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RADAR: differential analysis of MeRIP-seq
data with a random effect model

Genome Biology

Check for
updates

Zijie Zhang"*?, Qi Zhan™®, Mark Eckert®, Allen Zhu'*? Agnieszka Chryplewicz®, Dario F. De Jesus’, Decheng Ren®,
Rohit N. Kulkarni’, Ernst Lengyel®, Chuan He'**" and Mengjie Chen™*"

Abstract

Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA
modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in
MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of
pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In
addition, it is compatible with complex study design when covariates need to be incorporated in the analysis.
Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible
differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/

RADAR.
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Background
The RNA epigenetics gold rush in the past few years has
brought reversible RNA modifications into the spotlight
as an important mechanism of gene regulation. Particu-
larly, N®-adenosine methylation (m°A), the most abun-
dant modification on mRNA, has drawn extensive
attention due to its important functions in various bio-
logical systems [1-3]. Methylated RNA immunoprecipi-
tation sequencing (MeRIP-seq) [4—6] is a key technique
used in mRNA modification studies that has enabled us
to survey the epitranscriptome using various study de-
signs: (1) identifying the location of modification on the
transcript by performing peak calling on MeRIP-seq
samples of certain phenotype or experimental condition
and (2) identifying differentially methylated loci by com-
paring MeRIP-seq samples across different phenotypical
or experimental groups. These analyses connect mRNA
modifications with phenotypes and have the great poten-
tial to reveal its functional consequences.

Early studies performing qualitative analysis compared
peaks called in one experimental group versus peaks in
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another group and identified peaks unique to each experi-
mental group as differentially methylated peaks. However,
many differential peaks identified by this method are
caused by boundary cases at the peak-detection threshold
rather than true presence/absence of peaks as noted in a
recent study [7]. To enable cross-group comparisons, a
few methods have been developed and applied to analyze
differential methylation in MeRIP-seq data [8—11]. Exo-
mePeak uses Fisher’s exact test for differential methylation
identifications, and its later version uses a likelihood ratio
test based on the binomial distribution (termed “bltest”)
[11, 12]. MeTPeak uses a beta-binomial model to infer dif-
ferential peaks [8]. DRME and its improved version—
QNB—use a model based on the negative binomial distri-
bution [9, 10].

While existing methods have yielded promising results,
they also have important drawbacks: (1) Current
methods [8-11] designed for small sample size scenario
ignore the existence of confounding factors and cannot
accommodate complex study designs with covariates
(such as age and gender) that are frequently encountered
in patient or animal studies with larger sample sizes. (2)
Most of the differential gene expression (DE) analysis
tools such as edgeR, DESeq2, and Sleuth [13-15] are
compatible with complex study designs. But they rely on
models developed for RNA-seq experiment and cannot
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accommodate unique features of MeRIP-seq data. A
standard MeRIP-seq experiment yields an INPUT and
an Immunoprecipitation (IP) library for each sample.
The INPUT library is the initial RNA fragments pool
prior to the antibody pull-down—a measurement of
RNA expression level. The IP library represents the
RNA fragments carrying modified bases captured by
antibody pull-down—a measurement of methylated
RNA abundance. RNA differential methylation (DM) is
defined as the alteration of methylated RNA abundance
conditioning on the RNA expression background. Thus,
DM analysis requires assessment of RNA methylation
change based on pre-IP and post-IP measurements in
pairs. In contrast, DE analysis tools only compare a sin-
gle read count measurement across samples. (3) Current
MeRIP-seq-specific tools [8, 9, 11] use peak (~ 250 bp)
read counts in the INPUT library as measurement of
RNA expression for a gene (~ 11 kb). However, the vari-
ability in a small genomic range across samples due to
the sparsity of reads sampled can result in unwanted
variation to the expression level estimation if using local
read counts. QNB combines local read counts of both
INPUT and IP as an estimator of the expression level to
mitigate this problem. However, incorporating IP read
counts can cofound pre-IP expression level with post-IP
RNA abundance, leading to biased estimation of expres-
sion level. Inaccurate expression level measurement can
lead to substantial false discoveries in the subsequent
DM analysis. Thus, the utilization of INPUT library to
account for pre-IP RNA expression level needs to be fur-
ther optimized.

To combat these challenges and allow for accurate
identification of differentially methylated loci, we present
a novel approach to perform RNA methylAtion Differen-
tial Analysis in R (RADAR) for MeRIP-seq data. RADAR
accounts for variation in pre-IP RNA and in post-IP read
counts using different strategies. Specifically, RADAR
uses gene-level read counts instead of peak-level read
counts in the INPUT library as a robust measurement of
the initial pre-IP RNA expression level. In addition,
RADAR uses a flexible Poisson random effect model to
accommodate over-dispersion in the post-IP read counts
due to variability of biological replicates and noise intro-
duced in the immunoprecipitation process. This general-
ized linear model framework enables incorporation of
covariates in complex study designs.

We benchmarked the performance of RADAR with al-
ternative methods on simulated data by different data
generating models. We showed RADAR achieved higher
sensitivity and specificity compared to existing alterna-
tive methods. We also demonstrated the performance of
RADAR on real MeRIP-seq data by applying it to four
high-quality m°®A-meRIP-seq (aka m°A-seq) datasets
generated by us and others, including an ovarian cancer
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dataset (GSE 119168) consisting of 7 normal fallopian
tube tissue from healthy individuals and 6 metastatic
omental tumors, a type 2 diabetes (T2D, GSE 120024)
dataset consisting of human islets from 8 type II diabetes
patients and 7 healthy control patients with samples be-
ing processed in three batches due to different sample
acquisition times, a mouse liver (GSE 119490) dataset
consisting of mouse liver from 4 wild type mice and 4
METTLI14 knockout mice, and a mouse brain (GSE
113781) dataset consisting of 7 mouse cortex samples of
stress-exposed mice and 7 from control mice. We
showed that our approach can accommodate distinct
study designs and led to more sensitive and reproducible
DM locus identification than possible alternatives.

