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547 transcriptomes from 44 brain areas
reveal features of the aging brain in non-
human primates
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Abstract

Background: Brain aging is a complex process that depends on the precise regulation of multiple brain regions;
however, the underlying molecular mechanisms behind this process remain to be clarified in non-human primates.

Results: Here, we explore non-human primate brain aging using 547 transcriptomes originating from 44 brain
areas in rhesus macaques (Macaca mulatta). We show that expression connectivity between pairs of cerebral cortex
areas as well as expression symmetry between the left and right hemispheres both decrease after aging. Although
the aging mechanisms across different brain areas are largely convergent, changes in gene expression and alternative
splicing vary at diverse genes, reinforcing the complex multifactorial basis of aging. Through gene co-expression network
analysis, we identify nine modules that exhibit gain of connectivity in the aged brain and uncovered a hub gene, PGLS,
underlying brain aging. We further confirm the functional significance of PGLS in mice at the gene transcription,

molecular, and behavioral levels.

Conclusions: Taken together, our study provides comprehensive transcriptomes on multiple brain regions in
non-human primates and provides novel insights into the molecular mechanism of healthy brain aging.
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Background

Aging, an intricate and irreversible process, varies sig-
nificantly at the individual level, depending on a combin-
ation of genetic and environmental factors an individual
experiences throughout a lifetime [1-3]. Aging is associ-
ated with cognitive decline and memory loss and has
been implicated in many neurodegenerative disorders
[4-8], thereby posing a major threat to global health.
Despite its ubiquity and importance, aging-related alter-
ations have mainly been observed by histology and ethol-
ogy [9-11], with the underlying molecular mechanisms
remaining elusive.
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Aging processes are reliant on precise spatiotemporal
regulation of the transcriptome, and changes in gene
expression have been studied widely in brain aging
[12-15]. However, an increasing body of persuasive
evidence suggests that aging-related changes depend
on the coordination of diversified transcriptional
regulation rather than gene expression only [16-20].
One essential mechanism for increasing the spatio-
temporal complexity of the transcriptome is alterna-
tive splicing, which generates multiple mRNA
transcripts from a single gene and affects up to 95%
of human multi-exon genes [21]. Moreover, the brain
expresses more alternative splicing transcripts than
any other tissue [21-23], and dysregulation of alterna-
tive splicing may affect healthy brain aging [16].

Currently, emerging evidence from human and animal
models suggests that brain aging is regulated by the
interaction of multiple brain regions [24], which must
work together as a network to control this complex
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physiological process. Nevertheless, previous research
has been limited to only a few brain regions (frontal/pre-
frontal cortex) [25—27]. Currently, the lack of a genome-
wide transcriptional landscape of multiple brain regions
limits our understanding of how spatiotemporal orches-
tration of the transcriptome regulates the process of
brain aging.

The advent of high-throughput RNA-sequencing
(RNA-seq) has allowed for a much more comprehensive
exploration of brain aging. In this study, we sequenced
the transcriptomes of 44 brain areas from 4 young and 3
aged rhesus macaques (Macaca mulatta) (Fig. 1), which
are close non-human primate (NHP) relatives of humans
(diverging 25 million years ago) [28, 29], to survey tran-
scriptional profile alterations during aging. Through
multifaceted analyses of RNA-seq data and integration
of gene expression and alternative splicing (Fig. 1), we
provide several novel insights into the molecular under-
pinnings of brain aging. In addition, we discovered a
novel hub gene, PGLS, underlying brain aging and con-
firmed its function at the molecular and phenotypic level
in mice.
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Results

Transcriptome profiling across multiple brain areas in
rhesus macaques

To investigate the dynamic expression patterns associ-
ated with brain aging, we used deep RNA-seq to profile
transcriptomes from 590 post-mortem samples isolated
from 44 brain areas across the left and right hemispheres
in 4 young (5, 6, 6, and 6 years old) and 3 aged (16, 17,
and 24 years old) rhesus macaques (Fig. 1). Rhesus ma-
caques reach sexual maturity at 3—4 years and have a
typical lifespan of 20 to 30years in captivity [30]. After
rigorous quality control (see the “Methods” section;
Additional file 1: Figure S1), 547 samples remained for
downstream analyses. RNA-seq data were then normal-
ized, and genes with low expression values were re-
moved to reduce the influence of technical noise.
Consequently, 15,531 (61.8%) out of 25,111 genes were
detected as having expression signals (an expressed gene
was identified as having least 10 fragments in 80% of
samples). There were no significant differences in the
RNA integrity numbers (Mann-Whitney U (MWU) test,
p =0.723, N = 547) or post-mortem intervals (MWU test,
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Fig. 1 Schematic view of this study. We used 4 young and 3 aged macaques across 44 brain regions to study aging mechanism in NHPs through
multifaceted analyses (connectivity analysis, differentially expressed gene analysis, alternative splicing analysis, and network analysis). We further
confirmed the role of PGLS underlying brain aging in mice. The table on the right shows the ontology and nomenclature of analyzed
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p =1, N=547) between samples originating from young
and aged groups (Additional file 2: Table S1). Sex, hemi-
sphere, brain region, and individual did not explain a
significant amount of expression variation. In contrast,
most of the variation in gene expression could be attrib-
uted to age (p =0.006; Additional file 2: Table S2), sug-
gesting that age contributes more to global differences
in gene expression than any of the other tested variables.
After accounting for the effects of many known bio-
logical and technical confounding factors, we performed
principal component analysis (PCA) on gene expression
in the 547 samples and found that the cortex and non-
cortex clearly clustered into 2 separate groups (Add-
itional file 1: Figure S2a). Hierarchical clustering analysis
based on inter-array correlation also showed distinct
clustering of these two groups (Additional file 1: Figure
S2b). Thus, for the following, we studied the cortex and
non-cortex in the downstream analyses separately.

