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Abstract

Methylation datasets are affected by innumerable sources of variability, both biological (cell-type composition,
genetics) and technical (batch effects). Here, we propose a reference-free method based on sparse canonical
correlation analysis to separate the biological from technical sources of variability. We show through simulations and
real data that our method, CONFINED, is not only more accurate than the state-of-the-art reference-free methods for
capturing known, replicable biological variability, but it is also considerably more robust to dataset-specific technical
variability than previous approaches. CONFINED is available as an R package as detailed at
https://github.com/cozygene/CONFINED.

Introduction
While technological advances have provided a surplus of
methylation datasets, analyses of these datasets are often
complicated by innumerable possible sources of variability
[1, 2]. In particular, epigenome-wide association stud-
ies (EWAS) and studies that aim to implicate observed
methylation signal to phenotypic variance are particu-
larly at risk for false associations due to unknown drivers
of the observed signal that globally affect the epigenome
[3–5]. For example, age is correlated with a large num-
ber of methylation sites and phenotypes [6–8], and thus
if not corrected for, association between a specific methy-
lation site and a phenotype may be primarily driven by
a confounder such as age. In order to mitigate spurious
associations in such association studies, it is crucial to
elucidate and account for the sources of variation that
globally affect the methylation patterns in the genome.
Sources of global methylation effects can be either

technical or biological and may also be measured or
unmeasured. In the case of technical sources, most typi-
cal are batch effects, or variation resulting from different
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technicians or conditions during the data-preparing steps
[9]. These sources should undoubtedly be identified and
accounted for in analyses, for example, by balancing cases,
controls, and samples from different datasets, including
measured potential confounders as covariates, regressing
out the sources of confounding signals if they are mea-
sured, or otherwise estimating these potential sources of
technical effects and accounting for their estimates [10].
The case of biological sources is more complex; biolog-

ical sources of variation such as age, sex, cell-type com-
position, genetics, ethnicity, co-morbidities, or responses
to environmental factors like medication intake or smok-
ing status indeed affect the global methylation patterns in
the genome, and they are also often correlated to the phe-
notype of interest[6, 11–15]. However, due to logistical
limitations, often only a few of these sources of biologi-
cal variation are measured in a given study; moreover, it
is often the case that some of the sources of variation that
are correlated with the phenotype are unknown and hence
unmeasured.
Unlike technical effects, there is much debate over the

best practice of using these biological sources of varia-
tion in a model (e.g., [3, 13, 16, 17]) since one can argue
that identifying these sources is an important ingredient
in understanding the disease mechanism. Moreover, iden-
tifying these biological sources of variation may be useful
in prediction algorithms related to the studied phenotype.
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In other words, it is context-specific whether one should
include biological sources of variation in their model—
considering the additional sources as confounders—or
simply derive a model considering only the observed sig-
nal and accounting for the technical effects[18].
To capture signal corresponding to specific biological

sources of variation, reference-based methods have been
proposed. In the case of methylation, one commonly
researched source of biological variability is cell-type
composition. Houseman et al. developed an approach
to estimate the true cell-type proportions in methyla-
tion datasets using “methylation signatures” (estimates of
cell-type-specific methylation levels across a population)
[19]. Reference-based methods and methods that leverage
prior statistics, however, are limited to known sources of
variability for which such reference data exists. In many
cases, either the sources of variability are unknown, or
there is no reference data that can be utilized for these
methods (e.g., factors such as diet and exposure to air pol-
lution [20–22] and tissues such as solid tumors or adipose
[23]). In such cases, reference-based methods cannot be
used.
In an attempt to overcome the above limitations, many

reference-free methods [23–29] have been proposed.
Though these methods can correct for cell-type composi-
tion in EWAS [27, 30] and may also capture other sources
of variability, they are limited by the fact that it is impos-
sible to know whether their components reflect biological
or technical signal (Fig. 1). While technical signal is not of
interest and should be accounted for in the analysis, the
biological signal can provide useful insights about under-
lying biological phenomena, for instance by being used to
model the interaction with the methylation signal.
In this paper, we propose a reference-free method that

disentangles the technical sources of variation from the
biological sources of variation. Our method is based on
the observation that the same biological sources of vari-
ation typically affect different studies that are performed
under the same conditions (e.g., on the same tissue type),
while technical variability is study-specific. Thus, unlike

previous unsupervised methods that utilize single-matrix
decomposition techniques to account for covariates in
methylation data, we propose the use of canonical cor-
relation analysis (CCA), which captures shared signal
across multiple datasets. In brief, CCA finds shared struc-
ture between two datasets by finding maximally corre-
lated linear transformations of the datasets and is used
across many fields including cognitive science[31], psy-
chology[32], and imaging[33]. CCA has been used in the
context of genomics to capture genome-wide similari-
ties between different genomic measurements (e.g., gene
expression and genetics [34, 35], gene expression and
copy number alterations [36, 37]) for the same set of
individuals. As opposed to this traditional use of CCA,
our method, named CONFINED (CCA ON Features for
INter-dataset Effect Detection), searches for genome-
wide similarities between one methylation profile across
two sets of individuals. By instead searching across a sin-
gle genomic profile, we capture shared structure inherent
to the underlying biology of the datasets.
The key discrepancy between CONFINED and pre-

vious reference-free methods is that CONFINED will
only capture shared sources of variability. There are two
notable examples in which a method like CONFINED
can be leveraged over unsupervised methods that capture
dataset-specific variability. First, when capturing unmea-
surable and unknown sources of variability, CONFINED
will distinguish between the technical and biological com-
ponents of such sources, as technical variability tends to
be dataset-specific. Second, if the goal of a study was to
elucidate the effects of a dataset-specific effect such as
a treatment effect, and one wished to capture and con-
trol for covariates, single-matrix methods would fail and
adjust away the effect of interest. In short, one could
include the components generated by CONFINED to
model their effects or interaction with the methylation,
in for example, an EWAS, or instead remove the signal
captured by the components prior to studying dataset-
specific variability such as a treatment effect on a subset of
individuals.

