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Abstract

Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-
causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the
RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and
evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic
impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using
ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together,
RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.
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Background
Prior to the advent of genome-wide association studies
(GWAS), research on the relationship between genetic
variants and human disease had largely focused on non-
synonymous single nucleotide variants (SNVs) located in
protein-coding regions. However, next-generation se-
quencing has enabled discovery of non-coding variants
in the human genome [1]. In fact, the vast majority
(88%) of trait or disease-associated variant loci identified
in GWAS are in non-coding regions (45% intronic and
43% intergenic) [2]. Compared with intergenic SNVs
that can modulate gene expression by altering chromatin
states and promoter or enhancer-associated activity [3,
4], intronic SNVs (iSNVs) mainly regulate biological

activities by dysregulating mRNA splicing [5–8]. For in-
stance, over 20,000 disease-causing iSNVs in the Human
Gene Mutation Database (HGMD) have been docu-
mented to impact splicing, and most of these pathogenic
variants are located close to splice-junction boundaries
[9].
To date, many algorithms and computational models

have been developed to annotate non-coding regulatory
variants, including RegulomeDB, HeploReg, and others
[10–12]. These tools annotate regulatory non-coding
SNVs that are trait-associated or predict their impact on
biological function by determining whether the variants
overlap with known regulatory elements, such as tran-
scription factor (TF) binding sites, enhancers or pro-
moters, methylation sites, and other features.
Annotations for these regulatory elements are sourced
from databases including TRANSFAC and JASPAR [12–
14], or with data provided by consortia like ENCODE
[15, 16]. In addition to simply overlapping the variants
with known functional annotation, many tools have been
developed to decipher the characteristics of functional
or neutral non-coding variants from large amounts of
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training data using various machine learning-based clas-
sification methods that integrate genomic or other anno-
tations as features. These learned characteristics are
then used to classify new functional variants from neu-
tral ones. One widely used machine learning tool, CADD
(Combined Annotation Dependent Depletion), predicts
pathogenic variants via support vector machine (SVM)
by combining annotations from multiple sources includ-
ing sequence conservation, such as PhyloP; regulatory el-
ements, such as transcription factor binding; and
protein-level predictions, such as SIFT and PolyPhen
[17]. Similar tools have achieved comparable function
and performance by using different training datasets or
machine learning algorithms. Such tools include DANN
(a deep neural network algorithm) [18], GWAVA (a ran-
dom forest classifier) [19], FATHMM-MKL (a multi-
kernel learning approach) [20], and LINSIGHT (hybrid
of a linear and probabilistic models) [21]. Importantly,
the focus of these tools has been primarily on identifying
the potential pathological impact of coding variants or
non-coding variants in promoter and enhancer regions
that regulate transcription. In fact, very few algorithms
target on intronic variants and their impact on splicing
regulation.
Intronic variants can impact alternative splicing by

interfering with splice site recognition. For example, an
intronic mutation near the 5′-splice site of exon 20 in
the IKBKAP gene causes skipping of exon 20, resulting
in malfunction of IKBKAP in 99.5% of familial dysauto-
nomia (FD) cases [8, 22, 23]. Likewise, the intron 4
splice-donor site variant in the adenomatous polyposis
coli (APC) gene causes skipping of exon 4, which can
lead to colon cancer [24, 25]. In addition to iSNVs lo-
cated in splice sites, a number of deep intronic muta-
tions also contribute to disease, such as those recently
described in the GALNS gene that cause the lysosomal
disorder called Morquio A disease [26]. Additionally,
iSNVs may alter the binding affinities of RNA-binding
proteins (RBP) to cis-regulatory elements [5, 27, 28]. For
example, a G to A substitution within an intronic-
splicing enhancer downstream of exon 3 in the growth
hormone (GH1) gene can cause familial isolated GH de-
ficiency type II (IGHD II) by suppressing the binding of
splicing factors [29–31]. While iSNVs are densely dis-
tributed in the genome, only a limited proportion have
been investigated for associations with altered biological
functions [5].
Owing to the large number of intronic variants de-

tected in next-generation sequencing and their complex
RNA splicing regulatory mechanisms, efficient bioinfor-
matics algorithms are required to predict the potential
impact of iSNVs and to prioritize them for functional
studies. One algorithm, SPANR (Splicing-based Analysis
of Variants) [32], was designed to evaluate how

individual SNVs impacted splicing regulation by predict-
ing the maximum change in the percentage of inclusion
(dPSI) of nearby exons induced by the SNVs. It extracts
1393 genomic features around the SNVs and predicts
potential splicing outcomes by training a neural network
with RNA-seq data from 16 human tissues. However,
SPANR was not designed to assess whether iSNVs re-
sulted in deleterious phenotypes since it does not evalu-
ate the impact of the resultant splicing change on
protein function. Other ensemble-based tools reviewed
in detail [12], including CADD [17], use machine learn-
ing approaches to predict pathogenic variants by com-
bining annotations from multiple sources. However,
these annotations do not include RNA splicing data and
provide limited information on how splicing variants in-
fluence protein function. To this end, our earlier studies
on small insertions/deletions (INDELs) [33, 34], alterna-
tively spliced exons [35], and synonymous SNVs [36, 37]
have indicated that simply substituting a stretch of
amino acid residues does not necessarily imply altered
protein function. Others have also reported that nucleo-
tide substitutions can be bystander events, i.e., non-
consequential to the phenotype [38]. Therefore, in order
to consider the molecular implications of functional
iSNVs, it is critical to integrate features that more accur-
ately predict the effects of alternative-splicing events on
protein structure and function.
In this study, we considered the impact of iSNVs on

splicing regulation together with the variant-induced im-
pact of alternatively spliced exons on protein-structure
features. We extracted pathogenic iSNVs from the
HGMD and randomly selected neutral iSNVs from the
1000 Genomes Project [9, 39]. Using these data, we de-
veloped an algorithm based on the random forest
method to compute the disease-causing probabilities of
iSNVs [40], which we have termed RegSNPs-intron. This
algorithm was also tested on an independent dataset se-
lected from the ClinVar database [41]. In addition, we
designed a high-throughput functional reporter assay,
ASSET-seq (ASsay for Splicing using ExonTrap and se-
quencing), to experimentally validate the effects of the
predicted iSNVs on splicing regulation. As we demon-
strate here, RegSNPs-intron and ASSET-seq can be used
in tandem to prioritize and screen potential pathogenic
iSNVs to gain better understanding of their roles in
complex disease.

