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Abstract

Background: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric
disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-
specific whole-genome methylomes (N =95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained
from brain tissue of patients with schizophrenia and matched controls.

Results: The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation
occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell
type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA
methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting
the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder.

Conclusions: Our results provide novel and comprehensive methylome and transcriptome data from distinct cell
populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-
differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show

reduced cell type epigenetic distinction in schizophrenia.
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Background

Schizophrenia is a lifelong neuropsychiatric psychotic dis-
order affecting 1% of the world’s population [1]. Genetic
dissection of schizophrenia risk has revealed the polygenic
nature of the disorder [2—4]. Many of the schizophrenia
risk loci are located in the non-coding regions of the
genome, suggesting gene regulation plays a role in disease
pathology. Indeed, a large number of these risk loci are
associated with alterations in the gene expression in
schizophrenia [2, 5, 6]. These observations implicate epi-
genetic mechanisms as potential mediators of genetic risk
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in schizophrenia pathophysiology. Epigenetic mechanisms,
such as DNA methylation, may have particular relevance
for human brain development and neuropsychiatric
diseases [7-9]. Previous studies found that changes in
DNA methylation associated with schizophrenia are
significantly enriched with DNA methylation changes
from prenatal to postnatal life [7]. Moreover, genome-
wide association studies (GWAS) of schizophrenia risk
loci were over-represented in variants that affect DNA
methylation in fetal brains [10].

Prior studies of the genetic and epigenetic risks for
schizophrenia have some limitations, however, including
the use of pre-defined microarrays, which traditionally
focused on CpG islands and promoters, for methylation
profiling. Unbiased, genome-wide analyses of DNA
methylation are revealing that variation in DNA methy-
lation outside of promoters and CpG islands define the
critical epigenetic difference between diverse cell types
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[11, 12]. Additionally, previous genomic studies of schizo-
phrenia have used brain tissue samples containing a
heterogeneous mixture of cell types, although gene
expression patterns vary considerably across cell types
in the human brain [13—17]. To address these concerns,
we carried out whole-genome methylome and tran-
scriptome analyses using postmortem human brain
tissue that underwent fluorescence-activated nuclei
sorting (FANS) [18] into neuronal (NeuN") and oligo-
dendrocyte (OLIG2") cell populations. Both neurons and
myelin-forming oligodendrocytes have been implicated in
schizophrenia pathophysiology [19, 20] and may be
functionally dependent on one another for proper signal-
ing in the brain [21]. Tissue was dissected from Brodmann
area 46 (BA46) of the dorsolateral prefrontal cortex, a key
brain region at risk in schizophrenia [1, 22]. We used
whole-genome bisulfite sequencing (WGBS) to obtain an
unbiased assessment of epigenetic modifications asso-
ciated with schizophrenia and additionally carried out
whole-genome sequencing (WGS) and RNA sequencing
(RNA-seq) of the same samples to document transcrip-
tomic consequences while accounting for the genetic
background differences.

Integrating these data, we demonstrate extensive diffe-
rential DNA methylation between neurons and oligoden-
drocytes. Comparisons to previous studies using bulk
tissues indicate that they were generally biased toward
neuronal populations. Our resource thus offers com-
prehensive and balanced analyses of molecular variation
in control and disease brains, including novel information
from a major yet relatively underexplored brain cell popu-
lation (oligodendrocytes). This comprehensive and novel
dataset allows us to demonstrate subtle yet robust DNA
methylation differences between control and schizophre-
nia samples, which are highly enriched in sites that are
epigenetically differentiated between the two cell types.
Moreover, we show that schizophrenia-associated DNA
methylation changes reduce the cell type methylation dif-
ference. Together, these data indicate that the integration
of multiple levels of data in a cell type-specific manner
can provide novel insights into complex genetic disorders
such as schizophrenia.

Results

Divergent patterns of DNA methylation in human brain
cell types

We performed FANS [18] using postmortem tissue
dissected from BA46 of the dorsolateral prefrontal cortex
using NeuN and OLIG2 antibodies (Fig. 1a; Additional file 1:
Table S1; see the “Methods” section). Immunofluorescent
labeling indicates that NeuN-positive nuclei and OLIG2-
positive nuclei following FANS (hereinafter “NeuN" or
“OLIG2"™) represent neurons within the cerebral cortex
and oligodendrocytes and their precursors, respectively
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(Fig. 1b—d). We analyzed genomic DNA (gDNA) and total
RNA from the same nuclei preparations in NeuN" or
OLIG2" by WGBS and RNA-seq. We additionally carried
out WGS of the brain samples to explicitly account for the
effect of genetic background differences.

Whole-genome DNA methylation maps of NeuN*
(N=25) and OLIG2" (N =20) from control individuals
(Additional file 1: Table S1) show a clear separation of
the two populations (Fig. 2a). Previously published
whole-genome methylation maps of neurons [27] co-
segregate with NeuN". On the other hand, previously
generated NeuN™ methylomes [27] cluster as outliers of
OLIG2" samples, potentially due to the inclusion of
other cell types compared to our cell-sorted samples.
We identified differentially methylated CpGs between
cell types, which we refer to as “differentially methylated
positions (DMPs),” using a statistical method that allows
us to explicitly take into account the effect of covariates
(Additional file 1: Table S2; see the “Methods” section),
while handling variance across biological replicates as
well as the beta-binomial nature of read count distri-
bution from WGBS [29]. Despite the large number of
CpGs (~ 25 million out of the total 26 million CpGs in
the human genome have been analyzed), we identify
numerous DMPs between NeuN" and OLIG2" after cor-
recting for multiple testing. At a conservative Bonferroni
P <0.05, over 4 million CpGs are differentially methyl-
ated between these two cell types, revealing highly
distinct cell type difference in gDNA methylation (Fig. 2a,
b). On average, DMPs between NeuN"' and OLIG2*
exhibit a 32.6% methylation difference. NeuN" tends to
be more hypermethylated than OLIG2" (Fig. 2b; 64% of
DMPs, binomial test, P<107%%). This observation is
consistent with NeuN" being more hypermethylated
than non-neuronal populations [27].

As expected from regional correlation of DNA methy-
lation between adjacent sites [30—32], many DMPs occur
near each other, allowing us to identify “differentially
methylated regions” or “DMRs” (defined as > 5 signifi-
cant DMPs in a 50-bp region) spanning 103 MB in the
human genome, exhibiting mean methylation difference
of 38.3% between cell types (Fig. 2c¢, Additional file 2:
Table S3). Many DMRs reside in introns and distal inter-
genic regions (Fig. 2d), which are traditionally viewed as
“non-coding.” Chromatin state maps based on six chro-
matin marks [28] indicate that many DMRs, especially
those located in introns and distal intergenic regions,
exhibit enhancer chromatin marks, in particular, brain
enhancers (OR between 2.6- and 4.6-fold, P<0.01,
Fig. 2e, Additional file 1: Table S4). In fact, over 60% of
all DMRs show enhancer-like chromatin features in the
brain (Additional file 3: Figure S1). These results high-
light the regulatory significance of non-coding regions of
the genome. Notably, currently available arrays such as
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the Illumina 450K do poorly in terms of targeting
putative epigenetic regulatory loci (Fig. 2d).
NeuN*-specific hypo-methylated regions are signifi-
cantly enriched in recently identified NeuNT-specific
H3K4me3 and H3K27ac peaks [9] (Fig. 2f; Fisher’s exact

test OR =7.8, P <10 "°). H3K4me3 and H3K27ac peaks
in the NeuN™ populations also show significant enrich-
ment of OLIG2"-specific hypo-methylation, although the
degree of enrichment is less strong than NeuN" corres-
pondence (Fisher’s exact test OR = 4.8, P <10™'°), again
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Fig. 1 Experimental design and FANS workflow example. a Postmortem brain tissue from BA46 was matched between cases with schizophrenia
and unaffected individuals. Tissue pieces were processed to isolate nuclei and incubated with antibodies directed toward NeuN or OLIG2. The
nuclei were sorted using fluorescence-activated nuclei sorting (FANS) to obtain purified populations of cell types. The nuclei were processed to
obtain genomic DNA (gDNA) and nuclear RNA from the same pools. Nucleic acids then underwent whole-genome sequencing (WGS), whole-
genome bisulfite sequencing (WGBS), or RNA sequencing (RNA-seq). b NeuN-positive (NeuN*") nuclei represent neurons within the cerebral cortex
as few human NeuN-negative (NeuN") cells in the cortex are neurons [23, 24] (e.q., Cajal-Retzius neurons). OLIG2-positive (OLIG2*) nuclei represent
oligodendrocytes and their precursors [25, 26]. Isolation of nuclei expressing either NeuN conjugated to Alexa 488 or OLIG2 conjugated to Alexa 555.
The nuclei were first sorted for size and complexity, followed by gating to exclude doublets that indicate aggregates of nuclei and then further sorted
to isolate nuclei based on fluorescence. “Neg” nuclei are those that are neither NeuN" nor OLIG2*. ¢ Example percentage nuclei at each selection step
during FANS. Note that while in this example more nuclei were OLIG2, in other samples, the proportions might be reversed. d Immunocytochemistry

of nuclei post-sorting. The nuclei express either NeuN or OLIG2 or are negative for both after FANS. DAPI labels all nuclei

potentially due to the inclusion of other types of cells.
WGBS data is complementary to ChIP-seq data in terms
of resolution and coverage. While ChIP-seq provides
resolution in the scale of several thousand base pairs (for
example, peak sizes in previous study [9] are on average
several kilobases and extend up to several hundred
kilobases), WGBS data offers base pair resolution. Even
though DMPs are generally concentrated around the
center of ChIP-seq peaks, some peaks show more diffuse
patterns, indicating that incorporating DMP information
could offer fine-scale resolution of histone modification
in individual genomic regions (Fig. 2g, Additional file 3:
Figure S2).