Attenuation of expression connectivity during brain aging
in NHPs

To assess the changing tendency of transcriptional con-
nectivity among macaque brain regions during aging, we
determined the expression correlation between any two
brain regions in young and aged groups, respectively. By
comparing the correlation matrices at different ages, we
found that inter-areal correlations within the cortex de-
creased after aging (Pearson’s correlation: p = 2.00e-09,
MWU test), with a less dramatic shift seen in the non-
cortex (Pearson’s correlation: p=0.075, MWU test)
(Fig. 2a). Moreover, pairwise comparisons of gene ex-
pression across all regions of the cortex showed an in-
crease in the number of differentially expressed genes
(DEGS) between paired regions during aging (p = 0.009,
MWU test; Additional file 1: Figure S3a), but no signifi-
cant change was seen in the non-cortex (p = 0.2, MWU
test; Additional file 1: Figure S3b). Our results suggest
that attenuation of expression connectivity occurs in the
cerebral cortex during aging. To further validate this ob-
servation, we repeated the correlation analysis using an-
other public age-matched human transcriptome dataset
(12-20 to over 60 years old; sampled brain areas can be
seen in Additional file 2: Table S3) [31]. Similarly, the
expression connectivity among human brain areas was
substantially decreased in the cortex (p=1.12e-12,
MWU test) but unchanged in the non-cortex (p =0.35,
MWU test) after brain aging (Additional file 1: Figure
S4), supporting the robustness of our results and indicat-
ing conserved and consistent changes in expression con-
nectivity during brain aging in primates.

Additionally, by performing unsupervised hierarchical
clustering on the multiple brain areas based on the
gene expression signals in the young and aged groups
(Additional file 1: Figure S5), we found that the relative
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relationship between some brain regions was altered
during brain aging. For example, the ventromedial pre-
frontal cortex (VMPFC) clustered closely with the pos-
terior insula cortex (PIC) in young macaques but
shifted towards the anterior insula cortex (AIC) and lat-
eral superior temporal gyrus (LSTG) in the aged group,
suggesting a dynamic reorganization of transcriptional
patterns between brain areas during aging.

The brain hemispheres are known to be anatomically
and functionally asymmetric [32, 33]. Thus, to explore
changes in expression connectivity between the left and
right hemispheres during aging, we determined the cor-
relation matrices of pairwise comparisons between the
hemispheres at different ages. Results showed that in the
cortex, the correlation coefficient in the young group
was significantly higher than that in the aged group (p =
0.00011, MWU test), but unchanged in the non-cortex
(p=0.7541), suggesting a decreased tendency of tran-
scriptome connectivity between the left and right hemi-
spheres in the cortex during aging (Fig. 2b).

Transcriptional changes across multiple brain areas
during NHP aging

We next investigated the broad patterns of aging-related
transcriptome changes in each brain area by integration
of gene expression (p < 0.05, fold change [FC] > 1.5) and
alternative splicing (p <0.01). Results showed a positive
correlation between the number of DEGs and genes with
differential exon usage genes (DEUs) across brain re-
gions (Pearson’s r*=0.39, p=0.018; Additional file 1:
Figure S6). In addition, changes in gene expression and
alternative splicing were widespread in all brain regions,
although the changes were not uniform (Fig. 3a). Focus-
ing on the 37 brain regions with similar sample sizes,
the visual cortex V4 area was the most prioritized region
exhibiting changes in gene expression (Fig. 3a). In terms
of alternative splicing, the putamen (PTM) was the most
pronounced region showing aging-related changes
(Fig. 3a). Although the putamen plays an important role
in cognitive ability [34—36], few studies have focused on
its role in brain aging.

A significant overlap of DEGs was found across brain
areas (Fig. 3b; Additional file 2: Table S4), and genes
with DEUs were also widely shared among different
brain areas (Fig. 3¢; Additional file 2: Table S5). These find-
ings suggest that although the degree of aging-related
change across brain areas was diversified (Fig. 3a), aging
mechanisms among different brain regions were largely
convergent. However, we found a rare overlap between
DEGs and genes with DEUs across brain regions (Fig. 3d;
Additional file 2: Table S6). Gene enrichment analyses also
indicated that DEGs and genes with DEUs were enriched
in different categories (Additional file 1: Figure S7). Our
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Fig. 2 Expression connectivity between pairs of cerebral cortex areas and expression symmetry between the left and right hemispheres decrease
after aging. a Heat map matrix of pairwise Pearson correlations between cortex regions (top) and between non-cortex areas (bottom) in young
and aged macaques. b Heatmap matrix of pairwise Pearson correlations between the left and right hemispheres in cortex (top) and non-cortex
(bottom) regions in young and aged macaques (columns represent brain areas across the left hemisphere; rows represent brain areas across the

right hemisphere)

results suggest that gene expression and alternative splicing
likely regulate brain aging in distinct manners.

In consideration of the convergent mechanisms among
different brain areas during aging described above, we next
investigated aging-related gene expression changes in the
whole cortex and whole non-cortex. In the cortex, we iden-
tified 432 DEGs (157 upregulated, 275 downregulated) (p <

0.05, fold change [FC] > 1.5) accounting for 2.8% (432/15,
220) of all expressed genes. In the non-cortex, we identified
268 DEGs (86 upregulated, 182 downregulated) equating to
1.7% (268/15,531) of expressed genes. The decreased num-
ber of DEGs in the non-cortex (p = 6.186e-10, chi-squared
test) is consistent with recent functional magnetic reson-
ance imaging (fMRI) research, which showed that aging
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induced more dramatic changes in the cortex than in the
non-cortex [37]. However, a highly significant overlap in
DEGs was found between the cortex and non-cortex (p =
1.5e-224, Fisher’s exact test; Additional file 1: Figure S8),
corroborating the conclusion that aging-related gene

expression changes are largely convergent among the differ-
ent regions.

