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Abstract

Background: Genomic variation is widespread, and both neutral and selective processes can generate similar
patterns in the genome. These processes are not mutually exclusive, so it is difficult to infer the evolutionary
mechanisms that govern population and species divergence. Boechera stricta is a perennial relative of Arabidopsis
thaliana native to largely undisturbed habitats with two geographic and ecologically divergent subspecies. Here,
we delineate the evolutionary processes driving the genetic diversity and population differentiation in this species.

Results: Using whole-genome re-sequencing data from 517 B. stricta accessions, we identify four genetic groups
that diverged around 30–180 thousand years ago, with long-term small effective population sizes and recent
population expansion after the Last Glacial Maximum. We find three genomic regions with elevated nucleotide
diversity, totaling about 10% of the genome. These three regions of elevated nucleotide diversity show excess of
intermediate-frequency alleles, higher absolute divergence (dXY), and lower relative divergence (FST) than genomic
background, and significant enrichment in immune-related genes, reflecting long-term balancing selection.
Scattered across the genome, we also find regions with both high FST and dXY among the groups, termed FST-
islands. Population genetic signatures indicate that FST-islands with elevated divergence, which have experienced
directional selection, are derived from divergent sorting of ancient polymorphisms.

Conclusions: Our results suggest that long-term balancing selection on disease resistance genes may have
maintained ancestral haplotypes across different geographical lineages, and unequal sorting of balanced
polymorphisms may have generated genomic regions with elevated divergence. This study highlights the
importance of ancestral balanced polymorphisms as crucial components of genome-wide variation.
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Background
How evolutionary processes drive genetic divergence
and eventually lead to speciation is a fundamental ques-
tion in evolutionary biology [1]. Taking advantage of
next-generation sequencing technologies, heterogeneous
genomic variation has been documented in many species

[2–8], but disentangling factors shaping genomic land-
scapes remain challenging [9].
Balancing selection maintains multiple advantageous

polymorphisms in populations and increases genetic diver-
sity [10]. In contrast, positive and purifying selection favor
single advantageous alleles and reduce genetic diversity [11,
12]. Balancing selection can persist for many generations,
and maintains ancient polymorphisms in nascent species
pairs, resulting in genomic regions with increased nucleo-
tide diversity (π) in descendant species and low relative
divergence (FST) between species [13]. Alternatively, when
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selection varies geographically, it may favor locally adapted
alleles in the nascent lineages [13]. In this case, ancestral
balanced polymorphisms could be sorted unequally across
descendant lineages by selection, generating genomic re-
gions with both elevated FST and absolute divergence (dXY)
[3, 7, 13]. Divergent sorting of ancient polymorphisms also
could be facilitated by enhanced genetic drift as a conse-
quence of population bottlenecks during speciation. Other
processes can also generate highly differentiated regions
(Table 1). During the process of isolation-with-migration,
divergence might initiate in the regions with reduced gene
flow and further extend to the surrounding areas due to
the linked selection, resulting in genomic islands with ele-
vated divergence (both FST and dXY) [3, 8, 11, 13]. Alterna-
tively, forces such as background selection and recurrent
selective sweeps tend to reduce genetic diversity in regions
of low recombination, leading to elevated FST but
unchanged or decreased dXY [2, 4–6, 11]. These processes
are difficult to discriminate because they are not mutually
exclusive and could cause similar patterns in the genome
(Table 1) [9]. Additionally, genetic drift and demographic
processes may also be responsible for observed peaks of
genomic diversity/divergence, mimicking the patterns pro-
duced by selection [14]. Therefore, inferring the evolution-
ary mechanisms that influence genomic landscapes
requires detailed information on the speciation history and
comparisons of lineages with contrasting divergence levels
and geographic distribution [9].
Boechera stricta (Brassicaceae), a perennial relative of

Arabidopsis thaliana, is native to largely undisturbed sites
in western North America [15–17]. Previous studies iden-
tified two subspecies (EAST and WEST) of B. stricta, with
further subdivision within the EAST subspecies [18–21].
While genetic variation within subspecies is driven by geo-
graphic isolation [20], the divergence between EAST and
WEST is significantly influenced by ecological adaptation
[20]. These subspecies occupy different habitats, and
WESTERN genotypes are typically found in sites with more
constant and abundant water supply, suggested that local
water availability may be the selective force underlying

ecological speciation between EAST and WEST subspecies
[20]. In addition, greenhouse experiments revealed pheno-
logical and morphological traits under divergent selection
between subspecies [19], and an EAST-WEST recombinant
inbred line population segregates for many quantitative
trait loci (QTLs) for ecologically important traits, includ-
ing flowering time, herbivore resistance, fecundity, and
lifetime fitness [21–24], which may have contributed to
incipient ecological speciation in B. stricta. These charac-
teristics, along with the sequenced genome [21], facilitate
population genomic studies in B. stricta to understand
how complex evolutionary forces drive divergence and
speciation.
To understand how different evolutionary processes

contribute to current genomic variation, we re-
sequenced the whole genomes of 517 B. stricta acces-
sions representing much of the species range. First, we
investigated the population structure and history of
species divergence. Next, we identified the signatures of
long-term balancing selection influencing ~ 10% of the
genome. Finally, we looked for genomic regions that
distinguish lineages and assessed the roles of different
evolutionary processes in driving divergence. Our study
provides an example for disentangling the multitude of
evolutionary processes that may have shaped the
patterns of genetic variation across the genome and im-
proves our understanding of the cause and consequence
of genomic divergence during speciation.

Results and discussion
We performed whole-genome resequencing of 517 in-
bred B. stricta accessions using Illumina Hiseq2000/
2500 short-read technology (Additional file 1: Table S1).
Raw reads were mapped to the B. stricta reference gen-
ome v1.2 [21]. After quality control, 484 accessions with
mean depth 5.05× were retained for subsequent analyses
(Fig. 1a; Additional file 1: Table S1). We called SNPs
using HaplotypeCaller in GATK v3.8 [25] and applied a
series of stringent filtering criteria to identify a total of 4,
125,395 high-quality SNPs (see “Methods” section for

Table 1 Predicted characteristics of genomic islands of divergence under different evolutionary models

Model FST dXY Polymorphism within
populations

Local recombination
rate

More islands
in sympatry

Reproductive isolation, divergence
with gene flow [3, 8, 13]

Elevated Elevated No prediction No prediction Yes

Local adaptation, divergence without
gene flow [3]

Elevated Not elevated Reduced No prediction No

Recurrent selective sweeps within
populations [2, 4–6, 11]

Elevated Reduced Reduced Reduced No

Background selection within
populations [2, 4–6, 11]

Elevated Reduced Reduced Reduced No

Sorting of ancestral balanced
polymorphisms [3, 7, 13]

Elevated Elevated No prediction Unchanged or reduced No
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details). Comparison to Sanger sequences showed that
the accuracy of our sequence calls exceeds 99.88%
(Additional file 1: Table S2). To account for the uncer-
tainty of genotypes called from short-read sequences,
we estimated population genetic summary statistics
based on genotype likelihoods as implemented in
ANGSD [26].