Results
RADAR overcomes challenges in modeling MeRIP-seq
data and accommodates complex study designs
Using BAM files as the input, RADAR first divides tran-
scripts (concatenated exons) into 50-bp consecutive bins
and quantifies pre-IP and post-IP read counts for each
bin (Fig. 1a). Unlike current differential methylation ana-
lysis methods [8—11] that scale to library sizes as a way
of normalization, which can be strongly skewed by
highly expressed genes [16] (Additional file 1: Figure S1),
RADAR uses the median-of-ratio method [17] imple-
mented in DEseq2 to normalize the INPUT library for
the sake of robustness. For the IP library, RADAR nor-
malizes the fold enrichment computed from the IP
counts divided by the INPUT counts, which takes both
IP efficiency and IP library size variation into account.
After proper normalization across all samples, RADAR
then calculates the methylation level for each bin condi-
tioned on its pre-IP RNA expression level for each sam-
ple. In contrast to previous methods [8-11] that use
peak-level read counts in the INPUT library as its meas-
urement of pre-IP RNA expression level, we use gene-
level read counts as a more robust representation, which
is defined as the total number of reads across all bins
that span the same gene (Fig. 1a). This choice is moti-
vated by the observation that the median read coverage
within each peak is very low—18 reads per peak (7 reads
in a 50-bp bin) (Additional file 1: Figure S2) in a typical
MeRIP-seq input sample of 20 million (mappable) reads
(Additional file 1: Figure S3). Over-dispersion of low
counts due to random sampling in the sequencing
process can introduce substantial unwanted variation to
the estimation of pre-IP RNA level. This can be further
exacerbated by the uneven distribution of reads caused
by local sequence characteristics such as GC content
and mappability. Using gene-level counts as the estimate
of pre-IP RNA expression level can mitigate the disper-
sion by increasing the number of reads (272 reads on
average) and simultaneously diminishing the effects of
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Fig. 1 Unique features of m°A-seq (MeRIP-seq) data. RADAR divides concatenated exons of a gene into consecutive bins and models the
immunoprecipitation (IP)-enriched read counts in such bins. a depicts a pair of read counts in the INPUT and the IP library in the ith bin as ¢; and
t;. In the RADAR workflow, the gene-level read count of the input library Sicgene,, substitutes the bin-level read count ¢; as the representation of
the pre-IP RNA levels of the ith bin. b compares the relative variation of gene-level and bin-level (local) read counts of different bin sizes in four
mPA-seq datasets, suggesting that unwanted variation can be reduced using gene-level counts as the estimates of pre-IP RNA levels. Panel ¢
compares the cross-sample mean and variance of regular RNA-seq (pre-IP counts) and m®A-seq (post-IP read counts adjusted for pre-IP RNA level
variation) data in four m®A-seq datasets. The fitted curvature of m®A-seq can differ from that of RNA-seq, indicating that m®A-seq may have a
different mean-variance relationship from RNA-seq. Biological and experimental confounding factors are often encountered in patient samples. d
shows the first two principal components (PCs) of m°A enrichment in each dataset, where the samples are colored by covariates that need to be
accounted for. m°A enrichment was represented by IP sample read counts adjusted for pre-IP (INPUT) RNA-level variation. e shows the first two
PCs after regressing out known covariates—age in the ovarian cancer dataset and batch in the T2D dataset. After regressing out the covariate,
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sequence characteristics within a gene (Fig. 1a). By com-
paring the variance of read counts across replicates at
the gene level with that at the bin level, we show that
the cross-sample variance is much less at the gene level
than at the bin level in all three datasets (Fig. 1b).
RADAR models the read count distribution using a
Poisson random effect model instead of a negative bino-
mial distribution, which is commonly used in RNA-seq

analysis [13, 15, 17] as well as in DRME and QNB for
MeRIP-seq analysis [9, 10]. Negative binomial
distribution-based models assume a quadratic relation-
ship between mean read counts and their variance across
all genes. We observe in real m°A-seq datasets that the
mean-variance relationship of post-IP counts across
genes significantly differs from that of regular RNA-seq
counts (i.e., pre-IP counts). The former does not always
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follow a similar quadratic curvature and can exhibit very
different patterns of variability (Fig. 1c, Additional file 1:
Figure S4). To overcome these limitations, RADAR ap-
plies a more flexible generalized linear model framework
(see the “Material and methods” section) that captures
variability through random effects.

Another important advancement of RADAR, com-
pared to existing MeRIP-seq data analysis tools [8—11],
is the flexibility to incorporate covariates and permit
more complex study design. Phenotypic covariates such
as age and gender as well as experimental covariates
such as batch information are often encountered in epi-
transcriptomic profiling studies with heterogenous pa-
tient samples. Covariates such as litter and age are
common in experimental animal studies. For example,
in the ovarian cancer dataset, the age of the tissue do-
nors is partially confounded with predictor variable—dis-
ease status. In the T2D islets dataset, the variance of the
first two principal components is confounded with the
sequencing batch (Fig. 1d). After regressing out the
batch effect, the remaining variance can be better ex-
plained by disease status (Fig. 1e). This indicates the im-
portance of controlling for potential confounding factors
when performing differential methylation tests. The gen-
eralized linear model framework in RADAR allows the
inclusion of covariates and offers support for complex
study designs.

Comparative benchmarks of different methods using
simulated datasets
To evaluate the performance of RADAR in comparison
to current methods, we applied RADAR and other
methods for MeRIP-seq differential analysis including
exomePeak, Fisher’s exact test, MeTDiff, and QNB on
simulated datasets. We considered four scenarios: the
proposed random effect model with/without covariates
and the quad-negative binomial (QNB) model adopted
from QNB [9, 10] with/without covariates. For each sce-
nario, we evaluated the sensitivity and false discovery
rate (FDR) of different methods using ten simulated cop-
ies. We first simulated a dataset of eight samples using
the random effect model (“Materials and method” sec-
tion Eq. (1), denoted as the simple case). The INPUT li-
brary was directly drawn from the T2D dataset. We
simulated IP read count adjusted for pre-IP expression
level of each bin according to Eq. (1) where 4 is equal to
mean log read count in the “control” group of T2D data-
set. The final IP read counts were obtained by rescaling
simulated data by the average IP/INPUT ratio observed
in the T2D data. In total, we simulated three datasets of
26,324 sites in which 20% of sites are true positives with
effect sizes of 0.5, 0.75, or 1, respectively.

