylation is critical for establishing stable gene-
silencing programs, by affecting the interactions of DNA
with chromatin proteins and transcription factors [8, 9].
Many studies have highlighted the importance of DNA
methylation in regulating complex gene expression pro-
grams underlying immune responses [10–12]. It is thus
important to define how the identities of tumor-reactive
CD8+ T cells and bystanders are shaped at methylation
level, including particular genes and networks.
In this study, we sorted tumor-reactive and bystander

CD8+ TILs from treatment-naïve primary CRC patients
based on the expression of CD39 and CD103, and naïve
and TEM CD8+ T cells from peripheral blood based on
the expression of CD45RO, CD45RA, and CCR7.
Adapted smart-seq2 and whole-genome bisulfite sequen-
cing (bisulfite-seq) were performed to characterize the
transcriptomic features, DNA methylome programming,
methylation dynamics, and key transcription factors
(TFs) in each T cell subtype. Our study can help under-
stand the underlying mechanisms leading to the specific
expression patterns of tumor-reactive CD8+ T cells,
thereby facilitating the development of new therapeutic
strategies targeting these cells.

Results
Transcriptomic characteristics of five CD8+ T cell
subtypes
Within CD8+ TILs, CD103+CD39+ T cells have been
recently demonstrated to be tumor-reactive, while
CD103−CD39− T cells and CD103+CD39− T cells are

bystanders [1, 3]. To further characterize the transcrip-
tional profiles of these cell populations, we isolated
naïve, TEM, CD103+CD39+, CD103+CD39−, and CD103
−CD39− T cell subtypes from eight CRC patients for
gene expression profiling using adapted Smart-seq II
(Fig. 1a–c; Additional file 1: Figure S1A, B; the
“Methods” section). As shown in the heat map display-
ing differentially expressed genes (DEGs) among five
CD8+ T cell subtypes, the naïve subtype exhibited high
expression of known naïve markers LEF1 and SELL (also
known as CD62L) (Fig. 1d; Additional file 1: Figure
S1C). TEM subtype showed enhanced expression of clas-
sically defined TEM molecules, such as TBX21 [13] and
CX3CR1 [14] (Fig. 1d). Notably, CD103+CD39+ TILs
displayed hallmarks of an “exhausted” phenotype, with
high expression of CTLA4, HAVCR2, and LAYN (Fig. 1d;
Additional file 1: Figure S1C, D). Recent literatures re-
ported that the thymocyte selection-associated high mo-
bility group box (TOX) protein is required for the
development and maintenance of exhausted T cell popu-
lations in chronic infection [15–18]. Removal of its DNA
binding domain reduced the expression of PD-1 and re-
sulted in a more polyfunctional T cell phenotype [16].
Here, we observed that TOX expression is also upregu-
lated (Fig. 1d; Additional file 1: Figure S2A). Intriguingly,
our previous single-cell RNA-sequencing (scRNA-seq)
data identified the specific expression of TOX in
exhausted CD8+ TILs [19–21] (Additional file 1: Figure
S2B-D). These data together supported the important
role of TOX in intratumoral T cell exhaustion.
Gene set variation analysis (GSVA) showed that

CD103+CD39+ subtype was enriched in biological pro-
cesses associated with immunomodulation, such as
“regulation of interferon gamma biosynthesis” and
“negative regulation of IL10 production” [22, 23]
(Fig. 1e). Furthermore, we analyzed effector function of
these CD8 T cell subtypes by the expression of gran-
zyme A/B/H, cytotoxic granules PRF1, interferon (IFN)-
γ, and tumor necrosis factor (TNF). Interestingly, we
found that exhausted CD103+CD39+ subtype still had
relatively high expression of these cytotoxic proteins
(Additional file 1: Figure S1C). Together with the GSVA
results, it indicates that CD103+CD39+ subtype may not
have lost their antitumor potential. Two-dimensional
principal component analysis (PCA) revealed that naïve
and TEM subtypes were clearly grouped as distinct popu-
lations, whereas three CD8+ TIL subtypes appeared
tightly clustered, indicative of a very similar transcrip-
tional profile among these subtypes (Fig. 1f).
To gain a deeper understanding of tumor-reactive