Fig. 1 CONFINED compared to previous factorization approaches. Previous reference-free methods based on single-matrix decompositions (e.g.,
principal component analysis, non-negative matrix factorization) capture the dominant sources of variability which may be composed of both
biological and technical effects (left). Here, we propose a method to capture solely biological variability (right)
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We evaluated the performance of CONFINED through
both simulated and real data. Our evaluations demon-
strate that CONFINED captures signal from only bio-
logically replicable sources of variability. We show, as
examples, improvement over previous methods by com-
paring their performance in capturing methylation signal
due to known, measurable sources of variability such as
cell-type composition, age, and sex in several whole-blood
datasets. We also demonstrate that by inducing sparsity,
CONFINED prioritizes features that recapitulate biologi-
cal functionality inherent to both datasets. For example,
when pairing two whole-blood datasets together, the sites
best ranked byCONFINEDwere significantly enriched for
immune cell function.

Results
A brief summary of CONFINED
We developed CONFINED to capture biological sources
of variability in methylation datasets. As input, CON-
FINED takes two matrices with the same number of rows
(methylation sites) but not necessarily the same number
of columns (individuals), k the number of components to
produce, and t the number of CpG sites to use, or in other
words, a sparsity parameter. As output, CONFINED pro-
duces k components that can be used to model biological
sources of variability for each input dataset.
Notably, CONFINED is based on CCA which considers

two datasets simultaneously. Intuitively, CCA performs a
decomposition of two matrices simultaneously and hence
finds linear combinations of features that define biological
variation present in both datasets. Conversely, previous
methods that decompose one matrix at a time essentially
look for linear or non-linear (kernel-based) combinations
of features that preserve dominant structure in a sin-
gle dataset, and this structure may be a combination
of both biological and technical signal. Thus, leverag-
ing the shared structure of two datasets through CCA
is crucial. Nonetheless, there are two substantial differ-
ences between CONFINED and traditional uses of CCA
in genomic studies. First, CONFINED looks for shared
structure of one methylation profile across two sets of
individuals rather than looking for shared structure in one
set of individuals across two sets of genomic measure-
ments. Second, CONFINED performs a feature selection
procedure that is critical to detect the shared sources of
variability across the different datasets.

CONFINED finds biological sources of variability with high
accuracy: analysis across datasets of the same tissue type
We first evaluated CONFINED using a pair of whole-
blood methylation datasets from Hannum et al. [38]
and Liu et al. [39]. Along with their methylation data
were measured sources of biological variation includ-
ing patients’ disease status, age, and sex. In addition to

evaluating CONFINED’s ability to capture the measured
biological factors, we also evaluated its performance on
an unmeasured source of variation, cell-type composition.
While in this section, we focused on using two datasets
corresponding to the same tissue type, we note that the
studied phenotypes in the datasets were different (e.g.,
Hannum et al. studied aging whereas Liu et al. stud-
ied Rheumatoid arthritis). As CONFINED looks for only
shared biological sources of variation, we excluded from
our evaluations sources of variation that may only appear
in one of the datasets, e.g., patient status. As we show
below, using CONFINEDwe were able to produce compo-
nents that correlated with both the measured and unmea-
sured sources of biological signal across both datasets. We
also evaluated the ability of CONFINED to generate com-
ponents correlated with several measured shared sources
of variability on a pair of adipose datasets as well as a pair
of brain tissue datasets (Additional file 1: Figures S1 and
S2).
First, we evaluated CONFINED against other reference-

free methods when capturing unmeasured biological
sources of variability in two whole-blood datasets. Here,
we used CONFINED to capture cell-type composition,
which was unmeasured in both studies. We treated cell-
type proportion estimates from the reference-based algo-
rithm of Houseman et al. [23] as the ground-truth.
Houseman et al. proposed a reference-based method for
estimating proportions of immune cells in whole-blood
methylation data by leveraging differentially methylated
regions of DNA to form methylation signatures for indi-
vidual cell-types. They then use these signatures to obtain
cell proportion estimates for several immune cells (CD4
T cells, CD8 T cells, B cells, natural killer cells, mono-
cytes and granulocytes). In our experiments, we fit a linear
model of each Houseman-estimated cell-type proportion
using several components from each of the methods.
CONFINED outperformed all of the previous methods
we tested, with pronounced differences in its estimation
of the composition of monocytes and natural killer cells
(Fig. 2, Additional file 1: Figures S3, S4, S5 and S6. To
clarify if the gain in performance was a result of CON-
FINED using more individuals or a more informative
feature selection, we considered the situation in which two
datasets are concatenated and supplied to a single-matrix-
decomposition method as a single dataset, as well as the
situation in which a single-matrix decomposition method
leverages the features selected by CONFINED. In both
procedures, however, the components of the single-matrix
method were less correlated to cell-type composition than
the components of CONFINED (Additional file 1: Figures
S7 and S8).
We next considered the ability of CONFINED when

searching for known, measured sources of variability. For
the same pair of blood datasets CONFINED’s components
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Fig. 2 A comparison of CONFINED and previous reference-free
methods in capturing leukocyte composition. We used eachmethods’
components to capture cell-type proportions as estimated by the
reference-based method of Houseman et al. [19] across CD4 T cells,
CD8 T cells, monocytes, B cells, natural killer cells, and granulocytes in
whole-blood data from an aging study (here; Additional file 1: Figure
S3 Hannum et al. [38]) as well as in whole-blood from a study of
Rheumatoid arthritis (Liu et al. [39] Additional file 1: Figure S4)

