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Abstract

Gene co-expression networks capture biological relationships between genes and are important tools in predicting
gene function and understanding disease mechanisms. We show that technical and biological artifacts in gene
expression data confound commonly used network reconstruction algorithms. We demonstrate theoretically, in
simulation, and empirically, that principal component correction of gene expression measurements prior to network
inference can reduce false discoveries. Using data from the GTEx project in multiple tissues, we show that this
approach reduces false discoveries beyond correcting only for known confounders.

Background
Gene co-expression networks seek to identify transcrip-
tional patterns indicative of functional interactions and
regulatory relationships between genes [1–3]. These are
not yet fully characterized for most species, tissues, and
disease-relevant contexts. Therefore, reconstructing co-
expression networks from high-throughput measurements
is of common interest. However, accurate reconstruction
of such networks remains a challenging problem.
Though some specialized methods for the reconstruc-

tion of co-expression networks do consider confounding
signals within their model [4, 5], routinely used network
learning methods [6, 7] do not directly account for tech-
nical and unwanted biological effects known to confound
gene expression data. Despite this, many studies do not
employ any form of data correction or correct only for
known confounders prior to network reconstruction
(Additional file 1: Table S1). These artifacts influence gene
expression measurements, often introducing spurious
correlations between genes [8–10]. These correlations are
often inferred as relationships between genes, leading to

inaccurate network structure and erroneous conclusions
in downstream analyses [4, 5, 8, 11, 12]. Therefore, it is
critical to correct gene expression data for unwanted
biological and technical variation without eliminating sig-
nal of interest before applying standard network learning
methods.

Results and discussion
In this study, we provide a framework for data correc-
tion leveraging the structure of scale-free networks. We
show that for scale-free networks, principal components
of a gene expression matrix can consistently identify
components that reflect artifacts in the data rather than
network relationships. It has been shown that real-world
networks including co-expression networks often have
scale-free topology, i.e., the node degree distribution of
these networks follow a power law [13–15]. Several
studies have employed the assumption of scale-free top-
ology to infer high-dimensional gene co-expression and
splicing networks [6, 16].
Latent factor-based data correction has been success-

fully employed in many applications in genomics from
genome-wide association studies, cis- and trans-eQTL
mapping, to differential expression analysis [9, 17–20].
In genome-wide association studies investigating the as-
sociation between genotype and complex traits, it has
been shown that top principal components explain the
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broad correlation between genotypes which generally re-
flects population structure rather than a desired functional
biological signal of interest [20]. Co-expression analysis is
more complicated because confounders affect sets of genes
in ways that resemble co-expression. Here, we show math-
ematically, through simulation (Fig. 1, Additional file 1:
Notes 1, 2.1, and 2.2; Additional files 2 and 3) and through
real data examples that similar to genetic association stud-
ies, the broad correlation between gene expression levels in
uncorrected data appears to reflect artifacts. We expect that
most real co-expression networks are sparse which means
that most genes are only connected to a small subset of
other genes. We prove that when such networks satisfy the
scale-free property, the signals from the network will not be
sufficiently broad across genes to influence the latent vari-
able estimates from PCA. Thus, principal components will
primarily capture latent confounders, which can then be
regressed from the expression data before network recon-
struction is performed (Additional file 1: Note 1).
Using a toy and scale-free simulation, we first showed that

confounding can introduce false correlations between sets

of genes that can mimic co-expression and can lead to false
edge discovery during reconstruction of co-expression net-
works with graphical lasso—sometimes at the expense of
losing true connections (Fig. 1d-f, Additional file 2). We cor-
rected the confounded simulated data using our PC-based
approach and reconstructed the network using the residuals.
Graphical lasso correctly estimated the network structure
obtained from corrected data, which was the same as the
true network structure that was obtained from the original
simulated data (Fig. 1a-c,g-h, Additional file 2). We also sim-
ulated multivariate Gaussian data with 350 samples and
5000 genes from an underlying scale-free network (Add-
itional file 3). Similar to the previous simulation, we found
that confounding in data can introduce a lot more false posi-
tives in reconstructed co-expression networks. We also
showed that networks reconstructed with PC corrected data
in this setting were more similar to original simulated data
compared to confounded data (Additional file 3). Through-
out our analysis, to estimate the number of principal com-
ponents to be removed, we used a permutation-based
scheme [21] as implemented in the sva package [22].

