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Abstract

Multiplex assays of variant effect (MAVEs), such as deep mutational scans and massively parallel reporter assays, test
thousands of sequence variants in a single experiment. Despite the importance of MAVE data for basic and clinical
research, there is no standard resource for their discovery and distribution. Here, we present MaveDB (https://www.
mavedb.org), a public repository for large-scale measurements of sequence variant impact, designed for interoperability
with applications to interpret these datasets. We also describe the first such application, MaveVis, which retrieves,
visualizes, and contextualizes variant effect maps. Together, the database and applications will empower the
community to mine these powerful datasets.
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Background
Experimentally interrogating the effects of genetic vari-
ation has helped reveal the mechanisms by which genes
function and facilitate an understanding of the clinical
consequences of human genetic variation. Multiplex as-
says of variant effect (MAVEs) leverage high-throughput
DNA sequencing to greatly increase the scale at which
variants can be experimentally investigated [1–3]. A
MAVE yields a set of scores that describe the functional
effect of thousands to tens of thousands of variants of a
coding sequence, promoter, enhancer, or another genetic
element relative to a reference sequence. MAVEs are be-
ing adopted rapidly for both basic research and clinical
applications [4]. As a consequence, the total number of
variants with functional data generated by MAVEs was
predicted to surpass 200,000 by the end of 2018 [3],

meaning there are now more MAVE-annotated variants
in the literature than classified missense variants avail-
able in ClinVar [5].
These large-scale variant effect maps are yielding

insights into protein function, structure, and evolution
[6–10]; exploring gene regulation and promoter function
[11–13]; improving computational variant effect predic-
tion [14, 15]; and guiding variant interpretation in the
clinic [16–21]. However, the impact of variant effect
maps has been limited by shortcomings in data availabil-
ity, dissemination, and discoverability. Nearly half of the
publications describing large-scale variant effect map-
ping do not provide variant effect scores for all variants
that were assayed (Additional file 1: Figure S1) [6–8, 11,
13, 16–169]. When variant effect scores are provided,
they are typically accessible only as a supplementary
table or via a bespoke web interface [13, 18–20, 70, 170]
leading to a proliferation of inconsistent formats. Some
publications, instead of including variant effect scores,
deposit the associated high-throughput DNA sequencing
data in the Sequence Read Archive or Gene Expression
Omnibus [171, 172]. This raw data can be used to re-
construct variant effect scores, but accurately replicating
the original analysis can be non-trivial. While databases
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of variant effect information exist, they are typically de-
signed for a specific application [173–175] or a specific
group of target genes [176–178]. Larger and more gen-
eral databases can sometimes contain variant effect data
[179, 180], but these platforms were not developed with
large-scale variant effect maps in mind, so valuable con-
text for the variant effect scores and associated metadata
may be lost. Furthermore, most existing resources lack
support for noncoding targets entirely.
To overcome these challenges and facilitate future ad-

vances, we are establishing an open-source platform for
MAVE resources. The foundation is MaveDB, a central
repository that allows researchers to store and publish
processed MAVE datasets, associated metadata, and
linked raw data using a machine-readable, standardized,
and searchable format. An easy-to-use web interface
maximizes the impact and usefulness of researchers’
work by making the data readily accessible to the whole
community, whether for clinical applications, meta-
analysis, or reanalysis as computational techniques are
refined.
This platform is designed to allow additional applica-

tions to communicate directly with MaveDB. The first of
potentially many such applications, MaveVis, visualizes
and provides context to protein variant effect maps by
generating heatmaps and automatically integrating them
with secondary structure, surface accessibility, inter-
action interfaces, and conservation data.

Construction and content
To capture the structure of real-world study designs,
MaveDB is organized hierarchically into score sets, ex-
periments, and experiment sets (Fig. 1). Score sets, the
most basic unit of organization, contain the variant ef-
fect scores and additional metadata such as target se-
quence information and detailed methods. Each variant
effect score is a numeric value. Optional data columns
containing values related to each variant effect score
such as variant counts and measures of uncertainty can
also be included and named by the user.
Most experimental designs in MaveDB involve mul-

tiple score sets. For example, protein MAVEs commonly
have one score set for nucleotide variants and another
for amino acid variants [23]. Experiments with tiled de-
signs [54, 92] can have score sets for each tile, and ex-
periments with multiple distinct reference sequences
[147] can have score sets for each reference sequence
[26, 147]. In addition, we envision that reanalysis and
renormalization of the existing datasets using updated
methods will be commonplace [14, 15, 181, 182]. By
grouping all analyses of a single raw dataset under one
experiment, MaveDB ensures that the number of assays
performed on each target sequence can be tracked
accurately.

