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Abstract

The explosive growth of genomic data provides an opportunity to make increased use of sequence variations for
phenotype prediction. We have developed a prediction machine for quantitative phenotypes (WhoGEM) that
overcomes some of the bottlenecks limiting the current methods. We demonstrated its performance by predicting
quantitative disease resistance and quantitative functional traits in the wild model plant species, Medicago
truncatula, using geographical locations as covariates for admixture analysis. The method’s prediction reliability
equals or outperforms all existing algorithms for quantitative phenotype prediction. WhoGEM analysis produces evidence
that variation in genome admixture proportions explains most of the phenotypic variation for quantitative phenotypes.
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Background
Living organisms adapt to the changing environment.
Species respond to environmental changes by altering
population structure via migration, by allele sorting due to
random events (genetic drift), and by natural selection [1].
Selective pressure is often imposed by climate conditions,
pathogen exposure, food resources, and other variables.
Thus, in free-living species, genetics and geography are
closely and measurably associated [2]. In most cases,
adaptive traits represent measurable phenotypes (i.e.,
quantitative traits), such as height, yield, fitness, or patho-
gen resistance, that depend on the cumulative action of
many genes with variants occurring across multiple loci,
and often poorly understood relationships between loci
[3]. In this paper, a large number of mutations of small
effect is considered to model the phenotypic effect-size
distribution of evolutionary-relevant mutations [4–6].
These evolutionary relevant mutations will likely be key
for breeding for complex traits [7], such as fast adaptation
to anticipated climate changes in plants or animals, or for

predicting carcinogenesis and drug resistance in bio-
medicine. Small shifts in allele frequencies at many loci
may be sufficient to move a phenotype toward some new
optimum after a rapid environmental shift [8].
Unlike animals, plants feature complex mating systems

including selfing and limited gene dispersal through seeds
and pollen and a distinct immune system. Importantly,
plants must survive under permanent selective pressure
from local environmental conditions. These features make
plants excellent subjects to test polygenic adaptation
hypotheses and to evaluate the role of migration and drift
in the genetic and quantitative phenotypic differentiation
among populations [9]. Medicago truncatula, a wild le-
gume species, is an attractive model with detailed genomic
data available across a number of circum-Mediterranean
populations [10–13]. As with other organisms, its current
phenotypic and genetic diversity was shaped under the
combined action of environment, demography (migration,
drift), and mutations. As a self-compatible species,
M. truncatula is expected to have a more differen-
tiated population structure than outcrossing species
[14]. However, contradictory versions of its population
structure have been described [15–17].
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Many population genetic approaches assume a theo-
retical framework for the origin of the populations, such
as the “stepping stone” [18], hierarchical divergence, or
island models [19]. Building on these frameworks, we
place our studies of genetic and phenotypic variation
into a geographical context. This can provide powerful
insights into how historical events, patterns of migration,
and natural selection have led to genetic distinctions
between various present-day populations [20–22].
The determination of all the genomic variations under-

lying quantitative traits is challenging [6] and has given
rise to a variety of methods. When the adaptive phenotype
is not known and is likely to differ among populations, a
collection of methods with diverse underlying hypotheses
have been implemented. According to the “selective
sweep” model [23], the set of variants leading to adap-
tation is rapidly fixed in the population. This creates a
genomic signature which consists of reduced genetic
diversity and extended linkage disequilibrium in the
genomic region surrounding the loci under selection [24].
Depending on whether a new mutation or standing
variation is involved in the adaptive process, hard or soft
sweeps may result [25, 26], with recent explorations of
whether the majority of sweeps ever go to fixation [27]. In
plants, selective sweeps were identified for soil conditions
[28] and climate adaptation [29–31]. FST scans and other
measures of genetic differentiation between population,
such as the nucleotide diversity π and Tajima’s D, similarly
allow identification of candidate genes for adaptation
[3, 28]. However, polygenic adaptation is difficult to
detect using selective sweep tests [32] or via FST tests
[33] because the spread of selection on a phenotype
is distributed over many loci. Gene-environment asso-
ciation methods seek to identify alleles whose frequencies
are significantly correlated with environmental variables
used as proxies for ecological pressures. Even if the
adaptive phenotype is unknown, the correlation analysis
suggests the loci that are involved in adaptation [34, 35].
Genetic-environment association methods have increased
power to detect selection from standing genetic variation
and soft sweeps [36] and may incorporate corrections for
populations structure [37, 38]. Also, methods that allow
detection of co-varying signals across multiple loci may
be useful to detect polygenic adaptation [39], as exempli-
fied by the observed covariance between allelic effects and
frequency [40].
When the adaptive phenotype is known or easy to score,

a number of experimental approaches aim to identify
quantitative trait loci (QTLs) using linkage-based analysis
in experimental crosses, or even quantitative trait nucleo-
tides (QTNs) using genome-wide association studies
(GWAS). Over recent years, this approach, fueled by
increasingly affordable genome sequencing or genotyping,
has led to an explosion of disease-related gene discoveries

in humans [41]. In plants, one of the major motivations
for using GWAS is allele mining, i.e., the identification of
novel functional variation that can be deployed in cultivar
improvement through marker-assisted selection [42].
Some applications of GWAS in natural populations are
also reported [43]. These methods have proven useful for
the manipulation of large-effect alleles with known asso-
ciation to a molecular marker [44]. However, quantitative
traits influenced by many loci of small effect are some-
times not well predicted by QTLs identified via linkage-
or GWAS-based approaches [45]. This leads to the “miss-
ing heritability” concept [46, 47]. Some scientists have
thus adapted the whole-genome prediction method
initially proposed by Meuwissen et al. [48, 49]. The goal of
genomic selection (GS) is to predict phenotype using the
full set of genome-wide SNPs [50, 51]. GS usually
does not identify causal loci, but Bayesian methods of
GS can potentially detect SNPs with large effects that
can be the causative variants. Also called genomic
prediction, GS shows excellent performances for live-
stock breeding and is now being rapidly implemented
in plant breeding [52, 53].
Both selection and population history have important

influences on the amount and patterns of genetic variation
[54]. As a consequence of having different population
genetic histories, distinct sub-populations could have
differences in allele frequencies for many polymorphisms
throughout the genome. If the populations have different
overall values for the phenotype, any polymorphisms that
differ in frequency between the two populations will be
associated with the phenotype, even though they are
neither causal nor in strong linkage disequilibrium with
causal polymorphisms [55, 56]. Methods that aim to
identify causal loci are therefore highly influenced by
population structure. Determination of population struc-
ture is at the core of methods based on genomic scans,
outlier tests, and genome-environment associations [54,
57]. Typically, population structure inflates p values in
GWAS [56] and is controlled by the use of linear mixed
models that fits population structure and relatedness
among individuals within the model [58, 59]. Analyzing
the influence of population structure in the training
and test sets in GS models is currently an active field
of research [60, 61].
Here, we propose and test a novel method to explain

variation in genetically complex traits using population
admixture proportions of M. truncatula individuals, an
approach we named “WhoGEM.” The overall goal is to
predict quantitative phenotypes rather than identify
causative variations or infer the relative role of demo-
graphy and selection in the evolution of quantitative phe-
notypes. Gene detection is not the purpose of this model.
The WhoGEM prediction machine is developed around
three key data inputs, data preprocessing (genotypes), the
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ProvenancePredictor algorithm (geographical coordi-
nates), and phenotypic characterization (quantitative
functional traits). A multi-criteria approach is used to
determine the optimal number of population subdivisions
for the M. truncatula species around the Mediterranean
Basin, to assign an admixture proportion vector to each
accession, and then to characterize/predict quantitative
phenotypes. The ProvenancePredictor algorithm was
developed to use geographical covariates as an aid to
define the optimum number of admixture components.
Significantly, the phenotypic characterization results
indicate that admixture proportions of populations
explain a significant proportion of several key quantitative
functional traits and quantitative disease resistances. The
resulting admixture components are also significantly as-
sociated with major bio-climatic and geographic variables.
This demonstration of the WhoGEM prediction machine
indicates that it can outperform the current genomic pre-
diction/genomic selection models typically used to infer
quantitative phenotypes in plants and animals. We argue
that the WhoGEM prediction machine may be extended
to breeds of domesticated plant and animal species, or
populations of dividing human cells, that all undergo
selective pressure and potentially strong genetic drift.

Results
Inferring ancestral genomes that will encounter secondary
contact/admixture zones is at the core of the WhoGEM
working hypothesis. The most likely number of admixture
components representing the putative ancestral genomes
was determined using a multi-criteria approach. We
conducted a three-step data analysis for the determination
of admixture components that (1) defines an initial most
likely range of admixture components by minimizing the
cross-validation error of admixture [62] analysis; (2) com-
pares this initial guess of admixture components to an
independent analysis using the discriminant analysis of
principal components (DAPC) method [63], working by
optimizing the ratio of the variance between groups to the
variance within groups; and (3) checks the accuracy of
bio-geographic predictions for various numbers of com-
ponents using our new ProvenancePredictor algorithm
based on the outcome of steps 1 and 2 (Fig. 1).

Preprocessing: independent methods using LD-pruned
SNP data suggest a strong but unresolved population
structure for M. truncatula
We assessed a collection of 262 M. truncatula accessions
around the Mediterranean Basin (Additional file 1: Figure S1).