CD8+ T cells, we compared them with their counterpart,
CD103−CD39− cells. CD103+CD39+ T cells highly
expressed a set of 435 genes, including T cell exhaustion
markers CTLA4 and HAVCR2 (Fig. 1g), but they
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exhibited lower expression of genes involved in T cell
recirculation, such as KLF2, SELL, and S1PR1 (Fig. 1g).
Gene set enrichment analysis (GSEA) also revealed the
presence of a molecular signature associated with T cell
exhaustion and TRM signatures (Fig. 1h). Then, we com-
pared the transcriptome of CD103+CD39+ TILs with
that of the TEM subtype. Interestingly, CD103+CD39+
TILs also exhibited lower expression of CCR7, CD127,

and CD28, as did TEM subtype, consistent with previous
findings (Additional file 1: Figure S1C) [3]. In addition,
using a list of TEM signature genes [5], we found most of
these genes to exhibit low expression in naïve T cell sub-
type and high expression in other subtypes (Add-
itional file 1: Figure S1E), further confirming the TEM

features in CD103+CD39+ T cells. Collectively, we again
validated that tumor-reactive CD8+ T cells are in an

Fig. 1 Comparative transcriptional analysis reveals tumor-reactive CD8+ T cells to have a TRM signature with high expression of exhaustion
markers. a Experimental design for the isolation of different CD8+ T cell populations from CRC patients. b, c Representative plots of FACS-isolated
T cell populations. d Gene expression heat map of five CD8+ T cell populations. Rows represent signature genes, and columns represent cell
types. Selective specifically expressed genes are marked in red. e GSVA was performed to identify enriched significant biological pathways in five
CD8+ T cell subtypes. Five gene sets for each T cell population are depicted in a heat map. f PCA analysis of transcriptome expression of five
CD8+ T cell populations. Each symbol represents one patient. g Volcano plot showing differential gene expression of CD103+CD39+ T cells vs.
CD103−CD39− T cells (log2-transformed). Each red dot denotes an individual gene with a false-discovery rate (FDR) < 0.05. h Enrichment plot for
the gene sets of “T cell exhaustion” and “TRM” in the transcriptome of CD103+CD39+ T cells vs. that of CD103−CD39− T cells by GSEA. NES,
normalized enrichment score
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exhausted state, characteristic of both TRM and TEM

features.

Global DNA methylation profiling across five CD8+ T cell
subtypes
The phenotypic and functional changes that occur dur-
ing CD8+ T cell differentiation are accompanied by
genome-wide changes in DNA methylation program-
ming. To comprehensively assess such methylation
changes, we performed a genome-wide measurement of
DNA methylation using bisulfite-seq (see the “Methods”
section). For all samples, a median of ~ 26 million CpGs
(45.1%) was covered (Additional file 1: Table S1). PCA
analysis of the CpG methylation level of 5 kilobase (kb)
genomic tiles among these T cell subtypes revealed that
naïve CD8+ T cells were clearly grouped as a distinct
population, whereas the rest were clustered (Fig. 2a;
Additional file 1: Figure S3A). The TEM subtype showed
a similar methylation pattern to both bystander popula-
tions (Fig. 2a). Among the three TIL subtypes,
CD103+CD39− T cells seem to possess a methylation
signature that is intermediate between the CD103−CD39
− and CD103+CD39+ T cells CD8+ T cells (Fig. 2a).
Statistical analysis revealed that naïve subtype has the
highest methylation level, which is line with its quiescent
state (Additional file 1: Figure S3B).
To characterize the methylome further, we calculated

hypomethylated regions (HypoMRs) for each T cell
population in a “one vs. rest” fashion. We found a total
of 23,230 HypoMRs in all CD8+ T subtypes (Fig. 2b). Of
note, signature genes LEF1, TCF7, and SELL in naïve
subtype and TBX21 and CX3CR1 in TEM subtype were
affected by specific HypoMRs, which corresponded to
their enhanced expression (Fig. 2c; Additional file 1: Fig-
ure S4A, B). ISG15, a ubiquitin-like interferon-
stimulated gene, was affected by a HypoMR in the
CD103−CD39− subtype (Fig. 2c; Additional file 1: Figure
S5). Its role as a central player in the host antiviral re-
sponse might make it key to the immune functions of
bystanders [24]. Notably, CD103+CD39+ T cells exhib-
ited specific HypoMRs that affected the markers for
tumor reactivity, CD39 and CD103 (Fig. 2c, e; Add-
itional file 1: Figure S5). In addition, they also acquired
an exhaustion-associated methylation program, with
HypoMRs that affected the exhaustion markers PDCD1,
HAVCR2, and LAYN (Fig. 2c; Additional file 1: Figure
S5). Our methylation data suggested that the cell fea-
tures observed in different CD8+ T cell subtypes may be
shaped by altered DNA methylation profiles.