The NDRG family member 4 (NDRG4) gene,
highlighted in our analysis, is reportedly implicated in
Alzheimer’s disease (AD) [38]. Our results showed that
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the expression level of NDRG4 significantly decreased
during aging (1.5-fold change, unpaired ¢ test, p = 9.29
-07), which agrees with previous studies showing that
NDRG4 mRNA expression is lower in the brains of pa-
tients with AD [39]. We speculate that NDRG4 plays an
important role in regulating brain aging. Another inter-
esting gene identified in our analysis was cytochrome c
oxidase III, mitochondrial (MT-CO3), which was upreg-
ulated in the aged brains (2.3-fold change, unpaired ¢
test, p = 9.53e-39). The main function of this gene is to
regulate cytochrome-c oxidase activity and respiratory
electron transfer activity [40]. MT-CO3 has also been
implicated in AD, Huntington’s disease (HD), and Par-
kinson’s disease (PD) [41, 42]; however, no previous
study has reported an association between MT-CO3 and
brain aging. Our study suggests that MT-CO3 is likely
involved in brain aging.

To further characterize the observed DEG patterns, we
examined the enrichment of cell type-associated genes
and gene ontologies for the significantly up- and down-
regulated genes in the aged group. Genes with upregu-
lated expression were predominantly enriched in
astrocytes (Fig. 3f; Additional file 1: Figure S9). Gene
Ontology (GO) enrichment analysis indicated that they
were associated with oxygen transporter activity (Fig. 3e;
Additional file 2: Table S7). In contrast, downregulated
genes were enriched in microglia (Fig. 3f; Additional file 1:
Figure S9) and were involved in neuroactive ligand-
receptor interaction and angiogenesis pathways (Fig. 3e;
Additional file 2: Table S8). The transcriptional patterns
of identified DEGs are consistent with previous studies
[4, 43, 44].

Gene co-expression analysis reveals network
reorganization in aged brains

To gain further insight into the molecular mechanisms
involved in brain aging, we applied weighted gene co-
expression network analysis (WGCNA) to profile the
aged-brain transcriptome into a higher order [45-47]. A
total of 56 modules ranging in size from 24 to 1844 gene
members were identified (Fig. 4a). Remarkably, we ob-
served significant evidence that 46 of the 56 modules
were preserved in an independently published transcrip-
tome dataset, which contained frontal cortex expression
data from 478 people collected to study aging [25] (Add-
itional file 1: Figure S10), thus suggesting robustness of
the co-expression networks constructed here.

We next used modular differential connectivity
(MDC), i.e., the ratio of the average connectivity for any
pair of module-sharing genes in the aged group com-
pared to that for the same genes in the young group, to
quantify the network reorganization across young and
aged groups [48]. Among the 56 modules, 9 (16.1%)
showed gain of connectivity, none showed loss of
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connectivity, and 47 (83.9%) showed no change in con-
nectivity in the aged group compared to the young
group (Additional file 2: Table S9). The modules show-
ing a gain of connectivity in the aged brain contained di-
verse functional categories (Fig. 4b; Additional file 2:
Table S9), including “MAPK activity” (brown, p = 8.82E
-4), “metabolic pathways” (floral white, p = 0.04), “oxy-
gen transporter activity” (maroon, p =4.92E-5), “phos-
phatidylinositol-3-kinase activity” (medium purple 3, p =
0.001), “Axon guidance” (saddle brown, p =0.009), and
“extracellular space” (gray, p=0.005). Many of these
functional categories have previously been implicated in
brain aging [49-53], reinforcing the conclusion that
complex multifactorial mechanisms underlie brain aging.

We ranked the modules based on the degree of DEG
enrichment across multiple cortex regions. Of the 56
modules, 34 were enriched in DEGs in at least 1 brain
region (Fig. 4c). The brown module was of particular
interest as it was highly enriched in DEGs across brain
regions (Fig. 4c) and showed gain of connectivity in the
aged network (Additional file 2: Table S9). Furthermore,
genes in the brown module were enriched in microglia
cells and astrocytes (Fig. 4d). To further explore the pro-
file of the brown module, we performed GO enrichment
analysis and found that the most prominent functions
were related to activity of mitogen-activated protein ki-
nases (MAPKs) (Fig. 4e). MAPKs are serine-threonine
kinases that mediate intracellular signaling and play an
important role in regulating aging [54—56], with devi-
ation from strict control of the MAPK signaling path-
ways implicated in many human neurodegenerative
diseases, including AD and PD [57, 58].

Further, we reconstructed the network structure of
genes within the brown module solely on the basis of
their connectivity and identified the so-called hub genes
and aged-specific hub genes. Hub genes are genes with
the highest degree of connectivity within a module and
are expected to control the expression of many other
module members [45]. Aged-specific hub genes were
found in the aged group, but not in the young group,
and thus may be especially important in generating gene
co-expression networks unique to senility. We identified
48 hub genes in the brown module, 20 of which were
aged-specific hub genes (Fig. 4f; Additional file 2: Table
S10).

Function of hub gene PGLS in brain aging

We validated our bioinformatic predictions by focusing
on PGLS, a highly connected aged-specific hub gene
within the brown module and found to be upregulated
in the aged macaque brain (p = 0.04), as described in our
DEG analysis above. Upregulation of PGLS in the aged
macaque brain was also confirmed by real-time quantita-
tive polymerase chain reaction (qQRT-PCR) (p=0.029;
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(See figure on previous page.)