Results
Datasets
To compute the pathogenic probabilities of iSNVs, we
constructed a training set by combining the manually
curated pathogenic iSNVs in the HGMD and the puta-
tively neutral iSNVs from the 1000 Genomes Project
phase 3 (Fig. 1 and Additional file 1: Figure S1). The
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neutral iSNVs documented in the 1000 Genomes dataset
were derived from genome sequencing data from 2500
individuals lacking obvious clinical phenotypes [1]. In
order to minimize the false negatives in our training set,
we only included iSNVs with minor allele frequency
(MAF) greater than 10%. This selection resulted in 2438
pathogenic and 2,104,613 neutral iSNVs.
Since the proximity of an iSNV to the splice-junction

site can impact the splicing outcome via different mo-
lecular mechanisms, we further divided the selected
iSNVs into those proximal and distal to the splice-
junction sites. For example, variants proximal to the
splice-junction sites (on-ss) may directly interfere with
spliceosome formation, while iSNVs distal from the
junction sites (off-ss) may affect the binding of regula-
tory RNA-binding proteins (RBPs). Splice-junction sites
were defined as the upstream 13-bp for 3′-acceptor sites
and the downstream 7-bp for 5′-donor sites [42]. In
total, there were 1865 on-ss and 573 off-ss pathogenic
iSNVs and 3386 on-ss and 2,104,613 off-ss neutral
iSNVs. These data revealed that pathogenic variants
were found more frequently in regions proximal to
splice-junction sites compared to neutral variants (Add-
itional file 1: Figure S2). To avoid potential bias intro-
duced by the varying distances of iSNVs from junction
sites, we randomly selected 852 off-ss neutral iSNVs
from the 1000 Genomes dataset by matching the dis-
tance distribution of the pathogenic HGMD variants.
This ensured more balanced datasets with similar dis-
tance distributions between the pathogenic and neutral
variants.
For each of the pathogenic and neutral on-ss and off-

ss datasets, we randomly selected two thirds of the data

for use as the training set to build a random forest clas-
sifier (Additional file 1: Figure S1). The remaining one
third of the data were used as a test set. To further test
the model performance, we also extracted pathogenic
and neutral iSNVs from the ClinVar database as an in-
dependent test set [41], which included 121 on-ss and
51 off-ss pathogenic iSNVs and 167 on-ss and 883 off-ss
neutral iSNVs (see the “Methods” section for details).
In order to select features that optimally discriminate

pathogenic and neutral iSNVs, we classified all features
into three categories: (i) splicing features, characterizing
how individual iSNVs affect splicing regulation; (ii)
structural features, evaluating how the iSNV-induced in-
clusion/exclusion of alternatively spliced exons affects
protein functions; and (iii) evolutionary conservation fea-
tures, measuring the nucleotide base-wise conservation
scores of 99 vertebrate genomes (Fig. 1). In these three
categories, 360 of the 438 features showed significant
power in separating the pathogenic and neutral on-ss
iSNVs, whereas 194 of the 436 features separated the
off-ss iSNVs based on the Wilcoxon rank-sum test with
an adjusted p value < 0.05 (Fig. 2 and Additional file 2:
Table S1).

Disease-causing iSNVs affect alternative splicing
To evaluate the impact of an iSNV on splicing regula-
tion, we considered two measures: (i) the splice-junction
scores associated with proximal exons in both 5′ and 3′
directions, as well as the deviation of the junction score
of the variant from the reference allele, and (ii) the
iSNV-induced difference in RBP binding affinity. The
splice-junction score was computed by position weighted
matrices (PWMs) measuring sequence features around

Fig. 1 Workflow. a Data sources for model building. Pathogenic and neutral iSNVs were collected from HGMD and 1000 Genomes Project,
respectively. b Three categories of features, namely RNA splicing, protein structure, and evolutionary conservation, were considered for the iSNVs.
Data sources and the numbers of these features are listed on the side. For additional details for the data sources, refer to the “Methods” section. c
Logic flow for prediction model development, as well as model evaluation and result validation
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the canonical junction sites (see the “Methods” section
for details) [42]. Higher scores are more likely to include
the corresponding exons in the resulting mRNA. Our re-
sults showed that pathogenic iSNVs were more fre-
quently associated with lower splice-junction scores. The
median junction score of pathogenic on-ss iSNVs was
7.37 and 7.11 for donor and acceptor sites, respectively,
compared to 7.95 and 7.84 for neutral iSNVs (adjusted p
value 0.017 and 1.35 × 10−7, respectively) (Add-
itional file 2: Table S1). For pathogenic off-ss iSNVs, the
median junction scores were 7.63 and 7.95 for donor
and acceptor sites, compared to 8.13 and 8.54 for neutral
off-ss iSNVs (adjusted p value 0.018 and 9.0 × 10−4, re-
spectively) (Additional file 2: Table S1). In addition to
the junction scores, the deviation of the junction score
resulting from each on-ss iSNV was calculated. The me-
dian deviation values for pathogenic iSNVs were − 2.96
and − 2.23 for donor and acceptor sites, respectively.
The magnitude of these deviations was significantly lar-
ger than those of neutral iSNVs, which were 0.034 and
− 0.059 for donor and acceptor sites, respectively (Add-
itional file 1: Figure S3). The adjusted Wilcoxon rank-
sum test p values for donor and acceptor sites were
1.63 × 10−211 and 1.28 × 10−143, respectively (Add-
itional file 2: Table S1 and Additional file 1: Figure S3).
These results indicate that pathogenic iSNVs are
strongly associated with exon skipping.
To evaluate the impact of an iSNV on RBP binding,

we computed both the magnitude and probability of
binding score changes caused by the iSNVs for 201 RBPs
with known PWMs. We found that pathogenic and neu-
tral iSNVs showed significant differences in the binding
of many RBPs. Generally, the pathogenic on-ss and off-

ss iSNVs induced large binding score changes in 191
and 176 RBPs, respectively, compared to the respective
neutral iSNVs. Specifically, 137 RBPs showed significant
differences in iSNV-induced binding scores between on-
ss pathogenic and neutral variants, whereas 43 RBPs
showed significant differences between off-ss pathogenic
and neutral variants (adjusted Wilcoxon rank-sum test p
value < 0.05; Additional file 2: Table S1 and Add-
itional file 1: Figure S4). Taken together, these findings
provide strong evidence that pathogenic iSNVs affect
splicing regulation and result in altered mRNA
structures.