For DM loci with an effect size of 0.5, RADAR
achieved 29.1% sensitivity and 12.0% FDR at an FDR
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cutoff of 10%. At the same cutoff, exomePeak and Fish-
er’s test achieved 72.8% sensitivity/52.5% FDR and 72.2%
sensitivity/50.5% FDR, respectively. MeTDiff achieved
10.5% sensitivity and 16.2% FDR. QNB, on the contrary,
did not own any power for the small effect size. When
the effect size increased, RADAR achieved much higher
sensitivity, 77.8% for an effect size of 0.75 and 95.7% for
an effect size of 1, while FDR were well calibrated at
10.4% and 10.1%, respectively. exomePeak and Fisher’s
test both achieved 89% and 96% sensitivity for effect
sizes of 0.75 and 1, respectively, but at the cost of unsat-
isfactory FDRs, which were greater than 46%. MeTPeak
exhibited well-calibrated FDR (12.3% and 11.4%) and
moderate sensitivity of 50.4% and 81.5% for effect sizes
of 0.75 and 1, respectively. QNB only had low power for
an effect size of 1 (beta=1, 13.9% sensitivity and 0.5%
FDR). Overall, for the simple case without covariates,
RADAR achieved high sensitivity while maintained low
EDR at varying true effect sizes (Fig. 2a). We then ap-
plied the above analysis at varying FDR cutoff and found
RADAR achieved the highest sensitivity at a fixed level
of empirical FDR (Additional file 1: Figure S5A). We
note exomePeak and Fisher’s test achieved high sensitiv-
ity at all effect sizes as combining read counts across
replicates of the same group helped to gain power. As a
tradeoff, failing to account for within-group variability
resulted in high FDR. On the contrary, RADAR and
MeTDiff exhibited well-calibrated FDR while achieved
high sensitivity at same levels as exomePeak for large ef-
fect sizes. QNB was overconservative and possessed little
power.

We next applied the aforementioned methods to the
proposed model with a covariate (effect size equal to 2,
denoted as the difficult case) (Fig. 2b). As a result, at an
EDR cutoff of 10%, RADAR achieved 38.4%, 79.7%, and
95.7% sensitivity with empirical FDRs slightly higher
than those in the simple case (18.2%, 14.4%, and 13.7%
for effect sizes of 0.5, 0.75, and 1, respectively). MeTDiff,
with similar performance as RADAR in the simple case,
lost power in the difficult case due to incapability of ac-
counting for confounding factors. exomePeak, Fisher’s
test, and QNB behaved similarly as in the simple case.
The advantage of RADAR over other methods is robust
to the choice of FDR cutoff as shown in Additional file 1:
Figure S5B. In summary, RADAR outperformed existing
alternatives in both cases.

Taking the covariate model with a DM effect size of
0.75 as an example, we also checked the distributions of
effect size estimates and p values obtained from each
method. In all methods, effect sizes were overall cor-
rectly estimated with estimates for “true” sites centered
at 0.75 (Additional file 1: Figure S6A) and that for null
sites centered at zero (Additional file 1: Figure S6B).
However, we note the distribution of beta estimates is
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Fig. 2 (See legend on next page.)
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Fig. 2 Benchmarking RADAR on two simulation models. We benchmarked RADAR and other alternative methods on simulated data. Using two
simulation models—a random effect (RADAR) model and a quad-negative-binomial (QNB) model, we simulated dataset of eight replicates of
varying true effect sizes (0.5, 0.75, and 1) with and without covariates. We tested different methods on simulated dataset and compared the
results at an FDR cutoff of 0.1 with simulated true sites. We show the sensitivity (fraction of true sites detected by the method at an FDR cutoff of
0.1) and false discovery rate (fraction of detected differential sites that are not true sites) of each method applied on data simulated by the
random effect model without covariates (a) and with covariates (b) and the quad-negative-binomial model without covariates (c) and with
covariates (d), respectively. The FDR cutoff used to select DM sites is labeled by a dashed line

narrower for RADAR, especially in the difficult case,
suggesting a more confident estimation. p values of exo-
mePeak and Fisher’s test at null sites were enriched near
zero, indicating over-detection of false-positive signals
(Additional file 1: Figure S6C). We also observed many
large p values obtained by QNB for “true” sites in both
cases and MeTDiff in the difficult case, which suggested
a high false-negative rate (Additional file 1: Figure S6D).

We then repeated simulation studies using the QNB
model. Instead of setting the variances of INPUT and IP
libraries equal as presented in the QNB paper, we let the
variance of IP read count be larger than that of INPUT.
This setting better reflects our observation in the real data
as extra noise can be introduced during immunoprecipita-
tion process for IP reads generation (Additional file 1:
Figure S4). In the simple case without covariates, RADAR
exhibited the lowest empirical FDR (18.9% and 18.5%)
despite slightly lower sensitivity comparing to other
methods (73.5% and 82.3%) when the effect sizes were
relatively large (for effect sizes of 0.75 and 1). QNB per-
formed better when the effect size was small with 58.6%
sensitivity and 15.6% FDR for an effect size of 0.5 (Fig. 2c).
The results were consistent when we evaluated their per-
formance with different FDR cutoffs. Overall, QNB per-
formed slightly better than RADAR with an effect size of
0.5. RADAR achieved similar sensitivity but better
calibrated FDR when effect sizes equal to 0.75 and 1
(Additional file 1: Figure S5C). In the model with covari-
ates, RADAR exhibited the lowest empirical FDR, with
25.8%, 23.0%, and 22.5% at effect sizes of 0.5, 0.75, and 1,
respectively, while other methods either failed to detect
the signal or had a higher empirical FDR. Specifically,
MeTDiff had sensitivity below 0.5% at varying effect sizes
and QNB reached FDRs of 64.1%, 55.8%, and 50.5% for ef-
fect sizes of 0.5, 0.75, and 1, respectively, at an FDR cutoff
of 10% (Fig. 2d). The advantage of RADAR over alterna-
tive methods hold in the difficult case at varying cutoffs
(Additional file 1: Figure S5D). In summary, RADAR out-
performed other existing methods in most scenarios, par-
ticularly when covariates were present.