Fig. 4 Weighted gene co-expression network analysis (WGCNA). a In total, 56 modules were identified by WGCNA. b Significant (FET p value after
correcting for number of modules and functional categories/pathways tested) enrichment of functional categories in modules with gains of
connectivity. Y-axis represents — log (p value) of enrichment; x-axis denotes number of genes per module. ¢ Circos plots displaying degree of
enrichment for DEGs in aged-brain modules. Outermost rectangle is an arbitrary color for module name, followed by MDC score and then by
importance (a measure considering degree of enrichment for DEGs across brain regions). Innermost concentric circles represent degree to which
DEGs are contained within a given module for each brain region. d Circos plots displaying degree of enrichment for cell types in aged-brain
modules. Outermost rectangle is an arbitrary color for module name, followed by importance (a measure considering degree of enrichment for
cell types). Innermost concentric circles represent enrichment for genes with fivefold higher expression in oligodendrocyte, neuron, microglia,
endothelial, or astrocyte cell types (Zhang et al. [94]) in aged-brain modules. e Functional enrichment of genes in brown module. f Network plot
of hub genes identified within brown module. Blue nodes indicate all genes. Red nodes indicate hub genes. Yellow halos indicate aged-specific

mutual information

hub genes. Cyan node indicates gene PGLS for functional validation. Edges reflect significant interactions between genes based on

Additional file 1: Figure S11). PGLS encodes 6-
phosphogluconolactonase, which catalyzes the hydrolysis
of 6-phosphogluconolactone in the second step of the
pentose phosphate pathway [59]. Although little is
known about the function of PGLS in brain aging, the
pentose phosphate pathway is reported to be broadly in-
volved in the aging process [60—62].

PGLS is a conserved gene among mammals and
expressed endogenously in both macaques and mice
(Additional file 1: Figure S12) [63, 64]. To address the
functional role of higher PGLS levels in brain aging, an
engineered adeno-associated virus (AAV) combined with
a green fluorescent protein (GFP) tag was used to over-
express PGLS in the central and peripheral nervous sys-
tems of 6-month-old C57BL/6] male mice by caudal
intravenous injection [65, 66], abbreviated here as AAV-
PGLS mice. As a control group, the same AAV vector
containing the GFP tag was injected into the remaining
mice (Ctrl mice). As expected, both immunohistochemi-
cal and Western blot analyses showed that PGLS was
significantly overexpressed in the whole brain (including
the cortex and non-cortex) of AAV-PGLS mice until the
age of 12 months (Fig. 5a—d; Additional file 1: Figure
S13). At the cell level, in addition to microglial cells,
both neurons and astrocyte cells were transduced (Add-
itional file 1: Figure S14).

To examine whether overexpression of PGLS induced
aging-related behaviors, we tested AAV-PGLS (n=38)
and Ctrl (n=8) mice with the Morris water maze
(MWM) task. Before AAV injection, there were no sig-
nificant differences between the two groups of mice in
the MWM task (6 months old) (Additional file 1: Figure
S15). However, 6 months after virus injection, the AAV-
PGLS mice (12 months old) displayed an impairment in
learning the new platform location during the acquisi-
tion phase of the MWM relative to Ctrl mice (12 months
old) (Fig. 5e). Memory dysfunction in mice overexpress-
ing PGLS was also observed during the probe trial. Com-
pared to Ctrl mice, the AAV-PGLS mice spent less time
in the target quadrant (p = 0.0078; Fig. 5f) and crossed
the platform location less frequently (p = 0.0256; Fig. 5g).

The swimming distance to reach the platform location
was also longer for AAV-PGLS mice (p = 0.0008; Fig. 5h).
Thus, the MWM results indicate that overexpression of
PGLS induced memory impairment.

Additionally, open field tests verified that the distance
traveled by AAV-PGLS mice was shorter than that by
Ctrl mice (p = 0.037; Fig. 5i), suggesting that overexpres-
sion of PGLS also caused impairment in locomotor ac-
tivity [67]. However, compared to the Ctrl, AAV-PGLS
mice displayed normal motor coordination and balance
with the rotarod test (Additional file 1: Figure S16).

As aging usually accompanies a physiological decrease
in food intake [68—71], we also tested food intake in the
AAV-PGLS and Ctrl mice. Results showed that AAV-
PGLS mice exhibited decreased food intake and fecal
output compared to the Ctrl mice (Fig. 5j, k), indicating
that overexpression of PGLS resulted in decreased appe-
tite, a key indicator of aging [68].

Alterations in astrocyte morphology are an important
hallmark of brain aging [72, 73]. Thus, we investigated
changes in the microscopic morphology of astrocytes
after PGLS overexpression through in vitro and in vivo
tests. When upregulated PGLS astrocyte cell systems
were maintained in culture, they showed a senescence-
related feature [74], i.e., an increase in nuclear size (p =
2.2e-16) comparable to that observed in Ctrl cells
undergoing replicative senescence (Additional file 1: Fig-
ure S17). We also conducted immunohistochemical
mapping of 12-month-old mouse brains to observe the
microscopic morphology of astrocytes and found that
the soma size of the glial fibrillary acidic protein
(GFAP)-positive astrocytes was substantially larger in
AAV-PGLS mice than in Ctrl mice (Fig. 6a). In addition,
the astrocytes in AAV-PGLS mice exhibited a stubbier
morphology compared to those in Ctrl mice (Fig. 6b).
Together, the characteristics of AAV-PGLS astrocytes
are consistent with their previously reported senescence
phenotype [73, 75], thereby highlighting the physio-
logical relevance of PGLS in brain aging.