Each experiment describes one or more analyses aris-
ing from a single MAVE, including any technical and
biological replicates. In addition to the links to score
sets, experiments contain metadata including methodo-
logical details, links to raw data, and associated publica-
tions (Table 1), but no variant score information.
Experiment sets contain one or more related experi-
ments, for example, multiple MAVEs performed on the
same target sequence under different conditions or mul-
tiple experiments from the same publication (Fig. 1).
MaveDB currently contains over one million variant

effect scores across 45 unique targets. We welcome both
new and previously described datasets from the commu-
nity and have implemented a conversion tool, mavedb-
convert, for datasets generated by Enrich [183], Enrich2
[182], and EMPIRIC [184] (see the “Availability of data
and materials” section).
MaveDB is implemented in Python using the Django

Python Web framework [185, 186]. The relational data-
base backend is PostgreSQL [187]. The full database
schema is shown in Additional file 1: Figure S2. Asyn-
chronous tasks such as handling file uploads and send-
ing emails are managed using RabbitMQ and Celery
[188, 189]. Variant score and count data are stored using
PostgreSQL JSONField objects, which offer additional
flexibility for storing arbitrarily named data columns
compared to a more traditional relational database de-
sign. Database accession numbers for publicly accessible
entries are assigned in Universal Resource Name (URN)
format [190].
Differences between each variant sequence and the

target sequence are described using HGVS format
[191]. MaveDB supports DNA and protein variant
strings that describe substitutions or small indels in
most sequence contexts, including splice site variants
and multi-mutants.
Contributors are authenticated using their ORCID ID

via the OAuth2 protocol [192, 193]. Consequently, an
individual must have an ORCID ID to be named as a
contributor to a MaveDB dataset. Users do not need to
log in to browse or download publicly available data.
MaveDB allows users to provide a private contact email
address if they want to be contacted by administrators
or receive alerts, but all other details are pulled from
their public ORCID record.
Abstract and methods sections support Markdown

[194] blocks for formatted text with support for math-
ematical notation. Markdown blocks are rendered to
HTML using Pandoc [195].
MaveVis is implemented using R [196] and Docker

[197]. Surface accessibility and interface burial are calcu-
lated using FreeSasa [198]. Secondary structure is calcu-
lated using DSSP [199]. Conservation tracks are
calculated using the AMAS algorithm [200], based on
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multiple alignments computed using ClustalOmega
[201] for the appropriate UniRef90 set of orthologous
proteins with at least 90% sequence identity from Uni-
ProtKB [180].

Utility and discussion
Accessing datasets
MaveDB can be accessed through a standard web
browser that allows users to explore by keyword,

target gene, or organism. Alternatively, the advanced
search function allows users to query all metadata
fields, including the full text of methods and
abstracts. Complete sets of variant effect scores and
related values can be downloaded from any score
set page in a comma-separated value format. These
files can be parsed easily in most scientific program-
ming environments or imported into spreadsheet
applications.

Fig. 1 Representative structures of MaveDB entries. Each panel depicts a single experiment set and its associated accession numbers. a A single
target sequence analyzed using two different MAVEs. For example, MAVEs in phage display and yeast two-hybrid formats were performed on
BRCA1 (experiment accessions ending in “-a” and “-b”) [16]. Each of these yielded two score sets, one for amino acid variants and one for
nucleotide variants (score set accessions ending in “-1” and “-2”). b Two distinct target sequences analyzed using the same MAVE. For example,
the VAMP-seq assay was performed on the PTEN and TPMT target sequences (experiment accessions ending in “-a” and “-b”) [18], yielding an
amino acid score set for each target (score set accessions ending in “-1”)
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The advanced search function is also accessible pro-
grammatically through the Representational State
Transfer-Application Programming Interface (REST
API). The API returns structured data, including full
score sets and metadata, in JSON format, suitable for
deserialization by most programming languages. Users
of the R programming environment [196] can access
MaveDB’s REST API using the rapimave library,
which also includes a suite of exploration, searching,
parsing, and filtering functions (see the “Availability
of data and materials” section).