Comparative benchmarks of different methods using four
real m°A-seq datasets

Next, we compared the performance of different
methods using four real m°A-seq datasets: ovarian

cancer (GSE119168), T2D (GSE120024), mouse liver
(GSE119490), and mouse brain (GSE113781). To evalu-
ate the sensitivity of different methods, we first checked
the distributions of p values obtained from correspond-
ing DM tests (Fig. 3). In the ovarian cancer, T2D, and
mouse liver data, Fisher’s test and exomePeak detected
the most signals as the p values are most dense near
zero. In these three datasets, RADAR also returned a de-
sirable shape for the p value histogram in which p values
were enriched near zero while uniformly distributed
elsewhere. MeTDiff returned a desired shape only in the
ovarian cancer and mouse liver datasets. QNB were
overconservative in the ovarian cancer and T2D dataset.
All methods failed to return enriched p values near zero
for the mouse brain dataset, suggesting there was no or
little signal in this dataset. This is consistent with the
original publication that very few differential peaks were
detected in this study [7].

To ensure that well-performed methods achieved high
sensitivity while maintaining a low FDR, we further per-
formed permutation analyses to obtain the null distribu-
tion of p values for each dataset. Specifically, we shuffled
the phenotype labels of samples such that the new labels
were not associated with the true ones or any other im-
portant confounding factors. We expected the p values
from a permutation test to follow a uniform distribution
and the enriched p values near zero would be considered
as false discoveries. For each dataset, we combined test
statistics from 15 permuted copies and compared their
distribution with the original tests (Fig. 4). p values from
Fisher’s test and exomePeak were strongly enriched near
zero and only slightly lower than those from the original
tests. This suggests the strong signals detected by these
two methods are likely to be false discoveries, consistent
with the conclusion from simulation analysis. On the con-
trary, the histograms of p values from RADAR were close
to flat in all datasets, indicating that strong signals de-
tected by RADAR were more likely to be true. MeTDiff
exhibited well-calibrated p values in the ovarian cancer
and T2D data but enriched for small p values in the
mouse liver data with an indicated high FDR. QNB test
returned conservative p value estimates in all datasets.
Taking together these analyses, we demonstrated that
RADAR outperforms the alternatives by achieving high
sensitivity and specificity simultaneously in real datasets.
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Fig. 3 Sensitivity of benchmarked methods on real m°A-seq data. We benchmarked RADAR and other alternative methods on four m°A-seq data
with different characteristics. Each panel shows the histogram of p-values obtained from DM tests using RADAR, MeTDiff, QNB, Fisher's exact test
and exomePeak on each dataset, respectively

To better demonstrate that RADAR detects DM sites
with better sensitivity and specificity in real data, we
show examples of DM site that is only detected by
RADAR as well as likely false discovery sites identified
by exomePeak and Fisher’s test but not by RADAR in
the T2D dataset. We plot sequence coverage of individ-
ual samples for the DM sites in the RNF213 gene (Add-
itional file 1: Figure S7A) and show despite large
variability in control samples, m°A enrichment of T2D

samples is consistently lower on this locus. Conversely,
in the bogus DM sites detected by alternative methods
(Additional file 1: Figure S7B, C), enrichment differences
are mainly driven by one or two outlier samples in one
group.

To further demonstrate the advantage of using gene-
level read counts over local read counts to account for
RNA expression level, we repeated the above analysis
using post-IP counts adjusted by the local read counts of
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Fig. 4 Benchmarking false-positive signals using permutation analysis on real m®A-seq data. To assess empirical FDR of the test, we permuted the
phenotype labels of samples so that the new labels were not associated with true ones. Each panel shows the histograms of p values obtained
from DM tests on 15 permuted copies (blue) and those from the tests on the original dataset (red)

INPUT. We showed that in the T2D dataset, gene-level
adjustment not only enabled stronger signal detection,
but also lowered FDR as we observed that the permuta-
tion analysis using local count adjustment resulted in
undesired stronger signals around zero in the p value

histogram (Additional file 1: Figure S8). In the ovarian
cancer and the mouse liver datasets, local count adjust-
ment achieved higher signal detection but at the cost of
a higher FDR. This analysis suggested that using gene-
level read counts as the estimates of pre-IP RNA
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expression levels could effectively reduce FDR and lead
to more accurate DM locus detections.

Attributed to the robust representation of pre-IP RNA
expression level using gene-level read counts, RADAR’s
performance is more robust to the sequencing depth of
INPUT samples. To demonstrate this, we applied
RADAR on data created by sub-sampling the read
counts of INPUT samples in the T2D dataset so that the
sequencing depth is half of the full dataset (average 17.5
million reads). We compared the DM sites detected in
the reduced dataset with the results obtained from the
full dataset (Additional file 1: Figure S9A). Using a 10%
FDR cutoff, RADAR-detected DM sites in the reduced
dataset showed the highest overlap with that in the full
dataset. MeTDiff and QNB only had a few overlapping
DM sites between the sub-sampled and full dataset.
Fisher’s test and exomePeak had slightly fewer overlaps
comparing to RADAR but had more false discoveries.
We further compared the log fold change (logFC) esti-
mates from reduced and full datasets to check their
consistency. As a result, we found reduced sequencing
depth had the least impact on the logFC estimated by
RADAR while the estimates by others are much less re-
producible with a shallower sequencing depth (Add-
itional file 1: Figure S9A).

