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Abstract

Background: Sequencing errors are key confounding factors for detecting low-frequency genetic variants that are
important for cancer molecular diagnosis, treatment, and surveillance using deep next-generation sequencing
(NGS). However, there is a lack of comprehensive understanding of errors introduced at various steps of a
conventional NGS workflow, such as sample handling, library preparation, PCR enrichment, and sequencing. In this
study, we use current NGS technology to systematically investigate these questions.

Results: By evaluating read-specific error distributions, we discover that the substitution error rate can be
computationally suppressed to 10−5 to 10−4, which is 10- to 100-fold lower than generally considered achievable
(10−3) in the current literature. We then quantify substitution errors attributable to sample handling, library
preparation, enrichment PCR, and sequencing by using multiple deep sequencing datasets. We find that error rates
differ by nucleotide substitution types, ranging from 10−5 for A>C/T>G, C>A/G>T, and C>G/G>C changes to 10−4

for A>G/T>C changes. Furthermore, C>T/G>A errors exhibit strong sequence context dependency, sample-specific
effects dominate elevated C>A/G>T errors, and target-enrichment PCR led to ~ 6-fold increase of overall error rate.
We also find that more than 70% of hotspot variants can be detected at 0.1 ~ 0.01% frequency with the current
NGS technology by applying in silico error suppression.

Conclusions: We present the first comprehensive analysis of sequencing error sources in conventional NGS
workflows. The error profiles revealed by our study highlight new directions for further improving NGS analysis
accuracy both experimentally and computationally, ultimately enhancing the precision of deep sequencing.
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Background
Detecting somatic mutations present at a low frequency
through deep sequencing is important for cancer genomic
profiling [1]. Typical applications include detecting sub-
clonal pathogenic mutations in driver genes such as
NRAS/KRAS in leukemias that frequently seed relapse [2],
mosaic cancer predisposition mutations [3, 4], age-related
clonal hematopoiesis [5] that increases cancer risk, and li-
quid biopsy for non-invasive diagnosis and disease moni-
toring [6–9].

Errors acquired during next-generation sequencing
(NGS) are key confounding factors of sensitive detection
of low-frequency variants by deep sequencing. The sub-
stitution error rate by conventional NGS was first re-
ported to be > 0.1% in 2011 [10] and was similar in later
reports [11, 12] and in a recent review [1]. This pre-
sumed high error rate (> 0.1%) constrains further explor-
ation of ways to improve sensitivity of low-frequency
variant detection. For example, the FDA-authorized
MSKCC-IMPACT study reported a detection limit of
0.02 mutant allele fraction (MAF) for hotspot mutations
and 0.05 for non-hotspot mutations at a read-depth of
500–1000X [13]. With the rapid progress in sequencing
technology and dramatic reductions in sequencing cost,
there is a great need to systematically evaluate
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sequencing errors at various steps of a conventional
NGS workflow, as this knowledge will help improve
low-level variant detection by deep sequencing.
In this study, we performed a comprehensive analysis

of the substitution errors in deep sequencing data using
the conventional NGS technology. We focused on sub-
stitution variants because they are the most abundant
mutation type in both adult (97%) [14] and pediatric
cancers (93%) [15, 16]. We first explored error profiles
by performing a paired cancer-normal dilution ex-
periment followed by deep sequencing and discov-
ered that the substitution error rate can be
suppressed computationally to 10−5 to 10−4, which is
10- to 100-fold lower than the current reports. We
next analyzed distinct error profiles that can be at-
tributed to different steps of NGS workflows, includ-
ing sample handling, polymerase errors, and PCR
enrichment steps. These results provide important

insights for future improvements of sequencing
accuracy.

Results
Study design
A typical NGS workflow involves multiple steps (Fig. 1a)
prior to sequencing, including sample processing, DNA
isolation, and PCR amplification. Errors can be intro-
duced in each of these steps. For example, C>A/G>T er-
rors have been reported to be due to DNA damage
during sample processing [17, 18]. Spontaneous deamin-
ation of methylated cytosine to uracil [1, 19] can cause
C>T/G>A errors. Additional errors can also be intro-
duced by target-enrichment PCR and the sequencing
step [1].
In this study, we systematically investigated substitu-

tion error profiles by analyzing multiple sequencing
datasets from five DNA sequencing providers: three