We further examined DNA methylation of cytosines
that are not in the CpG context, as nucleotide resolution
whole-genome DNA methylation maps have begun to
reveal the potential importance of non-CG methylation
(CH methylation, where H=A, C, or T) particularly in
neuronal function [27]. We observed that low levels of
CH methylation were present in NeuN" but nearly
absent in OLIG2" (Additional file 3: Figure S3), consis-
tent with previous reports [27]. CH methylation is
primarily associated with CA nucleotides (69.4%),
followed by CT (26%) and CC (4.6%) (Additional file 3:
Figure S3). In addition, gene body mCH values negatively
correlate with gene expression in NeuN" (Spearman’s rho
-0.16, P<107'% Additional file 3: Figure S3). Therefore,
CH patterns at gene bodies provide an additional layer of
gene expression regulation that is specific to neurons
while absent in oligodendrocytes in the human brain.

Strong association between cell type-specific DNA
methylation and expression

We next performed RNA-seq using RNAs extracted from
the nuclei-sorted populations (see the “Methods” section).
NeuN* and OLIG2" transcriptomes form distinctive
clusters (Fig. 3a). Transcriptomic data from cell-sorted
populations clustered closer to bulk RNA-seq data from
the cortical regions but were distinct from those from the
cerebellum and whole blood (Additional file 3: Figure S4).
We further show that previously generated bulk RNA-seq
data [5, 6] have higher proportion of NeuN" compared

with OLIG2* (Fig. 3b), indicating that these previously
generated bulk RNA-seq data are biased toward neurons.
The higher neuronal proportion in bulk RNA-seq is
highlighted also using an independent single-nuclei data
(Additional file 3: Figure S5).

We show that 55% of genes show significant change in
expression between NeuN" and OLIG2" (|logy(fold change)
| >0.5 and Bonferroni correction <0.05; Additional file 1:
Table S5). NeuN*- and OLIG2"-specific genes (defined as
significantly upregulated in NeuN"* compared to OLIG2*
and vice versa) are enriched for known markers of specific
cell types of the brain. Specifically, NeuN"-specific genes
are enriched for excitatory and inhibitory neurons, whereas
OLIG2"-specific genes show strong enrichment for oligo-
dendrocytes and lower enrichment for oligodendrocyte
precursor cells and astrocytes (Fig. 3c). Divergent DNA
methylation between cell types can explain a large amount
of gene expression variation between cell types (Fig. 3d,
Spearman’s rho = — 053, P<10™"°). Significant correlation
extends beyond the promoter regions (Additional file 3:
Figure S6),

Differential DNA methylation associated with
schizophrenia

We next analyzed whole-genome methylation maps
from brain tissue from patients with schizophrenia (28
NeuN™ and 22 OLIG2") and contrasted these data with
data from matched controls (25 NeuN™ and 20 OLIG2%;
see the “Methods” section) described in the previous
section. Compared to the robust signal of cell type dif-
ference, DNA methylation changes associated with
schizophrenia are subtler. At a moderately stringent
FDR < 0.2, we identify 261 individual CpGs (60 in NeuN"
and 201 in OLIG2") that are differentially methylated
between control and schizophrenia. Applying additional
filtering for high-coverage sites (20x in at least 80% of
samples per disease-control group), we identify a total of
97 CpGs (14 NeuN" and 83 OLIG2" specific) at FDR < 0.2
(Additional file 1: Tables S6-S7). Results of differential
DNA methylation analyses in the rest of the paper all refer
to those from the filtered dataset, and differentially me-
thylated sites between case and control are referred to as
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Fig. 2 Divergent patterns of DNA methylation in NeuN* and OLIG2™ cell types in the human brain. a Clustering analysis based on whole-genome
CpG methylation values completely discriminated between NeuN* (N=25) and OLIG2" (N = 20) methylomes. Additional NeuN" (colored in turquoise)
and those labeled as NeuN™ (pink) are from [27]. b Density plots showing the distribution of fractional methylation differences between OLIG2" and
NeuN" at differentially methylated positions (DMPs) and other CpGs (non-DMPs). We observed a significant excess of NeuN*-hypermethylated DMPs
compared to OLIG2" (binomial test with expected probability = 0.5, P < 107"°). ¢ Heatmap of the top 1000 most significant DMRs between OLIG2* and
NeuN". Fractional methylation values per individual (column) and DMR (row) show substantial differences in DNA methylation and clear cell type
clustering. d Genic annotation of DMRs and coverage with Illumina 450K Methylation Arrays. Counts of different genic positions of DMRs are shown.
DMRs containing at least one CpG covered by a probe in the array are indicated. Only 20.8% of the DMRs contain one or more CpG targeted by
lllumina 450K Array probes. @ DMRs are enriched for brain enhancers. Enrichment of enhancer states at DMRs compared to the 100 matched control
DMR sets from 127 tissues [28]. Random sets are regions with similar characteristics as, including the total number of regions, length, chromosome,
and CG content. f Correspondence between cell type-specific methylation sites in NeuN* and OLIG2* with NeuN" and NeuN™ ChiP-seq datasets [9].
Neuron-specific ChIP-seq peaks show an excess of sites with NeuN*-specific hypomethylated sites (positive DSS statistic, see the “Methods” section)
whereas non-neuron peaks showed significant enrichment for sites specifically hypomethylated in OLIG2* (negative DSS statistic). g Distribution of cell
type-specific methylation differences at CpGs within H3K27ac ChIP-seq peaks in NeuN* and NeuN™ nuclei. Positive values of DSS statistic
indicate hypomethylation in NeuN" compared to OLIG2", whereas negative values indicate hypermethylation (see the “Methods” section).
Dashed lines indicate the significance level for DSS analyses

“szDMPs.” The average methylation difference between
schizophrenia and control at FDR < 0.2 szDMPs is ~ 6%
(Additional file 1: Tables S6—S7), which is within the range
of case/control differences our sample sizes are em-
powered to detect according to our power analyses (see
the “Methods” section; Additional file 3: Figure S7). The
majority of the szDMPs (FDR < 0.2) are intronic (50.5%)
and distal intergenic CpGs (45.4%), whereas only two of
them are located within 3 kb from the transcriptional start
sites (Additional file 1: Tables S6—S7). Interestingly, two
szDMPs (FDR <0.2) in OLIG2* are located within the
regions reported to be associated with schizophrenia by
GWAS [4] including a CpG located in the intron of
NT5C2 gene, involved in purine metabolism.