Discrete population structure and continuous genetic
differentiation
We used Admixture [27], FastSTRUCTURE [28], sNMF
[29], and NGSadmix [30] to infer individual ancestry.
These four methods gave very similar results (Fig. 1b;
Additional file 1: Figure S1) and detected clear popula-
tion structure in B. stricta. The mode with K = 3 and 4
gave the highest ΔK values (Additional file 1: Figure
S2); thus, we focus our analyses on the four genetic
groups, WES, COL, UTA, and NOR (Fig. 1). With K =
4, we assigned each individual to one of the four groups
if more than 50% of its genetic ancestry derived from
the corresponding cluster (Fig. 1a; Additional file 1:
Table S1). Seventeen individuals not matching this cri-
terion were classified as “Admixed.” The four genetic
groups showed a clear geographical distribution pattern

(Fig. 1a). There is a little overlap among the groups,
although NOR and WES have an area of sympatry in
Montana and Idaho [21]. A principal component ana-
lysis (PCA) and a neighbor-joining (NJ) tree further
confirmed the four genetic groups (Fig. 1c, d). High dif-
ferentiation was detected among these four groups
(Additional file 1: Table S3), similar to previous esti-
mates based on microsatellite and low-copy nuclear
DNA sequences [17, 18].
Genetic diversity in B. stricta consists not only of

clusters, but also clines. Within groups, the geographic
distribution of genetic variation is generally consistent
with isolation by distance (IBD) models. We found sig-
nificant correlations between pair-wise genetic dis-
tance and geographical distance within each group
(r = 0.19–0.36, P = 0.0001–0.0023, 10,000 permutations
in Mantel test; Additional file 1: Table S4), but the pat-
tern of IBD varied among the groups (Additional file 1:
Table S4), indicating different colonization or migra-
tion histories of these groups. In conclusion, we found
both discrete population structure and continuous pat-
terns of genetic differentiation in B. stricta; similar
patterns have also been reported in humans [31] and
A. thaliana [32].
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Fig. 1 Geographic distribution and population structure. a Geographic distribution of the 484 Boechera stricta accessions. Each individual was
assigned into one of the four genetic groups, WES (blue), COL (red), UTA (light blue), and NOR (gold), as well as Admixed (gray). b Population
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parentheses. d Neighbor-joining (NJ) tree based on SNP data. Color scheme for genetic groups is the same in a–d
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Population demography
Recent divergence and long-term small effective population
size of B. stricta
Estimates of demographic history and gene flow pro-
vide a sketch of population history and enable demo-
graphically informed simulations of population genetic
variation under the assumption of selectively neutral
evolution. Accordingly, we inferred the past demo-
graphic history of B. stricta from the joint site
frequency spectrum (SFS) using coalescent simulation
in fastsimcoal2 v.2.6.0.3 [33]. To avoid biases when de-
termining the ancestral allelic states, we generated
folded SFS following Excoffier et al. [33]. We used only
fourfold degenerate sites and intergenic regions, as they
are less affected by selection. Also, we removed the
sites within the three genomic regions showing evi-
dence of long-term balancing selection (see the “Balan-
cing selection in B. stricta genomes” section). Fourteen
demographic models were evaluated, considering a var-
iety of scenarios for gene flow and population size
changes (Additional file 1: Figure S3). The best-fit
model (Model-11, Akaike’s weight of evidence ≈ 1, Add-
itional file 1: Table S5) was a four-population isolation-
with-migration model, where each group experienced
two steps of population size changes after splitting
(Fig. 2a; Additional file 1: Figure S4). By using a gener-
ation time of 2 years and mutation rate of 7 × 10−9 sub-
stitutions per site per year [34], we estimated the model
parameters and their associated 95% confidence inter-
vals (CIs) based on 100 parametric bootstraps (Add-
itional file 1: Table S6). Notably, mutation rate and
generation time are difficult to estimate and may vary

over space and time. Consequently, inferred times and
population sizes would need to be revised if these esti-
mates were inaccurate.
In this best-fit model, the estimated divergence time

between the two subspecies (WES group and ancestor
of three EAST subspecies groups) was ~ 179 thousand
years ago (KYA; 95% CI = 154–185 KYA), and diver-
gence within the EAST subspecies dates to 30–70 KYA
(Fig. 2a; Additional file 1: Figure S4; Additional file 1:
Table S6). Historical effective population size (Ne) was
small in B. stricta; the estimated Ne values for the
common ancestor of all groups, ancestor of EAST sub-
species, and ancestor of UTA and NOR are 2.4 × 104,
3.6 × 104, and 3.9 × 104, respectively. After splitting,
the WES and NOR groups both had small initial pop-
ulations (Ne = 1.9 × 104 and 1.1 × 104, respectively)
comparable with their ancestors, while the COL and
UTA groups had relatively larger initial populations
(Ne = 1.0 × 105 and 1.1 × 105, respectively). The long-
term small effective population sizes of WES and
NOR are consistent with the relatively high level of
linkage disequilibrium (LD) (Additional file 1: Figure
S5) and low level of nucleotide diversity in these two
groups (Additional file 1: Table S7). All groups expe-
rienced rapid population expansion at ~ 12 KYA and
more recent exponential growth starting at ~ 7.7 KYA
(CI = 5.0–9.7 KYA). Inferred gene flow was low
among the groups (per generation migration rate =
6.8 × 10−10–2.0 × 10−5; Additional file 1: Table S6),
which is expected given frequent inbreeding [17], low
seed dispersal, and substantial geographic distances in
B. stricta [15].
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Validation of demographic inference
Evaluating null hypotheses of neutral evolution requires
realistic population models, so we used two approaches
to validate our demographic inferences. First, we evalu-
ated the goodness-of-fit of the best model by comparing
SFS and two summary statistics (π and FST) between
observed and simulated data. We found that SFS and
summary statistics predicted under neutrality are well-
matched to the data (Additional file 1: Figure S6). Sec-
ond, to avoid limitations of model-based demographic
inference, we also employed a model-flexible Stairway
plot v.2 [35] method to investigate the recent fluctuation
of Ne, based on the folded SFS. In general, these results
are consistent with those from fastsimcoal2. All
groups showed lower ancestral population size (1 ×
104–2 × 104) and recent population expansions within
15 KYA (Fig. 2b). In summary, validation analyses
suggested that the best-fit model captures major as-
pects of the demographic history of our populations

from patterns of genetic diversity. We applied this
model in testing the significance of the outliers in
subsequent analyses.