Unlike earlier pipelines that perform DM tests only on
peaks identified from peak calling, RADAR directly tests
on all filtered bins and reports DM sites. To check if the
DM sites reported by RADAR are consistent with known
characteristics of m°A, we performed de novo motif
search on these sites and found DM sites detected in
ovarian cancer, mouse liver, and T2D datasets are
enriched for known m®A consensus motif (Add-
itional file 1: Figure S10A) [18], suggesting DM sites re-
ported by RADAR are mostly true. We also examined
the topological distribution of these DM sites by meta-
gene analysis (Additional file 1: Figure S10B). The distri-
butions in ovarian cancer and mouse liver datasets are
consistent with the topological distribution of common
m°A sites, indicating methylation changes that occurred
in these two datasets were not spatially biased. Interest-
ingly, DM sites detected in T2D dataset are strongly
enriched at 5'UTR, suggesting T2D-related m°A alter-
ation are more likely to occur at 5'UTR.

RADAR analyses of m®A-seq data connect phenotype with
mSA-modulated molecular mechanisms

Finally, we investigated whether DM test results ob-
tained from RADAR would lead to better downstream
interpretation. In the ovarian cancer dataset, we per-
formed KEGG pathway enrichment analysis on the dif-
ferential methylated genes (DMGs) detected by RADAR
(Fig. 5a). We found the detected DMGs were enriched
with molecular markers related to ovarian cancer
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dissemination [19, 20]. For instance, we identified key
regulators of the PI3K (enrichment p value 7.8 x 107%)
and MAPK pathways (enrichment p value 1.1 x 107%), in-
cluding hypo-methylated PTEN and hyper-methylated
BCL2 (Additional file 1: Figure S11). Other notable
DMGs include key markers of ovarian cancer such as
MUC16 (CA-125) and PAXS, as well as genes that play
key roles in ovarian cancer biology such as CCNE1 and
MTHER. Conversely, DMGs detected by MeTDiff were
only enriched in three KEGG pathways (Fig. 5b), most
likely due to its inadequate power. We showed through
permutation analysis that exomePeak and Fisher’s test
results included a significant portion of false positives
and could lead to biased downstream interpretations.

In the T2D dataset, DMGs identified by RADAR were
enriched in related pathways including insulin signaling
pathways, type II diabetes mellitus, mTOR pathways,
and AKT pathways (Additional file 1: Table S1), indicat-
ing a role that m®A might play in T2D. We further ana-
lyzed these DMGs in related pathways and found the
methylome of insulin/IGF1-AKT-PDX1 signaling path-
way been mostly hypo-methylated in T2D islets (Add-
itional file 1: Figure S12). Impairment of this pathway
resulting in downregulation of PDX1 has been recog-
nized as a mechanism associated with T2D where PDX1
is a critical gene regulating [ cell identity and cell cycle
and promoting insulin secretion [21-24]. Indeed, follow-
up experiment on a cell line model validated the role of
m°A in tuning cell cycle and insulin secretion in B cells
and animal model lacking methyltransferase Mettl14 in
B cells recapitulated key T2D phenotypes (results pre-
sented in a separate manuscript, [25]). To summarize,
RADAR-identified DMGs enabled us to pursue an in-
depth analysis of the role that m°A methylation plays in
T2D. On the contrary, due to the incapability to take
sample acquisition batches as covariates, the alternative
methods were underpowered to detect DM sites in T2D
dataset and could not lead to any in-depth discovery of
m®A biology in T2D islets. These examples suggest that
MeRIP-seq followed by RADAR analysis could further
advance functional studies of RNA modifications.

Validation of RADAR-detected DM sites by the SELECT
method

Recently, Xiao et al. developed an elongation and
ligation-based qPCR amplification method (termed SE-
LECT) for single nucleotide-specific detection of m°A
[26]. This method relies on mechanism different from
antibody pull-down-based MeRIP-seq to detect m°A,
making it a suitable method for validating DM sites dis-
covered by RADAR analysis. We selected six DM sites
(Additional file 1: Table S2) including two sites only de-
tected by RADAR and four sites in genes important in 3
cell for experimental validation using the SELECT
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method. Among six validated sites, the [} cells regulator
PDX1 and RADAR-specific DM sites showed significant
m°A level alteration with p values 0.009 and 0.017, re-
spectively (Fig. 6). Three other sites, IGFIR in the insu-
lin/IGF1-AKT-PDX1 signaling pathway, MAFA—
another important regulator of B cell function, and
RADAR-specific DM site in CPEB2, showed m°A
changes consistent with RADAR result despite not
reaching statistical significance. The sites in the TRIB3
gene are similarly methylated in control and T2D

samples as measured by SELECT. Overall, five out of six
experimentally validated sites were supported by orthog-
onal evidence by SELECT, confirming the reliability of
RADAR-detected differential methylation sites.

Discussion

Sample size is an important parameter of the study de-
sign that directly affects the power and reproducibility of
an inferential test [27]. DM analyses based on less than
three biological replicates are still common practice in
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the RNA epigenetics field and have been shown to ex-
hibit poor reproducibility [28]. To explore the influence
of sample size on the power and reproducibility of DM
detection, we ran tests on 10 copies of simulated data
with effect size equal to 0.75 (roughly twofold enrich-
ment difference) from two replicates (commonly used)
to eight replicates (up-to-date highest). We show that at
an FDR cutoff of 10% to select DM loci, FDR increases
rapidly as the sample size gets smaller and less than 5
(Fig. 7). When the sample size is greater than 6, im-
provement of FDR is slow while sensitivity climbs rap-
idly. Our simulation results show the number of

replicates greatly influences sensitivity and reproducibil-
ity of DM detection as each additional replicate can
bring significant gain of area under ROC curve (Add-
itional file 1: Figure S13). To ensure adequate power and
reliable DM analysis, we strongly suggest using no less
than five biological replicates when surveying the alter-
ations in the epitranscriptome of human samples with
commonly sequenced library sizes (=20 million map-
pable reads).

The choice of bin size in the RADAR analysis con-
cerns the tradeoff between resolution and accuracy. At a
given sequencing depth, the smaller the bin, the higher
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Fig. 7 The influence of sample size on the statistical power of differential methylation analysis. Sensitivity vs. empirical FDR for each method on
simulated data with different numbers of replicates (2 to 8) at 10% FDR. Each data point represents the results on one of ten simulated copies.
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resolution achieved. However, a smaller bin size also im-
plies fewer reads in a bin, resulting in increased sam-
pling noise. At common library size of 20 million
mappable reads or above, the default bin size (50 bp)
should enable sufficient coverage for most enriched re-
gions in the IP library. We recommend to use larger bin
size (e.g., 100-bp) for data with smaller library sizes (< 15
million mappable reads) to include enough reads in each
bin for DM tests.