In addition to the power analysis (see the “Methods”
section, Additional file 3: Figure S7), we assessed the
robustness of the results as well as the effects of cova-
riates or potential hidden structures in the data by permu-
tation analysis, by randomly assigning case/control labels
100 times per cell type. The observed DNA methylation
difference between control and schizophrenia samples is
significantly greater than those observed in the permuted
samples (Additional file 3: Figure S8). Even though our
statistical cutoff is moderate, considering that we are cor-
recting for an extremely large number of (~ 25 million) in-
dependent tests, the results from permutation analyses
provide support that these sites represent schizophrenia-
associated signals of differential DNA methylation. Indeed,
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Fig. 3 Gene expression signatures in NeuN™ and OLIG2" nuclei. a Heatmap of cell type DEGs with covariates indicated. b Cell deconvolution of
bulk RNA-seq data from the CommonMind Consortium and BrainSeq compared with NeuN* and OLIG2" (control samples). Y-axes show the
weighed proportion of cells that explain the expression of bulk RNA-seq. ¢ Gene set enrichment for cell type markers from single-nuclei RNA-seq.
Enrichment analyses were performed using Fisher's exact test. Odds ratios and FDRs (within parentheses) are shown. d Correspondence between
the expression change and methylation change in cell types. The X-axis represents differential DNA methylation statistics for genes harboring
DMRs in promoters. The Y-axis indicates the log,(fold change) of expression between the two cell types. The negative correlation supports the
well-established impact of promoter hypomethylation on the upregulation of gene expression
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Fig. 4 Cell type DNA methylation patterns associated with schizophrenia. a DMPs associated with schizophrenia. Quantile-quantile plots of genome-
wide P values for differential methylation between schizophrenia and control based on NeuN* (left) and OLIG2™ (right) WGBS data. b Concordance
between WGBS data and microarray-based data. Y-axis shows the ratio of sites showing the concordant direction in schizophrenia vs. control in our
study at each P value bin compared with the Jaffe et al. study [7] (X-axis). Concordance was tested using a binomial test (stars indicate P < 0.05).
Boxplots correspond to the directional concordance in 100 sets of association results after case-control label permutations. NeuN™ (left) and OLIG2*
(right). € szDMPs show altered cell type differences. Barplot shows the percentage of sites with larger cell type differences in controls than in
schizophrenia and vice versa at different CpG classes. Absolute OLIG2* vs. NeuN" methylation differences are larger in controls than cases in szDMPs
compared to cell type DMPs and non-DMP or background CpGs. szDMPs were detected as differentially methylated between cases and controls at
FDR < 0.2 in NeuN" (14 sites) and OLIG2" samples (83 sites). Top 1000 szDMPs were selected as the top 1000 loci according to best P values in each
cell type (N = 2000). Cell type DMPs were detected by comparing OLIG2" vs. NeuN* methylomes at Bonferroni P < 0.05. Background CpGs were
sampled from CpGs showing non-significant P values for both case-control and OLIG2* vs. NeuN* comparisons. Stars represent P values for binomial
tests with all comparisons showing P< 107". d Top 1000 szDMPs are enriched for SZ GWAS signals. szDMPs identified in our methylation study in both
cell types consistently co-localize with genetic variants with moderate to large effect sizes for schizophrenia risk than expected. The table shows the
empirical P values of szDMPs at each odds ratio (OR) percentile of different traits from genome-wide association studies (GWAS). The actual ORs
corresponding to the schizophrenia percentiles are indicated at the top. Specifically, for each szDMP, we identified all SNPs reported by the GWAS
study within a 1-kb window and counted the number of SNPs at different quantiles of odds ratio (OR). We used quantiles of OR so that we can
compare the different diseases and traits among them. We repeated this step using the same number of random non-szDMPs 100 times. To obtain
empirical P values, we calculated the number of times non-szDMP sets showed more SNPs in each OR quantile than szDMPs. SNPs with moderate-to-
high OR in schizophrenia GWAS consistently showed low empirical P values for both cell type DMPs, implying that SNPs with large effect sizes in
GWAS studies are closer to szDMPs than expected. Interestingly, this pattern was not observed for other traits, implying the co-localization is exclusive
to the disease
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from the WGBS (Spearman’s rho = 0.96, P<107*°, Add-
itional file 3: Figure S9), indicating the reliability of the
fractional methylation estimates obtained in the discovery
WGBS data. In addition, the WGBS data and validation
data are highly consistent for case-control comparisons in
both sign direction and correlation in effect size (Spear-
man’s rho =0.87, P<107'® and 81.25% sign concord-
ance, Additional file 3: Figure S10). These results
support the validity of szDMPs discovered in our study.

There is no direct overlap between these DMPs (FDR <
0.2) and those previously identified from a microarray
study [7]. However, despite the lack of direct overlap, the
direction of methylation change between control and
schizophrenia between the two studies is largely consistent
in the NeuN", especially with increasing significance
(decreasing P values) (Fig. 4b). This pattern is highly
significant compared to the permuted data (Fig. 4b). In
comparison, the OLIG2" dataset does not exhibit such a
pattern (Fig. 4b), potentially because the bulk tissue
samples consisted largely of neurons. Deconvolution ana-
lyses of transcriptomes using our cell-sorted population
support this idea (Fig. 3b).

Enrichment of szDMPs in cell type distinct sites imply cell
type dysregulation
Remarkably, szDMPs (FDR < 0.2) are highly enriched in
cell type-specific DMPs (OR=4.1, P<107', Fisher’s
exact test). This enrichment persists when we examine a
larger number of sites (Additional file 3: Figure S11),
indicating that the enrichment is not due to the small
number of szDMPs. Moreover, szDMPs (FDR <0.2)
show distinct directionality in the distinct brain cell
types. Specifically, NeuN" szDMPs (FRD <0.2) show an
excess of hypomethylation in schizophrenia samples
compared to the control samples (93%, 13 out of 14,
P =0.0018 by binomial test, Additional file 3: Figure S8)
. An opposite pattern is observed for OLIG2* szDMPs
(FDR <0.2), where schizophrenia samples are mostly
hypermethylated compared to the control samples
(75.9%, 63 out of 83, P=2.4x10°° by a binomial test).
In contrast, this bias is not observed in the permuted
data (NeuN" empirical P=0.07 and OLIG2" empirical
P =0.02, Additional file 3: Figure S8). Considering that
NeuN" tend to be more hypermethylated compared to
OLIG2" (Fig. 2b), we investigated whether disease patterns
in schizophrenia contribute to reduced cell type difference
in DNA methylation. Indeed, szDMPs consistently show
decreased cell type methylation difference compared
to the control samples (Fig. 4c). In other words,
schizophrenia-associated modification of DNA me-
thylation effectively diminishes cell type distinctive
epigenetic profiles in our data.

These results also suggest that sites that did not
pass the FDR cutoff but have been detected in the
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differential methylation analyses may harbor meaning-
ful candidates for future studies. Indeed, our power
study supports this idea (see the “Methods” section,
Additional file 3: Figure S7). Consequently, we further
analyzed sites that are ranked top 1000 in the differ-
ential DNA methylation analysis between the brains
of control vs. those from patients with schizophrenia
(referred to as “top 1000” DMPs). We find that genes
harboring the top 1000 szDMPs show enrichment for
brain-related functions and diseases, as well as tran-
scription factors, particularly those involved in chro-
matin remodeling (Additional file 3: Figure S$12).
Given that the majority of the schizophrenia herita-
bility is found below the significance thresholds of
GWAS [4], we explored the association patterns at
genome-wide SNPs. Top 1000 szDMPs tend to co-
localize with genetic variants associated with schizo-
phrenia but not with other mental or non-mental
traits, mostly with genetic variants below the strict
GWAS significance threshold but with moderate-to-
high effect sizes (Fig. 4d). This result supports the
role of brain DNA methylation in the genetic etiology
of schizophrenia.

Cell type expression differences associated with
schizophrenia

Compared to subtle DNA methylation differences, gene
expression shows good separation between schizophre-
nia and control (Fig. 5a), and diagnosis has a strong
effect on the variance compared to other covariates
(Fig. 5b). We identified 140 and 167 differentially
expressed genes between control and schizophrenia
(referred to as “szDEGs” henceforth) for NeuN* and
OLIG2", respectively, at FDR < 0.01 (Fig. 5¢; Additional file 1:
Tables S8-S9; see the “Methods” section). We compared
our results to the previous results obtained from bulk
tissues [5, 6] and identified common and distinct sets
of differentially expressed genes across the datasets
(Additional file 1: Tables S10-S11; see the “Methods”
section). Comparing the effect sizes of commonly differen-
tially expressed genes (P < 0.05) among the three datasets
analyzed, we find significant correlations to the CMC and
BrainSeq datasets [5, 6] in NeuN", but not when we
compare OLIG2" (Fig. 5d). These results are consistent
with the aforementioned deconvolution analysis, in-
dicating that bulk tissue brain studies were limited in
terms of non-neuronal signals, such as those coming
from oligodendrocytes.

Newly identified szDEGs are enriched for variants for
specific disorders or cognitive traits (Fig. 5e; see the
“Methods” section). Notably, NeuN" szDEGs are enriched
for GWAS signal from schizophrenia and ADHD as well
as educational attainment. Interestingly, OLIG2" szDEGs
are enriched for genetic variants associated with bipolar
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Fig. 5 Gene expression associated with schizophrenia in NeuN" and OLIG2*. a Heatmap of szDEGs for each cell type with covariates indicated. b
The first principal component of the DEGs was associated with diagnosis. Red dotted line corresponds to P = 0.05. ¢ Volcano plot showing szDEGs. X-
axis indicates the logs(fold change), and Y-axis indicates log;o(FDR). szDEGs (FDR < 0.01) are colored. d Comparisons of differentially expressed genes in
schizophrenia from the current study with the BrainSeq and CMC data. We used genes that are classified as differentially expressed in all three datasets
(each dot represents a gene, 63 genes are common to NeuN*, CMC, and BrainSeq, and 49 to OLIG2*, CMC, and BrainSeq). The X-axes represent the
fold change between control and schizophrenia in CMC or BrainSeq datasets, and the Y-axes represent the log,(fold change) between control and
schizophrenia in the current datasets, for either NeuN"-specific or OLIG2"-specific genes. Regression line and confidence interval are shown for each
comparison. e Barplot highlighting the enrichment for trait-associated genetic variants. Bars correspond to NeuN™ (cyan) and OLIG2* (magenta)
szDEGs. Red dashed line corresponds to the FDR threshold of 0.05. X-axis shows the acronyms for the GWAS data utilized for this analysis (ADHD,
attention deficit hyperactivity disorder; ASD, autism spectrum disorders; BIP, bipolar disorder; ALZ, Alzheimer’s disease; MDD, major depressive disorder;
SZ, schizophrenia; Cognfun, cognitive function; EduAtt, educational attainment; Intelligence, intelligence; BMI, body mass index; CAD, coronary artery
disease; DIAB, diabetes; HGT, height; OSTEO, osteoporosis). f Enrichment map for szDEGs (up-/downregulated) and the top 1000 szDMPs (X-axis shows
genic annotation). Enrichment analyses were performed using Fisher's exact test. Reported odds ratios and FDRs within parentheses for NeuN™ (top)
and OLIG2* (bottom)
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disorder and autism spectrum disorders (Fig. 5e), indi-
cating potential cell type-specific relationship between
genetic variants and disease-associated variation of
gene expression.