Disease-causing iSNVs are associated with exons
encoding functionally important protein domains
To evaluate the impact of iSNVs on protein function, we
examined the structural features corresponding to po-
tential alternatively spliced exons. We hypothesized that
pathogenic iSNVs disrupt the splicing of exons that en-
code key protein structural domains. We captured the
protein structural features for the closest neighboring
exons of the iSNVs including intrinsic disorder score,
secondary structure (e.g., alpha helix, beta sheet, or ran-
dom coil), and solvent accessible surface areas (ASA)
(Additional file 2: Table S1) [43, 44]. We also calculated
the overlap percentage of the target exon with known
protein domains, as well as the number of known post-
translational modification sites within the exon-encoded
protein domain (Additional file 2: Table S1) [45, 46].
We found that exons in proximity to pathogenic

iSNVs were more likely to encode protein domains that
had lower average disorder scores and contained longer
structured regions, compared to exons proximal to

Fig. 2 Feature evaluation. Significance of difference in feature scores between pathogenic and neutral iSNVs. a on-ss iSNVs. b off-ss iSNVs.
Features were from three categories—splicing (gray), protein structure (red), and evolutionary conservation (blue). See also Additional file 2: Table
S1 for more details. In the plot, every dot represents a feature. The x-axis is (the absolute value of) the feature’s delta median, calculated as the
“median score of pathogenic iSNVs” minus the “median score of neutral iSNVs” of the particular feature. Calculations of feature scores were
described in the “Methods” section. The y-axis is the significance value of the score difference based on Wilcoxon’s rank-sum test (p values
adjusted by FDR and transformed by − log10, capped at 10−10 for display). Due to the large dynamic ranges of the feature values, the delta
medians were rescaled to range [− 1, 1]: x’ = 2 × (x −min(x))/(max(x) −min(x)) − 1
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neutral iSNVs (adjusted Wilcoxon rank-sum test p value
2.03 × 10−11 and 0.0497 for on-ss and off-ss iSNVs, re-
spectively) (Additional file 2: Table S1 and Add-
itional file 1: Figure S5). This result indicates that
pathogenic iSNVs have a higher probability of being
proximal to exons encoding structured regions. In
addition, proximal exons to pathogenic iSNVs had sig-
nificantly smaller average ASA scores (adjusted p value
2.90 × 10−13 and 0.0103 for on-ss and off-ss iSNVs, re-
spectively), which indicates that they are more likely to
encode regions in the protein core as opposed to regions
on the protein surface. Moreover, the closest exons to
pathogenic iSNVs encoded a significantly higher per-
centage of residues that overlapped with known protein
domains (adjusted p value 1.91 × 10−16 and 1.98 × 10−5

for on-ss and off-ss iSNVs, respectively). Taken together,
these results show that exons proximal to pathogenic
iSNVs are more likely to encode functionally important
protein regions. On the other hand, our analysis also
suggests that protein structural features provide valuable
information for prioritizing disease-causing iSNVs.

Disease-causing iSNVs localize to conserved regions
Previous studies showed that evolutionary conserva-
tion is an important feature in assessing the disease-
causing potential of SNVs [47, 48]. To determine
whether an iSNV was evolutionarily conserved, we
calculated the PhyloP 100-way conservation score of
the iSNV locus, and the mean conservation score of a
region flanking either side of the candidate iSNV by a
length of 3 bp as well as 7 bp. Our results showed
that pathogenic iSNVs had significantly higher PhyloP
conservation scores than neutral iSNVs (Add-
itional file 1: Figure S6). The median conservation
score for on-ss pathogenic iSNV loci was 3.08, which
was significantly higher than the score of − 0.03 for
neutral on-ss iSNVs (adjusted Wilcoxon rank-sum
test p value < 1 × 10−300). Likewise, the median score
for off-ss pathogenic iSNV loci was 0.31, compared to
− 0.28 for neutral off-ss iSNVs (adjusted p value
3.21 × 10−38). The large positive PhyloP scores for the
pathogenic iSNV loci suggested that they evolved
much more slowly than the neutral loci. Conservation
scores for the 3-bp and 7-bp flanking regions were
consistent with the iSNV loci scores. For the 3-bp
flanking regions around the on-ss and off-ss patho-
genic iSNVs, the respective medians of their mean
conservation scores were 2.86 and 0.23, compared to
0.58 and − 0.07 for the neutral iSNVs (adjusted p
values 1 × 10−300 and 5.47 × 10−23, respectively). Simi-
lar results were also found for the 7-bp flanking re-
gions. These findings indicate that iSNVs at more
conserved loci are more likely to be pathogenic.

RegSNPs-intron model building, performance, and
evaluation
Based on the splicing, protein structure, and evolution-
ary conservation features described above (Add-
itional file 2: Table S1), random forest classifiers were
built for on-ss and off-ss iSNVs, respectively. The
models were built on the training set (two thirds of the
original dataset), and their predictive powers were evalu-
ated on the validation set (one third of the original data-
set). Hyperparameters, such as number of trees and
maximum depth, were optimized via the grid search
with threefold cross-validation on the training set. For
on-ss iSNVs, the random forest model contained 52
trees with the maximum depth of 13. For off-ss iSNVs,
59 trees with the maximum depth of 20 were built. The
resulting on-ss and off-ss models constitute RegSNPs-
intron.
Based on the validation set (one third of the original

dataset, not used in model training), RegSNPs-intron
reached an AUROC (area under the receiver operating
characteristic curve) of 0.96 and a Matthews correlation
coefficient (MCC) of 0.79 for on-ss iSNVs and outper-
formed both SPANR and CADD (AUROCs 0.77 and
0.81, respectively, Fig. 3a). For off-ss iSNVs, RegSNPs-
intron AUROC was 0.84 (MCC 0.52), compared to
SPANR and CADD AUROCs of 0.54 and 0.69, respect-
ively (Fig. 3d). Here, we also calculated the AUPR (area
under the precision recall curve) as the numbers of
pathogenic and neutral iSNVs might be imbalanced. For
on-ss iSNVs, RegSNPs-intron had an AUPR of 0.94,
compared to 0.70 and 0.71 for SPANR and CADD, re-
spectively (Additional file 1: Figure S7A). The AUPR
given by RegSNPs-intron for off-ss iSNVs was 0.77,
compared to SPANR and CADD AUPRs of 0.47 and
0.62, respectively (Additional file 1: Figure S7C). Our re-
sults suggest that inclusion of protein structural features
encoded by the proximal exons, which are not used by
either SPANR or CADD, significantly increases the per-
formance of RegSNPs-intron in predicting variant
pathogenicity.
To further evaluate the predictive powers of the fea-

tures related to splicing, structure, and conservation, we
built separate models based on features from each of
these three categories. For on-ss iSNVs, the AUROCs
for splicing, structure, and conservation features were
0.92, 0.72, and 0.92, respectively; for off-ss iSNVs, the
AUROCs were 0.75, 0.63, and 0.68, respectively (Add-
itional file 1: Figure S8). These results demonstrate that
each category of features provides important information
in model prediction, and thus, the combination of all
three categories yields the highest performance.
To control the false-positive rate (FPR) of the predic-

tion results, we reported the iSNVs with FPR < 0.05 as
Damaging, iSNVs with 0.05 ≤ FPR < 0.1 as Possibly
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Damaging, and iSNVs with FPR ≥ 0.1 as Benign. The re-
ported Damaging category had true-positive rates (TPR)
of 0.85 and 0.45 for on-ss and off-ss iSNVs, respectively,
whereas TPRs for the Possibly Damaging category were
0.90 and 0.52 for on-ss and off-ss iSNVs (Fig. 3b, e).

