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Abstract

As the scale of genomic and health-related data explodes
and our understanding of these data matures, the privacy
of the individuals behind the data is increasingly at stake.
Traditional approaches to protect privacy have
fundamental limitations. Here we discuss emerging
privacy-enhancing technologies that can enable
broader data sharing and collaboration in genomics
research.
ticipants in biomedical research often provide inadequate
privacy guarantees in practice. The Health Insurance Port-
Promises of the genomic data deluge and
potential for privacy leaks
As we enter the era of personalized medicine, large-scale
datasets containing individual-level genomic and clinical
data are becoming increasingly valuable to researchers.
Analyzing data from a large, diverse study cohort is key
to detecting fine-grain biological insights essential to im-
proving public health. The pressing need for ‘big data’ in
genomic medicine has long been recognized by the bio-
medical community, which has recently led to several
large-scale genomic data collection efforts, including the
All of Us Research Program in the United States [1] and
the UK Biobank [2]. These efforts are resulting in bio-
medical datasets of unprecedented scale that will enable
researchers to push the frontiers of genomic medicine.
With the growing scale of patient data in scientific stud-

ies, ensuring the privacy of study participants is becoming
ever more important. A single data breach can now leak
genomic and other health-related information on millions
of individuals. These leaks may put the affected individuals
at risk for genetic discrimination in employment or insur-
ance (even if it is illegal), or unwanted disclosure of their
biological family, medical history, or sensitive disease
status. The scope of such harm could easily extend to
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descendants or relatives of the affected individuals as they
share much of their genetic biology. Moreover, unlike user
accounts and passwords (which are routinely leaked from
IT companies), one’s genetic information cannot be chan-
ged at will—once it is leaked, it stays leaked.
Traditional approaches towards protecting
privacy and their limitations
Traditional approaches to protect the privacy of study par-

ability and Accountability Act of 1996 (HIPAA)—one of
the most prominent legal standards for biomedical research
to this day—provides a guideline for handling sensitive pa-
tient data based on the technique of ‘de-identification’,
which refers to the process of censoring or transforming
the data so that the resulting data cannot be linked to the
individual who provided it. Unfortunately, most de-
identification techniques fail to guard against sophisticated
re-identification attacks that exploit the data in an unfore-
seen manner. For example, an attacker may use an external
database that shares a subset of data fields with the de-
identified data to infer additional facts about the individuals
and to subsequently uncover their identity. This is known
as a ‘linkage’ attack. Sweeney [3] used this technique to
combine a supposedly de-identified database of hospital re-
cords with a voter registration database to link a particular
patient profile to the then-Governor of Massachusetts,
demonstrating that de-identification, though useful as a
minimal requirement, is not a guarantee for privacy. Not-
ably, the General Data Protection Regulation (GDPR)
2016/679, recently implemented by the European Union,
recognizes different levels of de-identification and intro-
duces a weaker notion of de-identification called ‘pseudo-
nymization’, which entails the removal of only the directly
identifying information.
What makes privacy protection an especially challen-

ging pursuit in genomics research is that fully de-
identifying a genomic dataset while retaining its utility
for research is likely not possible. A personal genome is
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unique to each individual (with the exception of twins),
and a small number of genetic variants is enough to pin-
point an individual. A recent study showed that a per-
son’s genotype profile can be queried against publicly
accessible genealogical databases to reveal their identity
through their relatives in the database [4]. It is worth not-
ing that functional genomic data, such as transcriptomic
or epigenomic read datasets, can also reveal the genetic
variants of an individual [5]. Even if only the preprocessed
functional measurements (e.g., transcript abundance) are
shared, some of the underlying genotypes may be indir-
ectly revealed through statistical associations known as
quantitative trait loci (QTL). Given the growing import-
ance of integrative studies that jointly consider a range of
genomics experiments and clinical data from patients, the
fact that genomic information is especially prone to re-
identification attacks presents a pressing challenge for
sharing these multi-modal datasets.
Another common strategy for reducing the privacy risks

of biomedical data is ‘access control’, whereby data access
is granted to a carefully chosen group of researchers. Most
genomic data repositories, including the NIH NCBI’s data-
base of Genotypes and Phenotypes (dbGaP) and the UK
Biobank, require researchers to submit a summary of their
proposed research, which is reviewed by a data access
review committee to determine whether the project is
within the scope of the informed consent given by the
study participants. This process often takes many months.
Although this gives study participants and biobanks finer
control over who can access their data and for what
purpose (a hallmark of privacy), it substantially limits the
scope of data sharing, e.g., to researchers studying particu-
lar diseases or those within a particular organization, and
does not alleviate concerns about a potential leakage once
researchers obtain these data.