Finally, we investigated the relationship between
schizophrenia-associated differential DNA methylation
and differential gene expression. Remarkably, similar to
what we have observed in DNA methylation, szDEGs are
preferentially found in genes that are significantly diffe-
rentially expressed between cell types for both NeuN*
(OR=7.7, FDR=8x 10"%) and OLIG2" (OR =13, FDR =
7 x107"?), furthering the functional implication of cell
type-specific regulation in schizophrenia. Due to the small
number of szDMPs identified at FDR < 0.2, there was little
direct overlap between szDMPs and szDEGs. However,
when we examined the top 1000 szDMPs, we begin to ob-
serve significant enrichments of szDMPs in szDEGs
(Fig. 5f). Notably, the top 1000 szDMPs are enriched in
genic (3'UTR and exon) and intergenic CpGs in NeuN",
while OLIG2" show specific enrichment for intronic
and promoter CpGs (Fig. 5f) (Fisher’s exact test, all
comparisons FDR < 0.05). These results underscore the
promise of cell type-specific approaches to elucidate
the relationships between genetic variants, epigenetic
modifications, and gene expression in a complex neuro-
psychiatric disorder.

Discussion

The etiology of schizophrenia remains largely unresolved
even though significant efforts have gone into under-
standing the genetic and molecular mechanisms of the
disease [1]. These efforts have been challenged by both
the genetic heterogeneity of the disorder as well as the
inherent cellular heterogeneity of the brain. To address
these issues, we integrated whole-genome sequencing,
transcriptome, and epigenetic profiles from two major
cell types in the brain. Whole-genome patterns of DNA
methylation and gene expression are highly distinct be-
tween cell types, complementing other analyses of cell
type-specific epigenetic variation [9, 33]. In particular,
our data offer novel resource from oligodendrocytes, a
major yet relatively underexplored cell type in the
human brains. Indeed, we show evidence that previous
analyses of bulk tissue gene expression were under-
powered to detect oligodendrocyte-specific signals,
underscoring the strength of a cell-specific approach and
the fact that most bulk tissue brain studies tend to focus
on or specifically isolate gray matter.

A caveat to our study is that methylome and expression
studies using human brain tissue could be confounded by
the multitude of environmental factors that can impact
these measurements such as the use of medications or
other drugs, smoking, alcohol use, and other lifestyle
factors. We provide such information for the subjects used
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in this study in Additional file 1: Table S1; however, these
data are rarely quantitative and are frequently unknown
for many individuals. We therefore compared CpGs pre-
viously associated with tobacco smoking [34—36] and
did not find a significant overlap with our identified
szDMPs (see the “Methods” section). This result sug-
gests that our data are likely not confounded by at least
tobacco smoking.

To our knowledge, this is the first study to identify the
cell-specific correspondence between whole-genome
methylation and expression in brain tissue from patients
with schizophrenia. Compared to substantial cell type
differences, methylation differences between control and
schizophrenia are small. Considering 20% false positives
and coverage, we identified 97 szDMPs, compared to
over 4 million cell type-specific DMPs identified at a
more stringent cutoff of Bonferroni P<0.05. Never-
theless, schizophrenia-associated epigenetic and transcrip-
tomic alteration is highly cell type-specific, thus offering
the first direct support to the idea that cell type-specific
regulation may be implicated in schizophrenia pathophy-
siology [9, 33]. Notably, our resource provides novel
whole-genome methylation data from affected brain
samples rather than making these connections based on
genetic associations. By doing so, we demonstrate that cell
type epigenetic difference is reduced in affected indivi-
duals, offering a potential mechanistic link between dys-
regulation of cell type-specific epigenetic distinction and
disease etiology. The decrease in cell type differences in
schizophrenia could be due to a number of pathophysio-
logical mechanisms including a change in cell type dif-
ferentiation, an alteration in cell type heterogeneity, or a
reflection of other unknown altered developmental pro-
grams. Patient-derived neurons from iPSCs have not
yielded robust observable differences in gene expression
[37]. While issues of power have been suggested as the
cause of the lack of observable differential expression
between cases and controls, it is also plausible that such
negative results are due to a critical interplay of multiple
nervous system cell types such as oligodendrocytes that
are not present in such human culture systems. Future
studies that integrate human oligodendrocytes into cellu-
lar and other model systems might be able to tease apart
the mechanisms by which neuronal and non-neuronal cell
types become more similar in schizophrenia. In addition,
the use of single-cell methylome and expression profiling
in brain tissue from patients should elucidate the
spectrum of heterogeneity of cell types in schizophrenia.
Recent work has demonstrated that chromatin remodeling
in neurons but not astrocytes is relevant to schizophrenia
[38]; however, this study did not examine oligodendro-
cytes. Thus, there are intrinsic molecular differences
within each of these major cell classes that can independ-
ently be contributing to disease. Based upon our findings,



Mendizabal et al. Genome Biology (2019) 20:135

further investigations into the contributions of oligoden-
drocytes to schizophrenia are warranted.

A large portion of differential DNA methylation be-
tween control and schizophrenia occur in non-coding
regions. This observation further highlights the role of
regulatory variation in disease etiology, similar to the
findings from GWAS studies, especially the distribution
of schizophrenia genetic risk loci [4, 39, 40]. Notably,
the majority of sites that show signals of differential
DNA methylation are not accessed by most DNA
methylation arrays. Our study demonstrates that schizo-
phrenia pathophysiology is unlikely to be further delin-
eated via the study of differential methylation or
expression in the brain given currently used technolo-
gies. What we have found is that non-neuronal cells
such as oligodendrocytes are just as likely to play a role
in disease as neurons. Therefore, the use of emerging
technologies to profile individual cells might be able to
assess the contribution of even more cell types such as
astrocytes or microglia. Moreover, for human brain tis-
sue studies of schizophrenia, we are limited to adult tis-
sues whereas the critical windows of altered methylation
and/or expression might be occurring earlier in the de-
velopment prior to the onset of symptoms and diagnosis.
Finally, the heterogeneity of schizophrenia might chal-
lenge the interpretation of data from this sample size.
Future studies that compare individuals based on spe-
cific aspects of disease (e.g., presence of psychosis) might
yield greater differences. Nevertheless, what our study
has uncovered are a number of cell type changes in ex-
pression and methylation that correspond to disease sta-
tus. In particular, the oligodendrocyte changes are
compelling as previous studies were underpowered to
detect these changes. With these identified genes in
hand, the importance of these specific genes in brain
development and function can now be studied in cel-
lular and animal models. These gene lists can also be

integrated with future whole-genome sequencing
studies.
Conclusions

We provide the first detailed interrogation of DNA
methylation differences between neurons and oligoden-
drocytes and between brain tissues from patients with
schizophrenia compared to controls. These data demon-
strate an extensive epigenetic distinction between two
major cell types in the brain and that cell type-specific
methylation is dysregulated in a specific way in the
brains from patients with schizophrenia. These data can
be used for prioritizing targets for further experimental
analyses. With rapidly decreasing sequencing costs,
candidates and hypotheses generated from our study
should lead to future analyses at the individual cell level
from specific populations of patients (e.g., patients with
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psychosis or not) to further elucidate the biological
alterations associated with schizophrenia.

Methods

Sampling strategy

Frozen brain specimens from Brodmann area 46 were
obtained from several brain banks (Additional file 1:
Tables S1-S2). Cases and controls were matched by age
group, and additional demographics such as gender were
matched when possible (Additional file 1: Table SI).
Information on comorbidities and cause of death when
known are included in Additional file 1: Table S1.