Evaluation of model performance using an independent
test set
We further evaluated RegSNPs-intron performance with
an independent dataset from ClinVar (described above).
All of the ClinVar iSNVs that were also observed in
HGMD or 1000 Genomes datasets were excluded from
the training set to avoid overfitting. Consistent with the
results described above, the RegSNPs-intron model
showed better performance compared to SPANR. The
RegSNPs-intron AUROCs were 0.96 and 0.95 for on-ss
and off-ss iSNVs, respectively, whereas the SPANR
AUROCs were 0.89 and 0.72 for on-ss and off-ss iSNVs,
respectively (Fig. 3c, f). Similarly, RegSNPs-intron
showed higher AUPRs. The RegSNPs-intron AUPRs
were 0.92 and 0.66 for on-ss and off-ss iSNVs, whereas
the SPANR AUPRs were 0.87 and 0.06, respectively
(Additional file 1: Figure S7B and D). We did not in-
clude CADD in the comparison here since the ClinVar
data were used in its original model training [17]. These
results suggest that RegSNPs-intron exhibits stable per-
formance and higher prediction accuracy compared to
SPANR over different datasets.

Allele frequency was inversely correlated with disease-
causing probability
Generally, allele frequency in the population should re-
flect the importance of the biological function of a vari-
ant [49–53]. Therefore, we examined the relationship
between allele frequency and the predicted disease-
causing probability of iSNVs obtained from the Exome
Aggregation Consortium (ExAC) and the Genotype-
Tissue Expression Project (GTEx), respectively. We fo-
cused on the low (0.0–0.25) and medium (0.0–0.50)
scales of allele frequency, where the iSNVs were divided
into 20 bins. For each bin, the average disease-causing
probability for all iSNVs was calculated. Negative corre-
lations were observed between allele frequency and
disease-causing probability in either low or medium
scale for both on-ss and off-ss iSNVs. Specifically, for
the low scale, the correlations are as follows: ExAC R =
− 0.832 and GTEx R = − 0.849 for on-ss iSNVs, and
ExAC R = − 0.686 and GTEx R = − 0.313 for off-ss iSNVs
(Fig. 4a, c). For the medium scale, the correlations are as
follows: ExAC R = − 0.650 and GTEx R = − 0.603 for on-
ss iSNVs, and ExAC R = − 0.834 and GTEx R = − 0.844
for off-ss iSNVs (Fig. 4b, d). This result is consistent
with the findings of others that variants with higher
disease-causing probability are less likely to occur in the
general population [34]. Distributions of minor allele fre-
quencies (MAF), in both the low and medium scales, for
all iSNVs from ExAC and GTEx are provided in Add-
itional file 1: Figure S9.

Fig. 3 Model performance, evaluation, and analysis. a–c On-ss iSNVs. a Receiver operating characteristic curves (ROC) of RegSNPs-intron (solid
green), SPANR (dotted blue), and CADD (dashed orange) on the validation set. b Selected probability cutoffs based on the false-positive rate
(solid) and true-positive rate (dashed). The two dotted lines indicate FPR = 0.05 and 0.1, respectively. iSNVs with FPR < 0.05 are Damaging, those
with 0.05≤ FPR < 0.1 are Possibly Damaging, and iSNVs with FPR≥ 0.1 are Benign. c ROC of RegSNPs-intron (solid green) and SPANR (dotted blue)
on the independent ClinVar test set. CADD was excluded since ClinVar was used in its model training. d–f Off-ss iSNVs, same as a–c
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Disease-causing iSNVs occur near exons associated with
high disease-causing probability
We further evaluated the RegSNPs-intron predictions by
investigating the functional importance of exons that are
proximal to iSNVs. We hypothesized that functionally
important exons do not tolerate nearby iSNVs. To test
this hypothesis, we extracted 75,119 exons that had at
least 1 iSNV within ± 300 bp of exon-intron boundaries

based on ExAC data. One iSNV was randomly selected
per exon, and the disease-causing probability was pre-
dicted using RegSNPs-intron. The probability values for
all exons having the same number of neighboring
(within ± 300 bp from junction) iSNVs were averaged. A
significant negative correlation between the average
disease-causing probability and the number of exon-
neighboring iSNVs was observed (R = − 0.92, p value =

Fig. 4 Correlations of disease-causing probability with allele frequency or number of nearby iSNVs for exon. a, b On-ss iSNVs. Correlation
between disease-causing probability and allele frequency. Twenty bins were divided based on allele frequencies of the iSNVs collected from ExAC
and GTEx. The x- and y-axes are the average allele frequency and predicted disease-causing probability for each bin. a Allele frequency scaled
from 0.00 to 0.25. b Allele frequency scaled from 0.00 to 0.50. c, d Off-ss iSNVs, same as a, b. e Correlation between disease-causing probability
and the number of exon-neighboring iSNVs. The x-axis is the number of exon-neighboring iSNVs (within 300 bp from the junction). Each value on
the y-axis is the average (predicted) disease-causing probability of all exons having the number of neighboring iSNVs indicated by the
corresponding value on the x-axis
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6.26 × 10−11) (Fig. 4e). The same analysis was also per-
formed on 160,230 exons based on GTEx whole-genome
sequencing data. A similar negative correlation was ob-
served (R = − 0.78, p value = 0.07). This result indicates
that pathogenic iSNVs tend to occur near functionally
important exons.

Prioritizing functional intronic variants associated with
drug-induced cytotoxicity
We applied RegSNPs-intron to prioritize intronic vari-
ants that are associated with cellular sensitivity to
clofarabine-induced cytotoxicity. We have previously
performed genome-wide association studies (GWAS) for
the clofarabine-response phenotype (AUC for drug-
induced cytotoxicity curves) using 90 International Hap-
Map lymphoblastoid cell lines (LCLs) of the CEU popu-
lation [54]. SNVs moderately associated with clofarabine
cytotoxicity (p value ≤ 0.05) were selected as seed
markers. All 15,634 iSNVs that were in linkage disequi-
librium (LD) with the seed markers and were located
within ± 300 bp from the splice junction were used in
the predictions. Among these candidate variants, 622
and 84 iSNVs were predicted to be Damaging (FPR ≤
0.05) and Possibly Damaging (0.05 < FPR ≤ 0.1), respect-
ively (706 in total), and 14,928 iSNVs were predicted to
be Benign (FPR > 0.1).