Fig. 1 Flowchart of the WhoGEM prediction machine. The inputs (left) include data preprocessing, typically LD-pruned SNPs, the ProvenancePredictor
algorithm using geographical locations, and phenotypic characterization. The WhoGEM prediction machine (center) uses geographical information as
covariates to help in resolving the number of admixture components. The phenotypic characterization allows predicting quantitative traits
using admixture components of individuals. The outputs (right) are covariate-informed population structure and n-dimensional admixture
vectors, putative localization of unknown samples, and prediction of quantitative traits using admixture proportions
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Since the ADMIXTURE algorithm requires indepen-
dence of loci, and to ensure that the DAPC method re-
presents a genome-wide structure and not just reflects the
local LD, we first carried out LD pruning leading to a set
of 843,171 LD-pruned SNPs covering the 8 chromosomes
of the M. truncatula genome (Additional file 2: Table S1).
First, using the likelihood-based admixture analysis

implemented in ADMIXTURE for K = 2 to 12 in the
unsupervised mode, we showed that the cross-validation
error is minimized for K ≥ 7. When considered the admix-
ture plots for K = 4...11, we noticed that for K = 7 and K =
8, the individuals appear homogeneous within their re-
ported regions and distinct between the regions. For K > 8,
the patterns of admixture component reorganization are
inconsistent (Additional file 1: Figure S2).
Second, the range of putative admixture components

was compared with the number of groups independently
obtained using the discriminant analysis of principal
components (DAPC). The set of 843,171 LD-pruned
SNPs was submitted to PCA, and 80 principal compo-
nents were kept to reduce the dimensionality of the data.
K-means clustering for a range of increasing K values,
followed by DAPC analysis, was successively performed
and assessed using Bayesian information criteria (BIC)
criterion. The BIC value was the lowest for K = 7… 9
(Additional file 1: Figure S3), which is in agreement with
the values of K determined by the ADMIXTURE-based
analysis.

Admixture-based analysis, informed by geographical
covariates as implemented in the ProvenancePredictor
algorithm, reveals eight admixture components in the
M. truncatula genome
We used geographical covariates to resolve the number
of putative admixture components, using our new Pro-
venancePredictor algorithm. The ProvenancePredictor
algorithm determines the most probable geographical
location of a test sample based on its genetic relationships
with a geo-localized reference set, by comparing their
admixture components. For that, ProvenancePredictor
calculated the Euclidean distance between the sample’s
admixture proportions and a reference dataset. The
shortest distance measure represents the test sample’s
genetic deviation from its nearest reference popula-
tion based on its n-dimensional admixture component
vector. This admixture-based distance is subsequently
converted to geographical distance using the linear
relationship observed between genetic and geographic
distances (Additional file 7: Code 1). ProvenancePredictor
is an adaptation of the admixture-based geographic
population structure (GPS) algorithm [64] to plant
species. The original GPS algorithm was extensively
tested in a number of published studies [65–67]. The
modification takes into account ties encountered when

the genetic distances between different closely related
accessions are estimated as identical given the dataset,
a situation that may be encountered with selfing plant
species, such as M. truncatula, Arabidopsis thaliana,
or Oryza sativa (rice).
The ProvenancePredictor algorithm was thus used to

assess the accuracy of geographic assignment for various
values of K, from K = 2 to K = 12. The rationale is that
the optimal number of admixture components should
minimize the distance between observed and predicted
locations and maximizes the number of correct assign-
ments of samples to their population of origin. Prove-
nancePredictor uses the “leave-one-out” cross-validation
approach at the “accession” level to estimate the differ-
ence between predicted and reported location for each
sample (Additional file 8: Code 2). We also calculated
the number of correct assignments to the country of
origin, as an estimator of population assignment accuracy.
The most parsimonious optimum for accurate predictions
is achieved for K = 8 with 67% of the accessions correctly
attributed to their reported country of origin, and 50% of
accessions have their location predicted to within 71 km
of their recorded location (Additional file 1: Figure S4).
For all subsequent analyses, the 840 K genotype dataset

was converted into K = 8 dimensional admixture vectors
for each accession, determined using ADMIXTURE in the
supervised mode. The matrix of pairwise genetic distances
was computed using admixture component proportions
of each accession. The Mantel test applied to the initial
geographical and genetic distance matrices revealed a
modest, but nevertheless significant, correlation between
geographical and genetic distances (r = 0.294, p = 1 × 10−4).
A linear relationship between geographical and genetic
distances is restricted to distances less than 950 km
(Additional file 1: Figure S5). When filtering out the
distance matrices for distances more than 950 km, the
Mantel correlation coefficient raises to 0.78, a highly
significant value (p = 1 × 10−4). Thus, a linear relation-
ship between geographical and genetic distances was
fitted for geographical distances less than 950 km. The
regression equation is Geo = 0.204 + 4.973 × Gen + ϵ with
adjusted R2 = 0.61 and model p < 2.2 × 10−16.

M. truncatula has an intricate spatial pattern and
population structure around the Mediterranean Basin
This three-step analysis demonstrates that population
structure in M. truncatula can be adequately explained
using eight admixture components (Fig. 2a). We there-
fore used K = 8 components corresponding to eight
putative ancestral populations (Additional file 3: Table S2).
The name of each population is determined by the region
which is the geographical centroid of the accessions of
that population. The pair-wise Wright’s FST di-
vergences [68] between the admixture components for
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K = 8 (comparing the variance in allele frequencies
among the components) indicated that they are
strongly differentiated (Table 1a). Figure 2b displays the
distribution of the eight putative M. truncatula ancestral
populations around the Mediterranean Basin, showing the
genome admixture proportions of the plant samples.
Based on this picture, we assign each population to a
representative geographical region (Table 1b). Estimates of
FIS values (the inbreeding coefficient of an individual
relative to its sub-population) are similar among the eight
populations, suggesting no obvious intra-population

heterogeneity (Table 1b). All populations are clearly differ-
entiated, even over short geographical distances, such as
with the two Spanish populations.
The divergences among accessions were computed

based on the 840 K SNP dataset to estimate relationships
among the ancestral populations. The resulting dendro-
gram (Additional file 1: Figure S6) showed two main
clades corresponding to the major divergence event.
Clade 1 contains populations from the south-west of the
Mediterranean Basin: “Algiers” (K1), “Spanish Coastal”
(K2), and “Spanish Morocco Inland” (K8). Clade 2

(a)

(b)

Fig. 2 Analysis of 840,171 LD-pruned SNPs reveals patterns of population structure of 262 M. truncatula accessions and their geographical
distribution around the Mediterranean Basin. a The stratification of the collection is obtained assuming K = 8. The x-axis represents the accessions
broadly sorted according to their reported longitude and ancestry. Each accession is represented by a vertical stacked column of color-coded
admixture proportions that reflects the genetic contributions from putative ancestral populations. b Geographical location of 245 accessions. At
each location, a pie chart represents the admixture proportions of the accessions’ genome. Color coding of admixture components is the same
as in a. A Lambert Conic Conformal Projection (EPSG:3034), suitable for the Mediterranean Basin, was used to draw the geographical maps
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contains accessions from the north-east of the Mediterra-
nean Basin. For M. truncatula, we build on the glacial re-
fugia hypothesis [69] that probably shaped the
geographical distributions and patterns of genetic vari-
ation of many plant and animal species around the Medi-
terranean Basin [70]. The data suggests that divergence of
clade 1 and clade 2 reflects expansion from glacial refugia
during the early Holocene. Within clade 2, the “French”
(K6) population is clearly separated from the “Greek” (K7)
one, which is in agreement with the “Maritim and Ligur-
ian Alps” glacial refugia hypothesis [71]. Thus, it is con-
ceivable that the initial founders of M. truncatula
diverged over a large area during glacial and inter-glacial
periods, adapted to differing conditions, multiplied in
numbers, and then encountered secondary contact/ad-
mixture zones starting at the end of the last ice age.

Geographic localization of the reference genome of M.
truncatula: ProvenancePredictor confirms that genetics
helps predict geography
The M. truncatula Jemalong-A17 accession is at the core
of a large number of genomic and genetics resources that

have been used to study responses to biotic and abiotic
stresses and the genetics of symbiotic nitrogen fixation [13,
72]. The Jemalong-A17 accession has been isolated from
the Australian Jemalong cultivar (T. Huguet, personal com-
munication); however, the origin of the Jemalong cultivar in
the Mediterranean Basin is not documented. Recalling that
for a given sample, ProvenancePredictor algorithm deter-
mines its provenance (geographical location) where plants
with similar genotypes are likely to grow. Therefore, the
ProvenancePredictor algorithm was used to infer the geo-
graphic source for the M. truncatula Jemalong-A17 refer-
ence genome [11].
ProvenancePredictor determined that a likely primary

geographical position of the Jemalong-A17 be within the
“Spanish Coastal” population (Fig. 3). The localization of
the Jemalong-A17 reference accession will help to under-
stand its phenotypic characteristics and its responses
to stresses. This simple exercise shows the potential
of ProvenancePredictor in locating unknown plant
samples based on their admixture components and
might have similar applications in forensic sciences and
technologies.

Table 1 Putative ancestral genomes identified by admixture analysis and populations participating to actual levels of structure in
M. truncatula. (a) Pair-wise FST divergences between K = 8 admixture components. (b) Characteristics of the eight populations
defined using the K = 8 admixture components. FIS fixation index, number of accessions per population, name of the population,
and main spanned countries are indicated for each population

(a)

K1 K2 K3 K4 K5 K6 K7

K2 0.262

K3 0.274 0.294

K4 0.226 0.249 0.105

K5 0.280 0.296 0.150 0.118

K6 0.218 0.231 0.146 0.101 0.146

K7 0.228 0.255 0.127 0.086 0.122 0.086

K8 0.262 0.229 0.318 0.272 0.322 0.259 0.279

(b)

Admixture component FIS Pop. size Population name Country

K1 0.53 11 Algiers Algeria

K2 0.69 23 Spanish Coastal Spain, Portugal

K3 0.54 15 North Tunisian Coastal Tunisia

K4 0.56 54 Atlas Algeria, Tunisia

K5 0.48 13 South Tunisian Coastal Tunisia

K6 0.62 29 French France

K7 0.58 63 Greek Greece and neighboring countries

K8 0.62 53 Spanish-Moroccan Inland Spain, Morocco
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Phenotypic characterization using genome admixture
components as significant predictors of quantitative
functional traits in plants
We investigated whether the M. truncatula population
structure, as represented by admixture components, might
be related to the adaptation for polygenic traits (Fig. 1). The
eight-dimensional vector of admixture components is a
synthetic representation integrating the effects of gene flow
and genetic drift and of natural selection toward local
adaptation. It is used as the “whole-genome” model.
As a first implementation, the relationships between
genome components and phenotypes were estimated
using linear models.