Nuclei isolation from human postmortem brain

Nuclei isolation was performed as described previously
[18, 41] with some modifications. Approximately 700 mg
of frozen postmortem brain was homogenized with lysis
buffer (0.32 M sucrose, 5 mM CaCl,, 3 mM Mg(Ac),,
0.1 mM EDTA, 10 mM Tris-HCI pH 8.0, 0.1 mM PMSF,
0.1% (w/o) Triton X-100, 0.1% (w/o) NP-40, protease
inhibitors (1:100) (#P8340, Sigma, St. Louis, MO), RNase
inhibitors (1:200) (#AM2696, ThermoFisher, Waltham,
MA)) using a Dounce homogenizer. Brain lysate was
placed on a sucrose solution (1.8 M sucrose, 3 mM
Mg(Ac);, 10 mM Tris-HCI pH 8.0) to create a concen-
tration gradient. After ultracentrifuge at 24,400 rpm for
2.5 h at 4 °C, the upper layer of the supernatant was
collected as the cytoplasmic fraction. The pellet, which
included the nuclei, was resuspended with ice-cold PBS
containing RNase inhibitors and incubated with mouse
alexad88 conjugated anti-NeuN (1:200) (#¥MAB377X,
Millipore, Billerica, MA) and rabbit alexa555-conjugated
anti-OLIG2 (1:75) (#AB9610-AF555, Millipore) antibodies
with 0.5% BSA for 45 min at 4 °C. Immuno-labeled nuclei
were collected as NeuN-positive or OLIG2-positive popu-
lations by fluorescence-activated nuclei sorting (FANS).
After sorting, gDNA and total RNA were purified from
each nuclei population using a ZR-Duet DNA/RNA
MiniPrep (Plus) kit (#D7003, Zymo Research, Irvine, CA)
according to the manufacturer’s instruction. Total RNA
was treated with DNase I after separation from gDNA.
Two hundred nanograms total RNA from each sample
was treated for ribosomal RNA removal using the Low
Input RiboMinus Eukaryote System v2 (#A15027, Ther-
moFisher) according to the manufacturer’s instruction.
After these purification steps, gDNA and total RNA were
quantified by Qubit dsDNA HS (#Q32851, ThermoFisher)
and RNA HS assay (#Q32852, ThermoFisher) kits, re-
spectively. Immunostaining was visualized using a Zeiss
LSM 880 with Airyscan confocal laser scanning micro-
scope. One hundred microliters of sorted nuclei was
placed onto microscope slides, and 300 pl of ProLong Dia-
mond Antifade Mountant with DAPI (#P36971,
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ThermoFisher) was added and covered with glass cover-
slips before imaging.

Whole-genome bisulfite sequencing library generation
and data processing

As a control for bisulfite conversion, 10 ng of unmethy-
lated lambda phage DNA (#D1501, Promega) was added
to the 1 pg of input DNA. Libraries were made with an
in-house Illumina sequencer-compatible protocol. The
extracted DNA was fragmented by S-series Focused-
ultrasonicator (Covaris, Woburn, MA) using the “200-bp
target peak size protocol.” Fragmented DNA was then
size selected (200-600 bp) with an Agencourt AMPure
XP bead-based (#A63880, Beckman Coulter, Brea, CA)
size selection protocol [42]. The DNA end repair step was
performed with End-It DNA End-Repair Kit (#ER81050,
Epicentre, Madison, WI). After the end-repair step, A-
tailing (#M0202, New England Biolabs, Ipswich, MA) and
ligation steps were performed to ligate the methylated
adaptors.

Bisulfite treatment of gDNA was performed using the
MethylCode Bisulfite Conversion Kit (#MECOV50, Ther-
moFisher). Purified gDNA was treated with CT conversion
reagent in a thermocycler for 10 min at 98 °C, followed by
2.5 h at 640 °C. Bisulfite-treated DNA fragments remain
single-stranded as they are no longer complementary.
Low-cycle (4-8) PCR amplification was performed with
Kapa HiFi Uracil Hotstart polymerase enzyme (#KK2801,
KAPA Biosystems, Wilmington, MA) which can tolerate
uracil residues. The final library fragments contain thy-
mines and cytosines in place of the original unmethylated
cytosine and methylated cytosines, respectively.

The methylome libraries were diluted and loaded onto
an Illumina HiSeq 2500 or HiSeqX system for sequen-
cing using 150 bp paired-end reads. We generated over
900 million reads per sample and performed quality and
adapter trimming using TrimGalore v.0.4.1 (Babraham
Institute) with default parameters. Reads were mapped
first to the PhiX genome to remove the spike-in control,
and the remaining reads were mapped to the human
GRCh37 (build 37.3) reference genome using Bismark v
0.14.5 [43] and bowtie v1.1.2 [44]. We removed reads
with exact start and end positions using Bismkar dedu-
plication script. After de-duplication, we calculated the
fractional methylation levels at individual cytosines [32].
Overall, we generated a total of 72.6 billion reads
(equivalent to 10.9 T base pairs of raw sequence data)
and obtained per-sample average coverage depths > 25x
covering 98% of the 28 million CpGs in the human
genome (Additional file 1: Table S12). Bisulfite con-
version rates were estimated by mapping the reads to the
lambda phage genome (NC_001416.1), see Additional file3:
Figure S13 for a general overview of the WGBS data
quality and processing.
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Whole-genome sequencing data processing

Quality and adapter trimming was performed using
TrimGalore v.0.4.1 (Babraham Institute) with default pa-
rameters. Reads were mapped to the human GRCh37
reference genome using BWA v0.7.4 [45], and duplicates
were removed using picard v2.8.3 (https://broadinstitute.
github.io/picard/index.html). We identified genetic poly-
morphisms from re-sequencing data following GATK
v3.7 best practices workflow [46]. Specifically, we used
HapMap 3.3, Omni 2.5 M, 1000 Genomes Phase I, and
dbSNP 138 as training datasets for variant recalibration.
We filtered variant calls with high genotype quality
(GQ =20.0). Overall, we generated a total of 225 million
reads and identified 15,331,100 SNPs with mean depth
above > 16.5x (Additional file 1: Table S13). We removed
the polymorphic cytosines from downstream differential
methylation analyses keeping a total of 24,942,405
autosomal CpGs (Additional file 1: Table S14), see
Additional file 3: Figure S13 for a general overview of
the WGS data quality and processing.

For quality control of the SNP calling, we performed
principal component analyses using an additional 210 sam-
ples from 4 different populations from the HapMap Project
(60 CEU, 90 CBH/JPT, and 60 YRI) to explore the genetic
ancestry of the individuals. After LD pruning (+*> 0.2)
with SNPRelate R package, we used 66,667 autosomal
polymorphic SNPs in the analysis. The PC plot shows
that the reported ancestry of the individuals was
mostly concordant to that inferred from the SNPs
(Additional file 3: Figure S14), validating the genotype
calling. The first 10 genetic PCs were included in the dif-
ferential methylation analyses to control for population
structure (Additional file 1: Table S14).

Hierarchical clustering of methylomes from diverse
human cell types

We added WGBS data from additional tissues [12] (see
original references for the datasets therein) and Lister et
al. [27], and the corresponding genome coordinates (hg38
and hg18) were converted to hgl19 using UCSC Batch Co-
ordinate Conversion tool (liftOver executable) [47]. The
sample indicated with the star in Fig. 2a was also re-
mapped to hg38 from raw data following the same proto-
col as other non-brain tissues (from Mendizabal and Yi
[12]) and lifted over to hgl9. The clustering of the two
methylomes from the same individual “NeuN+_ind2”
suggests no significant effect of mapping/lift over in the
clustering results. A total of 14,115,607 CpG positions
with at least 5x coverage in all individuals were used to
draw a hierarchical clustering tree (using R stats package’s
hclust function with method = average (= UPGMA) based
on Euclidean distances using fractional methylation values
using dist function). The tree was plotted using dendex-
tend and circlize packages.
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Identification of differentially methylated positions and
regions between OLIG2" and NeuN™*

We identified DMPs between 25 NeuN" and 20 OLIG2"
individuals by using DSS [29]. DSS handles variance
across biological replicates as well as model read counts
from WGBS experiments. Importantly, DSS also con-
siders other biological covariates that may affect DNA
methylation patterns. Specifically, we considered age,
gender, brain hemisphere, postmortem interval (PMI),
conversion rates, brain bank, and genetic ancestry (using
the first 10 genetic PCs obtained from WGS of the same
individuals) as covariates (Additional file 1: Tables S1-S2
and S14; Additional file 3: Figure S15). Age and PMI
were converted to categorical variables (“AgeClass”
and “PMIClass” in Additional file 1: Table S2).

Since C>T and G>A polymorphisms at CpGs could
generate spurious differentially methylated sites on bisul-
fite conversion experiments, we excluded polymorphic
CpGs (identified from re-sequencing the same panel of
individuals, Additional file 1: Table S15) from DMP
analyses. For DMP identification between OLIG2* and
NeuN™ samples, we used a Bonferroni cutoff on P <0.05
and identified 4,058,898 DMPs out of 24,596,850 CpGs
tested. For DMR identification, we considered a mini-
mum region of 50 bp with at least 5 significant DMPs
and identified 145,073 regions (Additional file 2: Table S3).
We explored the effect of coverage on cell type DMP iden-
tification and found that low-coverage sites had a limited
contribution to the significant DMPs; indeed, relatively
more sites were detected at more stringent coverage
thresholds. For example, removing sites <5x in 80% of
individuals within each cell type led to a total of 4,037,979
significant DMPs at Bonferroni 0.05 cutoff (out of 23,788,
847 CpGs, 16.97%), whereas the removal of sites < 10x lead
to 3,903,652 DMPs (out of 21,399,153 CpGs tested, 18.2%),
and <20x lead to 2,509,489 DMPs (out of 10,960,268
CpGs considered, 23.8%). Enrichments between cell type
DMPs and szDMP and between cell type DMPs and ChIP-
seq peaks were similar when using the >20x coverage
datasets instead of using all sites.