Creating new entries
Typically, a user starts by logging in using their
ORCID ID and creating an experiment. The experi-
ment can be added to an existing experiment set if
desired; otherwise, a new one will be created auto-
matically. The user provides a description of the assay
used to generate the raw data, adds links to the raw
data if available, and can then add contributors. After
the experiment is created, the user creates one or
more associated score sets. Here, the user enters the
required information about the target such as its
name and sequence and also describes the methods
used to calculate the variant effect scores from the
raw data. Variant effect scores and optional count

files are then uploaded via the web interface and vali-
dated by the server.

Publishing datasets
When first created, score sets, experiments, and experi-
ment sets are private and have temporary accession
numbers. Private entries are only viewable by their con-
tributors, and all values may be modified. Private entries
can be accessed through the API by providing a contrib-
utor’s private access token generated on the contribu-
tor’s user profile page.
Completed private score sets can be published, making

the score set publicly viewable. Publication creates a
stable accession number and freezes the target sequence
and variant effect score data, ensuring that all subse-
quent analyses based on the data are recomputable.
Associated experiment and experiment sets are also pub-
lished automatically if they are still private. Users may
continue to edit some metadata such as the methods
and descriptions after publication.
Published scores cannot be changed, but in case a

correction is necessary, MaveDB allows score sets to
be deprecated when creating a replacement. Users
browsing MaveDB will only see the most recent ver-
sion, but deprecated score sets will remain available
by accession number to ensure that previous analyses
are reproducible.

Contributor permissions
MaveDB supports three contributor roles: administrator,
editor, and viewer. Administrators can add or remove
contributors, modify entries, and publish score sets. Edi-
tors can modify entries but cannot affect the contributor
list or make entries public. Viewers can see their private
entries in the database but cannot change them.
All three roles appear in the contributor list with no

visual distinction between them, and administrators can
continue to change the contributor list for each score set
or experiment after publication. Since score sets and ex-
periments have independent contributor lists, MaveDB
maintains clear attribution when datasets are reanalyzed.

Data licensing
Administrators may select one of several Creative
Commons licenses for each score set [202–204], and
additional licensing options may be added in response
to user requests. The license information is included
as score set metadata and as part of the header of
each downloaded file. Administrators can relicense
after publication, although users who download under
a more permissive license would not be subject to a
more restrictive license.

Table 1 MaveDB metadata fields

Field name Experiment Score
set

Type Searchable Link

Keyword ✓ ✓ String ✓

Abstract ✓ ✓ Markdown ✓

Method ✓ ✓ Markdown ✓

Short description ✓ ✓ String ✓

Title ✓ ✓ String ✓

PubMed ID ✓ ✓ Accession ✓ ✓

DOI ✓ ✓ Accession ✓ ✓

SRA accession ✓ Accession ✓ ✓

RefSeq accession ✓ Accession ✓ ✓

Ensembl
accession

✓ Accession ✓ ✓

UniProt
accession

✓ Accession ✓ ✓

Created by ✓ ✓ Contributor ✓ ✓

Last modified by ✓ ✓ Contributor ✓ ✓

Creation date ✓ ✓ DateTime ✓

Modification date ✓ ✓ DateTime ✓

Publication date ✓ ✓ DateTime ✓

License ✓ License ✓ ✓

Has replacement ✓ Boolean ✓
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Visualizing variant effect maps
The MaveVis application allows users to quickly
visualize score sets retrieved directly from MaveDB. One
example of MaveVis output for a variant effect map of
the protein SUMO1 [146] is shown in Fig. 2. Score sets
are rendered as heatmaps with additional tracks repre-
senting integrated structural and conservation informa-
tion from PDB [205] and UniprotKB [180]. The heatmap
shows all possible amino acid changes at each protein
sequence position, with colors reflecting the variant
effect scores. The color scale is automatically calibrated
based on the scores of reference and null alleles in the
dataset or set manually by the user. Error bars are drawn
directly on the heatmap fields to represent the measure-
ment error provided in the score set, if present.
Additional tracks show burial in protein interaction
interfaces, residue-specific solvent accessibility, protein
secondary structure, and sequence conservation.
MaveVis is hosted at http://varianteffect.org, a portal