Experimental validation using ASSET-seq assay
To experimentally validate the effects of the prioritized
iSNVs on the splicing outcome, we designed a high-
throughput functional reporter assay called ASSET-seq
that entails inserting an oligo containing an iSNV into a
modified Exontrap plasmid (Fig. 5a) [55]. The impact on
splicing outcome of the tested iSNV was measured as
the difference between the respective ratios of the se-
quencing reads supporting spliced and aberrant (includ-
ing unspliced) transcripts for the reference and
alternative alleles. The difference in the ratios for the
two types of splicing outcomes between the reference
and alternative alleles was analyzed by a mixed-effect
model (see the “Methods” section).
We used ASSET-seq to test the effects of 82 iSNVs on

splicing outcomes in 3 different human cell lines: HeLa,
HEK293, and HepG2. These cell lines, which originate
from three different tissue types, are commonly used in
research studies and were used to demonstrate the vari-
ability in splicing activity among different tissues. Add-
itionally, they also exemplify the technical
reproducibility of the assay, as well as enable future
studies linking splicing analysis with molecular biological
outcomes. The 82 test variants were chosen from the
706 prioritized RegSNPs-intron candidates (FPR ≤ 0.1) as
being located in the intron on the 3′-side of the test
exon and within 60 nt from the exon-intron junction,

based on assay design requirements (see details in the
“Methods” section). Upon removing 20 failed assays
(e.g., resulting from transfection or PCR failure), the per-
centages of the 62 remaining iSNVs showing significant
splicing impact, i.e., validation rates, for the 3 cell lines
were HeLa 64.4%, HEK293 96.6%, and HepG2 64.7%
(FDR ≤ 0.1 in accord with the FPR; Fig. 5b and Add-
itional file 3: Table S2). One specific example, rs6538694
in the HAL gene, is shown in Fig. 5c. Across all three
cell lines (five replicates each), a significantly higher per-
centage of spliced gene products was observed for the
reference allele compared to the alternative allele (p
values ≤ 4.6 × 10−5). For the reference allele, the average
percentage of sequencing reads supporting the spliced
gene product was 88.4%, while this percentage dropped
to 57.1% for the alternative allele. Moreover, we ob-
served high consistency for the impacts of individual
iSNVs on splicing outcomes across the multiple cell
lines (Fig. 5d).

Discussion
The major conclusion of the current study is that
RNA splicing, protein structural, and evolutionary
conservation features all contribute to iSNV patho-
genicity characterization. By integrating these three
feature categories, the RegSNPs-intron algorithm effi-
ciently evaluates the disease-causing probabilities of
iSNVs in silico. These conclusions are based on the
following evidence. First, we demonstrated that
disease-causing iSNVs affect alternative splicing,
localize to conserved genomic regions, and are associ-
ated with functional domain-encoding exons. Next,
we provided strong evidence that RegSNPs-intron has
superior accuracy in computing the disease-causing
probabilities for iSNVs compared to existing tools
such as SPANR and CADD, based on 1000 Genomes
and HGMD data, as well as with independent ClinVar
data. Furthermore, we applied RegSNPs-intron to a
GWAS dataset of drug cytotoxicity and experimen-
tally validated the impact of prioritized iSNVs on spli-
cing via ASSET-seq. Taken together, our findings
strongly support the overall concept that the
RegSNPs-intron algorithm, combined with the
ASSET-seq assay, will facilitate studies on the regula-
tory functions of iSNVs and their potential roles in
disease and/or drug response.
Although information on variant-induced disruption

of splicing and variant conservation has been used to
evaluate the impact of synonymous variants [32], our
previous studies have shown that protein structural
features greatly improve the prioritization of patho-
genic micro-insertions/deletions as well as alternative-
splicing events [34, 35]. Prompted by our earlier find-
ings, we proposed that protein structural features
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Fig. 5 (See legend on next page.)
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might also be informative in predicting the patho-
genic effects of iSNVs. This idea was also supported
by the finding that pathogenic iSNVs tend to be lo-
calized in the vicinity of exons encoding functionally
important protein domains. Following the common
practice of integrating multi-level features, as in algo-
rithms such as SPANR and CADD, RegSNPs-intron
constitutes the first bioinformatics tool specifically de-
signed to predict pathogenic iSNVs.
The improved accuracy of RegSNPs-intron compared

with SPANR and CADD in predicting pathogenic iSNVs
may also be attributed to the differences in the training
and testing datasets used in the various algorithms. For
instance, the goal of SPANR is to evaluate the impact of
variants on splicing outcome, regardless of whether such
changes are pathogenic. Therefore, the selections of the
training data were based on different criteria. To this
end, RegSNPs-intron focuses on the pathogenic impact
of iSNVs by selecting specific training dataset and mo-
lecular features. In addition, to avoid potential bias on
model performance resulting from differences in the se-
lected datasets, the accuracy of RegSNPs-intron was also
evaluated on an independent dataset ClinVar.
Intronic variants are typically identified by whole-

genome sequencing (WGS), but they can also be
captured by whole-exome sequencing (WES), par-
ticularly those iSNVs close to splice junctions that
may be functionally important. To estimate the
number of intronic variants identified in WES, we
surveyed all the genetic variants documented in the
ExAC database [56], which includes high-quality ex-
ome sequencing data from 60,706 unrelated individ-
uals from a variety of large-scale sequencing projects
such as the NHLBI exome sequencing project (ESP)
and the 1000 Genomes project. Among 7,908,659
documented SNVs in the ExAC database, these
iSNVs account for 52.2% (4,126,724); therefore, iden-
tifying which of these iSNVs are important for

disease pathogenesis is crucial for advancing human
genetics research. Thus, the RegSNPs-intron algo-
rithm should serve as a valuable tool for the
prioritization of intronic variants detected through
WES and WGS for functional analysis.
In order to experimentally validate the impact of pre-

dicted pathogenic iSNVs on splicing regulation, we de-
veloped an innovative experimental approach, ASSET-
seq. Although we tested a relatively small number of var-
iants in this study, ASSET-seq can operate on a much
larger scale. However, despite the effectiveness of this
high-throughput assay, there are a few limitations. First,
ASSET-seq can only validate the potential roles of candi-
date iSNVs on splicing; it was not designed to test their
pathogenic roles. As a result, the impact that mis-spliced
exons could have on protein structure was not evaluated,
which is a potential source for false-positive results. For
example, if an iSNV was to mis-regulate splicing of a
functionally neutral exon, it would appear to be positive
in ASSET-seq. Additional experimental assays are re-
quired to examine the impact of such iSNVs on specific
phenotypes. Secondly, our results were influenced by
technical noise from multiple sources, such as cell trans-
fection, sequencing, or PCR, that served to confound the
analysis. Since these effects could not be entirely pre-
vented, we considered the heterogeneity among the sam-
ple replicates and applied the generalized mixed-effect
model to characterize the significance of change in spli-
cing outcomes (i.e., correlation between allele types and
spliced products). Interestingly, most of the RegSNPs-
intron-predicted candidates displayed significant impact
on splicing regulation in multiple cell lines. Specific-
ally, HEK293 cells exhibited an excellent validation
rate and low noise, whereas HeLa and HepG2 cells
had lower validation rates, possibly due to larger data
variabilities (higher noise). Thus, our validation results
confirm the effectiveness of RegSNPs-intron in priori-
tizing iSNVs.