Of note, as our differential methylation analyses are
run under a multifactor design in DSS, the estimated
coefficients in the regression are based on a genera-
lized linear model framework using arcsine link func-
tion to reduce the dependence of variance on the
fractional methylation levels [29, 48]. Thus, whereas
the direction of change is indicated by the sign of the
test statistic, its values cannot be interpreted directly
as fractional methylation level differences. The distri-
bution of the statistic depends on the differences in
methylation levels and biological variations, as well as
technical factors such as coverage depth. For DMRs,
the method provides “areaStat” values which are
defined as the sum of the test statistic of all CpG
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sites within the DMR. To obtain a more interpretable
estimate of fractional methylation differences, we also
provide results for a linear model using the same
formula as for DSS.

Functional characterization of DMRs

For different enrichment analyses, we generated matched
control regions. We generated 100 sets of regions with
similar genomic properties as the DMRs: number of total
regions, region length distribution, chromosome, and
matched GC content within 1%. Empirical P values were
computed by counting the number of matched control
sets showing values as extreme as the observed one.
Enrichments were computed as the ratio between the
observed value and the mean of the matched control sets.
We used ChIPSeeker [49] and bioconductor’s UCSC gene
annotation library TxDb.Hsapiens.UCSC.hgl9.knownGene
to annotate DMRs to genes. We explored the 25 chro-
matin state model maps based on ChIP-Seq experi-
ments on 6 chromatin marks (H3K4me3, H3K4mel,
H3K36me3, H3K27me3, H3K9me3, and H3K27ac) from
the Roadmap Epigenomics Project [28]. We joined several
categories related to enhancer states, including TxReg,
TxEnh5, TxEnh3, TxEnhW, EnhAl, EnhA2, EnhW]1,
EnhW2, and EnhAc.

Overlap with neuronal and non-neuronal ChiP-seq
datasets

We analyzed the overlap between our cell type-specific
DMPs and DMRs with neuron and non-neuron histone
mark data on H3K4me3 and H3k27ac ChIP-seq experi-
ments [9]. We only considered peaks that were assigned
as “neuronal” and “non-neuronal” and discarded “NS”
peaks from Additional file 1: Table S11 in the cited paper.
To test directionality with our OLIG2" vs. NeuN" diffe-
rentially methylated sites, we further discarded peaks that
overlapped between cell types (i.e., neuronal H3K4me3
peaks overlapping with non-neuronal H3K27ac, and
non-neuronal H3K4me3 peaks overlapping with neuronal
H3K27ac peaks).

Non-CpG methylation patterns in brain cell types

We studied DNA methylation patterns of NeuN" and
OLIG2" outside CpG dinucleotides (CH context). Given
the low fractional patterns of DNA methylation outside
CpG sites, and to minimize the influence of any add-
itional covariates, only individuals with conversion rates
>0.995 were considered (15 NeuN™ and 14 OLIG2").
We filtered cytosines that showed less than 5x coverage
in 90% of individuals per cell type, as well as removed
the positions with genetic polymorphisms (C>T and
T>C SNPs to account for SNPs at both strands). A total
of 333 and 457 million cytosines remained in NeuN"
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and OLIG2", respectively. Cytosines in gene bodies were
filtered using BEDtools [50].

Identification of DMPs between schizophrenia and control
individuals

We used DSS to identify DMPs between schizophrenia
and control samples. Again, we considered biological
covariates in the differential methylation analyses,
namely age, gender, brain hemisphere, PMI, conversion
rates, brain bank, and genetic ancestry (using the first 10
genetic PCs obtained from WGS of the same individuals,
see File S3 for specific commands used). For an FDR
cutoff of 0.2 for significance, we identified a total of 201
and 60 DMPs in OLIG2" and NeuN", respectively. We
further filtered sites with less than 20x in at <80% of
individuals per group. We identified 14 and 83 signi-
ficant DMPs in NeuN" and OLIG2", respectively, when
applying a FDR < 0.2.

As a comparison, we also ran differential methylation
analyses for disease using a linear model based on frac-
tional methylation values for every CpGs site and con-
sidered the same covariates as in the DSS analyses. We
plotted quantile-quantile plots for the expected and
observed P values obtained from DSS and linear model
analyses between schizophrenia and control, as well as to
evaluate how coverage affects these two methods. We
observed that DSS provides correction for low-coverage
sites, note the systematic depletion of good P values at
low-coverage sites in DSS (Additional file 3: Figure S16),
compared to high-coverage sites. In contrast, a linear
model shows a similar genome-wide distribution of
P values at low- and high-coverage sites. We identi-
fied a total of 60 and 210 CpGs in NeuN"* and OLIG2*,
respectively, at FDR <0.2. However, to obtain a more
conservative set of hits, we additionally filter for high-
coverage sites (20x in at least 80% of samples per disease-
control group) and recalculated FDR, obtaining 14 and 83
significant sites at FDR <0.2. In order to test the robust-
ness of the results and the effect of covariates as well as
the potential hidden structures in the data, we performed
a permuting analysis by randomly assigning case/control
labels and re-ran DSS 100 times.

Power analyses for DMP identification between
schizophrenia and control individuals

In this first power analysis, we determined the range of
effect sizes that can be detected at different P value
thresholds in our genome-wide scan focused on detect-
ing individual DMPs. The main aim of this analysis was
to determine the power of our study to detect individual
DMPs at different significance thresholds, using realistic
parameters that mimic the fractional methylation values
seen in cases and controls. Specifically, we simulated
10 million CpGs following these steps:
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1- In the first step, for each simulated CpG, we sample
the parametric mean of fractional methylation
values in controls from a truncated normal
distribution (mirroring the skew in genome-wide
fractional methylation values): rtnorm(simula-
tions,0.7,0.05, lower = 0.1,upper = 0.9)

2- We next obtain the parametric standard deviation
(SD) of fractional methylation values for the CpG in
controls (by sampling from a uniform distribution
that mimics the genome-wide distribution of SD
seen in our data): runif(simulations,0.0000001,0.2)

3- After having determined the parametric mean and
SD in controls, we used these to obtain the
fractional methylation values in as many simulated
control individuals as we used in our study
(n=25 as in the NeuN analysis).
rtnorm(control.sample.size, control.mean,
control.sd, lower = O,upper = 1)

4- We next select a case-control difference value
(effect size, or parametric f5) at each simulated CpG
by drawing values from a uniform distribution.
runif(simulations,0,0.20).

5- After obtaining the effect size at each simulated
CpG, the mean fractional methylation value in
cases can be obtained by adding the case-control
difference (from step 4) to the control mean methy-
lation values (step 3). Then, we sample the number
of cases from a truncated normal distribution using
the mean of cases and the standard deviation for
cases (same as for controls, as we do not observe
differences in SD in the real data between the
groups).

6- rtnorm(case.sample.size, case.mean, case.sd,
lower = O,upper = 1)

7- We perform a linear regression of case/control
labels on methylation. Im(methylation~diagnosis)

Additional file 3: Figure S7a shows the heatmap of the
average power for the full grid of parameters used to
simulate the 10 million DMPs (CpGs that present diffe-
rential methylation between the simulated cases and
controls). The population effect sizes (absolute case-
control differences) and the P value achieved at each
simulated DMP are shown in the X-axis and Y-axis,
respectively.

We extract two important conclusions from the heat-
map figure. First, our study is certainly not particularly
well-powered to detect small differences in average frac-
tional methylation values between cases and controls.
For instance, less than 20% of DMP effects in the range
of 1 to 4% achieve P<107° to P< 107 in our simulated
study (blue vertical band at the left side of the heatmap).
It is important to note that the total number of such
effects in schizophrenia remains unknown; however, it is
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certainly possible given the polygenic nature of schizo-
phrenia observed in most omics datasets [5, 39]. There-
fore, an apparently low positive power (10 to 20%) may
still imply that hundreds of genome-wide real effects
achieve approximately P < 107> in our study.

The second implication of this analysis carries a more
positive message in regard to the power of a genome-wide
with the sample size from our study. Specifically, starting
from 5% differences in average, a large fraction (about a
third) of simulated DMPs pass a significance threshold of
P<107°, and ~50% of those with effects > 8% achieve
P<107° and deeper significance thresholds. Notably,
these are precisely the range of effects that we report
at the P value cutoffs that correspond to the FDR
20% we use in our study (P values ranging from
3.6x1077 to 854x107° in NeuN" and 1.36 x 107° to
8.18 x 10™'* in OLIG2"), being the effect size around
6.4% in average (ranging from 3.3 to 12.8% in NeuN"
and from 1.12 to 22.4% in OLIG2").

As mentioned above, the balance between true and
false positives at different P value thresholds depends on
the underlying (and currently unknown) distribution of
effect sizes of DMPs and the total number of them that
are present genome-wide. For this reason, in our
genome-wide scan, we favored a strict control of mul-
tiple testing to avoid the detection of false effects. Still,
akin to the first generation of GWAS and as shown by the
robust departure from the random expectation shown by
the quantile-quantile plots, we report in Fig. 2a a large
fraction of our top signals are likely true positives.