The methylation dynamics of immune-related genes
To understand the dynamic changes of methylation dur-
ing the development of tumor-reactive CD8+ T cells, we
analyzed promoter methylation levels of three immune

signature gene sets for naïve, cytotoxic, and exhausted T
cells (Fig. 3a; Additional file 1: Figure S6). We found that
most signature genes for naïve T cells were demethy-
lated in naïve subtypes, and displayed a higher level of
methylation in other later T cell subtypes (Fig. 3a; Add-
itional file 1: Figure S6). Of note, TCF7 showed the most
drastic changes (Fig. 3a; Additional file 1: Figure S6). In
contrast, signature genes for cytotoxic T cells, including
PRF1, IFNG, GZMB, CCL3, CCL4, NKG7, and CST7,
were highly methylated in the naïve subtype and then
became demethylated during naïve to TEM differenti-
ation (Fig. 3a; Additional file 1: Figure S6), indicating
that a hypomethylation programming was acquired fol-
lowing the activation of naïve T cells. The hypomethyla-
tion statuses of cytotoxic signature genes were
maintained within both bystander and tumor-reactive
CD8+ T cells (Fig. 3a; Additional file 1: Figure S6). Fi-
nally, for exhausted signature genes, two inhibitory re-
ceptors PDCD1 and CTLA4 were found to be
specifically demethylated within tumor-reactive CD8+ T
cells (Fig. 3a; Additional file 1: Figure S6). Another in-
hibitory receptor LAG3 was initially methylated in naïve
cells, and became demethylated in later stages of T cell
subtypes (Fig. 3a; Additional file 1: Figure S6). LAYN,
which was reported as a novel exhausted marker in our
previous study [20], underwent striking methylation dur-
ing naïve to TEM differentiation, maintained this methy-
lation status in both bystander subtypes, and acquired
demethylation in tumor-reactive T cells (Fig. 3a; Add-
itional file 1: Figure S6).
Furthermore, to link DNA methylation states to gene

expression, we performed correlation analyses of pro-
moter methylation level and gene expression level. In
most cases, the gene expression was found to be nega-
tively correlated with their differential methylation status
(Fig. 3b–d). For example, the expression level of PDCD1
showed significant negative correlation with the methy-
lation level of its promoter region (p = 5.7e−12). The
similar methylation levels of S1PR1 and SELL across dif-
ferent subtypes suggested that DNA methylation has a
minor influence on their expression, and other factors
may be responsible for their differential expression. In
summary, the DNA methylation levels of immune-
related genes were in dynamic changes from naïve T
cells to tumor-reactive CD8+ T cells, resulting in diver-
gent expression programs in each CD8+ T cell subtype.

Key transcription factors for each CD8+ T cell subtype
Transcription factors (TFs) have a broad effect on cell
state. To gain insight into the key regulators in each
CD8+ T cell subtype, we performed TF binding motif
enrichment analysis in HypoMRs. Those enriched TFs
might have decisive roles in shaping the molecular fea-
tures for each CD8+ T cell subtype. We found an
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overrepresentation of binding sites of LEF1 and TCF7 in
naïve subtype (Fig. 4a), consistent with their key regula-
tory functions in naïve T cells [25, 26]. In both TEM and
CD103−CD39− T cells, the binding motifs of two T-box
TFs TBX21 and EOMES, which have been recognized as
the master regulators of CD8+ T cell differentiation and
function [13, 27], were found to be enriched within
HypoMRs (Fig. 4a). Additionally, BATF, a transcription
factor in the AP-1 family, was found to be enriched
within both CD103+CD39− and CD103+CD39+ TILs.
BATF has been reported to initiate CD8+ T cell effector
differentiation [28, 29]. This is consistent with the

notion that increased expression of BATF in exhausted
CD8+ T cells suppresses their effector function [29, 30].
Particularly, this analysis yielded 85 TF binding motifs

that were significantly enriched in CD103+CD39+ T
cells. In addition to BATF, significantly overrepresented
motifs included RUNX1, NR4A1 (also known as
NUR77), vitamin D receptor (VDR), and EGR2 (Fig. 4a,
b), suggesting that these cells are under the control of a
complex network of transcription factors. Of these five
TFs, BATF, NR4A1, and EGR2 have been reported to be
associated with T cell exhaustion. BATF and NR4A1
could regulate PD-1 to inhibit T cell function [30, 31];