(See figure on previous page.)
Fig. 5 Experimental validation by ASSET-seq. a Plasmid design of the splicing assay. The insert oligo includes 11 bp of the proximal exon plus the
first 60 bp of the intron containing the iSNV from individual genes (shown in orange), as well as universal plasmid exon (22 bp, red box) and
intron (19 bp black line) homology segments for seamless insertion into the vector. RNA is transcribed in transfected cells from the 5′-UTR to the
poly-A signal. PCR primers (red arrows) are used to amplify the RNA transcript. The assay produces spliced or unspliced transcripts (as well as
other aberrant isoforms). Promoter, LTR RSV; SD, splice-donor site; SA, splice-acceptor site. b Summary of experimental results in three cell lines.
Ref, reference allele; Alt, alternative allele. Blue color indicates an iSNV that induces a significant decrease in the spliced products (FDR≤ 0.1); light
blue indicates a decrease of spliced products that is not significant (FDR > 0.1). Red indicates a significant increase for spliced products whereas
light red indicates an insignificant increase. Empty boxes are failed assays which were non-evaluable; iSNVs non-evaluable in all three cell lines (20
in total) were omitted. Validation rate (per cell line) is the percentage of assays showing a significant result in all evaluable assays. c Example of
an iSNV-induced alteration of splicing outcome. The iSNV (rs6538694) suppressed the formation of the spliced reporter product, as consistently
indicated in all three cell lines (p values ≤ 4.6 × 10−5). The y-axis is the log2 ratio of perfectly spliced reads (P) to aberrant (NP, non-perfect and
unspliced) reads. p values were adjusted by FDR against all tested iSNVs. d Consistency of results in multiple cell lines. The x-axis is the log2 odds
ratio of spliced and aberrant products (with respect to the reference and alternative alleles) for HeLa, and y- and z- axes are the log2 odds ratios
for HepG2 and HEK293, respectively. Cell lines were compared pairwise for the iSNVs evaluable in both cell lines. Pearson’s correlations: HeLa
versus HEK293 = 0.857 (blue dots, p value = 1.02 × 10−22), HeLa versus HepG2 = 0.959 (red dots, p value = 6.66 × 10−40), and HEK293 versus
HepG2 = 0.894 (green dots, p value = 6.65 × 10−29). Solid lines in dark blue, red, and green mark the respective correlations
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Conclusions
Our results show that integrating RNA splicing, protein
structural, and evolutionary conservation features leads
to superior characterization of disease-causing iSNVs.
Using RegSNPs-intron and ASSET-seq in tandem en-
ables the effective prioritization of disease-causing
iSNVs. This is expected to accelerate the identification
of pathogenic iSNVs, a core task of genome-wide se-
quencing studies.

Methods
Splicing features
A junction score for the closest exon boundary of each
iSNV was calculated based on the position weight matri-
ces (PWMs) derived from canonical splice sites [42].
The junction score was measured by summing the infor-
mation contents of positions from − 3 to + 7 for donor
sites, and positions from − 13 to + 1 for acceptor sites.
In addition, for on-ss iSNVs, the change in junction
score caused by allele substitution was also computed
and used as a feature.
The impact of iSNVs on RBP binding affinity was

measured based on a total of 201 PWMs (position
weight matrices) obtained from the RBPDB and cisBP-
RNA databases [57, 58]. For each iSNV, we compute the
following two measures to quantify the impact on the
binding of a specific RBP:

i) The magnitude (M value) of RBP binding change
upon each iSNV, which was calculated as the
logarithmic ratio between the custom-defined RBP
binding scores with respect to the alternative allele
and the reference allele.

ii) An estimated probability (P value) of RBP binding
event switch upon each iSNV, i.e., an RBP binding
site switches to a non-binding site or vice versa
given the two respective alleles.

Denote p as an RBP with a binding motif with length k
and q = {qi =A, T,C,G, i = 1…k} as a nucleotide sequence
with length k. As a prerequisite for calculating the M
and P values from the PWM data, we first calculated the
matching score of the sequence q to the PWM of p as:

Spq ¼
Xk

i¼1
spi;qi

spi; j ¼ log2
npi; j þ ci; j

� �
= N þP

j∈ A;C;G;Tf gci; j
� �

d j
; i

¼ 1;…; k; j ¼ A;T ;C;G

where spi; j is the logarithmic ratio of the observed fre-
quency of a specific nucleotide j in the ith position of
the PWM of p versus the random background

frequency, npi; j is the count of base j =A, T, C, G on the

ith position in the PWM of p, and ci, j is a pseudo-count
to avoid the negative infinite value of spi; j when npi; j ¼ 0:

N is the total number of binding sites used to derive the
PWM, and dj is the prior frequency of base j. In this
study, we set ci, j as

ffiffiffiffi
N

p
and assumed a constant dj =

0.25 for j = A, T, C, G.
To evaluate if a certain iSNV may significantly impact

the binding event for an RBP binding site, we first esti-
mate two empirical distributions—(1) the distribution of
Spq for the nucleotide sequences that are true RBP bind-

ing site of p, and (2) the distribution of Spq for the nu-

cleotide sequences that are not RBP binding site of p.
As demonstrated in previous studies [33, 36], it is ra-

tional to assume the empirical distributions of the
matching scores Spq follows a Gaussian distribution. Spe-

cifically, mean and variance of Spq can be estimated by

Mp and Vp defined below:

Mp ¼
Xk

i¼1

X
j∈ A;C;G;Tf g

f pi; j � spi; j

V p ¼
Xk

i¼1

X
j∈ A;C;G;Tf g

f pi; j � spi; j
2− f pi; j � spi; j
� �2

� �

where f pi; j is the frequency of base j = A, T, C, G at the
ith position of the RBP binding site p. With the PWM of

p, for the true binding site, f pi; j≜
2
s
p
i; j

4 ¼ npi; jþci; j

Nþ
P

j∈fA;C;G;Tgci; j
. To

estimate the mean and variance of Spq for the sequences

that do not form an RBP binding site, we assume f pi; j
¼ 0:25 for j =A, T, C, G at any position i, i.e., an even
distribution of the background. The rationale of this as-
sumption is that only a very small number of specific se-
quences may form the binding site; hence, in their
complement set, the frequency of each base at each pos-
ition tends to be even.
With these assumptions, the two empirical distribu-

tions of Spq for the nucleotide sequences that serve as

true RBP binding site or non-RBP binding sites of p can
be computed. It is noteworthy the two Gaussian distri-
bution of the matching scores for binding (B) and non-
binding (NB) sites always exhibit different means and
variations, (as illustrated in Additional file 1: Figure
S10). With the two empirical distribution computed, we
further computed the M value—the magnitude of how
an iSNV affects RBP binding, as detailed below:
Denote A as a sequence with the alternative allele of

the iSNV, and R as the sequence with the reference al-
lele, their matching scores to the PWM of RBP binding
site p were first computed and denoted as SpA and SpR .
We developed a custom score, denoted Ω(S) =Φ(S, B)/
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(1 −Φ(S,NB)), where S = SpA or SpR . Ω is the ratio of a Φ
score for a binding event against the one for a non-
binding event, given the matching score S of a specific
allele. Here, Φ(S, B) or Φ(S, NB) is the cumulative distri-
bution function (CDF) of the Gaussian distribution char-
acterized by Mp and Vp (described earlier) for any PWM
matching score S (Additional file 1: Figure S10):