Balancing selection in B. stricta genomes
Long-term balancing selection affected 10% of the B. stricta
genome
In order to reveal evolutionary processes driving gen-
omic variation, we estimated nucleotide diversity (π) in
20-kb non-overlapping windows across the genome.
Then, we computed Z-transformations (Z-π) separately
in each group (see the “Methods” section for details).
This transformation puts the four genetic groups on
the same centered, relative scale of nucleotide diversity.
Genomic regions with Z-π ≥ 2 (corresponding to 4.30%
of windows from all comparisons) were identified as
outlier windows (Fig. 3). Within the four genetic
groups, we detected 307–345 outlier windows for Z-π
(“π-islands”; Additional file 1: Table S7).
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Among these outlier windows, 130 were shared by all
groups (henceforth referred to as shared outliers; Fig. 3),
which could be generated by shared evolutionary forces
influencing particular genomic regions. These π-islands
were unevenly distributed in the genome and clustered
into three genomic regions. These three regions were
henceforth referred to as “Balancing selection (BLS) re-
gions” (Fig. 3; see the “Methods” section for delimiting
the BLS regions). BLS regions, with a total length of ~
20Mb (~ 10% of the 196.5Mb assembled genome) [21],
contain about half of the π-islands (46–49%) including
91 (70%) shared outliers (Additional file 1: Table S8).
All three BLS regions showed nucleotide diversity

2.57–3.88 times higher than the genomic background
(P < 10−5, randomization test; Additional file 1: Table S9)
. Comparison of demographically informed neutral sim-
ulations with observed molecular variation suggests that
non-neutral evolutionary processes have contributed to
the elevated diversity in these regions (Additional file 1:
Figure S7). The high diversity in BLS regions could be
maintained by long-term balancing selection [10], but
could also be due to the systematic variation in mutation
rate, recombination rate, or gene density [12]. We
checked each of these possible influences. First, to cor-
rect for variation in mutation rate among genomic re-
gions, we divided diversity by divergence to an outgroup
species, Boechera retrofracta [21, 36]. These outgroup-
adjusted diversity levels are still higher in the BLS re-
gions compared to genomic background (P < 10−5,
randomization test; Additional file 1: Table S9). There-
fore, the high diversity in genomic islands is not attribut-
able to the elevated mutation rates. Second, to assess the
impact of recombination rate on genetic diversity, we es-
timated the population-scaled recombination rate (ρ =
4Nec) in 20-kb windows across the genome using LDhel-
met [37]. Following Wang et al. [4], we divided ρ by gen-
etic diversity (π) to account for the confounding effects
of local Ne and compared scaled ρ (ρ/π) between the
BLS regions and the rest of the genome. Relative to the
genomic background, we found similar recombination
rate in the BLS regions of groups WES and NOR (scaled
ρ: 0.25–0.29 vs. 0.24, F3,7221 = 1.03, P = 0.377 in WES;
0.16–0.26 vs. 0.36, F3,6676 = 2.42, P = 0.064 in NOR) but
significant higher and lower recombination in the BLS
regions of groups COL and UTA, respectively (scaled ρ:
0.73–0.90 vs. 1.15, F3,7198 = 5.76, P = 0.0006 in UTA;
0.77–1.13 vs. 0.59, F3,7287 = 34.77, P < 0.0001 in COL;
Additional file 1: Table S10). It is possible that other
historical factors, such as population structure, might
explain the patterns in COL and UTA. For example, we
estimated the recombination rate in each subgroup of
COL and found similar estimates of scaled ρ between
the BLS regions and background in one subgroup with
low differentiation (0.64–0.81 vs. 0.65, F3,7233 = 2.25, P =

0.080; Additional file 1: Table S10). To further evaluate
the effects of recombination rate on genetic diversity, we
simulated a variety of recombination rates from 0 to
250 cM/Mb. We found that estimated diversities in all
simulated data were significantly lower than the observa-
tions in the BLS regions (W ranges from 22,399,000 to
45,812,000, P < 2e−16, Mann-Whitney U test; Add-
itional file 1: Figure S7). These results suggest that the
recombination rate might have a little effect on the pat-
terns of nucleotide diversity in B. stricta. A previous
study in A. thaliana also revealed that regions collinear
to these BLS regions showed recombination rates close
to the genome-wide average [38]. Third, we compared
gene density (mean length of coding sequences per 20-
kb window) in outlier windows versus genome-wide.
Gene density in two (LG1p and LG7p) of the BLS re-
gions is slightly lower than the genomic background
(3.93 kb vs. 4.56 kb, P < 0.001 for LG1p; 3.73 kb vs. 4.56
kb, P = 0.0016 for LG7p; randomization test; Add-
itional file 1: Table S9) but is not different from the gen-
omic background in LG5p (P = 0.253, randomization
test; Additional file 1: Table S9). Additionally, controlling
for recombination rate and gene density, the scaled di-
versity in the BLS regions is still higher than the gen-
omic background (F1,6217–6998 = 307.12–1525.90, P <
2e−16; Additional file 1: Table S11). These results suggest
that a high recombination rate or low gene density is
unlikely to generate genomic islands of high diversity.
Therefore, our results suggest that these regions reflect
long-term balancing selection [10]. The hypothesis of
long-term balancing selection was also supported by an
excess of intermediate-frequency alleles (higher Tajima’s
D, and Fay and Wu’s H) and lower population differenti-
ation (FST) in the BLS regions compared to the genomic
background (Additional file 1: Table S9). In comparison
with genome-wide averages, these regions showed higher
absolute divergence (dXY) and also relative node depth
(RND [39]; Additional file 1: Table S9), which takes into
account varied mutation rate across the genome by div-
iding dXY of each group pair with their mean divergence
to an outgroup species, B. retrofracta. These results may
reflect higher levels of ancestral polymorphism prior to
the split of these groups [11].