To further investigate the mechanisms linking PGLS
to brain aging, we performed RNA-seq on the brains of
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Fig. 5 Overexpression of PGLS gene in mice causes aging phenotypes. a Immunostaining of coronal sections of brains from AAV-PGLS and
control (Ctrl) mice for GFP (green) and PGLS (red). Scale bars: large = 1 mm, middle = 100 um, and small = 10 um. b Fluorescence intensity of PGLS
protein detected by anti-PGLS antibody obtained from GFP-positive cells was quantified and averaged (unpaired t test with Welch's correction:
hippocampus p =0.0002, temporal lobe p =0.022, parietal lobe p =0.0259, striatum p = 0.001, occipital p = 0.0366, prefrontal cortex p=0.0011, and
total p < 0.0001). ¢ Representative immunoblots of PGLS in brains from AAV-PGLS and Ctrl mice at 12 months of age. d Protein expression level of
PGLS in brains from AAV-PGLS and Ctrl mice (unpaired t test with Welch’s correction, p = 0.0123). e Latencies (second) during training in Morris
water maze of PGLS with Ctrl (n =8 mice, two-way ANOVA with Bonferroni's multiple comparison test.). f Time (second) spent in goal quadrant
during Morris water maze probe trial (n =8, unpaired t test with Welch's correction, t = 3.364, p = 0.0078). g Number of platform crossings during
Morris water maze probe trial (n =8, unpaired t test, t = 2497, p = 0.0256). h Swimming distance (cm) to platform during Morris water maze probe
trial (n =8, unpaired t test, t =4.244, p = 0.0008). i Examples of results obtained from open field test trace image (left). Total distance traveled (n =
8, unpaired t test, t=2.296, p = 0.0376) in open field test during a 20-min period (right). j Cumulative food intake over a 24-h period (n =8,
repeated-measure ANOVA, F = 3.169, ***p < 00001, np” = 0.303). k Total excretions (g) in 24 h (n =8, unpaired t test, t= 2.747, p = 0.0157)

12-month-old AAV-PGLS and age-matched Ctrl mice.
Differential expression analysis identified 73 DEGs in-
duced by PGLS overexpression (p <0.05). Gene enrich-
ment analysis indicated that the DEGs were mainly
involved in synapse-related pathways (Fig. 6¢). Thus, we
measured the level of PSD95, a key synaptic protein, in

the brains of Ctrl mice and those overexpressing PGLS.
As expected, Western blot analyses of anti-PSD95
showed a significant decrease in protein levels in the
AAV-PGLS mice compared to the Ctrl mice (p = 0.0094,
Fig. 6d), indicating that PGLS overexpression induced
loss of synapses.
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Brain aging is also associated with a decrease in the
number of cells, with apoptosis reported to be a major
factor contributing to the loss of cells with age [76, 77].
Thus, we compared the activity of caspase-3, a key ex-
ecutor of apoptosis [77], in AAV-PGLS and Ctr]l mice.
Western blot analysis showed that cleaved caspase-3 ac-
tivity was significantly increased after PGLS overexpres-
sion (p =0.0383, Fig. 6d), indicating that overexpression
of PGLS induced elevated rates of apoptosis, thus con-
forming to the characteristics of brain aging.

Discussion
We applied large-scale RNA-seq on multiple areas of the
macaque brain to uncover novel molecular mechanisms
and biomarkers related to aging in NHPs. Our results
should deepen our understanding of the process of brain
aging.

Based on comparison of gene expression profiles be-
tween young and old macaques, we found a decreased

tendency of expression correlation among multiple brain
areas after aging. Furthermore, combined with previous
conclusions that expression correlations between major
brain areas increase during human early brain develop-
ment [28], we hypothesized that connectivity within the
brain exhibits a “mountain-like” pattern across a life-
span, i.e., connectivity first increases during early brain
development and then decreases with aging. In addition,
the changes of expression profile after aging would re-
veal to some extent declines of brain functions, e.g., cog-
nitive function. For example, it is well known that
multiple brain areas must work together to accomplish
complex cognitive functions [76]. Our results indicated
that the connectivity between brain regions decreased
after aging, which was consistent with loss of cognitive
function in the process of brain aging.

We also found that changes in gene expression and al-
ternative splicing were widespread across all brain areas,
although variability existed in the number of genes that
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changed with age in the different brain regions, thus
suggesting that the degree of aging in different brain
areas may differ. However, despite this, the aging mech-
anism among different brain regions was largely conver-
gent. Additionally, we found that different forms of
transcription regulation (e.g., gene expression and alter-
native splicing) acted on brain aging in distinct manners,
thereby reinforcing the complex multifactorial basis
underlying the aging process.

Among the 44 brain regions analyzed, the putamen was
highlighted as showing dramatic transcriptional changes
during aging. However, few studies have focused on this
region previously. The putamen is located at the base of
the forebrain and together with the caudate nucleus forms
the dorsal striatum [78]. Furthermore, it is reported to
play an important role in cognitive functions, including
learning, decision making, and motor behaviors [79-81],
and is implicated in various neurological diseases, such as
PD, AD, and HD [35, 78]. Our results suggest that the pu-
tamen should receive greater attention in future research,
diagnosis, and treatment of brain aging. In addition to the
putamen, other brain regions account for special functions
and tasks, like learning, memory, and language. The large-
scale transcriptome data obtained from the multiple brain
regions in this study should provide insight into the func-
tional changes that occur after aging for different regions
based on changes in expression profiles.

Prior studies on the transcriptional mechanisms of
brain aging have focused primarily on identifying individ-
ual candidate genes or profiling whole transcriptomes
within single brain regions in isolation. In the present
study, we applied a network-based approach to reveal
inter-regional co-regulation gene signatures associated
with brain aging, and identified multiple modules showing
increased connectively in the aged brain. These modules
were enriched in a number of different pathways,
highlighting the intricate mechanisms underlying brain
aging. By analyzing the key driver genes within these mod-
ules, we provided compelling evidence to support PGLS as
a key hub gene in brain aging. Upregulation of PGLS in
mice resulted in impaired memory and locomotor activity,
as well as decreased food intake. In addition, the morph-
ology of astrocytes exhibited a senescent phenotype after
PGLS overexpression. We found that the consequence of
PGLS overexpression in brain aging is likely through syn-
apse loss. We propose that PGLS should be regarded as a
novel biomarker of brain aging in future research. We
confirmed the function of PGLS in mice; however, future
experiments on PGLS in primates are necessary to further
confirm the functions of this gene.