A potential caveat of using gene-level instead of local
read count to represent pre-IP expression level is that
exon-specific expression variation in alternative splicing
scenarios would be underrepresented. Filtering out DM
sites that co-localize with alternative spliced exons in
post-processing could help avoid false signals due to this
caveat.

Conclusion

Using simulation and real m®A-seq datasets, we demon-
strated that RADAR can achieve higher sensitivity with
lower FDR than existing methods in the DM analysis.
Taking advantage of newly developed SELECT method for
experimental validation, we verified that RADAR analysis
can uncover true differentially methylated sites. RADAR is
a general framework that can be applicable to comparative
profiling by MeRIP-seq of various types of RNA modifica-
tions including but not limited to N°-methyladenosine, N*-
methyladenosine, and 5-methylcytosine. It also offers great
flexibility to adopt to a wide range of mean-variance rela-
tionships in the data and accommodate different study
designs. We believe RADAR will greatly advance our know-
ledge of the functions of post-transcriptional modifications.

Material and methods

Ovarian cancer samples

All human tissue samples were collected with informed
consent under approved University of Chicago Institu-
tional Review Board protocols and in accordance with
the Declaration of Helsinki. All experiments were con-
ducted in accordance with approved protocol guidelines
and regulations. Six omental tumor tissues were col-
lected from newly diagnosed patients with advanced,
metastatic high-grade serous ovarian cancer during pri-
mary debulking surgery at the University of Chicago.
Seven normal fallopian tube tissues were collected from
patients with benign gynecological conditions at the time
of surgery.

T2D samples

A minimum of 20,000 human islets equivalents (IEQs)/
patient were obtained from the Integrated Islet Distribu-
tion Program (IIIDP) and Prodo Laboratories. Upon re-
ceipt, islets were cultured overnight in Miami Media
#1A (Cellgro, USA) and then handpicked, washed twice
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by self-sedimentation with ice-cold DPBS, and pelleted
for RNA isolation. All studies and protocols used were
approved by the Joslin Diabetes Center’'s Committee on
Human Studies (CHS#5-05). Samples from eight T2D
patients and seven non-diabetic controls were collected
for analyses in this study.

Mouse liver samples

Mouse liver tissues were collected from wild type
Albumin-Cre;Mettl14"* and Albumin-Cre;Mettl14"/-
flox;Cre liver-specific conditional knockout mice [29].
Four wild type and four Mettl14 cKO mice on 42% high-
fat diet for 3 months were sequenced and analyzed.

RNA extraction and m6A-MeRIP-seq

Total RNA was extracted from tissues using TRIzol
(Invitrogen) according to the manufacturer’s instruction.
For T2D and mouse liver samples, mRNA was further
purified with Dynabeads mRNA DIRECT purification kit
(Thermo Fisher, cat. 61,011). mRNA was adjusted to 15
ng/pl in 100 ul and fragmented using Bioruptor ultraso-
nicator (Diagenode) with 30s on/off for 30 cycles. m°A-
immunoprecipitation (m®A-IP) was performed using
EpiMark N6-Methyladenosine enrichment kit (NEB cat.
E1610S). RNA eluted from mCA-IP was cleaned using
RNA Clean and Concentrator (Zymo Research, cat.
R1013). Input and IP samples were then used to prepare
library with KAPA mRNA Hyper Kit (Roche, Cat.
KK8541). For fallopian tube and omental tumor tissues,
total RNA was fragmented and directly subjected to
m®A-IP. Takara Pico-Input Strand-Specific Total RNA-
seq for Illumina (Takara, Cat. 634413) was used to con-
struct libraries from total RNA where ribosome-derived
¢DNA was removed before final library amplification.
T2D and mouse liver libraries were sequenced by the
HiSeq4000 platform at SE50 mode. The ovarian cancer
libraries were sequenced by the NextSeq 500 platform at
PE37 mode.

Data preparation

For each dataset, the raw sequencing data were mapped
to the corresponding reference genome (hg38 for hu-
man, and mm10 for mouse) by Hisat2 [30] with param-
eter -x 1. The BAM files obtained from alignment are
used as an input file for RADAR.

Read count pre-processing

RADAR takes a GTF file as an input for gene annotation
and obtains a gene model using the R package Genomic-
Features [31]. Exons of a gene are concatenated to form
the “longest isoform” transcript, which is then divided
into bins of user-defined size. The R package Rsamtools
[32] is used to extract and quantify aligned reads from
BAM files in each bin. The gene-level counts of INPUT
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library are obtained by summing up bin-level read
counts of each gene.

Normalization

Unlike previous methods [8-11] that scale read
counts to library sizes as a way of normalization,
which can be strongly skewed by highly expressed
genes [16] (Additional file 1: Figure S1), RADAR con-
siders INPUT and IP samples separately. The INPUT
sample is essentially an RNA-seq library; therefore,
we directly apply the median-of-ratio method imple-
mented in DESeq2, which is robust to outliers, to es-
timate a sample-wise size factor for each sample from
INPUT gene-level counts. In regard to the IP sample,
the abundance of read counts f; ; depends on the
abundance of RNA in the pre-IP RNA pool, the over-
all IP efficiency of that sample, the total sequencing
depth of that IP library, and the methylation level of
that locus. To normalize the variation due to sample-
wise IP efficiency difference and sequencing depth
variations of IP libraries, we estimate a sample-wise

tij of

Sgeneyy;. j
the top 1% bins ranked by IP read counts where ¢; ;
is IP read counts and Sgee,; is the normalized gene-
Sum (gene-level) read count at corresponding gene.
The reason that only top bins are used to estimate
the overall IP efficiency is to exclude the regions
where IP read counts are mainly attributed to non-
specific binding.

size factor from the fold enrichment E;; =

Adjust IP read count for pre-IP RNA expression level

To account for the pre-IP gene expression level variation
in IP read counts, we compute a gene-wise size factor by
centering normalized gene-level counts to 1. For each
bin, we divide the normalized IP read counts by the
gene-wise size factor of the corresponding gene. The
resulting IP read counts now reflect the methylation
level as other factors have all been accounted for. The
adjusted IP read counts representing methylation levels
are further used for DM tests.