captured age and sex with accuracy R2
age > .74 and R2

sex >

.70 respectively (Fig. 3). In the case of other methods,
PMA [36] had the highest performance among previous
methods, but was greatly outperformed by CONFINED
(Additional file 1: Figure S9). Notably, using relatively less
sparsity to capture age and sex achieved greater accuracy,
however this trend was not necessarily observed when
using lower sparsity for capturing cell-type composition.
To better understand the implications of CONFINED’s

sparsity parameter, we evaluated the biological signifi-
cance of the features selected by CONFINED using the R
package missMethyl| [40]. For a given set of methy-
lation sites, missMethyl tests for enrichment in gene
ontology (GO) pathways by first mapping the sites to
genes (weighing the genes based on the number of sites
that map to them), then performing a test built off of Wal-
lenius’ noncentral hypergeometric distribution. In order
to avoid potential biases resulting from the parametric
assumptions in themodel of missMethyl, we performed
permutation testing using its reported p-values. Our
test yielded significant enrichment for various ontolo-
gies across multiple pairs of datasets (Table 1; Additional
file 1: Table S1, Table S2, Table S3). When we paired
two whole-blood datasets, the highest ranked features
by CONFINED were enriched for pathways generally
involved with the immune response, leukocyte activation,

and defense response. Notably, most of the significantly
enriched pathways were related to the immune system or
signaling (Table 1). When looking at the enrichment for
adipose and brain tissues, we saw pathways concerning
vascularization and sheathing respectively. These results
underscore the importance of CONFINED’s sparsity and
provide support for CONFINED’s ability to capture bio-
logically meaningful signal, such as tissue-specific cell-
type functions.

CONFINED distinguishes between dataset-specific and
shared signal: Real data analysis with simulated
dataset-specific effects
In the context of capturing biological signal, one of the
main limitations of single-matrix decomposition meth-
ods (e.g., PCA, ReFACTor [24], PEER [41], non-negative
matrix factorization (NNMF) [42]) is that each of their
componentsmay consist of amixture of signal reflective of
technical noise specific to a dataset, such as batch effects,
and the biological signal. For instance, PCA and meth-
ods based on PCA, such as ReFACTor [24] and penalized
matrix decomposition (PMA) [36], consider directions in
the data that explain the most variability, but this variabil-
ity is not limited to strictly global biological or replicable
effects in the individual datasets. This issue may also be
present in PEER [41], which includes a probabilistic ver-
sion of factor analysis, as the latent factors driving the data
may also include some effect from technical variability.
Similarly, in NNMF [42], a data matrix is decomposed as
a linear combination of different components, and some
of the signal of the data matrix may be deconstructed by
a component that captures technical variation. Intuitively,
CONFINED should be robust to dataset-specific technical
effects as it only looks for shared structure across datasets.
To illustrate that CONFINED captures only replica-

ble biological signal, we simulated batch effects for two
whole-blood methylation datasets from Hannum et al.
[38] and Liu et al. [39] and compared our method to
several earlier methods based on single-matrix decom-
position. In this setting, we generated dataset-specific
noise with low-rank structure and added it to each of the
datasets prior to running any feature selection or method.
Naturally, simulated batch effects induce technical vari-
ation in the datasets, and thus may interfere with meth-
ods’ abilities to capture biological variation. We used the
datasets with added noise to capture cell-proportion esti-
mates of the original datasets as reported by the method
proposed by Houseman et al. [19] (Fig. 4).
We evaluated the performance of each method while

varying the strength of simulated, dataset-specific techni-
cal effects (Methods, Additional file 1: Figure S12). The
components of CONFINED best captured the biological
signal and were the only components that were robust
to technical variation across all levels of noise (Fig. 4).
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Fig. 3 Biological drivers of variability captured by CONFINED across a range of sparsity. We paired a whole-blood dataset [39] with another
whole-blood dataset [38] and with a brain dataset [43] to capture sources of variability in each dataset. We fit a linear model for each source of
variability using 10 CONFINED components to obtain an R2 value. We varied the percentage of CpG sites used from 1% (nearly entirely sparse) to
100% (no sparsity)

In addition to the biological signal, the components of
the previous methods captured signal pertaining to the
simulated batch effects (Additional file 1: Figure S13).
We also considered the scenario in which a prepro-

cessing step is taken prior to running each method in
order to remove technical variation or noise. Here, we
used Remove Unwanted Variation (RUV) [2, 9] to gener-
ate components which we regressed out from the datasets
with added noise prior to running any of the previous
methods (Additional file 1: Figure S14). Using RUV as
a preprocessing step helped improve the single-matrix
methods in the presence of simulated technical noise,
however the components generated by CONFINED in the
presence of the technical noise (and without any such
preprocessing) were still more correlated with cell-type
composition than those produced by the single-matrix
methods (Additional file 1: Figure S14).
In the case where one wishes to elucidate the effects

of a treatment that has been administered to a set of

individuals in one dataset, CONFINEDmay also be of use.
In a second simulation experiment, we simulated a rank-
one treatment effect following a similar strategy used in
the batch effects simulations (“Methods” section), only
that we used the absolute value of the batch effect scores
(i.e., we assumed that the treatment effect had the same
directionality across samples). We then added this posi-
tive treatment effect to a subset of individuals in one of
the whole-blood datasets prior to any analysis. We paired
the dataset with added treatment effects with one of the
raw datasets and obtained the CONFINED components
for each dataset. Afterward, we regressed out the top
10 CONFINED components from the treatment dataset.
Comparing the PCA plots of the treatment dataset before
and after preprocessing (i.e., removing the shared signal)
shows how CONFINED can be leveraged to highlight a
dataset-specific treatment effect (Fig. 5). In the scenario
where the treatment effect was a dominant source of
variability, using CONFINED as a preprocessing step did
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Table 1 Gene Ontology enrichment of sites ranked by CONFINED