We would like to note here that previously obtained
effect sizes for schizophrenia-associated CpGs in brain
samples were generally small, for instance, around 1.48%
(ranging from 0.41 to 4.42%, in Jaffe et al. [7]). However,
these estimates correspond to the analyses based on
methylation profiling of bulk tissue and focusing on a
more limited set of the CpGs available genome-wide (~
0.4 million CpGs). If schizophrenia-associated CpG sites
showed cell type-specific patterns and/or were located
outside the targeted CpGs in methylation array chips,
these effect sizes could be underestimates of the actual
case/control differences. Thus, unbiased whole-genome
scanning of 25 million CpGs in purified cell types could
potentially identify bigger case/control differences, and
the sample sizes we present in this study would be mod-
erately empowered.

In summary, this first power simulation study suggests
that even with our small sample sizes, we can detect
CpGs with moderate-to-large effect sizes. Although less
powered to detect the bulk of small effects (~ 0.01 diffe-
rences), this should not offset the inherent interest of a
first genome-wide study that spans millions of CpGs in
purified cell types, since we are powered to detect effects
that would not be detected in previous case-control
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attempts for schizophrenia. Importantly, most of these
sites appear in regions currently not included in widely
used methylation arrays.

In the second power analysis, we explored realistic
parameters in regard to the total number of differentially
methylated DMPs and the true distribution of effect
sizes between cases and controls, in order to make
robust inferences into the lists of DMPs and effect sizes
that would make it into the top 1000 list of most signi-
ficant effects. To obtain estimates of the true- and false-
positive rates in the top 1000 szDMPs, we first need to
obtain plausible genetic architectures of methylation
differences in schizophrenia (i.e., the total number of
real DMPs, and their effect sizes). According to genome-
wide association studies, schizophrenia is a polygenic
disease in which each variant exerts a small effect on the
phenotype [39]. Thus, we assumed in our analyses that
the epigenetic architecture for schizophrenia follows a
similar pattern.

Specifically, we modeled the real distribution of effect
sizes in our simulations using a beta distribution that
permits to assign values between 0 and 1. This proba-
bility distribution is parameterized by two shape para-
meters, denoted as a and S (also referred to as parameters
1 and 2 here). Assuming 5000 DMPs (CpGs with differen-
tial methylation between schizophrenia cases and healthy
controls), we explored a range of effect size distributions
obtained by the two parameters. Specifically, we explored
[0.1,1.5] and [20,51] for each parameter, as these are the
ranges that give long-tailed distributions of effect sizes
with a peak at 0.01 to 0.1 and a maximum DMP effect of
~ 0.4 (40%).

In each simulation (z = 50,000), after obtaining the dis-
tribution of effect sizes of the 5000 causal DMPs, we
performed a genome-wide scan with all 10 million CpG
(P values of non-causal CpGs are obtained from a uni-
form distribution [0,1]). We then ranked the 10 million
sites per P value and checked how many of the causal
CpGs make it in the top 1000 values. As shown in
Additional file 3: Figure S7b, we found the area that
yielded 0.5 of FDR at the top 1000 szDMPs, as we ob-
serve in our data.

Using the range of parameter 1 and parameter 2
values that give FDRs around 50% (the green band in
Additional file 3: Figure S7b), we then asked which
case-control differences and P values are observed at
the true szDMPs found at the top 1000 loci. As
shown in the histogram plot in Additional file 3: Fig-
ure S7c, we find that the effect sizes of true szDMPs
are indeed substantial. Of note, the best 1000 P
values in the szDMPs per cell type observed in our
study show an average of 4.85% case/control differ-
ence at the following P value thresholds: 7.31 x 107>
in NeuN" and 4.16 x 10~® in OLIG2".
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In summary, this second simulation study shows that
even though the top 1000 CpGs certainly contain a frac-
tion of false positives (~50% as measured by the FDR
corresponding to the 1000th CpG in our study), the
other ~50% of CpGs consist of true positives enriched
for moderate-to-large effect sizes. This enrichment justi-
fies using this relaxed set of loci to obtain some bio-
logical insights given the restricted loci with FDR < 0.2.

szDMP gene annotation and functional enrichment

We used ChIPSeeker [49] and bioconductor’s UCSC gene
annotation library TxDb.Hsapiens.UCSC.hg19.knownGene
to annotate the top 1000 szDMPs to genes (ordered
by P values). We used genes associated with genic
szDMPs only (all annotation categories excluding dis-
tal intergenic, defined as >1.5 kb from the start or
end of genes) for functional enrichment using Topp-
Gene [52]. We also explored the potential of szDMPs to
bind transcription factors by intersecting the top 1000
szDMPs (ordered by P value) from each cell type with the
ENCODE transcription factor ChIP-Seq datasets. We
downloaded the “wgEncodeRegTfbsClusteredV3” table
from UCSC and counted the number of szDMPs showing
TF binding. We compared these numbers to 100 sets of
random 1000 CpGs with large P values for schizophrenia-
control comparison (P>0.1). We also calculated the
enrichment of specific transcription factors by comparing
the frequency of each of the 161 transcription factors be-
tween szDMPs and non-szDMPs. The enrichments were
obtained by dividing the observed number to the average
of 100 sets, and the P values show the number of times
the number for szDMPs was larger than the 100 sets.

szDMP enrichment at GWAS

Genome-wide P values and odds ratios for GWAS for
schizophrenia [4], smoking [53], clozapine-induced agran-
ulocytosis [54], coronary artery disease, bipolar disorder
[51], autism spectrum disorder, and anorexia nervosa were
downloaded from the Psychiatric Genomics Consortium
at https://www.med.unc.edu/pgc/results-and-downloads/.
Data for rheumatoid arthritis [55] were downloaded from
ftp://ftp.broadinstitute.org/pub/rheumatoid_arthritis/
Stahl_etal 2010NG/. In order to explore the potential
contribution and/or mediation of DNA methylation to the
genetic basis of schizophrenia, we explored the co-
localization of the top 1000 szDMPs with GWAS results.
Given that the majority of the schizophrenia heritability is
found below the significance thresholds of GWAS, we ex-
plored the patterns at genome-wide SNPs as follows. For
each szDMP, we identified all SNPs reported by the
GWAS study within a 1-kb window and counted the
number of SNPs at different quantiles of odds ratio (OR).
We used quantiles of OR so that we can compare the dif-
ferent diseases and traits among them. We repeated this
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step using the same number of random non-szDMPs 100
times. To obtain empirical P values, we calculated the
number of times non-szDMP sets showed more SNPs in
each OR quantile than szDMPs. SNPs with moderate-
to-high OR in schizophrenia GWAS consistently
showed low empirical P values for both cell type DMPs,
implying that SNPs with large effect sizes in GWAS stud-
ies are closer to szDMPs than expected. Interestingly, this
pattern was not observed for other traits, implying the co-
localization is exclusive to the disease.

Hydroxymethylation at szDMPs

We compared our results to a single-base resolution
hydroxymethylome maps [56]. Specifically, TAB-seq data
from an adult human brain sample was obtained from
GEO (GSE46710). We used the sites presenting high
hmC as defined in the original paper (hmC >mC; n=5,
692,354). We plotted quantile-quantile plots of DSS
statistic P values at high hmC loci and random loci.
These analyses showed no significant presence of hmC
in the szDMPs (Additional file 3: Figure S17).

Smoking DMPs at szDMP

We explored the co-localization of szDMPs with CpGs
associated with tobacco smoking [34-36]. None of the
analyzed smoking DMPs (1 = 206) was found among our
szDMPs at FDR<0.2 nor at the top 1000 CpGs with
best P values per cell type. These analyses suggest that
szDMPs might not be confounded by smoking.

Targeted validation experiments

We designed high-coverage bisulfite experiments to
sequence 18 regions (Additional file 1: Table S16) from
44 samples (including 24 new individuals not included
in the WGBS experiments, Additional file 1: Table S17).
We conducted bisulfite conversions of gDNA from
OLIG2" and NeuN" cells using EZ DNA Methylation-
Gold Kit (#D5006, Zymo Research) according to the
manufacturer’s instructions. Sodium bisulfite converted
unmethylated cytosines to uracil while methylated cyto-
sines remained unconverted. Upon subsequent PCR
amplification, uracil was ultimately converted to thymine.
Bisulfite sequencing PCR primers were designed using
MethPrimer 2.0 and BiSearch to target a panel of 12 loci
in OLIG2" and 6 loci in NeuN* (Additional file 1: Table
S16). The primers were designed with an Illumina
adaptor overhang. The sites of interest were amplified
using JumpStart Taq DNA polymerase (#D9307, Sigma)
and quantified using gel electrophoresis to verify the
size and Qubit fluorometric quantitation to determine the
concentration. Equimolar quantities of each of the target
amplicons were pooled for each individual, and NGS
libraries were prepared in a second PCR reaction accord-
ing to Nextera XT DNA Sample Preparation protocol.
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The libraries were barcoded with a unique pair of Nextera
XT primers. The libraries were sequenced with Illumina
MiSeq using the 500-cycle kit (250 paired-end sequen-
cing). We sequenced the samples at high coverage using a
MiSeq machine and 250bp paired-end reads at the
Georgia Institute of Technology High Throughput DNA
Sequencing Core. We mapped the reads to the human
GRCh37 (build 37.3) reference genome using Bismark
v0.20.2 and Bowtie v2.3.4. We trimmed the reads for low
quality and adapters using TrimGalore v.0.5.0 (Babraham
Institute) with default parameters. Only the sites with at
least 200x coverage were considered (mean = 14,580,
median = 10,810). One region showed low read counts
and was excluded (Additional file 1: Table S16). A total of
16 DMPs and an additional 50 adjacent CpGs were con-
sidered in the validation analyses. Fractional methylation
values were adjusted for covariates using the following
linear model: Im (methylation ~ diagnosis + sex + age_
class + PMI_class).