Genome admixture components are predictors of plants’
functional traits
Relationships between admixture component propor-
tions and several quantitative functional traits related
to plant development as reported by Stanton-Geddes
et al. [73] were assessed.
Additional file 1: Figure S7 depicts the geographical

structure of phenotypic values for several nodulation
parameters, height, and leaf number combined with
admixture proportions of the recorded accessions. Plant
height (Table 2a) and number of leaves (Table 2b)
exhibit different results regarding the association with
genome admixture components. Influence of population
structure on plant height is very significant (r2 = 0.21,
p = 2 × 10−11), but less on the number of leaves (r2 = 0.05,

p = 7 × 10−4). The results suggest that a latitudinal cline
for leaf numbers may exist, with accessions south of the
Mediterranean Basin harboring more leaves. For nodu-
lation efficiencies, key adaptive traits for legume plants,
we describe very significant relationships between
genome admixture components and two nodulation
parameters (r2 = 0.10 and r2 = 0.15 for a total number of
nodules and number of nodules in the top 5 cm of the
root; Table 2c to Table 2e).

Cross-validation estimates how accurately admixture-
based predictive models will perform in practice
The WhoGEM approach is akin to the calculation of
phenotypic resemblance as in genomic selection/ge-
nomic prediction methodology [48, 49] that uses genome-
wide SNP information to enhance predictive ability. Thus,
the WhoGEM metric was compared to five genomic
selection/prediction methods, namely ridge regression
best linear unbiased predictor (RR-BLUP) and kinship-
BLUP (G-BLUP) [74], BayesB [48], reproducing kernel
Hilbert space (RKHS) [75], and least absolute shrinkage
and selection operator (LASSO) regression [76], for
associating genotype to phenotype in the 262 entries.
In this work, repeated k-fold cross-validation is used to

evaluate and compare the models. It is a robust, nonpara-
metric technique that is assumption-free and comparable
across models. The method consists of splitting the data y
into a training data set (y1) and a validation data set (y2),
given some putative constraints, such as population struc-
ture or spatial proximity. Model parameters are estimated
in the training data set. Parameter estimates from y1 are
then used to predict observations in the validation data
set (i.e., ŷ2jy1 ). A function relating the predicted and true
observations summarizes the performance of the model.
Pearson’s correlation was used among predicted ( ŷ2 ) and
realized observations (y2) in the data set to test the reliabi-
lity of the models. The reliability is proportional to the
phenotypic variation explained by the models [77]. We set
up a repeated k-fold cross-validation based on 50 rounds
of fivefold cross-validation. For each fold, proportional
sampling of the training set in the eight M. truncatula
populations is conducted to include the constraint due to
the population structure and to be as close as possible
of realized observations.
Figure 4 summarizes the comparisons of the reliability of

predictions of quantitative traits using WhoGEM with
predictions by five major algorithms used for genomic
selection. These results indicate that the WhoGEM pre-
diction machine outperforms the GS algorithms for traits
with low heritability [73] and with low reliability of pre-
diction by GS. This is the case for the number of leaves
(Fig. 4c), for the total number of nodules (Fig. 4d), or

Fig. 3 Predicted geographical location of the M. truncatula reference
accession Jemalong-A17, using the ProvenancePredictor algorithm.
The predicted location (in red) is the centroid of the closest
accessions, weighted by their genetic distance to Jemalong-A17.
Closest accessions with reported geographical location are displayed
in cyan
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number of nodules below 5 cm of the root (Fig. 4e).
The WhoGEM prediction machine performs as good
as the GS algorithms for traits such as plant height
(Fig. 4b) or the number of nodules above 5 cm (Fig. 4f).

Genome admixture components are predictors of the
most common form of disease resistance in plants:
quantitative disease resistance
Knowledge of the selective pressure acting on the
phenotype can help determine the contributions of
adaptive selection and drift toward phenotypic

differentiation among populations. Consequently, by
comparing the location of plants and testing for patho-
gen resistance, the WhoGEM analysis facilitates a better
understanding of phenotypic traits associated with quan-
titative disease resistance (QDR). Two types of disease
resistance are described in plants: (i) complete resistance
conditioned by a single gene [78] and (ii) partial resis-
tance, also called QDR, conditioned by multiple genes of
partial effect [79]. QDR often confers broad-spectrum
resistance, being predicted to be critical for efficient
control of epidemics. It is characterized by a continuous
range of phenotypes from susceptible to fully resistant.
QDR is often described by QTL that supports the resis-
tant phenotype and suggests modes of polygenic adap-
tation [79]. Studies that attempt to dissect a QDR trait
have reported genes with various biological functions
such as ABC transporters [80] or atypical kinases [81].
However, these genes do not explain all genetic varia-
bility reported in controlled crosses or GWAS studies.
We tested the WhoGEM prediction machine to evaluate
the proportion of quantitative resistance to two diseases
explained by admixture components (Fig. 1).
M. truncatula is prone to infection by the soil-borne

fungal vascular pathogen Verticillium alfalfae. Verticillium
wilt response in M. truncatula is a QDR, regulated by
QTLs that differ across resistant accessions and vary
according to the fungal strains [82, 83]. Both plant and
fungal species co-exist around the Mediterranean Basin
(CABI database, PlantWise database http://www.plant-
wise.org/, accessed on October 19, 2017). Figure 5a shows
the geographical partition of the maximum symptom
score (MSS) of 242 M. truncatula accessions when in-
fected with the V. alfalfae strain V31–2 (Additional file 4:
Table S3), together with their admixture patterns. Acces-
sions located west of the Mediterranean Basin are mainly
resistant to the V31–2 strain (low MSS), while accessions
located east of the Mediterranean Basin are susceptible
(high MSS). An independent phenotypic evaluation of
32 other accessions picked randomly from the “Spanish
Coastal” or “Spanish-Moroccan” geographic zone and
of 39 other accessions picked from the “Greek” geo-
graphic zone (Additional file 1: Figure S8a) confirms
these results and excludes the possibility of a sampling
bias (Additional file 1: Figure S8b, Additional file 5:
Table S4, and Additional file 6: Table S5).
The findings (Table 3a) show that the values of four

admixture components are significantly related to MSS
(r2 = 0.31, p ≤ 2.2 × 10−16). The average MSS values of
the “Spanish Coastal,” “Spanish-Moroccan Inland,” and
“South Tunisian Coastal” genome components were
found to be 1.04, 1.6, and 1.71, respectively, indicating
resistant genomic backgrounds. The average MSS value
of the “Greek” genome component is ≃3, making it a
clearly susceptible genomic background. Interestingly,

Table 2 Admixture components allow predicting several
quantitative functional traits in M. truncatula. (a) Linear model
between admixture components and final plant height before
harvest. (b) Linear model between admixture components and
number of leaves at about 2 weeks. (c) Linear model between
admixture components and number of nodules below 5 cm of
root growth. (d) Linear model between admixture components
and number of nodules in top 5 cm of roots. (e) Linear model
between admixture components and total number of nodules.
Raw data from Stanton-Geddes et al. [73]

Estimate Std. error t value Pr (. > |t|)

(a)

Intercept 14.1608 0.3506 40.39 0.0000

South Tunisian Coastal 5.7582 1.1345 5.08 0.0000

Greek 3.6659 0.6954 5.27 0.0000

North Tunisian Coastal 5.0274 1.1228 4.48 0.0000

Spanish Coastal 3.7344 0.9770 3.82 0.0002

r2 = 0.21. P = 1.5 × 10−11

(b)

Intercept 2.8234 0.0444 63.54 0.0000

French − 0.4447 0.1482 − 3.00 0.0030

Atlas 0.1995 0.1007 1.98 0.0488

r2 = 0.05. P = 7.3 × 10−4

(c)

Intercept 14.7805 0.5198 28.44 0.0000

Spanish Coastal 5.0685 1.7406 2.91 0.0040

South Tunisian Coastal − 4.9235 2.0711 − 2.38 0.0183

r2 = 0.06. P = 4.2 × 10−4

(d)

Intercept 5.1755 0.2108 24.55 0.0000

South Tunisian Coastal − 2.4748 0.7870 − 3.14 0.0019

Spanish Coastal 2.6320 0.6618 3.98 0.0001

Algiers 3.1375 0.8330 3.77 0.0002

r2 = 0.15. P = 1.1 × 10−8

(e)

Intercept 19.7448 0.6824 28.93 0.0000

Spanish Coastal 7.9483 2.1422 3.71 0.0003

South Tunisian Coastal − 7.1137 2.5473 − 2.79 0.0057

Algiers 5.3812 2.6964 2.00 0.0472

r2 = 0.10. P = 6 × 10−6
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the predicted location of Jemalong-A17 within the “Spanish
Coastal” population agrees with its resistant phenotype in
response to V. alfalfae [84]. We have, therefore, made
predictions of the QDR level in M. truncatula using
WhoGEM. The phenotypic difference between pre-
dicted resistant and susceptible accessions was around
two points on a scale from 0 to 4, i.e., 50% of the
phenotypic difference between extremes of the pheno-
type distribution. Given the estimated narrow sense
heritability of the trait [82, 83], we suggest that genome
admixture components explain most of the genetic

control of this disease. Figure 4a shows that the reliability
of the prediction of QDR to V. alfalfae by the WhoGEM
prediction machine outperforms the five major algorithms
used for GS analyses (Kruskal-Wallis χ2 = 510.37 for 5
degrees of freedom, p = 2.2 × 10−16).
The oomycete Aphanomyces euteiches is another

soil-borne pathogen of legume crops, mainly occurring
north of the 45th parallel. Two closely linked major loci
for resistance to A. euteiches root rot were reported by
GWAS, which explain 23% of the genetic variance [17].
Using these reported data, we analyzed the geographical