Ontology term p-value (permutation) p-value (missMethyl)

Immune system process .001 6.9e−18

Immune response .001 1.0e−15

Regulation of immune
response

.026 3.0e−11

Defense response .038 7.18e−11

Regulation of immune
system response

.039 7.18e−11

Response to external
biotic stimulus

.059 2.58e−10

Response to other
organism

.059 2.58e−10

Leukocyte activation .069 4.68e−10

Regulation of immune
effector process

.090 1.86e−09

Response to biotic
stimulus

.095 2.46e−09

Positive regulation of
immune system process

.100 2.89e−09

Response to bacterium .103 3.65e−09

Cell activation .104 3.77e−09

Immune effector process .104 3.77e−09

Response to stress .136 1.77e−08

Lymphocyte activation .139 1.25e−08

Positive regulation of
immune response

.143 1.49e−08

Regulation of leukocyte
activation

.145 1.59e−08

Regulation of cell
activation

.185 2.91e−08

Protein binding .190 3.10e−08

We tested enrichment of the highest-ranked sites by CONFINED in a blood-blood
pair of datasets. Here, we set the sparsity parameter based on a rule learned through
cross-validation ; however, we observed qualitatively similar results across a range of
sparsity parameters, with increasing significance when we included a relatively
larger number of CpG sites (Additional file 1: Figure S11)

not obstruct the ability to distinguish between those who
received treatment and those who did not (the correla-
tion between the treatment group and the first two PCs
changed from .429 to .414).

CONFINED finds the shared biology across datasets:
analysis of datasets of different tissue types
We also used CONFINED’s components to capture mea-
sured sources of biological variation across tissue-types
(Fig. 3). In one experiment, we paired a whole-blood
dataset [39] with a dataset from Lunnon et al. [43] com-
posed from brain tissue. Notably, the accuracy of CON-
FINED to capture each source of signal varied depending
on the pairing of the tissue-type (i.e., blood-blood vs.
blood-brain) and the sparsity parameter used.

Fig. 4 Capturing cell-composition in the presence of simulated
technical noise. We added simulated batch effects to the
whole-blood datasets of Liu et al. [39] and Hannum et al. [38] and
compared the ability of CONFINED, ReFACTor[24], PEER[41], PMA[36],
and NNMF to capture cell-type composition in whole-blood. Here, we
show the results of the Hannum et al. dataset; however, the results of
each method were quantitatively similar across both datasets
(Additional file 1: Figure S12)

When pairing the blood dataset with the brain dataset,
CONFINED’s components were correlated with some of
the whole-blood dataset’s measured biological factors
with slightly less strength than when pairing it with a
dataset of the same tissue type (R2

age > .27,R2
sex > .39)

(Fig. 3), possibly suggesting a different architecture for
genome-wide variation across the different tissue types.
Nonetheless, the cell-type composition accuracy for the
blood dataset when paired with the brain dataset was
still relatively high (average R2

cell = .54). This is likely
due to the fact that several types of immune cells are
known to populate or have immune-related functions in
the brain (e.g., resident T cells [44, 45], glia [46] and
neutrophils (granulocytes)[47]). Therefore, the immune
function of cells in the brain and immune cells in the
blood may follow similar pathways that could be reflected
in the epigenome. The biological sources of variability in
the brain dataset were captured with overall less accu-
racy than the whole-blood biological sources of variability
(R2

age > .21,R2
sex > .33).

When pairing the blood and brain datasets, we observed
enrichment results somewhat similar to when using the
blood-blood pair, but with less significance. The most
enriched pathways in the blood-brain pair included sev-
eral immune system or hematopoietic processes, but the
less enriched pathways were primarily different than when
pairing the two blood datasets. The pathways in the
blood-brain pair were generally not significantly enriched
using permutation testing, unless we used a relatively
lower level of sparsity.
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Fig. 5 Highlighting treatment effect. We removed from a dataset with simulated treatment effect the components generated by CONFINED.
Notably, this simulated treatment effect was not shared across datasets. On the left, PCA performed on the dataset prior to removing the CONFINED
components, and on the right the PCA of the dataset after regressing out the CONFINED components

Considering CONFINED’s ability to find the biologi-
cal signal shared across two datasets, we performed an
additional experiment in which we included datasets cor-
responding to tissues from the following types: adipose,
blood, brain, breast, kidney, liver, lung, and stomach. For
each tissue type, we gathered two datasets. Here, we
wished to elucidate the shared structure across tissue-
types, e.g., if it were possible to use CONFINED to clus-
ter datasets based on their tissue type. For each pair of
datasets, we saved the correlations output by CONFINED
(i.e., the correlations between the canonical variables as
defined in the “Methods” section), and used a statistic
of these correlations to construct a distance matrix for
use in hierarchical clustering. We took the mean of the
top 10 correlations between each pair of datasets, i, j, and
populated each entry of the matrixij with this mean corre-
lation. Intuitively, this acts a metric of similarity between
each dataset. After running hierarchical clustering, we
found that tissues of the same type clustered together for
each of the datasets (Fig. 6). We believe that this presents
evidence that CONFINED is in fact finding signal that
recapitulates the underlying biology shared between two
datasets.