Fig. 2 Whole-genome methylation profiling across multiple CD8+ T cell subtypes. a PCA analysis based on methylation profiles of CD8+ T cells in
four T cell subtypes. b The graph shows the number of HypoMRs identified among five T cell subtypes. c Heat map showing the HypoMRs in the
five subtypes. Color gradation from blue to red represents low to high DNA methylation levels. Selected genes associated with the HypoMRs
were listed at the left side. d, e Lollipop plots for the nucleotide-resolution methylation level of the TCF7 and CD39 loci. Each covered cytosine is
displayed as a bar with a large round head. The color and height of the bar indicate the methylation level
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EGR2 targets LAG3 and 4-1BB regulate T cell dysfunc-
tion within tumors [32]. The other two TFs, RUNX1 and
VDR, have both been reported to be associated with T
cell development [33, 34]. Interestingly, RUNX1 medi-
ates site-specific DNA demethylation at binding site in
hematopoietic cells [35], which might explain the
demethylated status here. Based on our RNA-Seq data,
BATF, NR4A1, VDR, and EGR2 all showed high expres-
sion in CD103+CD39+ subtype (Fig. 4c). Notably, the
expression level of VDR showed progressive increase
during T cell differentiation from naïve to tumor-
reactive subtype. In contrast, we observed comparable
expression of RUNX1 among five subtypes (Add-
itional file 1: Figure S7A).
Next, to understand the transcriptional regulatory net-

works, we used TF binding motifs to predict targets reg-
ulated by TFs in tumor-reactive CD8+ T cells (see the
“Methods” section). Of note, exhaustion markers LAYN,
HAVCR2, and PDCD1 and tissue-resident marker
CD103 are predicted as the targets of these TFs
(Fig. 4d–f; Additional file 1: Figure S7B, C). For example,
PDCD1 was predicted to be regulated by VDR, which
has not been previously linked to T cell exhaustion. The

regulatory role of VDR in PCDC1 regulation and T cell
exhaustion thus deserves further interrogation. Other
predicted targets include T cell trafficking molecule
PDLIM4 and TNFRSF18 (GITR) which is involved in
regulating T cell programmed cell death (Fig. 4d, f; Add-
itional file 1: Figure S7C) [36]. Collectively, these data
support that tumor-reactive CD8+ T cells were regulated
by a complex network of transcription factors.

Transcription factors in regulating T cell exhaustion
Several predicted TFs in tumor-reactive cells have been
reported to be associated with T cell exhaustion, such as
NR4A1 and BATF [30, 31]. In our study, a novel tran-
scription factor VDR was identified to be upregulated
within tumor-reactive cells. Since PDCD1 upregulation
is a hallmark of CD8+ T cell exhaustion, we here show
an example of PDCD1 regulated by three TFs to further
discuss their relationship with T cell exhaustion. The re-
cruitment of NR4A1 by PDCD1 was supported by ChIP-
seq in a recent study [31]. Overall, a significant positive
correlation existed between PDCD1 expression and ex-
pression of NR4A1, BATF, and VDR in our own data
(Fig. 5a). Particularly, when taking the promoter

Fig. 3 Immune function annotations. a Heat map showing methylation levels of selected T cell function-associated genes for each CD8+ T cell
subtypes. b–d Scatter plots and trend lines were plotted to illustrate the correlation between the differences in mRNA expression and DNA
methylation of promoters in three groups of immune signature genes for b naïve, c cytotoxic, and d exhausted T cells. R, Spearman’s correlation;
adj. P, Benjamini-Hochberg adjusted p value
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methylation level of PDCD1 into account, several low
expressing PDCD1 cells with high NR4A1 and VDR ex-
pression were found to have high DNA methylation
levels of PDCD1 promoters (Fig. 5a), suggesting the
dominant role of DNA methylation in regulation PDCD1
expression in these samples.
We used our previous scRNA-seq data of CD8+ T

cells from CRC patients to further investigate the correl-
ation of PDCD1 and three TFs [19]. In silico FACS

analysis was used to predict the percentages of double-
positive cells for PDCD1 and TF in the corresponding
TF-positive cells among three TIL subtypes, respectively.
Of note, the highest proportions were observed in
CD103+CD39+ subtype for all three TFs (Fig. 5b), which
further supported the positive regulation of PDCD1 by
three TFs. Overall, our study indicated the transcription
regulation of PDCD1 in CD103+CD39+ subtype by both
TF expression and DNA methylation state of TF binding