Φ S;Bð Þ ¼
Z S

−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVp Bð Þp e

−1
2

x−Mp Bð Þffiffiffiffiffiffiffi
Vp Bð Þ

p
� �2

d xð Þ

Φ S;NBð Þ ¼
Z S

−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVp NBð Þp e

−1
2

x−Mp NBð Þffiffiffiffiffiffiffiffiffi
Vp NBð Þ

p
� �2

d xð Þ

where Mp(B) (Mp(NB)) and Vp(B) (Vp(NB)) are the mean
and variance for binding (non-binding) events.
As shown in Additional file 1: Figure S10, Φ(S, B) is

the red-shaded area under the density curve of binding
events, symbolizing how likely to observe a particular S
given that the sequence is a RBP binding site. On the
other hand, 1 −Φ(S, NB) is the blue-shaded area under
the density curve of non-binding events, indicating how
likely to observe the S if the sequence is a non-binding
site. They are designed in this way because we assume
that it is more likely to observe a larger matching score
to the PWM of an RBP if the specific allele promotes
RBP binding, and in contrast, it should be less probable
to observe a large matching score if the allele disrupts
RBP binding [36].
Thus intuitively, Ω(S), the ratio between Φ(S, B) and

1 −Φ(S, NB), is the relative extent of how likely the se-
quence is a binding site compared to a non-binding site,
given a specific allele (S = SpA or SpR). Then, we defined:

M ¼ log2
Ω SpA
� �

Ω SpR
� �

for each RBP (p).
The probability (P value) that a locus switches be-

tween RBP binding and non-binding with and without
the variant can be defined as the sum of two probabil-
ities in which the different alleles correspond to binding
(B) and non-binding (NB) events given the observed
matching scores SpA and SpR . For each specific RBP bind-
ing site p, we simplifiy the denotation as SpA≜SA and SpR≜
SR in all the formulas following below:

P Switchð Þ ¼ P R ¼ B;A ¼ NBjSR; SAð Þ
þ P R ¼ NB;A ¼ BjSR; SAð Þ

Here, R (or A) = B means the reference (or alternative)
allele corresponds to an RBP binding event, and R (or
A) =NB indicates it is a non-binding event. We assume
that the allele identity of the sequence (R and A) is

independent of each other, and observations of the
matching scores (SR and SA) are also independent.
Therefore, by the Bayes law, the above probability can
be transformed into the following cascade of equations:

P Switchð Þ ¼ P R ¼ B;A ¼ NBjSR; SAð Þ þ P R ¼ NB;A ¼ BjSR; SAð Þ
¼ P R ¼ B;A ¼ NBð ÞP SR; SAjR ¼ B;A ¼ NBð Þ

P SR; SAð Þ þ P R ¼ NB;A ¼ Bð ÞP SR; SAjR ¼ NB;A ¼ Bð Þ
P SR; SAð Þ

¼ P Bð ÞP NBð ÞP SRjBð ÞP SAjNBð Þ
P SRð ÞP SAð Þ þ P NBð ÞP Bð ÞP SRjNBð ÞP SAjBð Þ

P SRð ÞP SRð Þ
¼ P Bð ÞP NBð Þ P SR‖Bð ÞP SAjNBð Þ þ P SRjNBð ÞP SAjBð Þ½ �

P Bð ÞP SRjBð Þ þ P NBð ÞP SRjNBð Þð Þ P Bð ÞP SAjBð Þ þ P NBð ÞP SAjNBð Þð Þ
¼ P Bð Þ 1−P Bð Þð Þ P SRjBð ÞP SAjNBð Þ þ P SRjNBð ÞP SAjBð Þ½ �

P Bð ÞP SRjBð Þ þ 1−P Bð Þð ÞP SRjNBð Þð Þ P Bð ÞP SAjBð Þ þ 1−P Bð Þð ÞP SAjNBð Þð Þ

given that P(NB) = 1 − P(B) for any sequence.
Since SR and SA follow Gaussian distribution for both

B and NB (Additional file 1: Figure S10), the following
equalities are established:

P SRjBð Þ ¼ Φ SR;Bð Þ

P SRjNBð Þ ¼ Φ SR;NBð Þ

P SAjBð Þ ¼ Φ SA;Bð Þ

P SAjNBð Þ ¼ Φ SA;NBð Þ

and each Φ value is calculated as described earlier.
Here, P(B) is a prior probability that a sequence is an

RBP binding site. Since it is unknown, we denote it as
x ∈ [0, 1] and assume x follows a beta distribution. Shape
parameters α and β for the beta distribution were spe-
cific to each sequence and estimated by enforcing the
following constrains: (1) α, β > 1; (2) mode of the beta
distribution (mode = (α − 1)/(α + β − 2)) equals to 1/2IC,
where IC is the information content (i.e., sum of the ex-
pected self-information of the elements) of the PWM;
and (3) the beta cumulative distribution function at 1/
10th of the mode (i.e., mode/10) equals a pre-defined
level 0.005.
Given any value of x, the P(Switch) becomes the con-

ditional probability with respect to the given x:

P Switchð j xÞ ¼ x 1−xð Þ Φ SR;Bð ÞΦ SA;NBð Þ þΦ SR;NBð ÞΦ SA;Bð Þ½ �
xΦ SR;Bð Þ þ 1−xð ÞΦ SR;NBð Þð Þ xΦ SA;Bð Þ þ 1−xð ÞΦ SA;NBð Þð Þ

with all calculated Φ values substituted in.
According to the Bayesian theorem, the probability

P(Switch) can be calculated by the following integral:

P Switchð Þ ¼
Z 1

0
P Switchð j xÞ∙ f beta x; α; βð Þdx

where fbeta is the probability density function of beta dis-
tribution, with α and β estimated as described above.
Based on all above calculations, the two measures M

and P were derived for each of the 201 RBPs and used
as the splicing features.
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Protein structural features
For each iSNV, the protein structural features of its clos-
est exons were evaluated. The protein-disorder score,
secondary structure, and solvent accessible surface area
(ASA) were precomputed for all known protein-coding
genes using SPINE-D and SPINE-X [43, 44]. The known
protein domains were extracted from the Pfam database
[45]. Percentages of the closest exon regions that overlap
with Pfam domains were measured. The post-
translational modification sites (PTMs) were extracted
from the dbPTM 3.0 database [46]. The number of PTM
sites per 100 amino acids encoded by the closest exons
was also calculated.

Evolutionary conservation features
Base-wise conservation scores (PhyloP) of 99 vertebrate
genomes were downloaded from UCSC Genome
Browser [59]. The scores on the iSNVs loci, as well as
the average scores of the 3-bp and 7-bp window regions
around the iSNVs, were extracted and used in machine
learning.

Machine learning model
Separate random forest classifiers were built for on-ss
and off-ss iSNVs, respectively. A grid search strategy
with threefold cross-validation was used on the training
set to fine-tune the hyperparameters, such as the num-
ber of trees and the maximum tree depth. The source
code can be accessed by public repository or DOI refer-
ence links [60].