a

b c

Fig. 1 Potential error sources in next-generation sequencing workflow. a Illustration of the major steps of a typical next-generation sequencing
workflow. Targeted deep sequencing is usually done by amplicon protocol or hybridization-capture protocol. Potential error sources are indicated
by numbers. b Percentage of high-quality (Q30) bases by position in NGS read. This shows that the first and the last 5 bp have lower percentages
of high-quality bases than do other positions. c Cumulative plot of NGS read quality distribution categorized by low-quality mapping (MAPQ <
55), potentially problematic alignment (“Methods”), and number of poor-quality bases in read (from ≥ 16 bp to 0 bp per read)
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deep sequencing datasets generated by St. Jude Chil-
dren’s Research Hospital (St. Jude), HudsonAlpha Insti-
tute of Biotechnology (HAIB), and WuXiNextCode and
whole-exome sequencing datasets generated by Broad
Institute (BI) and Baylor College of Medicine (BCM) on
five different Illumina sequencing platforms (Add-
itional file 1: Table S1). To determine the lowest fre-
quency at which a true somatic mutation can be
distinguished from a sequencing error and to determine
site-specific sequencing error rates, we performed a dilu-
tion experiment using a matched cancer/normal cell line
COLO829/COLO829BL (ATCC CRL-1974 and ATCC
CRL-1980), both of which were established from the
same patient: COLO829 was from malignant melanoma
and COLO829BL was from the matching normal lym-
phoblastoid. We targeted known somatic substitution
mutations [20, 21] by amplicon sequencing (size of 130
~ 170 bp) on an Illumina HiSeq 2500 sequencer (abbre-
viated as HiSeq).
We next compared the effect of polymerases by using

Q5 and Kapa polymerases to generate amplicon libraries
(“Methods”), which were sequenced on the latest Illu-
mina sequencing platform NovaSeq 6000 (abbreviated as
NovaSeq) at both St. Jude Children’s Research Hospital
and HudsonAlpha Institute of Biotechnology sequencing
centers (see Additional file 1: Table S1). To study the ef-
fect of sample-level damages, a high-depth sequencing
(~ 50,000X coverage) dataset generated by
hybridization-capture of 47 leukemia samples (manu-
script in preparation) was used. To ascertain enrichment
PCR errors, this hybridization-capture dataset was also
compared with an aggregated whole-genome sequencing
dataset. To evaluate the broad applicability of our ob-
served error profiles in additional sequencing centers,
the whole-exome sequencing (WES) data generated by
Broad Institute and Baylor College of Medicine (the two
TCGA sequencing centers) were used.

Substitution error measurement
To measure substitution error, we took advantage of the
high-depth sequencing data generated from the flanking
sequences in the amplicons known to be devoid of gen-
etic variations. Specifically, the substitution error rate for
a given genomic site i was measured as follows:

error ratei g > mð Þ ¼ #reads with nucleotide m at position i
Total#reads at position i

where g indicates the reference allele at genomic locus
i and m represents each of the three possible substitu-
tions caused by sequencing error. For example, at a
given site with reference allele A, we can calculate error
rates for the three possible mismatches A>C, A>G, and
A>T, respectively. Please note that although the nomen-
clature “error rate” implies that the measured subject is

caused by noise and the nomenclature “mutant allele
fraction” (MAF) implies that the measured subject is a
true somatic mutation, we use both nomenclatures inter-
changeably in this paper because they have the same
formula.

Establishing the benchmark dataset
To investigate error profiles and the limits of variant de-
tection, we established a truth dataset composed of 19
somatic single-nucleotide variants (SNVs) from the
matched cancer/normal cell lines COLO829 and
COLO829BL, which were derived from the same patient
[21]. To benchmark the variant detection limit, we
spiked-in 0.1% and 0.02% of COLO829 (cancer) genomic
DNA into COLO829BL (normal) genomic DNA, result-
ing in two specimens diluted at 1:1000 and 1:5000, re-
spectively, each with two replicates. The cancer and
normal cell lines were also sequenced at 30,000X and
50,000X (Additional file 1: Table S2a–c), respectively, to
validate the wildtype status of sequences flanking the
target SNVs in the cell lines. More importantly, the un-
diluted cancer cell line data allowed us to characterize
false-positive detections from 1:1000 and 1:5000 dilution
datasets because the mutant allele fraction of a
false-positive call would not exhibit 1000- to 5000-fold
increase in the undiluted cancer cell line. By plotting
MAF in diluted versus undiluted samples of every pos-
ition on the 18 amplicons (Additional file 2: Figure S1),
we found that the only sites exhibiting this pattern of
MAF increase were the 18 targeted variants. Therefore,
we conclude that no additional somatic variants exist in
the 18 amplicons that we analyzed. The target SNVs
were selected by accounting for the genomic aneuploidy
at chromosome 1q, which exhibits loss-of-heterozygosity
(LOH) and has four copies [20, 21] in the cancer cell
line (Additional file 2: Figure S2a). Our selected somatic
SNVs included those with mutant alleles on 4 of 4, 2 of
4, or 1 of 4 copies of 1q (Additional file 2: Figure S2b;
Additional file 1: Table S2a-c), resulting in six distinct
MAF levels (i.e., 0.01%, 0.02%, 0.04%, 0.05%, 0.1%, and
0.2%) over the two dilutions. HiSeq amplicon sequencing
was carried out at respective depths of 300,000X and
1000,000X for the 1:1000 and 1:5000 dilution samples.
We note that the allele fractions of the germline variants
remain ~ 0.5 in our dilution experiment because we used
matched tumor/normal cell lines from the same
individual.