Fig. 4 Key transcription factors and their targets for each CD8+ T cell subtype. a Selected TF motifs enriched in HypoMRs for five subtypes. Q
value here represents adjusted p value reported by HOMER. b Target (y-axis) vs. background (x-axis) sequences with motif in CD103+CD39+
subtypes. c RNA expression of BATF, NR4A1, VDR, and EGR2 in five subtypes. d–f Computed gene regulatory networks showing transcription factor
BATF (d), NR4A1 (e), and VDR (f) and their target genes. TFs and their targets of interest are labeled in red
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Fig. 5 Effects of NR4A1, BATF, and VDR expression and methylation status of their PDCD1 binding sites on PDCD1 expression. a Scatter plots and
trend lines were plotted to illustrate the correlation between PDCD1 expression and three TF (NR4A1, BATF, and VDR) expressions. Colors of dots
represent the methylation levels of the promoter regions of PDCD1. Each dot represents a replicate of one patient. R, regression coefficient; adj. P,
Benjamini-Hochberg adjusted p value. b In silico FACS analysis of our previous scRNA-seq data of CD8+ T cells from CRC patients. The
percentages of double-positive cells for PDCD1 and TF in the corresponding TF-positive cells are calculated in three TIL subtypes, respectively
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site, and suggested the contribution of these TFs in
regulating T cell exhaustion.
Next, we analyzed the correlation of these three TFs

with TOX, the novel T cell exhaustion marker. A strong
positive correlation of TOX expression and VDR expres-
sion was observed, which further supports a role of VDR
in regulating T cell exhaustion (Additional file 1: Figure
S8). Future investigation should be considered that uti-
lizes ChIP-seq to validate the exhaustion-associated tar-
gets of these TFs in tumor-reactive T cells.

Discussion
Intratumoral CD8+ T cells are classified as tumor-
reactive and bystanders based on their antigen specific-
ities. Within CD8+ TILs, tumor-reactive T cells are
enriched in CD103+CD39+ cells, while bystanders are
abundant in CD39− cells [1, 3]. In eight patients, the
proportions of tumor-reactive T cells ranged from 9.0 to
64.8%, with an average of 29.3% (Additional file 1: Figure
S1B). A recent literature reported the intrinsic tumor-
recognition potential of T cells in different human can-
cers by TCR profiling, and showed that tumor reactivity
of TCRs was restricted to a minority of cells [2]. The
relatively high proportion of tumor-reactive CD8+ T
cells in our study suggested a certain number of by-
stander T cells were present. To further enrich tumor-
reactive CD8+ population in the future, new markers
need to be identified in addition to CD39 and CD103. In
addition, it is intriguing to find out the molecular mech-
anism determining the various proportions of tumor-
reactive T cells in different patients, which can have im-
portant clinical meanings. For instance, patients whose
tumors had a higher percentage of tumor-reactive CD8
TILs at the time of surgery correlated with better overall
survival [3]. Duhen et al. showed that the highest per-
centage of tumor-reactive CD8 TILs were found in mel-
anoma and microsatellite instability (MSI)high colon
cancer, both tumors with high mutational burden [3].
Other molecular mechanism such as epigenetic regula-
tion associated with proportions of tumor-reactive T
cells remains to be explored in the future.
The exhausted state of tumor-reactive population im-

pedes its therapeutic use. Reversing T cell exhaustion
can reinvigorate immunity. However, a majority of pa-
tients lack durable response to immunotherapy such as
immune checkpoint blockade, which is explained at least
in part by the stable dysfunctional state of T cells shaped
epigenetically [37, 38]. We added another layer of epi-
genetic regulation to intratumoral T cell exhaustion.
Our in-depth methylation profiling identified the specific
demethylation status of exhaustion markers, including
PDCD1, HAVCR2, and LAYN. In addition, TF binding
site analysis in HypoMRs for the enrichment of known
TFs identified exhaustion-related TFs such as NR4A1,

BATF, and EGR2. The current common epigenetic ap-
proaches for cancer treatment are the administration of
demethylating agents such as azacitidine, which have a
broad but undefined effect on the genome [39]. Ad-
vances in techniques for manipulating DNA methylation
status in a targeted manner are anticipated to have sig-
nificant clinical values [40–43]. Future therapeutic strat-
egies of checkpoint blockade combined with epigenetic
modifiers should be put into a brighter spotlight in the
future.
We yielded putative biomarkers in mediating T cell

exhaustion. Targeting these molecules might potentially
augment T cell effector functions. Indeed, knockdown of
BATF using shRNA-mediated gene-silencing enhanced
T cell function [30]. NR4A1 deletion enhanced immunity
against tumor and chronic virus [31]. Intriguingly,
NR4A11-deficient CD8+ T cells have lower PDCD1 and
HAVCR2 expression [31]. In future study, roles of VDR
and RUNX1 in mediating T cells exhaustion need to be
further defined and may provide new opportunities to
reverse CD8+ T cell exhaustion.