ClinVar database iSNVs
ClinVar (version 2016/05/31) was downloaded from
NCBI (ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/). We ex-
tracted the SNVs located in intronic regions. To ensure
the quality of data, we only included the iSNVs that
were confirmed by at least two submitters, with the ex-
ception of pathogenic off-ss iSNVs where we only re-
quired a single submitter due to the limited number of
such iSNVs.

GTEx and ExAC database iSNVs
SNVs from whole-genome sequencing data in GTEx re-
lease v6 were downloaded in the VCF format. We fo-
cused on the iSNVs within 300 bp of exon-intron
boundaries. In total, there were 17,194 on-ss iSNVs and
630,557 off-ss iSNVs. Similarly, we also downloaded the
variants from whole-exome sequencing data in ExAC
r0.3.1, where there were 368,489 on-ss iSNVs and 2,314,
839 off-ss iSNVs. The corresponding allele frequencies
were calculated for correlation analysis with predicted
disease-causing probabilities.

ASSET-seq plasmid construction
The modified Exontrap plasmid is shown in Fig. 5a, and
the sequence is provided in Additional file 4: Text S1.
The test oligos consisted of 11 bp of the upstream exon
and 60 bp of the adjacent intron containing the iSNV to
be tested. Additional 22-bp exonic and 19-bp intronic
sequences homologous to the vector were also included
for the seamless insertion of the oligos into the plasmid
body. Further, a single nucleotide barcode was intro-
duced to indicate whether the transcript came from the
wild-type or variant construct. The 113-bp oligos con-
taining different test iSNVs were synthesized in parallel
as a pool using OligoMix (LC Sciences, Houston, TX).
In the present study, the ASSET-seq assays contained 82
pairs of reference and variant test sequences. The syn-
thesized oligos were then cleaved from the chip and
amplified via high-fidelity PCR with primers paired to
the exon and intron homology sequences (Add-
itional file 4: Text S1). The pooled oligos were direction-
ally inserted into the Exontrap plasmid using the
NEBuilder HiFi DNA Assembly Reaction (New England
Biolabs, Ipswich MA). The assembled plasmids were
transformed into bacteria and plated on LB agar plates
containing ampicillin. The resulting colonies were
scraped and grown in LB + ampicillin medium. Plasmid
DNA was isolated using HiSpeed Plasmid Maxi kit (Qia-
gen, Germantown, MD).

Transfection of cell culture
The plasmid library was used to transfect three human
cell lines: HeLa, HEK293, and HepG2. The cells were
seeded at a density of 0.9 × 105 in 24-well plates. Each
plate contained 5 biological replicates per cell line.
Twenty-four hours after cell plating, 500 ng of the li-
brary pool was complexed with 1.5 μL of Lipofectamine
3000 Reagent (Thermo Fisher Scientific, Waltham, MA)
in 50 μL of Opti-MEM media as per the manufacturer’s
instructions before adding the transfection mixture to
each well. Cell culture and transfection reagents were
used without antibiotics. HeLa, HEK293, and HepG2
were authenticated using IDEXX Bioanalytics’ CellCheck
9 Plus (Columbia, MO). All were found to be within
IDEXX’s range of positive identity matching.

RNA isolation and cDNA synthesis
Transfected cells were lysed in situ 48 h after trans-
fection, and total RNA was isolated using miRNeasy
mini kit with the optional DNase digestion step (Qia-
gen, Germantown MD) following the manufacturer’s
protocol. Using 285–400 ng RNA, cDNA was synthe-
sized with QuantiTect Reverse Transcription kit (Qia-
gen, Germantown, MD) following the manufacturer’s
protocol.
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Molecular barcoding
To identify the source cell line and replicate of the RNA
transcripts, cDNA generated from the plasmid library in
the transfected cells was PCR amplified using barcoded
primers. A unique 6-nt sequence was added to the 5′-
end of the forward and reverse primer for identification
(Additional file 4: Text S1). In separate PCR reactions,
2 μL cDNA were amplified in a 50-μL volume containing
2× Invitrogen Platinum SuperFi PCR Master Mix
(Thermo Fisher Scientific, Waltham, MA) using 1 μM
(final concentration) barcoded primers. PCR conditions
used were 98 °C for 30 s, 66.6 °C for 5 s, and 72 °C for 15
s for 28 cycles. PCR samples were purified using the
MinElute PCR Purification kit (Qiagen, Germantown,
MA) following the manufacturer’s protocol and quanti-
fied with Qubit dsDNA BR Assay kit (Thermo Fisher
Scientific, Waltham, MA). For sequencing by the Next-
Seq 500 platform (Illumina, San Diego, CA), 150 ng of
each sample was pooled. Pooled samples also contained
an equal amount of the original plasmid library with
identification barcodes added by PCR as above. Pooled
samples contained 20 uniquely barcoded sequence
groups representing 5 biological replicates for 3 cell lines
plus 5 input plasmid libraries.

Next-generation sequencing
The pooled PCR products were sequenced using the
NextSeq 500 platform (Illumina, Inc., San Diego, CA).
The sequencing library was created by end-polishing the
barcoded PCR products, followed by adapter ligation
and amplification. The resulting library was quantified,
and its quality was assessed with the Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA). Approximately
90 million usable reads were generated. Raw reads were
generated as fastq files for bioinformatics analysis.

Bioinformatics analysis for sequencing data
Illumina sequencing adapters were first removed from
the raw reads in the fastq files using the tool cutadapt
(v1.9.1) [61]. Then, the reads were demultiplexed into
the 20 sequence groups according to the barcodes. Se-
quencing reads were aligned to the transcripts using
STAR (Spliced Transcripts Alignment to a Reference,
v2.5.3a) [62]. The reference sequence for the alignment
was built based on the plasmid (Additional file 4: Text
S1), and read counts for the spliced and aberrant (in-
cluding unspliced) transcripts were documented.

Statistical analysis
Assuming heterogeneity among the sample replicates,
we applied the generalized linear mixed-effect model to
characterize the difference of splicing patterns between
reference and alternative alleles in each of the three ex-
perimental cell lines. The splicing outcome was

described by the counts of sequencing reads supporting
the spliced and aberrant transcripts. Assuming Y is the
sequencing read count following negative binomial dis-
tribution and xallele and xsplice are two binary variables
(i.e., 0 or 1), we set up the following regression equation
with respect to the (logarithm of) expectation E(Y):

log E Yð Þð Þ ¼ β0 þ β1∙xallele þ β2∙xsplice þ β3∙xallele
: xsplice þ b∙εreplicate

xallele∈ 0−ref ; 1−altf g; xsplice∈ 0−spliced; 1−aberrantf g

Here, ε is the random effect among the multiple repli-
cates. The p value of coefficient β3 determines whether
there is a significant change in splicing outcome between
the two alleles, i.e., xsplice significantly correlates to xallele.
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