Long-term balancing selection in disease resistance genes
Plant disease resistance genes, such as nucleotide-binding
site-leucine-rich repeat (NBS-LRR) gene family, can be tar-
gets of balancing selection, and genetic variation in these
gene regions could be maintained for long periods by tran-
sient or frequency-dependent selection [40]. While NBS-
LRR genes have not been functionally characterized in B.
stricta, previous studies have found several NBS-LRR genes
under balancing selection in closely related species, e.g., A.
thaliana [41, 42] and Capsella [43]. In the B. stricta
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genome [21], we identified 378 genes that were homolo-
gous to members of NBS-LRR gene family of A. thaliana
[44], with 277 (60%) of them located in the BLS regions—a
sixfold enrichment of NBS-LRR in BLS regions (Add-
itional file 1: Table S8). Strong positive correlations (Spear-
man’s ρ = 0.19–0.41, P < 0.001; Additional file 1: Figure S8)
between density of NBS-LRR genes and scaled diversity
suggest long-term balancing selection on NBS-LRR genes
and may have maintained genetic diversity in BLS regions.
To avoid ambiguous alignments due to rapid evolution of
NBS-LRR genes [44], we excluded NBS-LRR gene regions
(4.8% of the three genomic regions) from the data analysis.
Genetic diversity in the BLS regions is elevated, even when
NBS-LRR genes themselves have been removed (Add-
itional file 1: Figure S9). Removing π-islands with lower
coverage depth from BLS regions also did not change our
conclusions (Additional file 1: Table S9). These results sug-
gest that the high variation was not due to the read-
mapping errors in paralogous loci or highly polymorphic
regions. Rather, historical balancing selection could act on
NBS-LRR genes and maintain ancestral haplotypes with
similar frequency in different geographical lineages of B.
stricta. The high diversity in the BLS regions after exclud-
ing NBS-LRR genes suggested that intergenic regions
linked to these genes were affected by selection. The aver-
age length of affected haplotypes is ~ 72 kb (20Mb divided
by 277 genes), much longer than the level of LD in this
species (Additional file 1: Figure S5). Future studies, taking
advantage of long-read sequencing technologies and func-
tional genomic analyses, can reconstruct the ancient haplo-
types and examine candidate selected genes.
An early population genomic study in A. thaliana found

that regions syntenic to these BLS regions also show en-
richment for NBS-LRR genes and elevated nucleotide
polymorphism [45] (also see Additional file 1: Figure S10).
This suggests that variation in the BLS regions may have
been shaped by balancing selection over millions of years
since these genera diverged [46].

Sorting of ancient polymorphisms in divergence islands
Balanced polymorphisms in ancestral populations could
be maintained by long-term balancing selection during
speciation, generating genomic regions with increased
genetic diversity within and among daughter populations
[10]. Also, ancient polymorphisms could be partitioned
among descendant lineages, resulting in genomic regions
with increased divergence. To look for genomic regions
with elevated divergence among groups, we estimated
Weir and Cockerham’s weighted FST in 20-kb non-
overlapping windows across the genome and computed
Z-transformed FST (Z-FST) scores separately in each
group pair [3]. Because the BLS regions were under
long-term balancing selection, they were excluded from
the data analyses in this section. Genomic regions with

Z-FST ≥ 2, corresponding to 3.04% of windows from all
comparisons, were identified as outlier windows (“FST-
islands”; Fig. 4). As previously found in other species [3–
7], genetic divergence along the genome was highly het-
erogeneous and FST-islands scattered across the genome
in all group pairs (Fig. 4; Additional file 1: Figure S11).
As expected, increased genome-wide differentiation
obscures genomic regions with elevated divergence [5]:
we detected fewer FST-islands in comparisons of more
divergent groups. For example, more than 300 islands
were observed in comparisons among groups of EAST

subspecies (e.g., COL, UTA, and NOR, FST = 0.12–0.21),
but only 22 in a comparison between sympatrically dis-
tributed WES and NOR groups (Additional file 1: Table
S12), which showed the highest population differenti-
ation (FST = 0.56; Additional file 1: Table S3). The coales-
cent simulation showed that the FST values in genomic
islands were significantly higher than the simulated re-
sults (W ranges from 1,188,900 to 35,200,000, P < 5e−16,
Mann-Whitney U test; Additional file 1: Figure S12),
suggesting that neutral demographic processes cannot
explain the elevated differentiation in outlier windows.

Relative vs. absolute divergence in divergence islands
To examine which factors have contributed to the for-
mation of FST-islands [3, 11, 13], for each group pair, we
compared the level of dXY and RND in islands versus the
genomic background. We found that both mean dXY and
mean RND were significantly higher in FST-islands of all
group pairs (P < 10−5, randomization test; Fig. 4; Add-
itional file 1: Table S3), suggesting the elevated dXY in
genomic islands was not due to the increased substitu-
tion rates. Elevated levels of both relative divergence
(FST) and absolute divergence (dXY) in FST-islands are
compatible with a model in which these islands were de-
rived from divergent sorting of ancient polymorphisms
[13, 21]. Consistent with this hypothesis, the coalescent
time between the most divergent haplotypes in genomic
islands was ~ 1 million years ago, which is much earlier
than the split of B. stricta groups (Additional file 1: Fig-
ure S13). Alternatively, the FST-islands also could result
from differential gene flow among genomic regions, i.e.,
restricted gene flow in islands versus high gene flow
elsewhere in the genome [11]. Under this alternative hy-
pothesis, FST-islands would be more pronounced in sym-
patric group pairs, since gene flow could be higher than
for allopatric groups. In contrast, dXY was significantly
higher in FST-islands of both sympatric and allopatric
group pairs, and the sympatric group pair (WES and
NOR) showed the highest FST and the lowest number of
FST-islands among comparisons (Additional file 1: Tables
S3 and S12). This indicates low gene flow between EAST

and WEST subspecies in their zone of sympatry. Coales-
cent simulation supported a model with low gene flow
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among the groups (Fig. 2; Additional file 1: Figure S4;
Additional file 1: Table S6), in agreement with the high
inbreeding coefficient [17] and low seed dispersal of Boe-
chera [15]. The geographically isolated distribution of B.
stricta groups (except WES and NOR) together with the
low frequency of stricta × stricta admixed genotypes,
also suggest that gene flow has been limited among the
groups. Therefore, our observations indicate that
reduced levels of recent gene flow are unlikely to be an
important contributor to the formation of FST-islands in
B. stricta.
We further tested whether FST-islands could be due