Fig. 4 Reliability of five genomic prediction algorithms (G-BLUP, RR-BLUP, BayesB, RKHS, LASSO) and of WhoGEM method to predict quantitative
traits in M. truncatula. Reliability is estimated using 50 rounds of fivefold cross-validation (repeated k-fold cross-validation). a Maximum symptom
score for the response to Verticillium alfalfae. b Plant height. c Number of leaves. d Total number of nodules. e Number of nodules below 5 cm of
the root. f Number of nodules above 5 cm of the root. g Root rot index for the response to Aphanomyces euteiches. If the notches of two boxes
do not overlap, this suggests that the medians are significantly different. Letters identify significantly different groups, with Kruskal-Wallis rank test
at α = 0.01
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Fig. 5 Geographical repartition of quantitative disease resistances to soil-borne root pathogens in M. truncatula. a Maximum symptom score
(MSS) in response to V. alfalfae, in a collection of 242 accessions. The MSS scale is displayed as a color gradient. The scale of MSS from resistant
(blue) to susceptible (red) accessions is indicated on the right. Admixture proportions of each phenotyped accession are summarized by pie
charts. b Root rot index following infection of 174 accessions by A. euteiches. The RRI scale is displayed as a color gradient. The scale of the index
from resistant (blue) to susceptible (red) accessions is indicated on the right. At each evaluated accession, a pie chart presents the admixture
patterns. Raw data from Bonhomme et al. [17]. A Lambert Conic Conformal Projection (EPSG:3034), suitable for the Mediterranean Basin, was used
to draw the geographical maps
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structure of the root rot index (RRI) with the admixture
patterns of the studied accessions (Fig. 5b). RRI is a
typical phenotype for evaluating resistance. Testing
whether the proportions of admixture components
(Additional file 3: Table S2) were predictors for RRI,
we found a significant relationship between the values
(Table 3b). Admixture components from the “Algiers,”
“Spanish Coastal,” “North Tunisian Coastal,” and “Atlas”
populations provide resistance alleles, whereas compo-
nents from the “Greek” and “French” populations provide
susceptibility alleles. The WhoGEM model accounted for
r2 = 19.2 % of the variation in the phenotype and may
provide a lower bound for heritability. Figure 4g shows
that the reliability of the prediction of the root rot
index by WhoGEM and other GS algorithms is simi-
lar (“ab” group of means). For this particular trait, the
LASSO algorithm is performing slightly better (“a”
group of means). According to Tibshirani (Tibshirani
1996), LASSO, that is a variable selection method,
would perform better than other methods on a dataset
with a small portion of variables having large effects and
the others with negligible effects [85]. It is likely that QDR
toward A. euteiches is controlled by a few major loci,
because it was ascribed to two closely linked major loci
[17]. This may provide a rationale to understand the better

performance of LASSO compared to all other algorithms
for that particular genetic architecture.

Variations in admixture proportions are significantly
correlated with geographical and bioclimatic variables that
explain a large part of genetic variation in M. truncatula
Controlling for population structure may limit the
power to detect true adaptive polymorphisms that
are collinear with population structure [86], as evi-
denced by Lasky et al. [34]. Admixture components,
integrating demography and natural selection, would
be useful tools to test for genetic-environment
associations.
Examination of the assignment of eight M. truncatula

ancestral populations to climatic zones defined by the
Köppen-Geiger climate classification [87] suggests that
current global climatic types cannot be the only forces
shaping M. truncatula populations. Different popu-
lations are present in the same climatic zone, while the
“Greek” population is spread across several climatic
zones (Additional file 1: Figure S9). We thus analyzed
the associations between admixture components and 19
local bio-climatic variables, defined by WorldClim
(http://www.worldclim.org). Pearson’s correlation co-
efficients between each admixture component and each
bio-climatic or geographical variables are shown in Fig. 6.
There is a wide range of magnitudes and direction of
associations between bio-climatic variables, geographical
coordinates, and admixture components. For example,
the “Spanish Coastal” component is negatively correlated
with the temperature seasonality and temperature annual
range, indicating that this genome corresponds to acces-
sions growing in regions with moderate annual temperature
and small temperature seasonal contrasts. As a second ex-
ample, longitudinal east-west gradients for proportions of
Greek genome and both Spanish genomes are evidenced.
Interestingly, the admixture proportions of the “North
Tunisian Coastal” population are not correlated with any
bio-climatic variable, suggesting that the differentiation of
this genome may be due to other factors. Friesen et al. [88]
described how accessions belonging to this population
harbor alleles that assort non-randomly with soil salinity,
suggesting a differentiation of the “North Tunisian Coastal”
population arose due to this particular abiotic condition.
Next, redundancy analysis (RDA) [89] was used to

partition genomic variation summarized by admixture
proportions into components explained by climate and
geography. RDA examines how well of variation in one
set of variables (bio-climatic variables and/or geography)
explains variation in another set of variables (the eight-
component admixture proportion vector of each sample).
As such, RDA allows estimating the change in the struc-
ture of genomic variation across spatial scales (latitude,
longitude, and elevation) and climatic variables. Figure 6c

Table 3 Admixture proportions allow predicting quantitative
disease resistance to soil-borne pathogens in M. truncatula. (a)
Linear model between admixture components and maximum
symptom scores in response to Verticillium alfalfae in a
collection of 242 accessions. (b) Linear model between
admixture components and root rot index due to infection by
Aphanomyces euteiches. Data from Bonhomme et al. [17]

Estimate Std. error t value Pr (. > |t|)

(a)

Intercept 2.4541 0.0861 28.50 0.0000

Spanish Coastal − 1.4147 0.2290 − 6.18 0.0000

South Tunisian Coastal − 0.7222 0.2367 − 3.05 0.0026

Greek 0.6017 0.1636 3.68 0.0003

Spanish-Moroccan Inland − 0.8518 0.1804 − 4.72 0.0000

r2 = 0.31. P = 2.2 × 10−16

(b)

Intercept 2.7362 0.1237 22.12 0.0000

Algiers − 1.2335 0.2816 − 4.38 0.0000

Spanish Coastal − 1.1635 0.2353 − 4.95 0.0000

North Tunisian Coastal − 1.4798 0.3648 − 4.06 0.0001

Atlas − 0.7511 0.1918 − 3.92 0.0001

French − 0.5753 0.1963 − 2.93 0.0038

Greek − 0.3084 0.1812 − 1.70 0.0906

r2 = 0.19. P = 1.8 × 10−7
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Fig. 6 (See legend on next page.)
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shows approximately half of the genomic variation is
due to climate or geography, separately or in combi-
nation (r2 = 0.46; P ≤ 0.001), with climate being the
major source of variation (41.4%). Variation explained
by geography alone contributes to 5% only. This parti-
tion of genomic variation in response to climate is
different to A. thaliana, in which climate variation
among sites of origin explained only slightly more
genomic variation than geographical distance [70, 89].

Discussion
Linking specific genomic variations to selective traits in
plants, animals (yield, fitness, etc.), and humans (disease
predisposition, drug response, etc.) is a key task for
many fields from ecology, plant and animal breeding, to
individualized health care and drug discovery. The quan-
titative phenotypic variability found in natural popula-
tions is due to a complex underlying genetic interplay of
multiple, often unknown, loci with allelic effects affected
by environmental conditions [5, 45, 90]. Similarly, a large
number of selected traits in breeds of domesticated
species occur via the evolution of quantitative, polygenic
traits [25, 91]. In those cases, identifying all the genomic
variations underlying these traits is highly challenging [6]
and motivated the development of a variety of methods.
WhoGEM is a powerful method that can be used to

study natural variation. The method predicts quantitative
phenotypes, not focusing on identifying causative varia-
tions or inferring the relative parts of demography and
selection in the evolution of quantitative phenotypes. The
method uses population admixture proportions of indivi-
duals to explain variation in genetically complex traits.
We explicitly consider admixture proportions to embed
population differentiation due to neutral processes such as
genetic drift, migration, and mutation [92]. Admixture
proportions also reflect the adaptive divergence of
ancestral populations at their initial locations, with
putative differential introgression depending on the
environmental fit [93]. The use of admixture compo-
nents, that integrate the effects of demography (i.e.,
gene flow and genetic drift) and of natural selection,
thereby explains more phenotypic variation than the
current methods. The utility of the WhoGEM prediction
machine when inferring complex phenotypes (Fig. 1) is
illustrated by extensive performance tests.

The WhoGEM method relies on a thorough inference
of ancestral populations that define the admixture com-
ponents. Finding the most likely number of the ancestral
populations and the optimal assignment of the samples
to these populations is critical for WhoGEM’s efficiency.
Because it often appears that several possible numbers of
ancestral populations (K) may be in accordance with the
dataset, WhoGEM prediction machine will improve the
inference of K using covariates. In this study, we took
advantage of the knowledge of geographical coordinates of
the accessions. Comparing the observed geographical
locations and those predicted by ProvenancePredictor, we
are able to propose a most parsimonious value of the
number of admixture components. The admixture com-
ponent pattern of each sample then provides a com-
prehensive summary of each genome and is used as linear
predictors of quantitative phenotypes.
The use of geographic coordinates is an obvious choice

of covariates to help the inference of population structure
in wild species. This investigation also demonstrates the
potential of the ProvenancePredictor algorithm in locating
unknown plant samples based on their admixture compo-
nents and suggests that it may have similar applications in
forensic sciences and technologies. For cultivated plant
species as an example, putative geographic locations of
original germplasms and characteristic data of current
cultivation areas, such as climate variables and soil data,
will be critical covariates to integrate. Thus, diverse in-
formation may be used as a covariate to help in resolving
the most likely number of admixture components. This
will require designing appropriate tests to evaluate their
pertinence in improving the determination of the number
of admixture components.
Our results point to M. truncatula ancestral populations

probably shaped by glacial refugia around the Mediter-
ranean Basin. The glacial refugia hypothesis assumes that
refuge areas of the late Ice Age remained isolated for long
periods corresponding to thousands of generations and
leading to population differentiation. Gene flow decreased
with increasing adaptive divergence in each refugium [93].
M. truncatula probably survived the last Ice Age in Iberia,
Algeria, the south-east of France, and Greece, and these
were likely distinct glacial refugia [71]. After the end of
the Ice Age, Greek M. truncatula expanded west and
south and this unrecombined “Greek” genome has spread
uninterrupted over great distances. It is also tempting to