Data filtering

We apply two filters to remove unwanted bins in the
data: (1) we remove bins in which reads are depleted in
IP libraries because read counts in these bins are likely
attributed to non-specific binding during the immuno-
precipitation and (2) we remove bins in which raw IP
read counts are smaller than 15 (this cutoff can be de-
fined by the user) because signals in regions without suf-
ficient coverage will be too noisy and unreliable. Low IP
read count also implies that the bin is likely a non-
methylated region.
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Model for DM test
For each bin, we model the processed IP read counts Y;
in the ith sample as follows:

Y,’ ~
log(A;) =

POl’(/L‘)
k )
U+ XB+ei=pu+Xop, +Z/:1X,ﬁ}.+ei,

where ); is the mean of a Poisson distribution, u is a
bin-specific intercept, X is the design matrix including
the indicator of the groups of interest X, and covariates
X; (j=1,..., k), B represent associated coefficients, and e;
is a random effect following a log gamma distribution
with a scale parameter ¥ and mean equal to 1, i.e., ¢;€
log Gamma(y, ). Introducing a new variable w;e
Gamma(y, y), we have );=e""*fw, The differential
analysis is equivalent to test against the null hypothesis
/))() =0.

After integrating out w;, the likelihood of observing
the data given all other parameters © is:

+XB\Yi =
e (wiet E) gl e

Yyl I'(y)

i<eu+xﬁ) Y;

(X 4 y) TtV

P(Y|@, —Wi) =
YWYty
Y I(y)

The marginal log likelihood of observing Y can be
written as:

dWi

n

> [Yi(u+XB) + y logy + logl'(Y;+y)

logL(Y) =

- logY;!- logl'(y)~(Y; + y) log(e*™ + y)]

We use the gradient ascent algorithm to calculate
maximum likelihood estimators of all the parameters,
which involves the calculation of the first derivatives.

dlogl(Y) _ 5 Y-y _e 0y
aﬁk B i |:Y17(Yl + l//) el tXB + "4 Xlk

dlogL(Y) Zn Yit+y +XB

T = i [ lOg(// + l—m— log(e“ + l//)

+digamma(Y; + y)-digamma(y))

o logL(Y) e XB
o Z|:Yi_(yi+'//)m

In each iteration, the parameters are updated through

3 log(Y . .
D111) = D) —i—s(tﬂ)%@:%). The step size s, 1) is

determined by a line search algorithm. Finally, a Wald
test is derived to test against S, =0, i.e., the test statistics
is /;’;/sd([;’;) where /;’;) is the MLE and sd(/)?o) is estimated
using observed Fisher information.

Post-processing

Since the DM tests are performed on consecutive bins
on the mRNA, post-processing is needed to merge con-
nected bins that contain reads derived from the same
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methylation site and report their genome coordinates in-
stead of mRNA coordinates. Specifically, we filter all the
bins under user-defined FDR cutoffs and merge adjacent
significant bins to a single peak. To represent the mRNA
peaks using the genome coordinate, we report the final
result in BED12 format, which can specify exon blocks
for an intron-spanning interval.

Simulation analysis

To assess the sensitivity and specificity of each method
on detecting true DM sites, we simulated dataset of eight
replicates with and without covariate. Since RADAR
make inferential test on fold enrichment (pre-processed
IP read counts adjusted for input RNA level variation),
we first simulated this enrichment data (pre-processed
IP read counts) using model (1). We draw the distribu-
tion of gene-specific intercept parameter y (equivalent
to baseline sequencing depth of control samples) and
random effect parameter ¥ from real data (T2D) to bet-
ter reflect the property of real data. For each dataset, we
simulated 26,324 sites where 20% of them were pre-
defined as true DM sites with effect sizes of 0.5, 0.75, or
1. At pre-defined true DM sites, we simulated read
counts with $=0.5 (or 0.75 or 1) while #=0 at null
sites. Other alternative methods take INPUT and IP read
counts as input data for DM tests. To convert our simu-
lated enrichment data into paired INPUT and IP read
counts, we used INPUT read counts from the real T2D
dataset and generated corresponding IP read counts by
rescaling simulated IP counts to match the IP/INPUT
ratio in the real data.

We then applied RADAR, MeTPeak (version 1.1) [8],
QNB (version 1.1.11) [10], Fisher’s exact test, and exo-
mePeak (version 2.17.0) [11] to the simulated data. We
used the Benjamini-Hochberg method to adjust for mul-
tiple comparisons. Using an FDR cutoff at 10% (or 1%,
5% ... in sliding threshold analysis), we obtained a set of
predicted DM sites for each method. We then checked
whether pre-defined true DM sites were predicted to be
DM site. To evaluate the performance, we computed
sensitivity by dividing the number of overlaps between
predicted DM sites and true sites by the number of true
sites. We also computed the empirical FDR by dividing
the number of predicted sites that is not in the true sites
by the number of predicted sites. To evaluate effect of
covariates on the performance, we repeated the above
analysis using model (1) with an additional binary cat-
egorical (such as gender) variable with an effect size of 2.
There are three covariates included in the T2D data ana-
lysis. The covariate with the largest effect size ranges
from 0 to 4. We chose an intermediate effect size of 2 to
represent a moderately challenging scenario in real data.

Next, we repeated the simulation analysis with an al-
ternative model as described in the QNB manuscript

Page 14 of 17

[10], termed as the “QNB model.” Unlike model (1) that
directly simulates the enrichment as pre-processed IP
read counts, the QNB model simulates the paired IN-
PUT and IP read counts separately, each following a
negative binomial distribution. The original QNB model
sets equal variance for both INPUT and IP data. How-
ever, we observe that in the MeRIP-seq, the IP read
counts usually have higher variability than the INPUT
read counts due to extra variation introduced during the
IP process (Fig. 1c and Additional file 1: Figure S4).
Therefore, we modified the QNB model so that the vari-
ance parameter for IP is a magnitude higher than IN-
PUT. Similarly, we generated data for the simple case as
well as the difficult case with one confounding factor
using the QNB model and applied each method to test
for DM loci.