to the ongoing background selection or recurrent se-
lective sweeps. These two processes tend to reduce
genetic polymorphism and to elevate FST in low-
recombination regions [11], so we compared the re-
combination rate between FST-islands and the rest of
the genome and tested the correlation between differ-
entiation (FST and dXY) and recombination in FST-

islands. Among the 12 comparisons (four group pairs,
each containing two tests for two groups), only two
comparisons showed a significant lower recombination
in FST-islands than in background (0.668 vs. 1.037, P =
0.031; 0.718 vs. 0.901, P < 0.001; randomization test
with Bonferroni correction; Additional file 1: Table S3)
. Thus, FST values in FST-islands are significantly higher
than background after controlling for recombination
and/or gene density (F1,6126–6820 = 86.43–5123.27, P <
2e−16; Additional file 1: Table S13). For regression
tests, we found two significantly negative relationships
out of 12 comparisons. It is possible that other histor-
ical factors, such as demographic history, might ex-
plain this pattern (Additional file 1: Figure S14).
Additionally, if FST-islands were mainly produced by
background selection or recurrent selective sweeps,
dXY within islands would be decreased or unaffected
[3, 11], which is inconsistent with our observation of
elevated dXY in genomic islands.

Z
-F

WES vs. COL 

WES vs. NOR 

WES vs. UTA 

COL vs. NOR 

COL vs. UTA 

UTA vs. NOR 

FST 

D
en

si
ty

 

A B 

Chromosome    1              2                3              4             5             6                7 
d X

Y

C 

4

l l l

0 
  2

   
4 

  6
   

   
   

 0
   

2 
  4

   
6 

   
   

   
0 

  2
   

4 
  6

   
   

   
 0

   
2 

  4
   

6 
   

   
   

0 
  2

   
4 

  6
   

   
   

0 
  2

   
4 

   
6 

 

0.0     0.2      0.4     0.6     0.8     1.0 

0 
   

   
  2

   
   

   
 4

   
   

   
 6

   
   

   
 8

 

WES vs. COL 
WES vs. NOR 

WES vs. UTA 
COL vs. NOR 

COL vs. UTA 

UTA vs. NOR 

0 
   

   
   

   
  0

.0
04

   
   

   
  0

.0
08

   
   

   
  0

.0
12

 

ST
 

Fig. 4 Heterogeneous genetic divergence along the B. stricta genome. a Manhattan plot of Z-transformed FST (Z-FST) in 20-kb non-overlapping
windows for six group pairs. Alternating colors paint the different chromosomes, and the genomic islands of divergence are shown in red.
Windows with low differentiation (Z-FST < 0) are not shown. The vertical lines (light blue) mark the three highly polymorphic genomic regions
(see Fig. 3) that were not included in FST analyses. b) Kernel distribution of genome-wide differentiation (FST) for six group pairs. c Box plot of
absolute divergence (dXY). In each of the six group pairs, mean dXY values in genomic islands (blue) are significantly higher than those in genomic
background (red) (P < 10−5, randomization test). In these box plots, the median is shown by a horizontal line, while the bottom and top of each
box represents the first and third quartiles. The whiskers extend to 1.5 times the interquartile range. Outliers are not shown in the plot
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Positive selection in divergence islands
Within groups, FST-islands showed low nucleotide diver-
sity (π), excess of low frequency alleles (more negative
Tajima’s D) ,and high-frequency derived alleles (more
negative Fay and Wu’s H) in one or both groups of each
comparison (P < 10−5, randomization test; see details in
Additional file 1: Table S3), consistent with positive se-
lection in these regions. It has been found that ancient
polymorphisms under long-term balancing selection also
could be under recent positive selection and promote
adaption of humans to local environments [47]. To fur-
ther infer possible functional influences, we conducted
Gene Ontology (GO) analyses of these genomic islands.
Comparisons showed that multiple GO categories with
important metabolic processes and molecular functions
(e.g., sucrose metabolic processes, catalytic activity) were
overrepresented for genes located in genomic islands
(Additional file 1: Table S14), suggesting a diverse set of
genes and functional categories may have contributed to
adaptive evolution of B. stricta.

Conclusions
We used population genomic analyses to track the diver-
gence processes of B. stricta and to investigate the evo-
lutionary forces that have shaped diversity within this
species. We found that four genetic groups in B. stricta
diverged during the Late Pleistocene. Our results suggest
that long-term balancing selection on disease resistance
genes may have maintained ancestral haplotypes across
descendent lineages, resulting in elevated genetic diver-
sity in three genomic regions comprising 10% of the
genome. We further demonstrate that genomic regions
with elevated divergence (FST-islands) among the four
lineages may be derived from divergent sorting of
ancient polymorphisms, instead of heterogeneous gene
flow or recurrent selective sweeps. These findings
provide evidence that elevated genetic diversity due to
balancing selection also may increase population differ-
entiation by sorting balanced polymorphisms during di-
vergence processes. This study highlights the importance
of ancestral balanced polymorphisms as crucial constitu-
ents of genome-wide variation and incipient speciation.

Methods
Sample collection, whole-genome sequencing, mapping,
and SNP calling
We analyzed 517 B. stricta accessions across the species
range in the western USA (Fig. 1; Additional file 1: Table
S1). These accessions are part of the B. stricta Reference
Panel, available from the Arabidopsis Biological Resource
Center. All accessions have the common, non-inverted
haplotype on chromosome 1 [21]. Seeds were germi-
nated and grown in the greenhouse for one generation
to produce self-pollinated seeds for this study. Following

the protocol of Lee et al. [21], we extracted genomic
DNA of each accession from ~ 0.1 g young leaf tissues
using Qiagen DNeasy Plant Mini kits (Qiagen, Hilden,
Germany) and measured the concentration using a
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA).
Paired-end sequencing libraries were prepared for each