(See figure on previous page.)
Fig. 6 Relationships between the 8 admixture components in 262M. truncatula. Accessions and environmental variables. a Pearson correlation
coefficient with geographical coordinates. Significant correlations (p value 0.01, with Bonferroni correction) are colored. b Pearson
correlation coefficient with 19 bioclimatic variables defined by WorldClim. Significant correlations (p value 0.01, with Bonferroni correction)
are colored. c Venn diagram of the variation partitioning for genome admixture component proportions explained by climate (left) and
geography (right). Residual is the amount of genomic variation not explained by the two explanatory variables
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speculate that human Greek colonization of the Medi-
terranean Basin [94] favored the dissemination of the
Greek genome. Ellwood et al. [15] already hypothesized
that trades and livestock movements may have been
causal in this species dispersal. The pods of M. truncatula
possess spines with hooks that allow them to easily cling
to fur or clothing and may help in long distance dis-
persion. Recent data in Arabidopsis thaliana suggest the
existence of relict populations from some glacial refugia
and the putative importance of humans in the dispersion
of this wild species [21, 70]. Glacial refugia in the Maghreb
regions may have been more abundant [71], generating
more complex patterns of the population in this area. In
comparison, Ronfort et al. [16] and latter Bonhomme et
al. [17] reported only a faint structure among M. trunca-
tula populations, with a major difference between the east
and the west of the Mediterranean Basin. Deductions
based on the WhoGEM analysis favor the hypothesis of a
significant diversity and support previous results that de-
scribed the differentiation within Tunisian populations
similar to the “Atlas” and “North and South Tunisian
Coastal” genomes [95].
QDR is typically broad spectrum, making the arms race

between hosts and pathogens probably not critical. Our
results support the idea that QDR in plants is likely to
result from changes to a large number of genes scattered
throughout the genome and that this is reflected in
admixture proportions. Because of the co-occurrence of
both the plant species and the pathogen around the Medi-
terranean Basin, we hypothesize that the observed pattern
of quantitative resistance in the M. truncatula/V. alfalfae
pathosystem may be due to natural selection, with
additional contributions from drift and migration. The
situation for QDR to A. euteiches is different. The popu-
lations of the Maghreb area showed a contrasting
response to the pathogen. The “Spanish-Moroccan
Inland” population is susceptible, compared to the resistant
“Algiers” and “Atlas” populations. A zone with admixed ac-
cessions exhibiting intermediate phenotypes can be seen in
the region of Oran in Algeria where the “Spanish-Moroc-
can Inland” and “Atlas” populations are in contact (Fig. 5b).
Intriguingly, the A. euteiches pathogen is not reported in
North Africa (CABI database, PlantWise database http://
www.plantwise.org/, accessed on October 10, 2018; [17]).
Hence, we hypothesize that phenotypic differentiation
among resistant and susceptible populations of the
Maghreb may be due to either genetic drift or migra-
tion. The maintenance of the resistant phenotype in the
“Algiers” and “Atlas” populations, where the pathogen
is absent, also suggests that the cost of resistance may
be negligible in the absence of pathogen, in contrast
with previous results described for foliar pathogens
[96]. An alternative hypothesis is that resistance to A.
euteiches is driven by, or in strong LD to, the resistance

to other factors, as suggested by Djebali et al. [97], and, as
such, not a consequence of natural selection acting toward
oomycete resistance. Based on covariate-informed admix-
ture component assessment, the comparative analysis of
quantitative disease response to two different pathogens
clearly demonstrates that phenotypic differentiation
among populations may (in the case of partial resist-
ance to V. alfalfae) or may not (in the case of partial
resistance to A. euteiches) result from natural selection.
Plant pathosystems are convenient experimental systems
to test for the existence of adaptive divergences among
populations, especially when the co-occurrence (or
absence thereof ) of the plant species and pathogens is
known [98]. This advantage is well known and used for
the study of plant gene-for-gene resistance [78, 99] and
prove to be particularly attractive for QDR. Geographical
knowledge of the co-occurrence of plant species and
pathogens helps to identify cases where genetic drift or
migration play a key role.
Here, we present a methodology for the prediction of

quantitative traits using admixture components inclu-
ding covariates, such as geographical origins. This was
achieved by converting the large 840 K genotype data
into K = 8 dimensional vectors for each accession. The
vectors represent combinations of genes (either protein-
encoding or regulatory, such as non-coding RNAs) mani-
fested as alleles, copy-number variants, and some other
genetic or epigenetic variants. These vectors can be con-
sidered as “whole-genome” models in providing informa-
tion integrated across the entire genome. Thus, the
WhoGEM prediction machine moves away from focusing
on large impact variants [100, 101] or lists of numerous
candidate SNPs [102, 103]. Instead, we proposed to
calculate a simple descriptor of “mixing proportions” in
individuals believed to originate from distinct ancestral
populations. The proposed method differs from standard
GWAS in that there is no selection of SNPs based upon
test statistics for the association between functional traits
and SNPs. Consequently, we do not suffer from the “win-
ner’s curse” effect (the systematic overestimation of SNP
effects ascertained by thresholding) [104, 105], or from
the Beavis effect (L-shaped distribution of effect sizes for
SNPs, even when the underlying loci have identical effect
sizes) [106]. The WhoGEM approach is akin to the calcu-
lation of phenotypic resemblance as in the whole-genome
genetic resemblance method of genomic selection/predic-
tion [48, 49], which uses genome-wide SNP information
to enhance predictive ability. Unlike the latter approach,
WhoGEM explicitly embeds the inferred population
structure in the calculations, thus expanding the method’s
applicability. Integrating the effects of demography and of
natural selection allows predicting more phenotypic
variation than current methods, as exemplified by a
greater reliability of prediction for low-heritability traits.
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Moreover, WhoGEM prediction machine considerably
simplifies the computations.
As an alternative to the admixture approach, re-

dundancy analysis can be applied to raw SNP data, instead
of admixture proportions [35]. Other genetic-environment
association methods, such as BAYENV/BAYENV2 [37],
BAYPASS [107], or LFMM [36], are able to identify sig-
nificantly differentiated SNPs. These methods also ac-
count for the fact that allele frequencies are correlated
among closely related populations. For each studied trait,
such strategies may help in identifying if it is either mono-
genic, oligogenic, or highly polygenic [89], but will not
provide a proper benchmark of the WhoGEM approach.
The WhoGEM concept is likely to be expandable to other

quantitative functional traits that involve complex genetic
determinism. How one would determine whether
WhoGEM prediction machine would perform better in a
given context is an exciting follow-up topic to develop, in
varying the biological models, heritability of traits, and
priors on genetic architectures. Prediction of simply in-
herited traits, not related to population structure, will not be
accurate using whole-genome population-based models. In
those cases, GWAS analyses are likely to be the most effi-
cient way. We anticipate that an appropriate model to iden-
tify major-effect loci for some quantitative traits would be to
run mixed effect models where admixture components, as
determined here, would be used as fixed co-factors. More-
over, the method we use to improve population structure
analyses by using covariates holds strong interest to correct
p value inflation in GWAS analyses. Furthermore, it will be
interesting to use WhoGEM to analyze quantitative pheno-
types in breeds of domesticated species, where population
structure is often strong due to breeding history [108].

Conclusions
This study demonstrates the rationale of our WhoGEM
prediction machine: population admixture integrates the
effects of demography (i.e., gene flow and genetic drift)
and of natural selection toward adaptation and thereby
explains more phenotypic variation than GS- or QTL-
based approaches. The method is thus indifferent to the
source of genetic similarity among samples—local adap-
tation or demographic history. Typically, predicting phe-
notypes on the basis of genome admixture components
will help in inferring future trends of adaptation related
to global climate change, where controlling for popu-
lation structure may limit power to detect true adaptive
polymorphisms that would be collinear with current
population structure [34, 86]. Finally, prediction of com-
plex traits in humans, for example, drug response in
clinical trials or disease predisposition models, may also
benefit from the same general methodology. An exten-
sion of WhoGEM would be capable of integrating and
calculating admixture proportions from multiple types

of genome-wide “big data,” such as epigenetics and
expression profiling. This approach can also be applied
to the analysis of a wide range of bio-medical problems,
such as prediction of drug response and carcinogenesis,
and can accelerate breeding programs in agriculturally
important plants and animals.

Materials and methods
SNP selection
A set of 262 genuine Medicago truncatula accessions
[109] was used to extract SNPs downloaded from (http://
www.medicagohapmap.org). Quality checking and LD
pruning was done using PLINK [110] with the options –
geno 0.05 –maf 0.01 –indep 300 60 1.3.

Population structure
The strategy used to identify populations combines three
steps: admixture-based tools, discriminant analysis of
principal components (DAPC), and ProvenancePredictor.
First, we use the ADMIXTURE software package [62]

applied to the collection of high-quality LD-pruned
SNPs. Each plant sample is characterized by a vector of
n proportions that sum to one, n being the number of
admixture components (i.e., n = K). Computations were
conducted independently twice and produced almost
identical results. Second, the most suitable number of
populations was assessed using discriminant analysis of
principal components (DAPC) [63]. DAPC computations
were performed using the R package adegenet using
VCF-formatted files.

Development of the ProvenancePredictor algorithm
ProvenancePredictor is an adaptation of the admixture-
based geographic population structure (GPS) algorithm
[64] to plant species. The matrix of admixture proportions
was calculated with the ADMIXTURE software pack-
age. The shortest distance measure was converted to
geographical distance using the linear relationships
observed between genetic and geographic distances
(see below). The final position of the sample on the map
was calculated by a linear combination of vectors, with the
origin at the geographic center of the best matching popu-
lation weighted by the distances to 10 nearest reference
populations and further scaled to fit on a circle with a radius
proportional to the geographical distance. If the smallest
distance (Δmin

GEN) that represented the sample’s deviation from
the best matching accession was identical for several acces-
sions, those were considered as ties and included in a single
set. Numerical values therefore may contain ties, and the
geographical position of an unknown accession was defined
as the centroid of the geographical positions of the identical,
or nearest accessions. The contribution of other reference
accessions m = 2. . N to the sample’s genetic make-up

Gentzbittel et al. Genome Biology          (2019) 20:106 Page 15 of 20

http://www.medicagohapmap.org
http://www.medicagohapmap.org


might also contain ties. The computation of the

weight w ¼ Δmin
GEN

ΔGENðmÞ was then modified accordingly.