Conclusions
This study provides novel insight into the molecular mech-
anism of healthy brain aging based on a comprehensive
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transcriptome map across multiple brain regions and con-
firmed a novel gene (PGLS) related to brain aging in mice,
which will be an important resource to the neuroscientific
community.

Methods

Sample preparation

The brains of four young (5, 6, 6, and 6years old)
and three aged (16, 17, and 24 years old) rhesus ma-
caques with no previously reported neuropsychiatric
disorders were obtained from the Kunming Primate
Research Center, Chinese Academy of Sciences(AAA-
LAC accredited).

According to a widely used macaque brain atlas
(http://www.brainmaps.org), tissues spanning 44 ana-
tomically distinct regions were selected and collected by
a skilled technician with over a decade of experience,
and he is also an operator of brain dissection in another
studies [82, 83]. We applied a list of previously published
gene markers specific to human brain regions to validate
the accuracy of the brain dissection [84] (Additional file 1:
Figure S18). Brain dissection of the seven macaques was
performed from fresh specimens by the same person to
ensure consistency in sampling between specimens. Sur-
gical instruments were sterilized in advance, and surgical
scissors and tweezers were only used one time for each
sample to avoid cross-contamination. Only the central
portion of each brain region was sampled. Each sample
consisted of 100mg of dissected tissue. All collected
samples were washed with RNAlater solution (AM7021,
Ambion, USA) and placed in freezing tubes for storage
at liquid nitrogen temperature.

Total RNA was extracted using an RNeasy Plus
Universal Kit (Qiagen). Quality and quantity measure-
ments of the extracted RNA were performed using
NanoDrop (Thermo Fisher Scientific) and a Qubit
Fluorometer (Thermo Fisher Scientific), respectively,
and RNA Integrity Numbers (RIN) were determined
using a Bioanalyzer RNA 6000 Nano Kit (Agilent,
USA). All procedures were approved by the Institu-
tional Animal Care and Use Committee (IACUC) at
the Kunming Institute of Zoology (approval number:
SMKX2017021).

RNA-sequencing

A paired-end sequencing library was constructed from
poly (A)" RNA, as described in the Illumina manual, and
sequenced on the [llumina Hiseq 2000 sequencing plat-
form. For each sample, 5G of data were generated by
RNA-seq. Sequencing data were deposited in the Gen-
ome Sequence Archive database (http://gsa.big.ac.cn/)
under accession ID CRA000336 for 590 transcriptomes
in the macaque brain.
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Read alignment and quality control

We acquired 590 transcriptomes across 44 brain regions
from 4 young and 3 aged macaques. First, quality control
(QC) of RNA was performed based on the RIN (see
Additional file 2: Table S1), with 1 sample excluded after
failing our cutoff of RIN < 5. We next use Btrim64 to
trim reads to obtain high-quality reads [85]. The
paired-end reads were mapped to the macaque refer-
ence genome using Tophat2 [86]. The rmdup com-
mand in Samtools was used to remove PCR
duplication of bam files [87], with the SortSam com-
mand in PicardTools (http://broadinstitute.github.io/
picard/) then used to sort bam files.

After read alignment, QC analysis was performed
using PicardTools v1.100 (commands ReorderSam, Col-
lectAlignmnetSummaryMetrics,  CollectRnaSeqMetrics,
CollectGcBiasMetrics). Sequencing metrics were used to
remove samples with poor sequence quality based on
the following sequencing metrics: %Total Reads, %High-
quality Aligned Reads, %mRNA Bases, %Intergenic
Bases, Median 5" to 3’ Bias, GC Dropout, and AT drop-
out (Additional file 2: Table S1). To detect outliers, a
quality z-score was calculated for each metric, and sam-
ples with low quality (Z>2 for %Intergenic Bases, GC
Dropout, or AT Dropout and Z < -2 for %Total Reads,
%High-quality Aligned Reads, %mRNA Bases, or Median
5" to 3’ Bias) in this matrix were identified as outlier
values, and any sample with greater than one outlier
value was removed due to sequencing quality concerns.
QC analysis was performed for the 590 initial samples,
with 43 samples (7%) thus removed. The remaining
547 samples were used for downstream analysis
(Additional file 1: Table S1).

Quantification and adjustment of gene expression

Gene expression levels were quantified for samples
passing QC using HTSeq (v.0.6.1) [88]. Genes were
retained if expressed in 80% of samples, with HTSeq
quantification of 10 counts (thus removing genes sup-
ported by only a few reads) within all cortex and
non-cortex samples separately. We used cqn software
to adjust GC content according to the GC content re-
sults from the CollectGeBiasMetrics command in
PicardTools as well as sequencing depth according to
read length [89].

After that, we adjusted the data for covariates, including
sex, batch, and sequencing quality metrics (Additional file 2:
Table S1). Given the large number of sequencing quality
features, we performed principal component analysis (PCA)
on these data and found that the first two PCs on
the unstandardized features explained nearly 99% of
the variance. Consequently, we opted to use two se-
quencing surrogate variables (seqSV1 and seqSV2) as

Page 12 of 17

covariates. We applied a linear model to remove the
confounding factors:

adjusted_value = original _value—batch
x beta.batch-sex
x beta.sex-seqSV1
x beta.seqSV1-seqSV1
x beta.seqSV2.

Gene clustering analysis

Based on the expression values, PCA from the prcomp R
package (https://www.r-project.org/) was used to visualize
the relatedness of all 547 RNA-seq samples. We also used
agglomerative hierarchical clustering in the flashClust R
package [90] to perform clustering analysis.

Transcriptional connectivity analysis in young and aged
macaques

Pairwise Pearson and Spearman correlation coefficients
of gene expression values between any two brain regions
and between the left and right hemispheres were calcu-
lated in the young and aged macaques using R (https://
www.r-project.org/). The Mann-Whitney U (MWU) test
was used to compute the statistical significance of the
correlations between young and aged groups. The MWU
test was executed using the R function wilcox.test(), the
command correct = TRUE was used to adjust p values,
and a continuity correction was applied to the normal
approximation for the p value.