Identification of low-quality reads
In the HiSeq data, 92% of sequenced bases had a base
quality score ≥ 30 (Additional file 2: Figure S3a,e,i)—that
is, the estimated error rate was less than 0.1%. Reads
were preprocessed (“Methods”) by trimming 5 bp at both
ends of each read (Fig. 1b; Additional file 2: Figure S3b,
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f, j; (“Methods”) to remove potentially low-quality bases
and possible adapter contamination. Reads with
low-mapping quality were also removed from further
analysis [22] (Additional file 2: Figure S3c, g, k). We
evaluated the association between the overall read qual-
ity and error rates of the remaining reads. The overall
read quality was measured as the total number of
low-quality bases (defined as having a quality score ≤ 20,
corresponding to an error rate of ≥ 1%) per read, and the
error rate was measured by using the flanking bases in
the amplicons as described above. Interestingly, approxi-
mately 50% of reads contained no low-quality bases and
had an overall error rate of 0.02%, and approximately 1%
of reads contained ≥ 16 low-quality bases and had an
error rate of 0.08% (Fig. 1c; Additional file 2: Figure S3d,
h, l). Therefore, we defined low-quality reads (LQReads)
as those with poor mapping quality or ≥ 5 low-quality
bases. LQReads constitute ~ 30% of all reads in our ex-
periment (Fig. 1c; Additional file 2: Figure S3d,h,l), and
the remaining reads were considered high quality.
We developed an in silico error suppression method,

CleanDeepSeq, to identify and filter the LQReads prior
to allele counting (“Methods”). CleanDeepSeq is func-
tionally equivalent to standard pileup in terms of allele
counting. Since the target fragment size could be short
(such as the 130~170 bp in our amplicon dataset), the
forward and reverse reads in a paired-end sequencing
setting may have significant overlaps. CleanDeepSeq was
also designed to account for the concordance between
forward and reverse readouts so that discordant read-
outs were not counted and concordant readouts were
counted only once (“Methods”).

Comparison with standard pileup
We first compared our CleanDeepSeq method with
the standard pileup method because both algorithms
are designed to perform allele counting from aligned
reads (such as from bam files), which serves as the
starting point for most current mutation callers. As
shown in Fig. 2a, the A>T error rate is dramatically
suppressed from ~ 10−3 (by standard pileup method;
top panel) to 0.5 × 10−4 (by CleanDeepSeq; bottom
panel), rendering the BRAF V600E variant (with nu-
cleotide change A>T) easily separated from back-
ground sequencing errors. At the sample level, we
observed a median error rate of 0.4 × 10−3 to 1.0 ×
10−3 for the 12 substitution patterns by using stand-
ard pileup on data (“Methods”) generated from two
dilution samples (Fig. 2b, c, left panels), which is con-
sistent with previous reports [1]. Consequently, som-
atic mutations (solid-color dots in Fig. 2b, c) with
MAF < 0.002 cannot be distinguished from sequen-
cing errors (gray-color histograms in Fig. 2b, c). By
contrast, application of CleanDeepSeq resulted in a >

10-fold reduction in error rates (median error rate
0.2 × 10−4 to 1.0 × 10−4 in both dilutions), which
clearly discriminates the MAF of true somatic vari-
ants from sequencing errors for most somatic muta-
tions, including BRAF V600E (Fig. 2b, right panel).
The same results were observed in the replicate ex-
periments (Additional file 2: Figure S4–S5). Therefore,
in the following experiments, we present only data fil-
tered by CleanDeepSeq unless otherwise noted.
Different substitution patterns had different error

rates. Specifically, C>T/G>A change had the highest
error rate, with a median of ~ 10−4 in the CleanDeepSeq
data—likely due to spontaneous deamination of methyl-
ated cytosine to uracil [1]. Consequently, C>T/G>A mu-
tations remained indistinguishable from sequencing
errors in the dilution series. To gain more insight into
the error profile of C>T/G>A substitution (which is also
the most common mutation type in cancers [23]), we
performed signature analysis of C>T/G>A sequencing
errors similar to mutational signature analysis in cancer
[24]. The C>T errors exhibited a strong context depend-
ency, with elevated error rates for G(C>T)N or
N(C>T)G and the highest error rate in G(C>T)G (Fig. 3,
left panels). As expected, this pattern was observed for
G>A errors in a reverse complementary fashion (Fig. 3,
right panels). Other substitution types did not exhibit se-
quence context dependency as strong as that of C>T/
G>A (data not shown). Stratifying sequence mutations
by their sequence context improved the precision for
distinguishing somatic substitutions from sequencing er-
rors in both 1:1000 and 1:5000 dilutions (Fig. 3; Add-
itional file 2: Figure S4, S6).