To convert genetic distance based on admixture propor-
tions to geographical distance, the correlation between
geographic and genetic distances between pairs of indivi-
duals was estimated for each value of K and a linear model
fitted. Given the (relatively) small distances across the
Mediterranean Basin, we computed a “naive” geographical
distance using pairwise Euclidean distance based on the
longitude/latitude reported for the accessions.
To estimate the assignment accuracy of Provenance-

Predictor, we used the “leave-one-out” approach at the
individual level. In brief, we excluded each reference indi-
vidual from the data set, recalculated the mean admixture
proportions of its reference population, predicted its bio-
geography, computed the geographical distance between
predicted and reported locations, tested whether it is
within the geographic regions of the reported origin, and
then computed the mean accuracy per population. More
specifically, we index our individual as the jth sample from
the ith population that consists of ni individuals. For all
populations, excluding the individual in question, the
average admixture proportions and geographical coor-

dinates were calculated as �θm ¼
P

s
θm;s

nm
where �θm is

the parameter vector for the sth individual from the
mth population, and nm is the size of the mth popu-
lation. For the ith population, the adjusted average

will be �θ
− j
i ¼

P
l≠ j

θi;l

ni−1
. This procedure was repeated for

each value of K.
A set of 245 genuine M. truncatula accessions with

geographical coordinates (latitudes and longitudes)
served as the reference set for ProvenancePredictor.
Seventeen accessions, among which the Jemalong-A17
accession that is used as the reference genome [11], were
of unknown origin and not included in the reference set.

Computation of the eight-dimensional vector of
admixture proportions for the M. truncatula
accessions
To provide definitive population identification, the final
admixture frequencies of the eight components for the
262 M. truncatula accessions were calculated by applying
ADMIXTURE in the supervised mode. Accessions were
then clustered into populations using hierarchical clus-
tering based on their genome admixture proportions,
using Euclidean distance and the “average” link. Relation-
ships among accessions were based on genetic dis-
tances computed from the 840 K SNP dataset (R
package SNPRelate), and a dendrogram was computed
and drawn using R packages ape and geiger.

Maps and sample locations were drawn using the
rworldmap, rgdal, mapplots, and maptools R packages.

Phenotypic characterization of quantitative resistance
to Verticillium alfalfae in M. truncatula
A set of 313 accessions of M. truncatula has been assessed
for their response to Verticillium wilt, including 242
already sequenced accessions from the HapMap project
[109]. M. truncatula seeds were from our own collection
or obtained from the INRA Medicago truncatula Stock
Center (Montpellier, France). All the M. truncatula acces-
sions have been phenotyped using an augmented rando-
mized block design in three independent replicates for the
already sequenced (reference) accessions and two re-
plicates for the other accessions. Between four and
ten plants per genotype were used in each replicate.
Ten-day-old plants were root inoculated as described
in Ben et al. [82]. Disease development was monitored for
32 days two or three times a week and rated using a scale
from “0” (no symptoms) to “4” (dead plants). At the end
of the experiment, the maximum symptom score (MSS)
was obtained for each plant. The LS mean of the MSS
for each accession was calculated using the linear model
yijk = μ + blocki + accessionj + ϵijk (yijk the maximum disease
score for the kth plant of the jth accession of the ith block;
ϵijk, the residual) using R.

Relationship between admixture proportions and
quantitative phenotypic variables
The relationships between genome components and
phenotypes were estimated using linear models. Because
of dependencies among the predictors (the proportions
of genome components must sum to one), a systematic
search for the best minimum model was done using the
leaps R package or use of the step function with both
directions, employing a significance level of α = 5 % as
the benchmark for using a predictor.
The 19 WorldClim bio-climatic variables (30 s reso-

lution, downloaded at http://www.worldclim.org/current)
were extracted for each accession’s location, using the
reported latitude and longitude for that accession
(raster R package). For each accession, the admixture
components are the fractions that each of the eight
sub-populations contributes to the accession’s gen-
ome. Thus, we have an Nx8 numeric matrix, assum-
ing there are N accessions. Then, each of the eight
sub-populations (i.e., admixture components in the
text) is represented by an N-dimensional vector. On
the other hand, each bio-climate variable was also
represented by an N-dimensional vector as the
bio-climate variables were extracted at each acces-
sion’s location. So, the correlation can be calculated.
The relationships between genome components, the
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19 WorldClim bio-climatic variables, and geography
(latitude, longitude, and altitude) were modeled using
redundancy analysis (RDA). RDA of admixture pro-
portions with bio-climatic variables conditional to
geography was also computed to estimate effects of
climate “corrected for” the geography. Total inertia
explained by the RDA model was partitioned among
geography and climate, separately or combined. The
RDA was computed using the vegan R package.
Spatial interpolation of phenotypic traits was per-

formed using a thin plate spline method, with a
smoothing parameter of λ = 0.005, as implemented in
the R package fields.

Genomic selection algorithms and prediction
reliabilities
Genomic selection models were computed based on
the 840 K SNP dataset. For all phenotypes, ridge re-
gression best linear unbiased predictor (RR-BLUP),
kinship-BLUP (G-BLUP), BayesB, reproducing kernel
Hilbert space (RKHS), and least absolute shrinkage
and selection operator (LASSO) regression were com-
puted using the rrBLUP [74], BGLR [111], and glmnet
[112] R packages.
We optimized the training sets by stratified sampling

[61], that is the training sets are created by selecting a
number of genotypes from each population proportional
to the size of the population. Consequently, populations
with more accessions will have a larger representation in
the training set than smaller clusters. Fifty rounds of
fivefold cross-validation were used to compute reliabi-
lities of the GS and WhoGEM models. Briefly, at each
round, the dataset is split into five non-overlapping sub-
sets. Genotypes and phenotypes of the accessions of four
subsets are used to compute the model (the training
set). The predicted values of phenotypes are computed
for the remaining subset (the test set). Correlations
between the predicted and observed values of the test
set are a measure of the model’s reliability.
Unless otherwise stated, all computations were done

using the R statistical environment [113].
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function of increasing values of K, using discriminant analysis of principal
components (DAPC) applied on the 840 K SNP dataset for 262 M. truncatula
accessions. Figure S4. ProvenancePredictor indicates K = 8 as the first
minimum number of admixture components to minimize the median
distance between predicted and recorded location (left scale) and maximize
correct assignment to country of origin (right scale). Figure S5. Relation
between geographical and genetic distances among 245 M. truncatula
accessions with known location, for K = 8. Figure S6. Dendrogam of

genetic relationships between the 262 M. truncatula accessions of the
eight M. truncatula populations, based on analysis of the 840 K SNP
dataset. Figure S7. Geographical repartition of phenotypic values for
several quantitative functional traits in 226 M. truncatula accessions.
Figure S8. Assessing M. truncatula initial sampling based on the relationship
between admixture component and partial resistance to V. alfalfae.
Figure S9. M. truncatula accessions repartition, with admixture components
visualized as pies, within the Mediterranean Basin climatic zones following
Köppen-Geiger climate classification. (PDF 11091 kb)

Additional file 2: Table S1. SNP selection process for admixture analysis.
(PDF 48 kb)

Additional file 3: Table S2. Classification of 262M. truncatula
accessions in eight populations. (CSV 26 kb)

Additional file 4: Table S3. Maximum symptom score of 262M.
truncatula accessions in response to root infection by V. alfalfae. (CSV 6 kb)

Additional file 5: Table S4. Maximum symptom score of 71 previously
uncharacterized M. truncatula accessions in response to root infection
by V. alfalfae. (CSV 3 kb)

Additional file 6: Table S5. Mean comparisons for quantitative
resistance, among groups of M. truncatula accessions. (PDF 73 kb)

Additional file 7: Code 1. R code for the ProvenancePredictor function
(R (txt) (R 13 kb)

Additional file 8: Code 2. R code for the ProvenancePredictor cross-
validation function (R (txt) (R 13 kb)

Acknowledgements
We thank Xavier Tassus and Christine Tayeh for providing the data of pathogen
distributions. Peter Ralph and Eran Elhaik provided valuable comments on the
manuscript. We thank Jean-Marie Prosperi for providing the seeds and
maintaining a large part of the Medicago truncatula collections. We thank
R2n for their participation in plant phenotyping. We thank Michael F. Christie
for the help in drawing the flowchart. An anonymous reviewer is thanked for
critically reading the manuscript and suggesting substantial improvements.

Funding
Mélanie Mazurier was supported by a PhD scholarship from the French
“Ministère de la Recherche et de l’Enseignement Supérieur” and a “Visiting
Student” fellowship from Toulouse INP for a stay at USC. Laurent Gentzbittel
and Cécile Ben were supported by a fellowship from Toulouse INP for a stay
at USC and a “Visiting Scholar” fellowship from the US Feed the Future Innovation
Lab “Climate Resilient Chickpea.” Tatiana V. Tatarinova was supported by
a “Visiting Scholar” fellowship from Toulouse INP for a stay at Toulouse
INP and by the NSF Division of Environmental Biology award # 1456634.

Availability of data and materials
The raw dataset of SNPs can be downloaded at http://www.
medicagohapmap.org/.
Additional file 4: Table S3 and Additional file 5: Table S4 contain LS means
values of maximum symptom score (MSS) for Verticillium alfalfae partial
resistance in collections of Medicago truncatula and are deposited at figshare
[114]. Phenotypic data from Stanton-Geddes et al. [73] were downloaded at
https://doi.org/10.5061/dryad.pq143. Phenotypic data from Bonhomme et al.
[17] were downloaded from Additional file 4: Table S3b at https://nph.online-
library.wiley.com/doi/full/10.1111/nph.12611. The R codes for ProvenancePre-
dictor and for the ProvenancePredictor leave-one-out procedure are released
under a European Union Public License, version 1.2 (EUPL-1.2) and deposited
at figshare [114].