DEG analysis between young and aged macaques
Pairwise differential expression between the young and
aged macaques was investigated with the DESeq2 R
package [91]. A nominal significance threshold of p <
0.05 and fold change (FC)>1.5 was used to identify
DEGs. The p value was adjusted for multiple testing
using Benjamini-Hochberg to estimate the false discov-
ery rate (FDR). Two online resources were utilized, i.e.,
DAVID  (https://david.ncifcrf.gov/) and  gProfiler
(https://biit.cs.ut.ee/gprofiler/), to assess the enrichment
of functional categories (GO and KEGG) of the DEGs
[92, 93]. The p value was adjusted for multiple testing
using Benjamini-Hochberg to estimate the false discov-
ery rate (FDR). To assess cell-type specificity in the up-
regulated or downregulated genes in the aged group, we
used genes expressed at least fivefold higher in one cell
type than all other cell types (neuron, microglia, astro-
cyte, oligodendrocyte, and endothelial) from brain-based
RNA expression data [94].
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Alternative splicing analysis in multiple brain regions
during aging

The DEXSeq R-package [95] was used to test for differ-
ential exon usage (DEU) with default parameters. The p
value significance level was set to 0.01 for detecting sig-
nificant DEUs and was adjusted for multiple testing
using Benjamini-Hochberg to estimate the FDR.

Construction of gene co-expression modules for aged
brains

We used the aged macaque gene expression data to con-
struct multi-tissue co-expression networks that simul-
taneously captured intra- and inter-tissue gene-gene
interactions [45, 48]. Before identifying co-expressed
gene modules, we used the linear regression model to
correct the effect of brain region covariates on expres-
sion values. To quantify the differences in transcription
network organization between the young and aged sam-
ples, we employed modular differential connectivity
(MDC) metrics [48, 96]. In brief, MDC represents the
ratios of the connectivity of all gene pairs in a module
from the aged samples to that of the same gene pairs
from the young samples, with MDC > 0 indicating a gain
of connectivity or enhanced co-regulation between genes
in aged samples, and MDC < 0 indicating a loss of con-
nectivity or reduced co-regulation between genes in the
aged group. As a result, among the 56 aged modules, 9
showed gain of connectivity, none showed loss of con-
nectivity, and 47 showed no change in connectivity com-
pared to the young group.

To identify key regulator (driver) genes in the brown
module, we applied key driver analysis to the module-
based unweighted co-expression networks derived from
ARACNE [97]. ARACNE first identified significant inter-
actions between genes in the brown module based on
their mutual information and then removed indirect in-
teractions through data processing inequality (DPI). For
each ARACNE-derived unweighted network, we further
identified key regulators by examining the number of N-
hop neighborhood nodes (NHNN) for each gene.

Cell culture

Astrocytes were obtained from fetal C57BL/6 mice (em-
bryonic day 18). We first used 75% alcohol to disinfect
the mice for 5 min, with the mice then euthanized using
cervical dislocation. Each brain was removed and placed
in pre-cooled phosphate buffer solution (PBS), and the
cerebral cortex was separated under an anatomic micro-
scope and placed in DMEM/F12 medium. The cerebral
cortex was then cut into pieces, after which 3ml of
0.125% trypsin containing EDTA was added and
digested at 37°C for 8 min. Digestion was terminated
with serum DMEM/F12. We then used 100-mesh cell
filters to filter the tissue into a new centrifuge tube.
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Samples were centrifuged at 1000 rpm for 5 min, after
which the supernatant was removed. Cells were sus-
pended with serum DMEM/F12 (2% EBS + 1% PS + 1%
star cell growth factor) and inoculated in 75cm?® cell
vials pretreated with PDL at a dose of 1 x 10°/ml. The
cell suspension was placed in an incubator at 37 °C with
5% CO2. Culture medium was changed every 2-3 days.
We identified astrocytes by microscope by their star
shape, cobblestone mosaic arrangement, contact inhib-
ition, and good light transmittance.

The day before infection, cells were plated in a 96-well
plate at a cell density of 4 x 10*/well. Virus was added at
a density of 1 x 10° TU/ml and gently shaken in the “+”
direction to evenly distribute the virus on the cell sur-
faces. The plate was then returned to the incubator for
further incubation. After 24 h of virus infection, the cell
culture medium was changed. We measured the infec-
tion efficiency of the virus by green fluorescence after
3 days.

Mice

Sixteen male mice (c57-B6) were used in this study. The
mice were group-housed (5-6 mice per cage) in an air
conditioning-regulated environment (22-24°C). Mice
were kept in a 12-h light/dark cycle with ad libitum access
to food and water. We started the experiment when the
mice were 6 months old. All animal care and experimental
protocols were approved by the Institutional Animal Care
and Use Committee (IACUC) at the Kunming Institute of
Zoology (approval number: SMKX2018021), Chinese
Academy of Sciences.

AAV injection

We injected AAV-CAG-PGLS-GFP vectors (serotype
PHP.eb and titer = 4.17 x 10"* vg/ml) with hybrid CMV-
chicken S-actin (CAG) promotor into AAV-PGLS mice
(number = 8, age 6 months), and AAV-CAG-GEP vectors
(serotype PHP.eb and titer = 8.2 x 10> vg/ml) with hy-
brid CMV-chicken S-actin (CAG) promotor into Ctrl
mice (number =8, age 6 months), with each mouse
injected with 4 x 10" vg viral vectors. The number of
GFP-positive cells showed no significant differences be-
tween AAV-PGLS and Ctrl mice (p =0.1783), indicating
similar virus expression efficiency in the two groups.