Conclusion
Methylation programming plays important roles in regu-
lating gene expression. Herein, we showed that the tran-
scriptomic features of tumor-reactive T cells were
shaped by their distinct methylome profile. Intriguingly,
tumor-reactive markers (CD39 and CD103) and exhaus-
tion markers (PDCD1, LAYN, and HAVCR2) were spe-
cifically demethylated. Integrated transcriptome and
methylome profiling identified possible key regulators in
the tumor-reactive subtype, including exhaustion-related
TFs such as NR4A1, BATF, and EGR2. Novel TFs
RUNX1 and VDR identified here need further validation
and may serve as potential therapeutic targets. Our un-
derstanding of transcriptome and methylome networks
has important implications for the activation and expan-
sion of tumor-reactive T cells, which will benefit future
adoptive therapy.

Methods
Human specimen collection
This study was approved by the Research and Ethical
Committee of Beijing Shijitan Hospital and complied
with all relevant ethical regulations. Written informed
consent was provided by all patients. Eight patients with
CRC, including five women and three men, were en-
rolled and pathologically diagnosed with CRC at Beijing
Shijitan Hospital. Fresh tumor and adjacent normal tis-
sue samples (at least 2 cm from matched tumor tissues)
were surgically resected from the above-described pa-
tients. None of them was treated with chemotherapy or
radiation before tumor resection. The stages of these pa-
tients were classified according to the guidance of AJCC
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version 8. The available clinical characteristics are sum-
marized in Additional file 1: Figure S1A.

Single cell collection
Peripheral blood mononuclear cells (PBMCs) were iso-
lated using HISTOPAQUE-1077 (Sigma-Aldrich) solu-
tion according to the manufacturer’s instructions.
Briefly, 3 mL of fresh peripheral blood was collected
prior to surgery in EDTA anticoagulant tubes and subse-
quently layered onto HISTOPAQUE-1077. After centri-
fugation, lymphocyte cells remained at the plasma-
HISTOPAQUE-1077 interface and were carefully trans-
ferred to a new tube and washed twice with 1× PBS
(Invitrogen). These lymphocytes were re-suspended with
FACS buffer (PBS supplemented with 1% fetal bovine
serum (FBS, Invitrogen)).
Tumors and adjacent normal tissues were cut into ap-

proximately 1 mm3 pieces in the RPMI-1640 medium
(Invitrogen), and mechanically dissociated and enzymati-
cally digested with MACS Tumor Dissociation Kit (Mil-
tenyi Biotec) for 30 min on a rotor at 37 °C, according to
the manufacturer’s instruction. The dissociated cells
were subsequently passed through a 70-μm cell-strainer
(BD) and centrifuged at 400g for 10 min. The cell pellets
were suspended in red blood cell lysis buffer (Solarbio)
and incubated on ice for 2 min to lyse red blood cells.
After washing twice with PBS (Invitrogen), the cell pel-
lets were re-suspended in FACS buffer.

Antibodies and flow cytometry
The following fluorescent-labeled antibodies were used:
BV711 anti-CD3 (BC96; 1:100—#300450), APC anti-
CD8 (RPA-T8; 1:100—#301048), BV421 anti-CD45RA
(HI100; 1:100—#47-0458-42), BV421 anti-CD45RO
(HI100; 1:100—#47-0458-42), BV421 anti-CCR7 (HI100;
1:100—#47-0458-42), PE anti-CD39 (eBioA1; 1:100—
#17-0399-42), and FITC anti-CD103 (B-Ly7 and Ber-
ACT8; 1:100—#12-1038-42) (all from eBioscience). Cell
surface staining was performed in FACS buffer. Stained
cells were acquired on the FACS AriaII (all BD Biosci-
ences) for cell sorting. Data were analyzed with FlowJo
software (Treestar).