Fig. 1 Toy simulation example. (a-f) This toy simulation shows the reconstruction of gene co-expression networks is affected by confounders. (g-i)
True underlying network structure can be reconstructed after principal component correction of gene expression data as described in the paper
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To demonstrate the impact of latent confounders and
principal component correction on the reconstruction of
co-expression networks from real large-scale human
gene expression measurements, we applied our method
to RNA-Seq data from the Genotype-Tissue Expression
(GTEx) project v6p release. We considered data from
eight diverse tissues containing between 304 and 430
samples each (Additional file 1: Table S2): Subcutaneous
adipose, lung, skeletal muscle, thyroid, whole blood, tibial
artery, tibial nerve, and sun-exposed skin. Using the most
variable 5000 genes (Additional file 1: Notes 2 and 4), we
reconstructed co-expression networks for each tissue with
two popular methods: (a) weighted gene co-expression
network analysis [6, 23] and (b) graphical lasso [7, 24].
Since the true underlying co-expression network structure
is not known, we assessed the networks using gene pairs
annotated to function in the same pathways [25, 26] as
ground truth edges.
We inferred networks obtained by using (a) uncor-

rected expression data, the residuals after regressing
out (b) RNA integrity number (RIN), (c) exonic
rate—a mapping covariate that corresponds to frac-
tion of reads mapped to exons, (d) sample-specific es-
timate of GC bias, all known to be common
confounders in mRNA gene expression data [27–29],
and (e) residuals from multiple regression model
using covariates that explained at least 1% of expres-
sion variance (adjusted R2 ≥ 0.01, Additional file 1:
Table S3–S5) [28, 30–33].
Co-expression gene modules obtained from weighted

signed co-expression networks (Additional file 1: Note 2.4)
were interpreted as fully connected subgraphs, as is
standard. For most tissues, networks obtained from data
corrected for latent confounders showed fewer false
discoveries compared to those obtained from uncor-
rected data or from correcting for individual covari-
ates including RIN, exonic rate (a quality metric from
RNA-Seq mapping), or sample-specific GC bias (Fig. 2,
Additional file 1: Figures S1, S3, and S8). Improved
performance of networks obtained from PC corrected
data was more evident in the whole blood, skeletal
muscle, tibial artery, tibial nerve, subcutaneous adi-
pose, and thyroid. But for some tissues such as the
lung, PC correction only contributes to moderate im-
provement on false discovery rates in the recon-
structed networks. It is possible that in these cases,
the networks may violate the scale-free assumption or
that true signal was already sufficiently strong in the raw
data. We also observed that correcting gene expression
data with multiple technical covariates (approximately 9–
17 were used per tissue, Additional file 1: Table S5) some-
times improved the reconstruction of co-expression net-
works obtained by WGCNA (Fig. 2a–c, Additional file 1:
Figure S1). Average WGCNA module size for networks

with cut-height greater than 0.99 was smaller with
PC-corrected data compared to uncorrected counterparts
(Additional file 1: Figure S15). We also observed that the
number of genes assigned to the gray (unassigned) module
in WGCNA was considerably higher in PC-corrected
networks (Additional file 1: Figure S15). Finally, we
repeated this analysis by varying multiple settings of
WGCNA and found that PC corrected showed
improvement in most tissues consistently (Additional file 1:
Figures S10 and S11).
In graphical lasso networks, we found that networks