Discussion
Here, we propose CONFINED, a sparse-CCA-based
method to capture biologically replicable signal by lever-
aging shared structure between datasets. Though CON-
FINED captures the shared variability between two
datasets, there may be sources of variability that are
unknown or unmeasurable present in the datasets, and
we cannot evalaute CONFINED’s performance for these
sources of variability. Therefore, we have highlighted the

strength of CONFINED through examples of known mea-
sured and unmeasured sources of variability. Specifically,
we showed its use and improved accuracy over other
methods in the context of capturing cell-type composition
between datasets of the same tissue type. We also showed
how it can be used to capture other sources of biologi-
cal signal shared across datasets. Moreover, we provide
evidence that CONFINED can be used as a feature selec-
tion mechanism, prioritizing features that are functionally
shared between datasets.
Across several datasets we demonstrated that CON-

FINED accurately captured global biological sources of
variability. In the case of cell-composition, the compo-
nents produced by CONFINED better captured cell-type
composition across all cell-types in methylation datasets
(of the same tissue-type) than previous reference-free
methods that were designed for capturing signal from
cell-type composition. Additionally, CONFINED’s com-
ponents captured other replicable sources of variability
such as age and sex. While cell-type composition was bet-
ter captured when using a pair of datasets of the same
tissue-type, we note that other biological factors may be
better captured when pairing two datasets of different tis-
sue types. Our results provide grounds for CONFINED
as a means to capture replicable signal from biological
sources across datasets.
Additionally, CONFINED is robust to technical vari-

ability. Through simulations, we demonstrated that CON-
FINED accurately captures biological signal in the pres-
ence of strong, dataset-specific technical noise. Other
methods that leverage decompositions of single matri-
ces produced components corresponding to the simulated
technical noise (Additional file 1: Figure S13), but the
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Fig. 6 Capturing shared biology across datasets. To validate that CONFINED finds biology shared across datasets, we gathered 2 datasets for 9 tissue
types, then considered their CCA-based correlations as a metric of similarity. Here, we perform hierarchical clustering, using as a metric of similarity
the mean of the top 10 CCA-based correlations

components produced by CONFINED were unaffected
by the simulated noise. Therefore, leveraging multiple
datasets through CONFINED can provide researchers a
way to robustly account for signal arising from techni-
cal variation. Though the premise of CONFINED is to
leverage the shared structure across two datasets to dis-
tinguish technical noise, we show in the Supplementary
the context in which CONFINED uses a single dataset
split into halves as input instead of two separate datasets.
In this experiment, CONFINED suffers from issues sim-
ilar to single-matrix methods, and its performance was
negatively affected by the presence of dataset-specific
variability (Additional file 1: Figure S15).
Though we learned a linear rule for selecting the spar-

sity parameter (i.e., the number of features) in the specific
case of capturing cell-type composition in methylation
whole-blood datasets (Additional file 1: Figure S10), we
emphasize that the selection of the sparsity parameter in
other cases may be non-trivial. Evaluating CONFINED
on multiple datasets and sources of biological variability
aside from cell-type composition, we found that the opti-
mal sparsity parameter for cell-type composition may not
be optimal for other covariates of interest. For instance,
with a pair of blood datasets where the sex chromo-
somes were removed, sex was better captured as the
number of features increased. This may be due to the fact
that specific biological functions—such as the immune
response—may be confined to several thousand methy-
lation sites, whereas autosomal changes in methylation

patterns due tomore broad characteristics—such as age or
sex—are more minute, and thus require more information
or sites to capture. Nonetheless, in Additional file 1: Figure
S1 we show that when the sex chromosomes are included
in the analysis, the accuracy of CONFINED can improve
dramatically (R2

sex > .9). We suggest future investigations
take place and considerations about underlying biology
be taken into account for selecting the optimal spar-
sity parameter for biological signal aside from cell-type
composition.
We also showed the utility of CONFINED as an unbi-

ased way of selecting informative and potentially biologi-
cally relevant methylation sites. Intuitively, as CCA finds
shared structure between datasets, this structure should
be reflective of biological mechanisms that are common
to a pair of datasets. In our experiments, CONFINED
found methylation sites that capture the shared variabil-
ity across different blood tissues, and this set of sites was
significantly enriched for immune function. Similarly, for
the brain-blood pair, we observed enrichment for some
immune and hematopoietic function, but the enrichment
was generally not significant. Thus, our results suggest
that our feature-selection method may be useful in high-
lighting pathways that are similar across two datasets.
A similar concept to CONFINED has been previously

introduced in the context of single-cell RNA-sequencing
by Butler et al. [48]. However, mathematically, the prob-
lem Butler et al. solve is different as the number of
“individuals” (in their case, cells) in single-cell RNA
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is much larger than the number of features (genes),
whereas in our setting, the number of individuals is
much smaller than the number of features (methyla-
tion sites). Moreover, we show that a simple application
of CCA does not suffice in the case of methylation,
and thus CONFINED performs feature selection prior to
performing CCA. In other words, CONFINED utilizes
sparsity.
Importantly, determining the input and usage of the

output of CONFINED is goal-specific. As the assump-
tion of CONFINED is that the biological variability in
two datasets is shared, we suggest pairing two datasets
with similar characteristics, e.g., design protocol or sam-
ple collection. In such cases, for any pair of datasets,
CONFINED can be used to capture variability or model
biological factors that are present in both datasets for use
in downstream analyses. On the other hand, CONFINED
can be used as a preprocessing step to make dataset-
specific effects more prevalent. In Fig. 5, we show how
CONFINED can be used to highlight a treatment effect
that was present in a subset of individuals in one of the
input datasets. Thus, CONFINED enables researchers to
decide how they wish to model the shared or unshared
variability in their datasets.
The parameters of CONFINED can be fine-tuned for