sample, and the sequencing was carried out on the
Illumina HiSeq 2000/2500 platform at the Joint Genome
Institute (JGI). Plate-based DNA library preparation for
Illumina sequencing was performed on the PerkinElmer
Sciclone NGS robotic liquid handling system using
KAPA Biosystems Library Preparation Kit. About 200 ng
DNA was sheared to 475–600 bp using a Covaris LE220
Focused-ultrasonicator. The sheared DNA fragments
were size selected by double-SPRI, and then the selected
fragments were end-repaired, A-tailed, and ligated with
Illumina compatible sequencing adaptors from IDT con-
taining a unique molecular index barcode for each sam-
ple library. The prepared libraries were quantified using
KAPA Biosystem’s next-generation sequencing library
qPCR kit and run on a Roche LightCycler 480 real-time
PCR instrument. The quantified libraries were then mul-
tiplexed with other libraries, and the pool of libraries
was then prepared for sequencing on the Illumina HiSeq
sequencing platform utilizing a TruSeq paired-end clus-
ter kit and Illumina’s cBot instrument to generate a clus-
tered flowcell for sequencing. Sequencing of the flowcell
was performed on the Illumina HiSeq2000/2500 sequen-
cer using a TruSeq SBS sequencing kit, following a 2 ×
100 or 2 × 150 indexed run recipe.
We used trimmomatic v0.36 [48] to remove adapter

sequences and trim bases from both ends of reads when
the base quality was < 30. After trimming, reads < 36 bp
were discarded. We then aligned high-quality reads of
each genotype to the B. stricta reference genome v1.2 [21]
with BWA [49]. We used GATK v3.8 [25] for base quality
recalibration, indel realignment, and simultaneous SNP
and indel discovery via HaplotypeCaller. After that, geno-
types (in gVCF files) of all individuals were joined together
by using the default hard filtering parameters as pre-
scribed by GATK v3.8 best practices. Only sites with map-
ping quality ≥ 30 and base quality ≥ 30 were considered
for calling variants in HaplotypeCaller.

SNP filtering and validation
As some analyses required called genotypes, we used
stringent filtering criteria to minimize false positives
from SNP and genotype calls and further validated the
accuracy of variant calling. We used the following filter-
ing criteria: (1) homozygous genotypes were assigned as
missing if supported by less than two reads; (2) heterozy-
gous genotypes were assigned as missing if supported by
less than 20 reads or reference ratio (number of reads
supporting reference allele/number of reads supporting
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alternative allele) < 0.25, or > 0.75; and (3) SNPs were
discarded if they met any one of the following criteria:
genotyped in fewer than 50% of individuals, mean depth
> 20, more than one variant allele was observed, sites
where the proportion of heterozygous genotypes was >
15% (B. stricta is predominantly inbred; hence, high
heterozygosity may indicate paralogous loci), or if refer-
ence or variant alleles were indels. We further removed
20 samples with missing rate > 0.60, five duplicated
samples from the same inbred family, six samples with
divergent morphology or identified as outliers by PCA,
and two samples without geographical information
(Additional file 1: Table S1). Finally, we retained 4,125,
395 high-quality SNPs and 484 genotypes for the fol-
lowing analyses.
To gain insight into the variant calling and genotype

accuracy, we compared individual genotypes from this
re-sequencing dataset with genotypes from 129 loci
(total 71 kb) previously assayed by Sanger sequencing
[18, 50]. Twenty-one inbred lines sequenced by both
Illumina and Sanger methods were used for this com-
parison (Additional file 1: Table S2). Each genotype of
21 individuals (sequenced at depth 2.7–5.8×) inferred by
GATK was compared to the Sanger-sequenced ones
from the same inbred lines. Genotypes from the re-
sequencing data identical to the genotypes from the
Sanger dataset were considered as true positives, and
conflicting genotypes were considered as false. 99.89% of
genotypes from the re-sequencing data are identical to
genotypes from the Sanger dataset, indicating that high
confidence SNPs were genotyped in our dataset.
To further monitor the accuracy of genotypes over dif-

ferent coverage depths, we downloaded reads of two ge-
notypes that were sequenced at very high depth, ~ 400×
(Accession LTM, the genotype used for the reference
genome) and ~ 170× (SAD12, referred to as RP067 in
this study) [21]. Next, we randomly downsampled these
datasets to sub-datasets with depth from 1 to 40× (Add-
itional file 1: Table S15). SNPs were called and filtered
from these sub-datasets using the same pipelines as
described above. For LTM, we compared genotype calls
from sub-datasets with different depths to the reference
genome. True positives (TP) are positions identical to
the reference, false heterozygotes (FHET) are positions
called as heterozygous genotypes (all sites are called as
homozygotes in the reference genome), false homozy-
gotes (FHOM) are positions called as homozygous geno-
types but different from the reference, and missing SNPs
(MISS) are non-genotyped sites. For SAD12, we com-
pared genotypes called from each sub-dataset to those
called from the highest depth data (~ 170×). True posi-
tive sites (TP) are defined as positions identical between
low- and high-depth datasets; false heterozygotes
(FHET) are positions different between datasets, with at

least one heterozygote called; false homozygotes (FHOM)
are positions called as different homozygotes between
datasets; and missing SNPs (MISS) are sites genotyped in
high-depth data but not called in low-depth data. For both
LTM and SAD12, the true positive rate (TPR) is defined
as TP/(TP + FHET + FHOM), false discovery rate (FR) is
defined as (FHET + FHOM)/(TP + FHET + FHOM), and
missing rate (MR) is defined as MISS/(TP + FHET +
FHOM+MISS). High TPR was found in LTM (99.90–
99.51%) and SAD12 (98.75–99.82%) datasets with
different depths (Additional file 1: Table S15). It is not sur-
prising to see high accuracy of called genotypes based on
relative low sequencing depth (5.05×) in B. stricta, because
it is an inbreeding species with extremely low heterozy-
gous rate [17, 21]. A similar result was reported in A.
thaliana, another inbreeding species [32].

Population structure
To investigate population structure in B. stricta, we (1)
conducted admixture analyses using Admixture v1.3.0
[27], FastSTRUCTURE v1.0 [28], sNMF [29], and
NGSadmix [30]; (2) performed principal component
analysis (PCA) with EIGENSOFT v6.0 [51]; and (3) con-
structed neighbor-joining (NJ) trees using MEGA v7
[52] with 1000 bootstrap samples. We ran Admixture,
FastSTRUCTURE, sNMF, and NGSadmix with K values
ranging from 1 to 10 and repeated the process 20 times
with different seeds. The best K (i.e., the number of puta-
tive populations) was chosen by the ΔK method [53]. A
tenfold cross-validation procedure and a cross-entropy
criterion were also used for evaluating the runs with dif-
ferent K values in Admixture and sNMF, respectively.
Genotype likelihoods estimated by ANGSD [26] were
used as input for NGSadmix, and genotypes called by
GATK were used for other methods. For population struc-
ture analyses, we discarded SNPs with missing rate > 20%
and minor allele frequency (MAF) < 5%. We also excluded
highly correlated SNPs by performing an LD-based SNP
pruning process in PLINK v1.90 [54]. To do this, we
scanned the genome with sliding windows of 50 SNPs in
size, advancing in steps of five SNPs, and removed any
SNP with a correlation coefficient > 0.2 with any other
SNP within the window. This yielded 27,765 independent
SNPs for the analyses of population structure.