estimated with principal component corrected data
showed fewer false discoveries compared to networks
estimated with uncorrected, RIN-corrected or multiple
covariates corrected data (Fig. 2d–f, Additional file 1:
Figure S2). We observed that in generally improved per-
formance on false discoveries in PC corrected networks
over raw data in the whole blood, the skeletal muscle,
tibial artery, and tibial nerve. Compared to raw data,
jointly correcting the gene expression data for multiple
technical covariates that affect expression measurements
also improved reconstruction with graphical lasso in
some tissues such as the whole blood, thyroid, and tibial
artery, while it showed little to no improvement over un-
corrected data in the lung, muscle, tibial nerve, and
sun-exposed skin (Fig. 2d–f, Additional file 1: Figure S2).
However, we observed that across all tissues, PC correc-
tion still shows fewer false discoveries compared to mul-
tiple technical covariate-based correction. There was no
visible improvement in network reconstruction between
using uncorrected data and residuals from RIN or exonic
rate, thereby suggesting that RIN, exonic rate, or GC bias
individually is not a sufficient alternative for the wide
range of confounding variation found in gene expression
data (Fig. 2, Additional file 1: Figures S2, S4, and S9). We
also found that there was no improvement on false nega-
tive rates upon PC correction in networks built with
WGCNA or graphical lasso (Additional file 1: Figure S14).
With both WGCNA and graphical lasso, networks in-

ferred from principal component corrected data were
much sparser than networks from uncorrected and
RIN, exonic rate, or GC bias corrected counterparts
(Fig. 2g–l). Further, PC corrected networks from
graphical lasso also showed higher clustering coefficient
and fewer hubs compared to others (Additional file 1:
Figures S12 and S13).

Conclusion
Network reconstruction methods are vulnerable to
latent confounders present in gene expression data.
Co-expression networks obtained from data corrected
for effects of RIN, exonic rate, or GC bias individually
show little improvement on false discoveries compared
to uncorrected data and are not a sufficient surrogate
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for the diverse sources of confounding variation in gene
expression data. With empirical analysis supported by
theoretical proof, we show that PC correction is a sim-
ple, yet effective approach to address confounding vari-
ation for the reconstruction of gene co-expression
networks. We do note for particularly dense or connected
sub-graphs in the underlying biological system that may
not match the scale-free assumption, or when large differ-
ences in expression changes are expected (e.g., cancer vs
normal), removing principal components may remove
biological signal of interest and, as with any data cleaning
methodology, should be used with caution. We have

implemented our PC correction approach as a function—
“sva_network” in sva Bioconductor package which can be
used prior to network reconstruction with a range of
methods (Vignette: Additional file 4).

Methods
Principal component-based correction of gene expression
Using a permutation-based approach as described in [21],
we first determined the number of principal components
“p” to correct the data for with the “num.sv” function in
the Bioconductor package sva (Additional file 1: Table S4).
Next, we compute the principal component loadings L of

a b c

d e f

g h i

j k l

Fig. 2 False discovery rate of WGCNA modules and graphical lasso networks based on canonical pathways (a–f). The density of networks inferred
from PC-corrected data is sparser (g–l). a–c FDR of WGCNA networks obtained at varying cut heights. Each point corresponds to FDR of the
network obtained at a specific cut height. Each color represents networks reconstructed with a specific correction approach. d–f Each point in
the figure corresponds to false discovery rates of networks obtained at a specific L1 penalty parameter value (lambda) in the graphical lasso. Each
color represents networks reconstructed with a specific correction approach—uncorrected, multi-covariate, RIN, and PC corrected. g–i Each point
corresponds to a number of edges in networks inferred by WGCNA at a cut height. j–l Each point corresponds to a number of edges inferred by
graphical lasso in networks obtained at a specific L1 penalty parameter value. Networks inferred by PC-corrected data have fewer edges
compared to uncorrected or RIN-corrected data
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the standardized expression matrix with singular value
decomposition (SVD). Using a linear model, we regressed
the top “p” principal components (p as determined by
“num.sv”) on each gene Ei from the expression data and

computed the residuals bEi.