for applications built on MaveDB. Users can follow the
MaveVis link on each MaveDB score set page or navi-
gate directly to http://vis.varianteffect.org and search for
datasets. Once a score set is selected, the corresponding
UniProt accession from MaveDB is suggested when
available. MaveVis automatically presents potentially
relevant PDB structures for the selected protein that
overlap with the score set target sequence, allowing
users to select which structures to include in the
visualization. The resulting plot can be downloaded in
PNG, PDF, or SVG format.
In addition to the web interface, MaveVis also exists as

an R package for local use (see the “Availability of data
and materials” section). The R package provides direct

access to both the visualization and underlying data
integration functions, making it easy to automatically
compile structural and conservation feature tables for
individual proteins.
The MaveVis server automatically synchronizes with

MaveDB at regular intervals via its API, caching any new
score sets, automatically obtaining relevant PDB and
UniProt data, and pre-calculating partial results for a
more responsive user experience. MaveVis also exposes
its own API, allowing it to be used within more complex
workflows.
To facilitate communication between MaveVis and

MaveDB, we developed an R package, hgvsParseR, to
parse or assemble HGVS [191] strings that describe al-
leles (see the “Availability of data and materials” section).
In addition to its utility for visualizing variant effect
maps, we expect that this package will be generally use-
ful for working with data from ClinVar [5], gnomAD
[206], and other important sequence variation resources.

Conclusions
MaveDB is the foundation of an open-source platform
for the collection, distribution, and analysis of variant ef-
fect maps. Designed to be flexible and extensible, the
MaveDB repository can accommodate data from diverse
target sequences and experimental methods as the field
evolves. Using MaveDB to combine variant effect data
with external contextual information, MaveVis is the
first application built on this resource. We envision de-
veloping additional applications such as tertiary struc-
ture analysis, automatic imputation of missing values in
variant effect maps [207], and a broadly applicable dash-
board to assist dataset interpretation.

Fig. 2 Heatmap for the SUMO1 MAVE dataset rendered by MaveVis. The x-axis iterates over amino acid positions in the protein, while the y-axis
lists all possible amino acid changes organized by their physicochemical properties. The heatmap color reflects the variant effect score, with blue
being as deleterious as a full deletion (labeled “stop” in the color bar), white being equivalent to the reference allele (labeled “syn” in the color
bar), and red representing a stronger phenotype than the reference residue at that position (labeled “hyper” in the color bar). Yellow cells
indicate the reference amino acid at each position. Error bars represent standard error of the mean. The stacked bars above the heatmap
represent the relative frequencies for each phenotype bin of the corresponding color at each position. Additional tracks show data integrated
from other databases: orange heatmap tracks represent burial in protein interaction interfaces, the steel blue heatmap track represents solvent
accessibility, the arrows and spirals correspond to secondary structure, and the yellow bar chart at the top shows sequence conservation
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MaveDB, MaveVis, and Enrich2 simplify, standardize,
and democratize MAVE data analysis. These tools are
the beginnings of a community-driven, open-source
platform that allows researchers to explore these com-
prehensive datasets. The impact of each dataset will con-
tinue to increase as the number of assayed variants
grows, contributing to a more complete understanding
of genetic variation and sequence function.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1845-6.

Additional file 1: Figure S1. Data unavailability is a persistent feature
of the MAVE literature. We compiled a list of 159 publications that
contained at least one new deep mutational scanning or massively
parallel reporter assay dataset and manually inspected the publication’s
supplementary data and methods to determine whether counts or scores
for the assayed variants were present. Refer to https://github.com/
VariantEffect/MaveReferences for the full table. This figure was generated
from release v0.1.1. Of the 159 total publications, 91 (57%) provide scores
or counts. Figure S2. UML (Unified Markup Language) diagram of the
complete MaveDB schema in PDF format. The diagram was generated
using the Django Extensions package and visualized using Graphviz.
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