Differential expression analysis of brains in AAV-PGLS and
Ctrl mice

Brains from 2 AAV-PGLS mice (13 samples) and 2 Ctrl
mice (11 samples) were used to extract RNA and RNA-
seq as per the above method. The sequencing data were
deposited in the Genome Sequence Archive database
(http://gsa.big.ac.cn/) under accession ID CRAO001751.
The DESeq2 R package was used to identify DEGs [91],
with a nominal significance threshold of p <0.05. The
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p value was adjusted for multiple testing using
Benjamini-Hochberg to estimate the FDR. We used g:
Profiler (https://biit.cs.ut.ee/gprofiler/) to assess the
enrichment of functional categories of DEGs.

Western blot analysis

Brain tissue protein extracts were prepared with RIPA lysis
buffer containing both protease and phosphatase inhibitors.
Equal amounts of brain tissue lysates (80 ug) were loaded
onto 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) gels and transferred onto polyviny-
lidene difluoride (PVDF) membranes. After the membranes
were blocked, they were incubated with monoclonal anti-
bodies against PGLS (1:2000, Abcam), PSD95 (1:500,
Abcam), and Caspase-3 (1:2000, Cell Signaling Technology)
followed by incubation with HRP-Rb-anti-goat (1:2000,
Beyotime) and S-actin (1:2000, Beyotime) followed by incu-
bation with HRP-goat-anti-mouse (1:2000, Beyotime). Tar-
get proteins were detected by the ECL system (Millipore,
Braunschweig, Germany) and visualized with the Chemi-
Doc XRS system (Bio-Rad, Hercules, CA, USA).

Immunohistochemistry

After perfusion with PBS, the brains were removed and
post-fixed in 4% paraformaldehyde at 4 °C overnight. Brain
sections (40 pm) were cut with a vibrating blade microtome
(Leica VT1000 S, Germany). Sections were washed for 1 h
in PBS containing 5% bovine serum albumin (BSA) and
0.3% Triton X-100 and incubated with primary antibodies
of anti-GFP (Invitrogen, 1:800), anti-Ap40-42 (1:400; Milli-
pore), anti-PGLS (1:200 NAVOUS), anti-GFAP (1:800 Cell
Signaling), and anti-NeuN (1:800; Abcam) in PBS with 1%
BSA and 0.3% Triton X-100 overnight at 4 °C, followed by
incubation with corresponding secondary Cy3- and Cy2-
conjugated antibodies (1:800; Jackson Lab) for 2 h at room
temperature. Confocal z-stack images were acquired on a
Nikon A1l confocal laser microscope system (Japan). Image
J was used to count cell numbers, analyze fluorescence in-
tensity of immunoreactive cells, and quantify GFAP morph-
ology according to previous protocols [98]. Cell counts in
the hippocampus, prefrontal lobe, temporal lobe, striatum,
occipital lobe, and parietal lobe were performed in three
randomly selected sections from each animal.

Open field test

Experiments were performed between 16:00 pm and 18:
00 pm. A Plexiglas box (27 x 27 x 20.3 cm, ENV 510)
equipped with infrared beams and activity monitor (Med
Associates, USA) was used in this test. To minimize
background stress, mice were transported to the testing
room 1 h prior to testing. After that, mice were placed at
a fixed position in the chamber at the start of the assay
and allowed to freely explore the chamber. The
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locomotor activity was monitored and recorded in the
last 20-min period (previous 10 min for habituation).

Morris water maze test

As previously described [99], mice were tested in a
Morris water maze (120cm diameter, 60cm high),
which was filled with water (22 °C) containing non-toxic
titanium pigment to obscure the submerged platform
(10cm in diameter). Before training, all mice were
adapted to the pool without a platform for 2 days (1
min/day). After that, mice were trained to find the hid-
den platform using distal extra maze cues. Mice were
given four trials per day (60 s/trial with an inter-trial
interval of 40s). Each mouse was placed in the water
with its head facing the pool wall, and the start point
varied semi-randomly between trials. If the mouse did
not find the submerged platform at the end of the trail,
it was led to the platform by the experimenter, where it
then remained for 15s. Training was performed for five
consecutive days, and latency to the platform was evalu-
ated using the EthoVision 8.0 program (Noldus). The
probe test (platform removed) was conducted for 1 min
on day 6. The time spent in the four quadrants, number
of platform crossings, and distance to platform were
recorded.

Rotarod test

Test mice were habituated to the testing room for 1h.
During the acceleration phase, mice were placed on the
rotating rod (Panlab Harvard, Spain) with a 4-rpm con-
stant speed for 10s, with the apparatus then accelerated
from 4 to 40 rpm in 5 min and the latency to fall recorded.
Each mouse was tested three times with 40-min intervals.

Metabolic test

Quantities of food intake were assessed by a metabolic
cage (Panlab Harvard, Spain). Mice were individually
placed in single cages and allowed free access to water
and food during a 24-h period. Food intake was recorded
and calculated by monitoring software (Panlab Harvard)
each hour automatically. Feces in each metabolic cage
were collected for weighing after the 24-h period, and
body weight was measured manually.

Statistical analyses

Data analysis was conducted using SPSS v19.0 (SPSS, Chi-
cago, IL, USA) and GraphPad Prism v7.00 (GraphPad
Software, La Jolla, CA, USA) in Windows. The F test was
used to compare variances (p >0.05), and normality was
analyzed by the Shapiro-Wilk normality test (p > 0.05). All
data acquisition and analysis were performed in a double-
blind manner. Comparisons between two groups were
conducted by unpaired ¢ tests with Welch’s correction
(normally distributed and variances differ), two-tailed
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unpaired-sample ¢ tests (normally distributed and equal
variances), or Mann-Whitney tests (non-normally distrib-
uted). Repeated-measure analysis of variance (ANOVA)
was used for inter-group analysis. All data were expressed
as means + SEM, *p < 0.05, **p < 0.01, and ***p < 0.001.
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