Ei ¼ μi þ βi � L1:p

Êi ¼ Ei− μi þ βi � L1:p
� �� �

Evaluation of co-expression networks
To evaluate our correction method and its effect on
the reconstruction of co-expression networks, we used
two methods to infer the structure of gene co-expres-
sion networks: (a) weighted gene co-expression net-
works (WGCNA) [10] and (b) graphical lasso [11]
(Additional file 1: Note 2).
Since the underlying network structure is generally

unknown, we used genes known to be functional in
the same pathways as ground truth to assess these
networks.
Any pair of genes that have at least one pathway in

common were assumed as a true functional relationship.
An edge that was observed between a pair of genes in
the inferred network (from WGCNA or graphical lasso)
and was also present in the list of real connections was
called as a true positive (TP). We defined false positive
(FP) to be an edge that was observed between a pair of
genes in the inferred network, however was absent in
the list of real connections.

� Shared true positives: We obtained a refined list of
real connections described above by restricting to
pairs of genes that were present in at least two
pathway databases.

All TP, FP, and FN were computed with genes re-
stricted to the most variable 5000 genes that were used
for reconstructing co-expression networks. We compute
the false discovery rate as given below:

FDR ¼ FP
TPþ FP

Additional files

Additional file 1: Supplemental methods and results. This file contains
theoretical proofs, supplemental methods, results, figures, and tables.
(PDF 963 kb)

Additional file 2: Scale-free simulation (R notebook) (HTML 772 kb)

Additional file 3: Scale-free simulation with sample and gene numbers
matched to GTEx (R notebook). (HTML 763 kb)

Additional file 4: Tutorial vignette to apply PC correction prior to
network reconstruction in an example dataset. (HTML 726 kb)

Abbreviations
WGCNA: Weighted gene co-expression networks

Funding
AB is supported by the NIH R01MH109905, NIH R01GM120167, and NIH
R01GM121459. MCS is supported by the NSF DBI-1350041 and NIH
R01HG006677. JTL is supported by the NIH R01GM105705 and NIH
R01GM121459.

Availability of data and materials
All analyses were performed using R and scripts which are available on
GitHub at https://github.com/leekgroup/networks_correction [34].

Authors’ contributions
CR, PP, AB, and JL conceived the study. PP, CR, AJ, MS, AB, and JL designed
the experiments. CR performed the theoretical analysis. PP and CR
performed the simulation experiments. PP performed empirical analyses. PP,
CR, AB, and JL wrote the manuscript with inputs from all co-authors. All au-
thors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Johns Hopkins University, Baltimore, MD,
USA. 2Department of Biostatistics, Johns Hopkins Bloomberg School of Public
Health, Baltimore, MD, USA. 3Lieber Institute for Brain Development, Johns
Hopkins Medical Campus, Baltimore, MD, USA. 4Department of Mental
Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
USA. 5McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins
University School of Medicine, Baltimore, MD, USA. 6Center for
Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
7Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
8Department of Biomedical Engineering, Johns Hopkins University, Baltimore,
MD, USA.

Received: 5 March 2019 Accepted: 24 April 2019

References
1. Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network

analysis reveals common system-level properties of prognostic genes across
cancer types. Nat Commun. 2014;5:3231.

2. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based
approach to human disease. Nat Rev Genet. 2011;12:56–68.

3. Furlong LI. Human diseases through the lens of network biology. Trends
Genet. 2013;29:150–9.

4. Stegle O, Lippert C, Mooij JM, Lawrence ND, Borgwardt K. Efficient inference
in matrix-variate gaussian models with\iid observation noise. Adv Neural Inf
Proces Syst. 2011;630–638.

5. Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE. Context specific and
differential gene co-expression networks via Bayesian biclustering. PLoS
Comput Biol. 2016;12:e1004791.

6. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

7. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics. 2008;9:432–41.

8. Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al. Removing
batch effects in analysis of expression microarray data: an evaluation of six
batch adjustment methods. PLoS One. 2011;6:e17238.