Coverage sub-sampling analysis

To demonstrate that the robust measurement of pre-IP
RNA level implemented in RADAR improves the robust-
ness to varying INPUT sequencing depth, we used T2D
dataset as an example and performed sequencing depth
sub-sampling analysis. We used the Sambamba [33] with
parameters “view -h -t 20 -s 0.5 -f bam —subsampling-
seed=1231" to sub-sample half of the reads from BAM
files of INPUT samples. To count the overlap between
results from sub-sampled and full data, we first obtained
filtered bins that are shared in both datasets, then count
the bin if it reached significant threshold in both data-
sets. To compare the log fold change (logFC) estimates,
we plotted the logFC estimated from the sub-sampled
data against that estimated from the full data by each
method.

De novo motif discovery and metagene analysis
To examine if the putative DM sites detected by RADAR
are consistent with known characteristics of m°A sites,
we performed de novo motif discovery analysis using the
findMotifs function of homer2 [34] with parameter “-len
5,6 -rna -p 20 -S 5 —noknown.” A background sequence
of randomly sampled peaks on transcriptome was used
in the motif analysis.

Topological distribution of putative DM sites was plot-
ted on a metagene using R package Guitar [35].

Pathway enrichment analysis

A pathway enrichment analysis was performed on the
DMGs identified from the ovarian cancer dataset using
KEGG pathways [36] using the enrichKEGG function in
R package ClusterProfiler [37].

Experimental validation by SELECT method
SELECT is an elongation and ligation-based method that
can distinguish single m°A site from A site [26]. Briefly,
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we design two oligos flanking the target m®A/A site that
leave a gap on the m®A/A site. Then, Bst DNA polymer-
ase and SplintR ligase are used to fill the gap where m°A
hinders the elongation of the complementary oligo and
thus prevent the gap to be filled. Finally, qPCR targeting
the ligated oligo is used to quantify the abundance of the
non-methylated RNA molecules. qPCR quantification
targeting a nearby region on the target gene is used to
normalize the gene expression variation. Since readout
of SELECT method reflects relative abundance of non-
methylated molecules, we expect the SELECT result to
be inversely correlated to the m°A levels.

Since SELECT method involves many steps for each
site and is not feasible for high-throughput analysis, we
selected six sites including two DM sites that were only
detected by RADAR and four DM sites that were impli-
cated in T2D biology for experimental validation. We
first matched RRACH motif in the putative DM peak
and designed complementary oligos of 30 nt flanking the
putative m®A site. An additional 21 nt sequence at 5 of
the up-probe and 20 nt sequence 3’ of the down-probe
were added to the oligos as universal primer sequence.
For each DM site, we also designed a pair of primer tar-
geting the gene harboring the DM site (see Add-
itional file 1: Table S3 for oligo and primer sequences).

We applied the SELECT method to four control and
T2D samples that have enough RNA material leftover
from sequencing experiment. For each sample, 50 ng of
total RNA was mixed with 0.8 pl up-probe and down-
probe oligo (1 puM) of each target m°A site, 1 pul dTTP
(100 pM), and 2 pl 10X CutSmart buffer (NEB) supple-
mented with H,O to 17 pl total volume. The mix was in-
cubated at a temperature gradient: 90 °C for 1 min, 80°C
for 1 min, 70 °C for 1 min, 60 °C for 1 min, 50 °C for 1 min,
and then 40 °C for 6 min. Subsequently, a 3 pl of enzyme
mixture containing 0.5 pl Bst 2.0 DNA polymerase (0.02
U/ul) (NEB M0275S), 0.5 pl SplintR ligase (1 U/ul) (NEB
MO0375S), and 2 pl ATP (5 mM) was added in the former
mixture to the final volume of 20 pl. The final reaction
mixture was incubated at 40 °C for 20 min then denatured
at 80°C for 20 min. Then, qPCR reaction to quantify the
“read through” oligos was assembled by 10 pl 2X qPCR
master mix, 0.8 pl universal primer as designed in the
oligo probes (10 uM), 2 pl reaction from previous step,
and 7.2 pl H,O. To quantify the RNA expression level of
each gene harboring the m°A site, we first prepared the
c¢DNA from 50 ng of total RNA using SuperScript VILO
Master Mix (Thermo Fisher 11755050). Then, 2 pl of
c¢DNA was used for qPCR quantification of each gene. Fi-
nally, the gene expression level quantification was used to
normalize the “read through” oligo probe quantification to
obtain “relative read through” level for each site. Note the
“relative read through” level reflects the non-methylated
level, which is inversely correlated with m°A site.
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Sample size analysis

To investigate the effect of sample size on the power of
detecting DM sites, we simulated datasets of varying
sample sizes from N =2 to N =8 using Model (1) with-
out covariates. We assessed the performance by plotting
the sensitivity of each method against its FDR using DM
loci obtained at an FDR cutoff of 10%. Additionally, we
also made the ROC curve for each sample size by vary-
ing the FDR cutoffs when selecting predicted sites (Add-
itional file 1: Figure S13).

Availability of data and materials

Software availability

Our method is implemented as a C++/R package and
is freely available at https://github.com/scottzijiez-
hang/RADAR [38] under GNU General Public License
(GPL-v3.0).

Reproducible documents with all the analysis pre-
sented in the paper are available at https://scottzijiez-
hang.github.io/RADARmanual/Reproducible.html.

Source code of the software can be found at Zenodo
repository: https://doi.org/10.5281/zenodo.3561035

Data availability

All MeRIP-seq datasets sequenced and analyzed in this
manuscript have been deposited in GEO repository: GSE
119168 (ovarian cancer), GSE 120024 (T2D), and GSE
119490 (mouse liver). The mouse brain dataset was
downloaded from GSE 113781 [7].
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