Cell sorting, reverse transcription, amplification, and
sequencing
One thousand cells of different subtypes including naïve
and TEM CD8+ T cells from PBMC, tumor-reactive
CD8+ T cells, and two clusters of tumor bystander
CD8+ T cells were enriched by gating 7AAD
−CD3+CD8+CD45RO−CD45RA+CCR7+, 7AAD
−CD3+CD8+CD45RO+CD45RA−CCR7−, 7AAD
−CD3+CD8+CD103+CD39+, 7AAD
−CD3+CD8+CD103+CD39−, and 7AAD
−CD3+CD8+CD103−CD39−, respectively, and sorted

into 0.2 mL tubes (Axygen) chilled to 4 °C, prepared with
lysis buffer with 1 μL 10 mM dNTP mix (Invitrogen),
1 μL 10 μM Oligo dT primer, 1.9 μL 1% Triton X-100
(Sigma), and 0.1 μL 40 U μL−1 RNase Inhibitor (Takara).
Transcriptome amplifications were performed accord-

ing to Smart-Seq2 protocol [44] with modification of re-
agent amount and PCR cycle numbers. The amplified
cDNA products were purified with Agencourt XP DNA
beads (Beckman), and the concentration of each sample
was quantified by Qubit HsDNA kits (Invitrogen). Li-
braries were constructed and amplified using the True-
Prep DNA Library Prep Kit V2 for Illumina (Vazyme
Biotech). The libraries were then purified with Agen-
court XP DNA beads and analyzed by fragment analyzer
for quality assessment. Purified libraries were analyzed
by an Illumina Hiseq 4000 sequencer with 150-bp pair-
end reads.

Whole-genome bisulfite-seq
Whole-genome bisulfite-seq was performed according to
a previously published protocol [45]. Briefly, 1000 cells
were sorted into lysis buffer by FACS; DNA was released
after proteinase treatment at 50 °C and then subjected to
bisulfite conversion. After bead-based purification, DNA
was complemented with the biotinylated random primer
Bio-P5-N9 (5′-biotin-CTACACGACGCTCTTCCG
ATCTNNNNNNNNN-3′) and 100 units of Klenow
polymerase (3′ to 5′ exo-, New England BioLabs). This
random priming was repeated seven times in total. Sec-
ond strands were synthesized using another random pri-
mer, P7-N9 (5′-AGACGTGTGCTCTTCCGATCTN
NNNNNNNN-3′), and final libraries were generated
after 7 to 9 cycles of PCR amplification with the Illumina
universal PCR primer and Illumina indexed primer.

RNA-seq analysis
RNA-seq data were first processed to filter out low-
quality reads with (1) “N” bases accounting for 3% read
length, or (2) bases with quality < 3 account for 50% read
length, or (3) containing adapter sequences. Then, kal-
listo [46] was used to quantify the abundances of tran-
scripts. To summarize transcript-level abundance
estimates for gene-level analysis, tximport [47] package
from R bioconductor was used with parameter “counts-
FromAbundance = lengthScaledTPM” to correct library
size and average transcript length across samples. Differ-
ential gene expression analysis was performed by using
DESeq2 [48] package from R Bioconductor. Only the
genes with adjusted p values less than 0.05 were consid-
ered to be differentially expressed. Normalized counts
from DESeq2 were used to visualize the expression of
genes and the downstream analysis. PCA analysis was
performed with the R prcomp function on log2 (normal-
ized counts + 1) expression values with specific gene
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subtypes, including highly variable genes across the five
T cell populations (identified by R function FindVaria-
bleFeatures from Seurat [49] package) and significantly
differential expression genes between CD103+CD39+
and CD103−CD39− samples. GSVA analysis was per-
formed on log2 (normalized counts + 1) expression
values by using GSVA [50] R package. To test the func-
tional enrichment of CD103+CD39+ TILs vs. CD103
−CD39− TILs, genes were ranked by fold-change differ-
ence, then using GSEA function from clusterProfiler [51]
R package to test enrichment of TRM and TEX signatures,
collected from previously published paper [3].
Naïve, cytotoxic, and exhausted scores were defined as

the average expression of specific markers, with the ex-
pression level of each gene measured in log10-space.
Seven markers for naïve T cells (CCR7, LEF1, SELL,
TCF7, S1PR1, CD27, and CD28) were used for the naïve
score. Eight markers for cytotoxic T cells (NKG7, CCL4,
CST7, PRF1, GZMA, GZMB, IFNG, CCL3) and six
markers for exhausted T cells (TIGIT, HAVCR2, CTLA4,
PDCD1, LAG3, LAYN) were used to define the cytotoxic
score and exhausted score. After delineating the naïve,
cytotoxic, and exhausted scores of each T population,
the Wilcoxon test was applied to compare the difference
between each group, with p value < 0.05 considered
significant.