Isolation by distance
To investigate the pattern of isolation by distance in each
group, we calculated genetic and geographic distances be-
tween each pair of genotypes and tested the correlation of
genetic and geographic matrices by Mantel test with 10,000
permutations (permuting rows and columns) implemented
in the R package VEGAN [55]. We further quantified the
strength of the IBD in each group. To account for uneven
sampling, we grouped genotype pairs into sequential 10 km
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bins (e.g., 0–10 km, 10–20 km) and calculated mean
genetic distance from all genotype pairs in each bin. After
that, we fit a weighted linear regression by considering the
number of genotype pairs in each bin and calculated the
slope and intercept of genetic distance against geographic
distance. We discarded bins representing geographic
distance less than 20 km or larger than 120 km, due to a
substantial deviation from the regression line. We also
removed bins with less than 15 genotype pairs. The ratio of
increase of pairwise diversity across geographic distance
was estimated by dividing slope by mean pairwise diversity
across all bins within 20–120 km. We estimated the stand-
ard error of the ratio based on 1000 bootstraps. We also
tried 20 km bins and got very similar results (data not
shown). Ten isolated WES accessions from the Washing-
ton Cascades and the Sierra Nevada were excluded from
IBD analyses, because they are located far from the distri-
bution center of the WES group.

Linkage disequilibrium
We estimated genome-wide LD species-wide (484 individ-
uals), as well as for each group (WES, COL, UTA, and
NOR). We extracted common SNPs with MAF above 0.05
and calculated the mean-squared correlation (r2) for each
pair of common SNPs within 50-kb windows using plink
v1.90 [54]. The decay of LD with physical distance (bp)
was estimated using nonlinear regression using Eq. 1 of
Hill and Weir [56].

Population demography
Fastsimcoal2 simulation
We inferred the demographic history of B. stricta by
using a coalescent simulation-based method in fastsim-
coal v.2.6.0.3 [33]. We tested fourteen demographic
models (Additional file 1: Figure S3); all models con-
tained four contemporary groups and began with the
splitting of the two subspecies (WES vs. the ancestor of
other three groups), followed by splitting of COL within
the EAST subspecies, and the final split between UTA
and NOR groups. These models differed with regard to (1)
whether gene flow was present among groups and (2) how
population size changed within groups (Additional file 1:
Figure S3). Because missing data can lead to biased esti-
mates of the site frequency spectrum (SFS), we performed
a downsampling procedure following Thome and Carstens
[57]. For each individual, we randomly chose one haplo-
type, since B. stricta is a largely inbreeding species. For
each site, we resampled (without replacement) 39, 78, 63,
and 52 genotypes from WES, COL, UTA, and NOR
groups, respectively, to maximize the number of segregat-
ing SNPs. Sites were discarded if the sample size (non-
missing genotypes) was less than the threshold in any
group. We excluded SNPs from three genomic regions
under long-term balancing selection (see the “Balancing

selection in B. stricta genomes” section) and only used
fourfold degenerate sites and intergenic regions, because
they are less affected by selection. Finally, 1,455,094 SNPs
were retained to estimate SFS. To minimize biases when
determining the ancestral allelic states, we generated
folded SFS following the methods described by Excoffier et
al. [33]. For each model, we performed 50 independent
runs with 100,000 coalescent simulations as well as 10–40
conditional maximization algorithm cycles to find the
global maximum-likelihood parameter estimates. The best
model was chosen based on Akaike’s weight of evidence
following Excoffier et al. [33]. To obtain the 95% confi-
dence interval of the best model, we generated 100 para-
metric bootstraps and estimated the parameters on each
bootstrap replicate using the same settings as for the ana-
lyses of the original dataset. Generation time of 2 years
and mutation rate of 7 × 10−9 substitutions per site per
year in A. thaliana [34] were used to convert the model
parameters to absolute values. To evaluate the goodness-
of-fit of demographic models, we performed 100,000
coalescent simulations under the maximum likelihood
estimates of population parameters, calculated expected
SFS, and compared with the observed SFS. We also
compared two summary statistics (π and FST) between
simulated and observed data.

Stairway plot analyses
We applied the Stairway plot v2 [35] method with folded
SFS (generated as for fastsimcoal2, above) to infer the
historical changes of Ne over time in each genetic group.
We used default settings to run Stairway, including 2/3
of the data for training and four random break points at
(nseq-2)/4, (nseq-2)/2, (nseq-2)*3/4, and nseq-2. As sug-
gested by the authors, we created 200 input files using
the provided script and estimated the median and 95%
confidence interval of demographic parameters based on
these files. We converted estimates to absolute values
based on a generation time of 2 years and a mutation
rate of 7 × 10−9 substitutions per site per year.

Genome-wide scans for regions with elevated diversity
and/or divergence
We partitioned scaffolds into 20-kb windows, and calcu-
lated the sequence coverage by counting the number of
available sites in each window. To obtain all available sites,
we used the “-allSites” argument in GATK and filtered
non-segregating sites using the same quality thresholds as
for segregating sites (see the “SNP filtering and validation”
section). For a window to be included in the downstream
analyses, we required (1) at least 5000 sites left, after filter-
ing steps; (2) at least 20 SNPs, for summary statistics
based on segregating sites (e.g., Tajima’s D and FST); and
(3) at least 2000 bases available from both ingroup and
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outgroup species, for outgroup statistics requiring out-
group information, such as Fay and Wu’s H and RND.