Authors’ contributions
LG and CB conceived the experiments and designed and carried out the
data analysis. MM, M-GS, and TT carried out the experiments and data
analysis. LG, TT, PM, and CB co-wrote the paper. All other authors were
involved in drafting the manuscript and provided helpful feedback for the
paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Gentzbittel et al. Genome Biology          (2019) 20:106 Page 17 of 20

https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
https://doi.org/10.1186/s13059-019-1697-0
http://www.medicagohapmap.org/
http://www.medicagohapmap.org/
https://doi.org/10.5061/dryad.pq143
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12611
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12611


Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1EcoLab, Université de Toulouse, CNRS, Avenue de l’Agrobiopole BP 32607,
Auzeville-Tolosane, F-31326 Castanet-Tolosan, France. 2University of Southern
California, 1050 Childs Way (USC), Los Angeles, CA 90089-0371, USA.
3University of La Verne, 1950 3rd Street, La Verne, CA 91750, USA.
4Department of Fundamental Biology and Biotechnology, Siberian Federal
University, 660074 Krasnoyarsk, Russia.

Received: 16 January 2018 Accepted: 23 April 2019

References
1. Hamilton M. Population genetics. Hoboken: Wiley; 2009.
2. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes

mirror geography within Europe. Nature. 2008;456:98–101.
3. Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation.

Nat Rev Genet. 2013;14:807–20.
4. Fisher R. The genetical theory of natural selection. Oxford: The

Clarendon Press; 1930.
5. Hill WG. Understanding and using quantitative genetic variation. Phil Trans

R Soc B. 2010;365:73–85.
6. Rockman MV, The QTN. Program and the alleles that matter for evolution:

all that’s gold does not glitter. Evolution. 2012;66:1–17.
7. Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csilléry K. Genomic

quantitative genetics to study evolution in the wild. Trends Ecol Evol.
2017;32:897–908.

8. Jain K, Stephan W. Rapid adaptation of a polygenic trait after a sudden
environmental shift. Genetics. 2017;206:389–406.

9. Leimu R, Fischer M. A meta-analysis of local adaptation in plants. PLoS One.
2008;3:e4010.

10. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, et al.
Whole-genome nucleotide diversity, recombination, and linkage
disequilibrium in the model legume Medicago truncatula. Proc Natl
Acad Sci U S A. 2011;108:E864–70.

11. Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, et al. An
improved genome release (version Mt4.0) for the model legume Medicago
truncatula. BMC Genomics. 2014;15:312.

12. Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A,
et al. The small RNA diversity from Medicago truncatula roots under biotic
interactions evidences the environmental plasticity of the miRNAome.
Genome Biol. 2014;15:457.

13. Garmier M, Gentzbittel L, Wen J, Mysore K, Ratet P. Genetic and genomic
resources for the study of medicago truncatula. Curr Protocols Plant Biol.
2017;2:318–49.

14. Linhart YB, Grant MC. Evolutionary significance of local genetic
differentiation in plants. Annu Rev Ecol Syst. 1996;27:237–77.

15. Ellwood SR, D’Souza NK, Kamphuis LG, Burgess TI, Nair RM, Oliver RP. SSR
analysis of the Medicago truncatula SARDI core collection reveals substantial
diversity and unusual genotype dispersal throughout the Mediterranean
basin. Theor Appl Genet. 2006;112:977–83.

16. Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi J-M.
Microsatellite diversity and broad scale geographic structure in a model
legume: building a set of nested core collection for studying naturally
occurring variation in Medicago truncatula. BMC Plant Biol. 2006;6:28.

17. Bonhomme M, André O, Badis Y, Ronfort J, Burgarella C, Chantret N, et al.
High-density genome-wide association mapping implicates an F-box
encoding gene in medicago truncatula resistance to Aphanomyces euteiches.
New Phytol. 2013;201:1328–42.

18. Kimura M, Weiss GH. The stepping stone model of population structure and
the decrease of genetic correlation with distance. Genetics. 1964;49:561–76.

19. Charlesworth B, Charlesworth D, Barton NH. The effects of genetic and geographic
structure on neutral variation. Annu Rev Ecol Evol Syst. 2003;34:99–125.

20. Campitelli BE, Stinchcombe JR. Population dynamics and evolutionary
history of the weedy vine Ipomoea hederacea in North America. G3: genes,
genomes. Genetics. 2014;4:1407–16.

21. Lee C-R, Svardal H, Farlow A, Exposito-Alonso M, Ding W, Novikova P, et al.
On the post-glacial spread of human commensal Arabidopsis thaliana. Nat
Commun. 2017;8:14458.

22. Flood PJ, Hancock AM. The genomic basis of adaptation in plants. Curr
Opin Plant Biol. 2017;36:88–94.

23. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene.
Genet Res. 1974;23:23–35.

24. Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, et al. The role
of geography in human adaptation. PLoS Genet. 2009;5:e1000500.

25. Pritchard JK, Di Rienzo A. Adaptation - not by sweeps alone. Nat Rev Genet.
2010;11:665–7.

26. Messer PW, Petrov DA. Population genomics of rapid adaptation by soft
selective sweeps. Trends Ecol Evol. 2013;28:659–69.

27. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the
patterns and probabilities of selection footprints under rapid adaptation.
Methods Ecol Evol. 2017;8:700–16.

28. Turner TL, von Wettberg EJ, Nuzhdin SV. Genomic analysis of differentiation
between soil types reveals candidate genes for local adaptation in
Arabidopsis lyrata. PLoS One. 2008;3:e3183.

29. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek
AM. A map of local adaptation in Arabidopsis thaliana. Science. 2011;
334:86–9.

30. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et
al. Adaptation to climate across the Arabidopsis thaliana genome. Science.
2011;334:83–6.

31. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J. Complex patterns of local
adaptation in Teosinte. Genome Biol Evol. 2013;5:1594–609.

32. Chevin L-M, Hospital F. Selective sweep at a quantitative trait locus in
the presence of background genetic variation. Genetics. 2008;180:
1645–60.

33. Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci
under local adaptation. Mol Ecol. 2012;21:1548–66.

34. Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, et al.
Genome-environment associations in sorghum landraces predict adaptive
traits. Sci Adv. 2015;1:e1400218.

35. Abebe TD, Naz AA, Léon J. Landscape genomics reveal signatures of local
adaptation in barley (Hordeum vulgare L.). Front Plant Sci. 2015;6:813.

36. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations
between loci and environmental gradients using latent factor mixed
models. Mol Biol Evol. 2013;30:1687–99.

37. Günther T, Coop G. Robust identification of local adaptation from allele
frequencies. Genetics. 2013;195:205–20.

38. Stucki S, Orozco-terWengel P, Forester BR, Duruz S, Colli L, Masembe C, et
al. High performance computation of landscape genomic models including
local indicators of spatial association. Mol Ecol Resour. 2016;17:1072–89.

39. Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, et al.
RAD sequencing reveals within-generation polygenic selection in response
to anthropogenic organic and metal contamination in North Atlantic eels.
Mol Ecol. 2016;25:219–37.

40. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS
Genet. 2014;10:e1004412.

41. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucl
Acids Res. 2014;42:D1001–6.

42. Huang X, Han B. Natural variations and genome-wide association studies in
crop plants. Annu Rev Plant Biol. 2014;65:531–51.

43. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, et al.
Genome-wide association study of 107 phenotypes in a common set of
Arabidopsis thaliana inbred lines. Nature. 2010;465:627–31.

44. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, et al.
Molecular breeding strategy and challenges towards improvement of blast
disease resistance in rice crop. Front Plant Sci. 2015;6:886.

45. Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits:
challenges and prospects. Nat Rev Genet. 2009;10:565–77.

46. Gibson G. Hints of hidden heritability in GWAS. Nature Genetics. 2010;42:
ng0710–558–558.

Gentzbittel et al. Genome Biology          (2019) 20:106 Page 18 of 20



47. Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, et al. Genome-wide
association mapping and genomic prediction elucidate the genetic architecture
of morphological traits in Arabidopsis. Plant Physiol. 2016;170:2187–203.

48. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

49. Meuwissen T, Goddard M. Accurate prediction of genetic values for
complex traits by whole-genome resequencing. Genetics. 2010;185:623–31.

50. de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D.
Prediction of complex human traits using the genomic best linear unbiased
predictor. PLos Genet. 2013;9:e1003608.

51. Gianola D. Priors in whole-genome regression: the Bayesian alphabet
returns. Genetics. 2013;194:573–96.

52. Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T.
Genomic selection for drought tolerance using genome-wide SNPs in
maize. Front Plant Sci. 2017;8:550.

53. Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, et al. GBS-
based genomic selection for pea grain yield under severe terminal drought.
Plant Genome. 2017;10:1–13.

54. Siol M, Wright SI, Barrett SCH. The population genomics of plant adaptation.
New Phytol. 2010;188:313–32.

55. Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population
structure on large genetic association studies. Nat Genet. 2004;36:512–7.

56. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population
stratification in genome-wide association studies. Nat Rev Genet. 2010;11:459–63.

57. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al.
Finding the genomic basis of local adaptation: pitfalls, practical solutions,
and future directions. Am Nat. 2016;188:379–97.

58. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified
mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat Genet. 2006;38:203–8.

59. Gianola D, Fariello MI, Naya H, Schoen C-C. Genome-wide association
studies with a genomic relationship matrix: a case study with wheat and
Arabidopsis. G3: genes, genomes. Genetics. 2016;6:3241–56.

60. Janss L, de los Campos G, Sheehan N, Sorensen DA. Inferences from
genomic models in stratified populations. Genetics. 2012;192:693–704.

61. Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells M. Training set
optimization under population structure in genomic selection. Theor Appl
Genet. 2015;128:145–58.

62. Alexander DH, Novembre J, Lange K. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

63. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal
components: a new method for the analysis of genetically structured
populations. BMC Genet. 2010;11:94.

64. Elhaik E, Tatarinova T, Chebotarev D, Piras IS, Calò CM, Montis AD, et al.
Geographic population structure analysis of worldwide human populations
infers their biogeographical origins. Nat Commun. 2014;5:3513.