Bisulfite-seq analysis
Sequencing reads were trimmed of 9 bases for random
primer sequences and removed the low-quality and
adapter contaminated reads using trim galore (http://
www.bioinformatics.babraham.ac.uk/projects/trim_gal-
ore). The cleaned reads were then mapped to the com-
putationally bisulfite-converted human reference
genome (GRCh38) by using Bismark [52] with paired-
end mode (parameter settings: “bismark --pbat -N 1 -L
32”). Then, the unmapped reads after paired-end map-
ping were re-aligned to the same reference in single-end
mode. Potential PCR duplicates were removed using du-
plicate-remover in MethPipe [53]. The lambda genome
was added into human reference genome as extra
chromosome to estimate the bisulfite conversion rate.
We used bsrate from MethPipe to estimate bisulfite con-
version rate, and samples with > 99% (or almost 99%) bi-
sulfite conversion rates were retained for the DNA
methylation analysis. Most post-alignment analysis was
performed by functions from MethPipe [53] Package.
Methylation levels for each symmetric CpG site were

calculated by the methcounts and symmetric-cpgs com-
mands in MethPipe. Average CpG methylation levels of
about 5 kb tils for all chromosomes in human genome
were calculated with MethPipe roimethstat command
for each T cell population. Only high-confidence gen-
omic regions with at least 40 CpG observations from

reads in the genomic tile were used for the PCA analysis
(R prcomp function) to compare the overall methylation
level in genome wide of the five T cell populations.
Specific hypomethylated regions (HypoMRs) for each

T cell population were calculated in a “one vs. rest” fash-
ion by using radmeth regression, radmeth adjust, and
radmeth merge commands in MethPipe. Then, we over-
lapped these HypoMRs with promoter regions (defined
as − 2.5 kb and 1 kb from transcription start site (RefSeq
gene model downloaded from UCSC Table browser
[54])) to identify genes affected by HypoMRs in each T
cell population. The average methylation level of all
HypoMRs in each T cell population was calculated by
roimethstat command. To visualize the methylation pat-
tern of given genes in different populations, lollipop plot
from CGmapTools [55] was used. The Wilcoxon test
was applied to compare the methylation levels of
HypoMR between each group, with p value < 0.05 con-
sidered significant.

Correlation of promoter methylation and RNA expression
of immune-related genes
Here, we focused on three immune signature gene sets
for naïve (CCR7, LEF1, SELL, TCF7, S1PR1, CD27, and
CD28), cytotoxic (NKG7, CCL4, CST7, PRF1, GZMA,
GZMB, IFNG, and CCL3) and exhausted (TIGIT,
HAVCR2, CTLA4, PDCD1, LAG3, and LAYN) T cells.
First, the average methylation levels of those gene pro-
moter regions were calculated by using roimethstat com-
mand in each sample. RNA expression level of those
genes was calculated by using the normalized counts
from DESeq2. Spearman’s correlation was used to calcu-
late the relationship of RNA expression level and pro-
moter methylation level. p values were adjusted by the
Benjamini-Hochberg method.

Inferred regulation network construction
First, the enriched transcription factor motifs within
HypoMRs were performed by HOMER [56] to identify
possible key transcription factors in each T cell popula-
tion. Furthermore, to investigate the possible target
genes regulated by transcription factors in tumor-
reactive T cells, transcription factor binding motifs were
scanned through the promoter regions in the whole hu-
man genome (using scanMotifGenomeWide.pl in homer)
to identify all possible target sites genome wide, and
then, all the predicted target sites were intersected with
the specific hypomethylated regions in tumor-reactive T
cell population to construct the possible regulation net-
work in each T cell population.

In silico FACS for scRNA-seq data
scRNA-Seq was downloaded from GSE108989 [19]. A
total of 1646 CD8+ T cells from tumor site were
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retained for our analysis, with the expression level of
each gene measured by log2 (TPM + 1). Using cutoff 4
for the expression of gene CD103 and CD19, 25.9% cells
were classified as CD103+CD39+, 41.0% were
CD103+CD39−, and 29.9% were CD103−CD39−. Then,
we used the scRNA-Seq data to investigate the co-
expression of PDCD1 and three TFs (NR4A1, BATF, and
VDR). The percentages of double-positive cells for
PDCD1 and TF in the corresponding TF-positive cells
are calculated in the three TIL subsets, respectively.
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