Parsana et al. Genome Biology           (2019) 20:94 Page 5 of 6

https://doi.org/10.1186/s13059-019-1700-9
https://doi.org/10.1186/s13059-019-1700-9
https://doi.org/10.1186/s13059-019-1700-9
https://doi.org/10.1186/s13059-019-1700-9
https://github.com/leekgroup/networks_correction


9. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet. 2007;3:e161.

10. Freytag S, Gagnon-Bartsch J, Speed TP, Bahlo M. Systematic noise
degrades gene co-expression signals but can be corrected. BMC
Bioinformatics. 2015;16:309.

11. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al.
Tackling the widespread and critical impact of batch effects in high-
throughput data. Nat Rev Genet. 2010;11:733–9.

12. Akey JM, Biswas S, Leek JT, Storey JD. On the design and analysis of gene
expression studies in human populations. Nat Genet. 2007;39:807–8 author
reply 808–9.

13. van Noort V, Snel B, Huynen MA. The yeast coexpression network has a
small-world, scale-free architecture and can be explained by a simple
model. EMBO Rep. 2004;5:280–4.

14. Carlson MRJ, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene
connectivity, function, and sequence conservation: predictions from
modular yeast co-expression networks. BMC Genomics. 2006;7:40.

15. Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, et al. A gene
expression map for Caenorhabditis elegans. Science. 2001;293:2087–92.

16. Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, et al. Co-expression
networks reveal the tissue-specific regulation of transcription and splicing.
Genome Res. 2017;27:1843–58.

17. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al.
Understanding mechanisms underlying human gene expression variation
with RNA sequencing. Nature. 2010;464:768–72.

18. Flutre T, Wen X, Pritchard J, Stephens M. A statistical framework for joint
eQTL analysis in multiple tissues [Internet. PLoS Genetics. 2013:e1003486
Available from: https://doi.org/10.1371/journal.pgen.1003486.

19. Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for
complex non-genetic factors in gene expression levels greatly increases
power in eQTL studies. PLoS Comput Biol. 2010;6:e1000770.

20. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet. 2006;38:904–9.

21. Buja A, Eyuboglu N. Remarks on parallel analysis. Multivariate Behav Res.
1992;27:509–40.

22. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28:882–3.

23. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559.

24. Hsieh C-J, Sustik MA, Dhillon IS, Ravikumar P. QUIC: quadratic approximation
for sparse inverse covariance estimation. J Mach Learn Res JMLR org. 2014;
15:2911–47.

25. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.
Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Res. 2016;44:W90–7.

26. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics. 2013;14:128.

27. Jaffe AE, Tao R, Norris AL, Kealhofer M, Nellore A, Shin JH, et al. qSVA
framework for RNA quality correction in differential expression analysis. Proc
Natl Acad Sci U S A. 2017;114:7130–5.

28. Love MI, Hogenesch JB, Irizarry RA. Modeling of RNA-seq fragment
sequence bias reduces systematic errors in transcript abundance estimation.
Nat Biotechnol. 2016;34:1287–91.

29. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson
A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol.
2016;17:13.

30. Liebhaber SA. mRNA stability and the control of gene expression. Nucleic
Acids Symp Ser. 1997:29–32. https://doi.org/10.1038/npg.els.0005972

31. Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, Bareil C, et al. Impact
of RNA degradation on gene expression profiles: assessment of different
methods to reliably determine RNA quality. J Biotechnol. 2007;127:549–59.

32. Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA
degradation on transcript quantification. BMC Biol. 2014;12:42.

33. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

34. Parsana P, Ruberman C, Jaffe AE, Schatz MC, Battle A, Leek JT. Addressing
confounding artifacts in reconstruction of gene co-expression networks:
Zenodo; 2019. Available from: https://doi.org/10.5281/ZENODO.2648667

Parsana et al. Genome Biology           (2019) 20:94 Page 6 of 6

https://doi.org/10.1371/journal.pgen.1003486
https://doi.org/10.1038/npg.els.0005972
https://doi.org/10.5281/ZENODO.2648667

	Abstract
	Background
	Results and discussion
	Conclusion
	Methods
	Principal component-based correction of gene expression
	Evaluation of co-expression networks

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