Concordance with previous methylation studies on
schizophrenia

We evaluated the concordance between our disease DMP
signals with Jaffe et al. [7] which used bulk brain tissue
and Ilumina 450 K chips. We binned Jaffe et al. study’s
whole-genome P values and calculated the fraction of
CpGs in our study showing the same directionality in both
studies (i.e., hypomethylated or hypermethylated in dis-
ease vs. control). For each cell type, we tested the sig-
nificance at each P value bin using a Binomial test with
P=0.5 expectation. We additionally compared the dis-
tribution of concordance rates from the 100 control
datasets obtained using case/control permuted labels and
re-running DSS on them.

RNA sequencing

RNA-seq was performed as described previously [57].
Total RNA from the cytoplasmic fraction was extracted
with the miRNeasy Mini kit (#217004, Qiagen, Hilden,
Germany) according to the manufacturer’s instruction.
The RNA integrity number (RIN) of total RNA was
quantified by Agilent 2100 Bioanalyzer using Agilent
RNA 6000 Nano Kit (#5067-1511, Agilent, Santa Clara,
CA). Total RNAs with an average RIN value of 7.5+
0.16 were used for RNA-seq library preparation. Fifty
nanograms of total RNA after rRNA removal was sub-
jected to fragmentation, first and second strand synthe-
ses, and clean up by EpiNext beads (#P1063, EpiGentek,
Farmingdale, NY). Second-strand cDNA was adenylated,
ligated, and cleaned up twice by EpiNext beads. cDNA
libraries were amplified by PCR and cleaned up twice by
EpiNext beads. cDNA library quality was quantified by a
2100 Bioanalyzer using an Agilent High Sensitivity DNA
Kit (#5067-4626, Agilent). Barcoded libraries were
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pooled and underwent 75bp single-end sequencing on
an Illumina NextSeq 500.

RNA-seq mapping, QC, and expression quantification
Reads were aligned to the human hgl9 (GRCh37) reference
genome using STAR 2.5.2b [58] with the following parame-
ters: --outFilterMultimapNmax 10 --alignSJoverhangMin
10 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 3
--twopassMode Basic. Ensemble annotation for hgl9
(version GRCh37.87) was used as a reference to build STAR
indexes and alignment annotation. For each sample, a
BAM file including mapped and unmapped reads with
spanning splice junctions was produced. Secondary align-
ment and multi-mapped reads were further removed using
in-house scripts. Only uniquely mapped reads were
retained for further analyses. Quality control metrics were
performed using RseqQC using the hgl19 gene model pro-
vided [59]. These steps include: number of reads after
multiple-step filtering, ribosomal RNA reads depletion, and
defining reads mapped to exons, UTRs, and intronic
regions. Picard tool was implemented to refine the QC
metrics (http://broadinstitute.github.io/picard/). Gene-level
expression was calculated using HTseq version 0.9.1 using
intersection-strict mode by exons [60]. Counts were
calculated based on protein-coding gene annotation
from the Ensemble GRCh37.87 annotation file, see
quality control metrics in Additional file 3: Figures
S18-S19 and Additional file 1: Table S18.

Covariate adjustment and differential expression

Counts were normalized using counts per million reads
(CPM). Genes with no reads in either schizophrenia (SZ)
or control (CTL) samples were removed. Normalized
data were assessed for effects from known biological co-
variates (diagnosis, age, gender, hemisphere), technical
variables related to sample processing (RIN, brain bank,
PMI), and technical variables related to surrogate vari-
ation (SV) (Additional file 3: Figure S20). SVs were cal-
culated using SVA [61] based on “be” method with 100
iterations. The data were adjusted for technical covari-
ates using a linear model:

Im(gene expression ~ ageclass + gender + hemisphere

+PMiIClass + RIN + BrainBank + nSVs)

Adjusted CPM values were used for co-expression
analysis and visualization. For differential expression, we
used the ImTest (“robust”) and ebayes functions in the
limma [62] fitting all of the statistical models to estimate
log, fold changes, P values, and FDR/Bonferroni correc-
tion. This method was used for (1) cell type differences
(|loga(fold change)| > 0.5 and Bonferroni FDR < 0.05), (2)
NeuN™ SZ-CTL analysis (|logy(fold change)|>0.3 and
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FDR < 0.01), and (3) OLIG2" SZ-CTL analysis (|log,(fold
change)| > 0.3 and FDR < 0.01). Bonferroni was used in 1
to provide higher stringency on the data analysis.

Cross-validation
Cross-validation analyses were applied to ensure the ro-
bustness of the DEG analysis:

1) Permutation method based on gene expression
randomization (nPerm = 200).

2) Leave-one-out method based on subsampling the
data (nLOO = 200).

Functional gene annotation

The functional annotation of differentially expressed and
co-expressed genes was performed using ToppGene
[52]. A Benjamini-Hochberg FDR (P < 0.05) was applied
as a multiple comparisons adjustment.

GWAS data and enrichment

We manually compiled a set of GWAS studies for several
neuropsychiatric disorders, cognitive traits, and non-brain
disorders/traits. Summary statistics from the genetic data
were downloaded from Psychiatric Genomics Consortium
(http://www.med.unc.edu/pgc/results-and-downloads)
and GIANT consortium (https://portals.broadinstitute.
org/collaboration/giant/). Gene-level analysis was per-
formed using MAGMA [63] v1.04, which considers
linkage disequilibrium between SNPs. 1000 Genomes
(EU) dataset was used as a reference for linkage dis-
equilibrium. SNP annotation was based on the hgl9 gen-
ome annotation (gencode.vl9.annotation.gtf). MAGMA
statistics and —log10(FDR) are reported in Additional file 1:
Table S19 for each of the GWAS data analyzed. Brain
GWAS: ADHD, attention deficit hyperactivity disorder
[64]; ASD, autism spectrum disorders (https://www.bior-
xiv.org/content/early/2017/11/27/224774); BIB, bipolar
disorder [65]; ALZ, Alzheimer’s disease [66]; MDD, major
depressive disorder [67]; SZ, schizophrenia [4, 65].
Cognitive traits GWAS: CognFun = cognitive function
[64], EduAtt = educational attainment [68], Intelligence =
intelligence [69]. Non-brain GWAS: BMI, body mass
index [70]; CAD, coronary artery disease [71]; DIAB,
diabetes [72]; HGT, height (https://www.biorxiv.org/con-
tent/early/2018/07/09/355057); OSTEO, osteoporosis [73].

Cell type enrichment and deconvolution analyses

MTG single-nuclei RNA-seq was downloaded from Allen
Brain Institute web portal [74]. Normalized data and
cluster annotation were used to define cell markers using
FindAllMarkers in Seurat [75] with the following parame-
ters: logfc.threshold = 0.25, test.use = “wilcox”, min.pct =
0.25, only.pos=TRUE, return.thresh=0.01, min.cells.-
gene =3, and min.cells.group = 3. Enrichment analyses
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were performed using Fisher’s exact test. Cell type de-
convolution was performed using MuSiC [76] with
the following parameters: iter.max =1000, nu = le-10,
eps = 0.01, and normalize = F.

Public data analyses

GTEXx tissue expression was downloaded from the GTEx
web portal. Raw data was normalized using log,(CPM +
1) [77]. Gene expression data from SZ and healthy CTL
brain tissue was downloaded from the Common Mind
Consortium [5]. Gene expression data from SZ and
healthy CTL developmental brain tissue was down-
loaded from Brain Phasel [6]. We applied differential
expression analysis using the ImTest (“robust”) and
ebayes functions in the limma [62] fitting all of the
technical/biological covariates and surrogate variables
to estimate log2 fold changes, P values, and FDR/
Bonferroni correction. Surrogate variables were calculated
with SVA package [61].

Additional files

Additional file 1: Supplementary Tables S1, 52, S4-519. (XLSX 3715 kb)
Additional file 2: Supplementary Table S3. (XLSX 18753 kb)
Additional file 3: Supplementary Figures S1-520. (PDF 1643 kb)
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