downstream analyses. In general, we recommend induc-
ing sparsity to capture variability due to specific functions,
such as cell-type composition. For more broad character-
istics, such as age and sex, we recommend less sparsity is
induced. There may be tradeoffs when attempting to opti-
mize the correlation of the CONFINED components and
specific sources of variability, and we suggest from our
empirical results using around fifty percent sparsity. We
found the correlation threshold to be robust across a large
range of values (Additional file 1: Figure S16), but suggest
using a relatively higher correlation such as .95. Lastly, we
suggest using a low number (e.g., 6 or 10) of CONFINED
components as people often do in EWAS with principal
components [24, 49].
In summary, our results suggest that CONFINEDwill be

a useful tool in capturing effects of biological variability
as well as highlighting shared cellular mechanisms across
multiple datasets. The components from CONFINED can
be used in downstream analyses that wish to model only
the biological signal of a methylation dataset or to include
certain biological signals as confounders in statistical anal-
yses. We suggest future research into the selection of t,
the number of informative sites to use for recovering sig-
nal for specific biological factors, as well as research into
which pairs of phenotypes or datasets may be useful in
extracting signal for specific biological drivers of variabil-
ity. We posit that using extensions of CCA which include
more than two datasets [36] may be a promising future
direction, however as we show in the Supplementary

(Additional file 1: Figure S17), this extension may not be
entirely trivial.

Methods
A brief introduction to canonical correlation analysis
We first explain the general idea of canonical correlation
analysis (CCA) [50]. In the simplest terms, CCA attempts
to maximize the correlation of two matrices via linear
transformations. CCA takes as input two matrices X1 of
dimension n×m1 and X2 of dimension n×m2 where n >

m1 and m2. In other words, both matrices have the same
number of rows but not necessarily the same number of
columns. CCA then attempts to find m1- and m2-length
vectors a1 and a2, such that the correlation of X1a1 and
X2a2 is maximized:

max
a1,a2

corr(X1a1,X2a2) (1)

To produce a1 and a2, we first obtain vectors b1 and b2,
the eigenvectors corresponding to the largest eigenvalues
of the following matrices (where X1 and X2 are column-
centered):

M1 =1
n

1/2 (
XT
1 X1

)−1/2 (
XT
1 X2

) (
XT
2 X2

)−1/2

(
XT
2 X1

) (
XT
1 X1

)−1/2

M2 =1
n

1/2 (
XT
2 X2

)−1/2 (
XT
2 X1

) (
XT
1 X1

)−1/2

(
XT
1 X2

) (
XT
2 X2

)−1/2

The vectors a1 and a2 are then obtained from a simple
change of basis of b1 and b2 respectively:

a1 =
(
1
n
XT
1 X1

)−1/2
b1

a2 =
(
1
n
XT
2 X2

)−1/2
b2

The products X1a1 and X2a2 are referred to as the
first canonical variables of the input matrices, and we
let u1 = X1a1 and u2 = X2a2. CCA can produce
up to min{m1,m2} pairs of canonical variables from the
remaining eigenvectors, however, the first pair of canoni-
cal variables (corresponding to the largest eigenvalue) has
the greatest correlation.
When seeking the second and subsequent pairs

of canonical variables, one additional restriction is
introduced—the new canonical variables must be orthog-
onal to all the previous ones:

corr
(
u(i)
1 ,u(j)

1

)
= corr

(
u(i)
2 ,u(j)

2

)
= 0 i < j
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Given this constraint, the solution for the ith pair of
canonical variables conveniently follows the same formula
as the first pair, only that we substitute the eigenvector
corresponding to the ith largest eigenvalue for the eigen-
vector corresponding to the largest eigenvalue. We then
column-wise concatenate all u(j)

i for each dataset to obtain
two matrices (U1 and U2) of canonical variables of size
n × min{m1,m2}. Simply put, the collection of canonical
variables for each dataset is defined as follows:

U1 = X1A1 U2 = X2A2 (2)

WhereA1 andA2 are the eigenvectors ofM1 andM2 (after
change of basis) respectively. The canonical variables are
ordered such that their correlation (which is proportional
to their corresponding eigenvalue) is in decreasing order:

corr
(
u(i)
1 ,u(i)

2

)
> corr

(
u(j)
1 ,u(j)

2

)
i < j

Additionally, the canonical variables have the properties
that each of their variances equal 1, and the covariance of
u(i)
1 and u(j)

1

(
and u(i)

2 and u(j)
2

)
is equal to 0 when i �= j:

1
n
UT
1 U1 = I,

1
n
UT
2 U2 = I

To reiterate, the basic goal of CCA is to find a1 and
a2 such that corr(X1a1,X2a2) is maximized. There are
min{m1,m2} such vectors for each pair of datasets, yield-
ing min{m1,m2} pairs of canonical variables.