65. ArunKumar G, Tatarinova TV, Duty J, Rollo D, Syama A, Santhakumari Arun V,
et al. Genome-wide signatures of male-mediated migration shaping the
Indian gene pool. J Hum Genet. 2015;60:493–9.

66. Flegontov P, Changmai P, Zidkova A, Logacheva MD, Flegontova O, Gelfand
MS, et al. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group
with significant ancient North Eurasian ancestry. Sci Rep. 2016;6:20768.

67. Triska P, Chekanov N, Stepanov V, Khusnutdinova EK, Kumar GPA,
Akhmetova V, et al. Between Lake Baikal and the Baltic Sea: genomic history
of the gateway to Europe. BMC Genetics. 2017;18:110.

68. Holsinger KE, Weir BS. Genetics in geographically structured populations:
defining, estimating and interpreting FST. Nat Rev Genet. 2009;10:639–50.

69. de Mita SD, Chantret N, Loridon K, Ronfort J, Bataillon T. Molecular
adaptation in flowering and symbiotic recognition pathways: insights from
patterns of polymorphism in the legume Medicago truncatula. BMC Evol
Biol. 2011;11:229.

70. Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt KM,
et al. 1,135 genomes reveal the global pattern of polymorphism in
Arabidopsis thaliana. Cell. 2016;166:481–91.

71. Médail F, Diadema K. Glacial refugia influence plant diversity patterns in the
Mediterranean Basin. J Biogeogr. 2009;36:1333–45.

72. Gentzbittel L, Andersen SU, Ben C, Rickauer M, Stougaard J, Young ND.
Naturally occurring diversity helps to reveal genes of adaptive importance
in legumes. Front Plant Sci. 2015;6:269.

73. Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, et al.
Candidate genes and genetic architecture of symbiotic and agronomic

traits revealed by whole-genome, sequence-based association genetics in
Medicago truncatula. PLoS One. 2013;8:e65688.

74. Endelman JB. Ridge regression and other kernels for genomic selection
with R package rrBLUP. Plant Genome. 2011;4:250–5.

75. Gianola D, van Kaam JBCHM. Reproducing kernel Hilbert spaces regression
methods for genomic assisted prediction of quantitative traits. Genetics.
2008;178:2289–303.

76. Usai MG, Goddard ME, Hayes BJ. LASSO with cross-validation for genomic
selection. Genet Res. 2009;91:427–36.

77. Goddard M. Genomic selection: prediction of accuracy and maximisation of
long term response. Genetica. 2009;136:245–57.

78. Flor HH. Current status of the gene-for-gene concept. Annu Rev
Phytopathol. 1971;9:275–96.

79. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the
world of quantitative disease resistance. Trends Plant Sci. 2009;14:21–9.

80. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J,
McFadden H, et al. A putative ABC transporter confers durable resistance to
multiple fungal pathogens in wheat. Science. 2009;323:1360–3.

81. Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, et al. An
atypical kinase under balancing selection confers broad-spectrum disease
resistance in Arabidopsis. PLoS Genet. 2013;9:e1003766.

82. Ben C, Toueni M, Montanari S, Tardin M-C, Fervel M, Negahi A, et al. Natural
diversity in the model legume Medicago truncatula allows identifying
distinct genetic mechanisms conferring partial resistance to verticillium wilt.
J Exp Bot. 2013;64:317–32.

83. Negahi A, Ben C, Gentzbittel L, Maury P, Nabipour A, Ebrahimi A, et al.
Quantitative trait loci associated with resistance to a potato isolate of
verticillium albo-atrum in medicago truncatula. Plant Pathol. 2014;63:308–15.

84. Ben C, Debellé F, Berges H, Bellec A, Jardinaud M-F, Anson P, et al.
MtQRRS1, an R-locus required for Medicago truncatula quantitative
resistance to Ralstonia solanacearum. New Phytol. 2013;199:758–72.

85. Li Z, Sillanpää MJ. Overview of LASSO-related penalized regression methods
for quantitative trait mapping and genomic selection. Theor Appl Genet.
2012;125:419–35.

86. Bergelson J, Roux F. Towards identifying genes underlying
ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet.
2010;11:867–79.

87. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Koppen-
Geiger climate classification updated. Meteor Z. 2006;15:259–63.

88. Friesen ML, von Wettberg EJ, Badri M, Moriuchi KS, Barhoumi F, Chang PL,
et al. The ecological genomic basis of salinity adaptation in Tunisian
Medicago truncatula. BMC Genomics. 2014;15:1160.

89. Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH.
Characterizing genomic variation of Arabidopsis thaliana: the roles of
geography and climate. Mol Ecol. 2012;21:5512–29.

90. Rose NH, Bay RA, Morikawa MK, Palumbi SR. Polygenic evolution drives species
divergence and climate adaptation in corals. Evolution. 2017;72:82–94.

91. Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard
sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010;20:R208–15.

92. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical
guide to environmental association analysis in landscape genomics. Mol
Ecol. 2015;24:4348–70.

93. Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between
walking-stick ecotypes: “isolation by adaptation” and multiple roles for
divergent selection. Evolution. 2008;62:316–36.

94. Lazaridis I, Mittnik A, Patterson N, Mallick S, Rohland N, Pfrengle S, et al.
Genetic origins of the Minoans and Mycenaeans. Nature. 2017;548:214–8.

95. Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, et al.
The use of neutral and non-neutral SSRs to analyse the genetic
structure of a Tunisian collection of Medicago truncatula lines and to
reveal associations with eco-environmental variables. Genetica. 2009;135:
391–402.

96. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. Fitness costs of R-gene-
mediated resistance in Arabidopsis thaliana. Nature. 2003;423:74–7.

97. Djébali N, Aribi S, Taamalli W, Arraouadi S, Aouani ME, Badri M. Natural
variation of Medicago truncatula resistance to Aphanomyces euteiches. Eur J
Plant Pathol. 2013;135:831–43.

98. Powell A. CABI’s innovative use of technology, data, and knowledge transfer to
reduce crop losses in the developing world. Food Energy Secur. 2017;6:94–7.

99. Stakman EC. Problems in preventing plant disease epidemics. Am J Bot.
1957;44:259–67.

Gentzbittel et al. Genome Biology          (2019) 20:106 Page 19 of 20



100. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional
transposon insertion in the maize domestication gene tb1. Nat Genet.
2011;43:1160–3.

101. Wang H, Studer AJ, Zhao Q, Meeley R, Doebley JF. Evidence that the origin
of naked kernels during maize domestication was caused by a single amino
acid substitution in tga1. Genetics. 2015;200:965–74.

102. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al.
Genome-wide association study identifies 112 new loci for body mass index
in the Japanese population. Nat Genet. 2017;49:1458–67.

103. Kim H, Grueneberg A, Vazquez AI, Hsu S, de los Campos G. Will big data
close the missing heritability gap? Genetics. 2017;207:1135–45.

104. Visscher PM, Yang J, Goddard ME. A commentary on “common SNPs
explain a large proportion of the heritability for human height” by Yang et
al. (2010). Twin Res Hum Genet. 2010;13:517–24.

105. Josephs EB, Stinchcombe JR, Wright SI. What can genome-wide association
studies tell us about the evolutionary forces maintaining genetic variation
for quantitative traits? New Phytol. 2017;214:21–33.

106. Beavis WD. QTL analysis: power, precision, and accuracy. Molecular
dissection of complex traits. Boca Raton Paterson AH: CRC Press; 1998.
p. 145–62.

107. Gautier M. Genome-wide scan for adaptive divergence and association with
population-specific covariates. Genetics. 2015;201:1555–79.

108. Meyer RS, Purugganan MD. Evolution of crop species: genetics of
domestication and diversification. Nat Rev Genet. 2013;14:840–52.

109. Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P.
Genomic signature of adaptation to climate in Medicago truncatula.
Genetics. 2014;196:1263–75.

110. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559–75.

111. Pérez P, de los Campos G. Genome-wide regression and prediction with the
BGLR statistical package. Genetics. 2014;198:483–95 [cited 2018 Oct 12].

112. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. J Stat Softw. 2010;33:1–22 [cited
2018 Oct 12].

113. R Core Team. R: a language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2015.

114. Gentzbittel L, Ben C, Mazurier M, Shin M-G, Lorenz T, Rickauer M, Marjoram
P, Nuzhdin S, Tatarinova T. WhoGEM: an admixture-based prediction
machine accurately predicts quantitative functional traits in plants 2019
https://doi.org/10.6084/m9.figshare.c.4470383.v1.

Gentzbittel et al. Genome Biology          (2019) 20:106 Page 20 of 20

https://doi.org/10.6084/m9.figshare.c.4470383.v1

	Abstract
	Background
	Results
	Preprocessing: independent methods using LD-pruned SNP data suggest a strong but unresolved population structure for M. truncatula
	Admixture-based analysis, informed by geographical covariates as implemented in the ProvenancePredictor algorithm, reveals eight admixture components in the M. truncatula genome
	M. truncatula has an intricate spatial pattern and population structure around the Mediterranean Basin
	Geographic localization of the reference genome of M. truncatula: ProvenancePredictor confirms that genetics helps predict geography
	Phenotypic characterization using genome admixture components as significant predictors of quantitative functional traits in plants
	Genome admixture components are predictors of plants’ functional traits
	Cross-validation estimates how accurately admixture-based predictive models will perform in practice
	Genome admixture components are predictors of the most common form of disease resistance in plants: quantitative disease resistance
	Variations in admixture proportions are significantly correlated with geographical and bioclimatic variables that explain a large part of genetic variation in M. truncatula

	Discussion
	Conclusions
	Materials and methods
	SNP selection
	Population structure
	Development of the ProvenancePredictor algorithm
	Computation of the eight-dimensional vector of admixture proportions for the M. truncatula accessions
	Phenotypic characterization of quantitative resistance to Verticillium alfalfae in M. truncatula
	Relationship between admixture proportions and quantitative phenotypic variables
	Genomic selection algorithms and prediction reliabilities

	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