Intra-population summary statistics
For each group of B. stricta and the species as a whole,
we estimated SFS and related population genetic statis-
tics using a probabilistic method implemented in
ANGSD v0.919 [26]. We filtered the data by (1) remov-
ing reads with a minimal mapping quality of 30 and
bases with a minimal quality score of 30 (-minMapQ
and -minQ), (2) removing sites with information from
less than 50% of individuals (-minInd), (3) removing
sites with a P value higher than 1 × 10−4 (-snp_pval), (4)
assigning genotypes as missing if the depth was less than
two for an individual, and (5) removing sites that did not
pass filtering criteria above (see the “SNP filtering and
validation” section). We estimated per-individual in-
breeding coefficients in ngsF-HMM [58] and incorpo-
rated them into the calculation of SFS in ANGSD. Using
genotype likelihoods based on the GATK genotyping
model [59], we estimated folded and unfolded SFS and
derived a set of population genetic summary statistics in
20-kb windows. We estimated nucleotide diversity (π)
and Tajima’s D on the basis of folded SFS and calculated
Fay and Wu’s H from the unfolded SFS. We used B.
retrofracta [21, 36] as the outgroup species to infer the
ancestral allelic state to estimate the unfolded SFS.

Inter-population summary statistics
We used custom Python scripts to calculate the relative
genetic differentiation (Weir and Cockerham’s weighted
FST) [60], absolute divergence (dXY) [61], and net pair-
wise nucleotide divergence (da) [61] for six pairwise
comparisons among the four genetic groups (Fig. 1). To
account for the variable mutation rate across the gen-
ome, we also estimated the relative node depth (RND)
[39] by dividing dXY of each group pair with their mean
divergence to an outgroup species (B. retrofracta) [21,
36]. In each pairwise comparison, parameters were esti-
mated on sites with at least 50% of individuals success-
fully genotyped per population. For FST, we calculated
two variance components (the numerator and denomin-
ator) for each segregating site, averaged them separately,
and obtained the window-based estimates as a “ratio of
average” [60]. For dXY and RND, we obtained window-
based values by averaging per-site estimates across all
sites (both variable and monomorphic) passing the initial
quality filters for each window.

Recombination rate and gene density
Population-scaled recombination rates (ρ = 4Nec) were esti-
mated for each group using the program LDhelmet v.1.10
[37]. We ran LDhelmet with default parameters (100,000
burn-in iterations, 1000,000 Markov chain iterations, and a

block plenty of 50) to estimate recombination rate between
each pair of SNPs and then weight-averaged over each 20-
kb window. We only used SNPs with MAF > 5% to
minimize the effects of rare variants, and only retained
windows with at least 10 SNPs left after filtering. Using
lookup tables with θ = 0.001 (close to estimates of genomic
background) and θ = 0.01 (close to estimates in three gen-
omic region with elevated diversity) yielded quantitatively
identical results (Pearson’s correlation coefficient r = 0.999,
P < 2.2e−16); thus, only the results based on θ = 0.001 were
reported. To account for the influence of effective popula-
tion size on estimated ρ, we divided ρ by diversity (π) in
each 20-kb window following Wang et al. [4] and com-
pared ρ/π between islands and the rest of the genome.
Gene density was estimated as the total length of coding
sequences within each of the 20-kb windows.

Outlier screen
To identify the genome regions with elevated diversity (π),
we standardized π in each group for each window and
identified high-diversity windows with Z-π ≥ 2 (π-island,
corresponding to 4.30% of windows from all comparisons).
Following the same procedure, we standardized per-win-
dow FST in each pair of groups to a Z-score based on the
formula Z-FST = (FST × FST′)/std-FST [3], where FST is a per-
window estimate, and FST′ and std-FST are the mean and
standard deviation of FST across windows. We excluded the
BLS regions from the analyses because they show evidence
of long-term balancing selection and defined windows with
Z-FST ≥ 2 (corresponding to 3.04% of windows from all
comparisons) as outliers (FST-island). Based on 100,000 per-
mutations, we compared genomic islands vs. genome-wide
background for possible differences in multiple summary
statistics, including recombination rate, diversity, and FST.
To test whether π-islands or FST-islands could be due

to demographic processes solely, we first simulated 100,
000 segments (20 kb each, the same size as the windows
used to scan the genome) using demographic parameters
of the best model estimated by fastsimcoal2 (see the
“Population demography” section for details). We per-
formed simulations with different levels of recombin-
ation (0, 1, 5, 10, 30, 50, 100, and 250 cM/Mb) covering
a wide range of recombination rates in plants [62], and
generated eight datasets in total. For each dataset, we es-
timated π and FST for groups and group pairs, respect-
ively. Finally, we compared π (for π-islands) and FST (for
FST-islands) in islands versus those from simulated data
by using the Mann-Whitney U test.
We further focused on 130 π-islands shared among all

groups. These islands showed higher diversity and stronger
signatures of balancing selection than islands specific to
particular group(s). These islands were clustered into three
genomic regions. We merged shared islands that were sep-
arated by less than 1.5Mb into single genomic segments
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and delimited these three highly polymorphic genomic re-
gions to 15.3–24.4Mb on the short arm of chromosome 1
(LG1p), 0.47–3.4Mb on the short arm of chromosome 5
(LG5p), and 0.45–5.1Mb on the short arm of chromosome
7 (LG7p). To look for patterns of their homologous regions
in A. thaliana genome, we used SyMAP v3.4 [63] to iden-
tify the collinear regions between B. stricta [21] and A.
thaliana genomes [32] and further blasted sequences of
the three B. stricta genomic regions onto the A. thaliana
genome to delimit the homologous regions. To calculate
genetic diversity in A. thaliana, we downloaded SNP data
from http://1001genomes.org/. Of the 1135 sequenced ac-
cessions, we retained 972 non-relicts from the native range
[21, 32]. Genotypes supported by less than 2 reads were
assigned as missing. SNPs with indels, more than two al-
leles, more than 50% missing data, or located on masked
genomic regions were further excluded. We partitioned A.
thaliana into 10-kb, 20-kb, and 100-kb windows, calcu-
lated per-site nucleotide diversity (π) using custom Python
scripts, and obtained the window-based values by averaging
per-site estimates in each window. To correct for variation
in mutation rate among genomic regions, we divided diver-
sity by divergence to the outgroup species, Arabidopsis
lyrata.

Gene ontology enrichment analyses
We performed GO analyses to test whether any functional
classes of genes were over-represented in π-islands or FST-
islands. We first calculated P values of Fisher’s test and
subsequently corrected P values for multiple testing with
Benjamini-Hochberg FDR [64]. GO terms with FDR <
0.05 were considered as significantly enriched. GO ana-
lyses were conducted with singular enrichment analysis in
agriGO’s Term Enrichment tool [65] and used B. stricta
genome [21] as a reference.

Additional file

Additional file 1: Supplementary figures and tables. (PDF 8011 kb)
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