A formal description of CONFINED
CCA has been used in genomics in many instances
[51–53]. In these cases, the rows correspond to individu-
als, while the columns correspond to features of genomic
measurements. For example, each feature could be the
expression of a specific gene in one matrix, and in the
other matrix, it could be the genotype allele, i.e., in this
case, X1 corresponds to a gene expression matrix, and
X2 corresponds to a genotype matrix, but both mea-
surements have been taken on the same set of individ-
uals. In CONFINED, we transpose the problem. Rather
than searching for shared directions between two sets
of genomic measurements, we instead search for shared
directions of the same type of genomic measurement (in
our case, methylation), but across two sets of individu-
als. Moreover, since we find that in practice many sources
of variability in methylation only act on a fraction of the
methylation sites in the genome[14, 24], CONFINED uses
sparsity by limiting the analysis to a fraction of the methy-
lation sites in the genome.We note that ourmethod shares
similarities with a recent application of CCA to single-cell
expression datasets [48]. However, unlike this method, we
search for shared structure across two sets of individuals
rather than two sets of cells, and we assume the number of

genomic features is larger than the number of individuals
(or cells).
Formally, CONFINED takes as input two matrices, X1

with dimension m × n1 and X2 with dimension m × n2,
of m measured methylation sites for n1 and n2 individ-
uals respectively. In addition, it takes as input a sparsity
parameter t, a dimensionality parameter l, and an output
parameter specifying the number of components to gener-
ate k. To generate its components,CONFINED first selects
the t most informative features then runs CCA on these t
features:

1. Obtain U1 and U2 both of sizem × min{n1, n2}
following Eqs. (1) and (2).

2. Construct Ũ1 and Ũ2 both of dimensionm × l from
the first l columns of U1 and U2 respectively.

3. Generate a low-rank approximation of each dataset:

X̃1 = Ũ1ŨT
1 X1 X̃2 = Ũ2ŨT

2 X2 (3)

4. For each site j in dataset i, compute a score based on
its correlation between itself and its low-rank
approximation:

S(j)
i = corr

(
X(j)
i , X̃(j)

i

)
(4)

5. Rank the sites with the highest inter-dataset score:

S(j)
1 + S(j)

2 (5)

6. Perform CCA using the sites with the top t scores,
returning CONFINED components X[t]T

1 U[t]
1 of size

n1 × k for X1 and X[t]T
2 U[t]

2 of size n2 × k for X2.

We set l as the number of pairs of canonical variables
with correlation greater than a threshold λ, or 1 in the
case that no pairs have this correlation. In practice, we set
λ to .95 and found this threshold using cross-validation
(Additional file 1: Figure S10). By finding the sites that are
best approximated by a low-rank, correlated transforma-
tion, we therefore assume that the sites with the highest
scores will be representative of features that are function-
ally shared (i.e., correlated) between the datasets. This
step is analogous to one taken by ReFACTor [24], only that
we leverage the correlated subspace of the two datasets
rather than a variable subspace of one dataset (Additional
file 1: Sec. S11). Though we emphasize that CONFINED
can be used for general sources of global biological vari-
ation, for the purpose of comparing a single use-case of
CONFINED to other methods, we empirically fit a rule
for selecting the optimal t for cell-type composition in
whole-blood datasets as a linear function of the number
of individuals in X1 and X2 (Additional file 1: Figure S10).
CONFINED is available as an R package at

https://github.com/cozygene/CONFINED [54].
The calculations in the R package were optimized with
C++ code using Rcpp and RcppArmadillo. Also

https://github.com/cozygene/CONFINED
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included with the package is an ultra-fast function for
performing CCA (Additional file 1: Figure S18).
Simulations We evaluated the performance of CON-

FINED using a simulated study. For the simulations, we
generated X̂i for every dataset Xi:

X̂i = Xi + ZiWT
i

Where Zi is a random matrix of “scores” of size m × r
with every entry zjk drawn from the standard normal dis-
tribution and Wi is a matrix of “weights” of size ni × r
where every entry wjk is drawn from the standard uniform
distribution and each column w(k)

i is standardized to have
norm 1.
In doing so, we add some structured, normally dis-

tributed noise that is specific to each dataset. By varying
the number and length of the weight vectors w(k)

i , we
can also control the rank and magnitude of the struc-
tured noise. Intuitively, this noise emulates technical vari-
ation, as each dataset will have its own unique set of
weight vectors. For further details, see Additional file 1:
Section S7.

Permutation testing
To validate the enrichment results reported by
missMethyl [40], we performed permutation testing.
missMethyl takes as input a set (i.e., sample) of CpG
sites used to test for enrichment of gene ontology path-
ways, along with the population from which the sample
of CpG sites was chosen. For the purpose of the permuta-
tion tests, our sample of CpG sites consisted of the top t
sites reported by CONFINED, and the population of CpG
sites was made up of the m sites in the input matrices.
For each number of sites t, we ran missMethyl 1000
times, using a random selection of t sites from them sites
of the input datasets at each iteration. We then compared
the permutation p-values to the p-values from using
the top t CONFINED sites. For further information, see
Additional file 1: Section S6. We also show the results of
the permutation test in the presence of noise (Additional
file 1: Figure S19)

Usage of other methods
We compared CONFINED against several previous
reference-free methods that were developed to capture
cell-type composition. Notably, each method has several
parameters the user is left to select, and we wished to
provide a fair comparison across methods. In the case of
PMA[36], we followed the authors’ code and used their
cross-validation function to estimate optimal parameters,
which balances the fit of themodel by optimizing the spar-
sity. In the case of PEER[41] we simply used the code in
the authors’ example in their github wiki.We also followed
the authors’ recommendations for optimizing the sparsity

parameter and feature-selection steps of ReFACTor[24].
In addition to the above, we also tried each of the meth-
ods using the top 1000 to 10,000 most variable sites (with
a step size of 1000) for amore fair comparison (similarly to
howwas done by Houseman et al. [23]).When we induced
sparsity in PMA, PEER and NNMF, the methods’ perfor-
mance were generally lower than when using no sparsity.
In terms of R2, we describe the results when using 10,000
sites and no sparsity respectively: R2

PMA = .47 as opposed
to .54, R2

PEER = .49 compared to .52, R2
NNMF = .49 instead

of .54. ReFACTor benefited most from sparsity and had
the highest performance when using 2000 sites R2

ReF =
.79.