Cryptographic approaches and their challenges
Recently developed theoretical frameworks from cryptog-
raphy may provide alternative paradigms for sharing sensi-
tive biomedical data with enhanced privacy protection.
For example, secure multiparty computation (MPC)
frameworks [6] allow multiple entities (e.g., research labs
or regulatory agencies) to cooperatively carry out compu-
tational analyses while keeping the input data private. No
involved entity—even the researchers performing the ana-
lyses—gains any information about the input data, other
than what is revealed in the final output. Such a frame-
work could facilitate collaboration across multiple insti-
tutes, where they pool their data for joint analyses while
keeping the data private to the respective owners. This
framework could also lead to new experimental designs
with end-to-end data privacy. In this scenario, private data
collected from patients is securely shared with a group of
labs such that no single entity is entrusted with the raw
data throughout the study. This enhanced privacy guar-
antee may broaden the scope of data sharing and
enable collaborations that are currently not feasible due
to regulatory constraints.
Other related technologies for enabling secure gen-

omic analysis workflows include homomorphic encryp-
tion (HE) [7] and secure hardware-based approaches.
HE provides a mechanism to encrypt data in a way that
allows calculations to be performed over the underlying
private numbers implicitly via operations over the
encrypted dataset. Unlike MPC, HE requires only a sin-
gle entity to perform the computation, which consider-
ably simplifies the setup compared to MPC, albeit with
significantly greater computational overhead using exist-
ing techniques. In a hardware-based approach, sensitive
data are decrypted and analyzed only inside an isolated
hardware environment called a ‘secure enclave’ (e.g.,
Intel Software Guard Extension, SGX), which keeps the
data hidden from the user and other processes on the
machine. Compared to cryptographic approaches such
as MPC and HE, hardware-based approaches incur the
least computational overhead as the main computation
is performed over cleartext (unencrypted) data. Yet there
are notable limitations of the approach, including limited
memory capacity of the enclave and the lack of theoret-
ical privacy guarantees—in fact, several security attacks
on SGX have been demonstrated in the literature.
Given the tradeoffs between these related technologies,

different study setups may call for different approaches for
privacy protection to be employed. Currently, HE is best-
suited for low-complexity analyses (e.g., calculating aggre-
gate statistics) and is especially effective for settings where
communication between the parties is costly. Alterna-
tively, MPC addresses a wider range of analyses (e.g., prin-
cipal component analysis [8] or neural network training
[9]) by efficiently handling more complex computations at
the cost of a higher communication burden. While SGX
nearly matches the flexibility of analysis without privacy,
except for a low-memory footprint requirement, it is lim-
ited to study settings where its weaker privacy guarantees
can be considered sufficient.
Although the aforementioned cryptographic approaches

allow researchers to analyze data without having direct ac-
cess to the raw data, these tools do not address the poten-
tial leakage of sensitive information in the final results of
computational analyses (e.g., aggregate statistics). It has
been demonstrated that even coarse-level information such
as minor allele frequencies (MAF) can reveal whether a
given individual is part of the study cohort, potentially dis-
closing sensitive clinical phenotypes of the individual [10].
Differential privacy (DP) frameworks [11] may help address
this concern by providing principled mechanisms for limit-
ing the privacy leakage through adding a controlled amount
of noise to the data. It is worth noting that the theoretical
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privacy guarantee of DP holds even in a linkage attack sce-
nario where the attacker has access to external information.
DP techniques cannot only be used to add another layer of
privacy protection to secure computation pipelines, they
can also help enhance privacy in interactive biomedical
database services. Here researchers submit analysis queries
and receive answers in a privacy-preserving manner
through DP mechanisms.

Challenges and future outlook
Despite the promises of emerging privacy-enhancing tech-
nologies, key hurdles remain for these tools to be widely
adopted by the genomics community. The foremost chal-
lenge is that of scalability. Most existing frameworks for se-
cure computation incur significant computational overhead
for large-scale and complex data analysis tasks, which are
common in biomedical data analysis. This limitation com-
pels researchers to rely on small-scale datasets or simplified
versions of the analysis tasks, which significantly limit the
applicability of privacy-preserving techniques. Although re-
cent advances from our group [8, 9] and others [12] present
a path towards scalable secure pipelines for key analysis
tasks in the field such as genome-wide association studies
(GWAS), most data analysis workflows in biomedicine cur-
rently lack privacy-preserving alternatives that scale to real-
world settings. Differential privacy frameworks face similar
challenges for practical adoption; existing techniques often
require excessive amounts of noise to be added when ap-
plied to large-scale data releases (e.g., association statistics
at genome-scale). Community-wide efforts for methodo-
logical development such as the iDASH Secure Genome
Analysis competition [12] will be increasingly important as
the needs for privacy-enhancing methods in the field
continue to grow.
Another challenge is navigating the complex landscape of

policies and regulations to drive the incorporation of
privacy-preserving technologies. Since most existing regula-
tory frameworks are designed for the sharing of cleartext
data, creating the capacity for and defining the limits of
new workflows based on the emerging privacy-preserving
technologies require new laws and policy guidelines. Given
the varying requirements and privacy guarantees of these
technologies, many of which are still under active develop-
ment, efforts to standardize the use of these frameworks in
biomedical research will be immensely valuable for new
policy development. International standard-setting organi-
zations for genomics research pipelines, such as the Global
Alliance for Genomics and Health (GA4GH) and the
MPEG-G Consortium, may be well-positioned to play a
pivotal role in this regard.
Preventive measures to mitigate privacy risks in

biomedicine are sometimes regarded as a nuisance in
scientific research, limiting researchers’ access to data.
However, often overlooked is the widely liberating aspect
of privacy-preserving technologies. Akin to how ano-
nymity and privacy in the age of the Internet have pro-
vided a foundation for freedom of expression and
increased visibility of minority groups, systems that en-
able the sharing of biomedical data with privacy may un-
lock a new wave of scientific studies that bridge the gap
across nations, organizations, and communities to accel-
erate and promote inclusivity in future genomics
research.
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