Datasets
Throughout our main experiments, we used publicly
available data generated from the Illumina Infinium
Human Methylation 450k chip. Our analyses focused on
four whole-blood datasets and one brain-tissue dataset:
(1) an analysis of rheumatoid arthritis patients and con-
trols with 659 individuals from Liu et al. (GSE42861)
[39], (2) a study of aging with 656 individuals from
Hannum et al. (GSE40279) [38], (3, 4) analysis and re-
analysis of schizophrenia with 847 and 675 samples from
Hannon et al. (GSE80417, GSE84727) [55], and (5) a
dataset from Lunnon et al. with brain tissue from 122
individuals that was used to study Alzheimer’s disease
(GSE59685) [43].
The whole-blood datasets were preprocessed follow-

ing guidelines suggested by Lehne et al. [56]. Using
the R package minfi [57], we obtained and subse-
quently preprocessed the raw IDAT methylation files
from the Liu et al. and Hannon et al. datasets. As
there was no supplied IDAT file for the dataset of Han-
num et al., we simply used their published intensity val-
ues. Following the guidelines of Lehne et al., we first
removed single nucleotide polymorphism markers (total
of 65) then applied the Illumina background correc-
tion to the obtained intensity values treating autosomal
and sex chromosomes separately. We set our p-value
detection threshold to 10−16 and set the probes whose
p-value did not fall below this threshold as having missing
values.
Further, we normalized the whole-blood data using

quantile normalization of the intensity values, subdi-
vided by probe type, probe sub-type, and color channel.
After finalizing the intensity levels, we calculated beta-
normalized methylation levels for each probe. Probes that
had more than 10% of their values missing were discarded
from the datasets, and the remainder of missing values
were imputed using R package impute. Additionally,
following [27], we used GLINT [58] to remove polymor-
phic and cross-reactive sites [59] as well as sites from
non-autosomal chromosomes.
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The brain dataset from Lunnon et al. was already
preprocessed using the function dasen from R package
wateRmelon [60]. Notably, this function also operates
on the raw intensity to generate normalized beta values
and uses similar preprocessing steps, including quan-
tile normalization and the removal of single nucleotide
polymorphisms. As CONFINED takes as input matrices
with the intersection of CpG sites in two datasets, the
brain dataset was also analyzed with the removal of poly-
morphic and cross-reactive sites as well as sites from
non-autosomal chromosomes.
Additionally, we removed from our analyses outliers and

samples with missing information about their sources of
variability. Samples whose principal components scores
were over four standard deviations away from the mean
were excluded, which led to us removing six samples from
the Hannum et al. dataset and two samples from the Liu
et al. dataset.
We also followed filtering procedures from other works

that also used the same datasets, including the removal
of consistently methylated or unmethylated sites [24, 27].
Prior to running any analyses, we filtered out methylation
sites with standard deviation less than .02. After all pre-
processing steps the dataset from (1) Liu et al. had 376021
sites and 658 individuals, (2) Hannum et al. had 382158
sites and 650 individuals, (3) Hannon et al. 381338 sites
and 638 individuals, (4) Hannon et al. 382158 sites and
665 individuals, and (5) Lunnon et al. 485577 sites and 451
individuals.
In the analysis across tissue types as well as the brain and

adipose analyses in the supplementary sections, we used
the respective authors’ preprocessed datasets. Notably, in
many datasets, there were multiple studied phenotypes.
When available, we used only the healthy individuals for
the clustering experiment.We also removed sites with low
standard deviation (< .02) as well as sites withmissing val-
ues. In the Huang et al. stomach dataset [61], the authors
processed the raw signal intensities to functionally nor-
malized beta values using minfi, and after filtering missing
and low variables CpG sites, there were 304163 sites for
61 individuals. Woo et al. [62] used minfi to generate
functionally normalized M-values from stomach mucosa
which we transformed to beta values for 42 individuals
and 267858 sites. The normalized beta values of the lung
dataset from Wielscher et al. [63] were generated using
packages from Bioconductor and after our filtering con-
tained 302023 sites measured for 33 individuals. Shi et
al. [64] generated their beta values using the R package
methylumi to perform exponential background correction
and control-probed-based normalization, and after our
filtering we were left with 316992 sites for 244 individu-
als. The brain [65] and liver [66] datasets of Horvath et
al. contained Beta MIxture Quantile dilation (BMIQ) nor-
malized [67] beta values for 260 individuals at 315050 sites

and 79 individuals at 346808 sites respectively. The adi-
pose and liver datasets from Bonder et al. [68] consisted
of Subset-quantile Within Array Normalization (SWAN)-
normalized beta values that were preprocessed using the
minfi package, and after our filtering, the first adipose
dataset had 287438 for 71 individuals, the second adi-
pose dataset had 293425 sites for 71 individuals, and the
liver dataset had 265523 for 110 individuals. The kid-
ney dataset of Wei et al. [69] was processed by the R
package RnBeads to conduct BMIQ normalization and
background correction on their beta values, and after fil-
tering out unhealthy individuals and sites with missing
values and low standard deviation, we were left with 89763
sites for 46 individuals. The beta values for the kidney
dataset of Ko et al. [70] were processed using Illumina
GenomeStudio Software 2011.1 Methylation Module 1.8,
and after filtering contained 338312 sites measured at 85
individuals. Teschendorff et al. [71] generated their breast
dataset beta values using the minfi R package as well as
their BMIQ normalization, and after our filtering, it con-
tained 353644 for 92 individuals. The breast dataset of
Song et al. [72] contained after filterting beta values for
121 individuals at 324431 sites and was generated using
Partek Genomics Suite and SWAN normalization.
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