Comparison between sequencing centers, platforms, and
DNA polymerases
Because NovaSeq offers much higher throughput for
NGS data generation than HiSeq does, we performed
amplicon sequencing (at both StJude and HAIB, see
Additional file 1: Table S1) using the same COLO829 di-
lution samples and the same library preparation proce-
dures. We found that NovaSeq has a comparable error
profile to HiSeq across sequencing centers (Add-
itional file 2: Figure S4, S7–S8). Interestingly, data from
NovaSeq demonstrated a more homogeneous error pro-
file than that of HiSeq, indicating an improvement at the
sequencer level.
We next evaluated whether a different polymerase

would affect the error profiles. Because libraries used for
the HiSeq and NovaSeq datasets were prepared by using
the Kapa DNA polymerase (“Methods”), we generated
the NGS library with NEB Q5 polymerase, a high-fidelity
enzyme, using the same COLO829 dilution samples, and
sequenced the library on NovaSeq. As shown in Fig. 4
and Additional file 2: Figure S9, the C>T/G>A error

Ma et al. Genome Biology           (2019) 20:50 Page 4 of 15



a

b

c

Fig. 2 Comparison of sequencing errors with known somatic mutations in deep sequencing data generated from diluted COLO829 cancer cell line. a
Error rate (y-axis) in BRAF V600 amplicon (x-axis: chr7 positions) under standard pileup (top) and CleanDeepSeq (bottom). A>T errors are shown in red and
other errors shown in gray. Known somatic mutation BRAF V600E is shown in purple. Also shown are error rates summarized at sample level by pileup (left
panels, “Methods”) or CleanDeepSeq (right panels) for 1:1000 dilution (b) and 1:5000 dilution (c). The 12 possible substitution patterns (first parenthesis) are
depicted in rows. Median error rates (log10 scale) are indicated on the left, and sample sizes (number of genomic sites) for the histogram are indicated on
the right in the second parenthesis. The x-axis displays the error rate in log10 scale. The designed MAF ladders for the known somatic mutations were
depicted using red, blue, and black lines labeled on top, and the known somatic mutations were colored according to their expected MAF. Black arrow:
BRAF V600E, which has 4 mutant alleles and 2 wildtype alleles in COLO829, so that at 1:1000 dilution and 1:5000 dilution the expected MAF are 0.002 and
0.0004, respectively (“Methods”)
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rates were further suppressed by Q5, from 0.7 × 10−4 to
0.4 × 10−4, and changes including A>C/T>G, A>T/T>A,
C>G/G>C, and C>A/G>T had error rates of ~ 10−5. As a
result, Q5 enzyme library construction combined with
NovaSeq would allow detection (assuming no
sample-level DNA damage) of A>C/T>G, A>T/T>A,
C>G/G>C mutations at levels < 0.01%; C>A/G>T muta-
tions at a level of ~ 0.01%; C>T/G>A mutations in low
error rate contexts at a level of ~ 0.01%; A>G/T>C mu-
tations at a level of ~ 0.05%; and C>T/G>A mutations in
high error rate contexts at a level of > 0.1% (Add-
itional file 2: Figure S9). This observation was consistent
between StJude and HAIB datasets (Fig. 4 and Add-
itional file 2: Figure S9), demonstrating the reproducibil-
ity of this error profile.

Our data also indicated that “forced calling” of hotspot
mutations without considering error rate may result in
false-positives. For example, hotspot mutation BRAF
K601E is a T>C change at chr7:140453134 (hg19; Add-
itional file 2: Figure S10), which was detected in > 100
tumors in COSMIC database [25]. This site has an allele
fraction of ~ 0.0003 in two replicates of both 1:1000 and
1:5000 dilutions across StJude and HAIB datasets, mak-
ing it tempting to call as a true mutation. However, be-
cause the undiluted cancer sample does not show a
corresponding elevation of allele fraction (~ 0.0002; Add-
itional file 2: Figure S10), it is apparently a false-positive
call. In fact, it is clear from Fig. 4b, c, e, f that T>C
changes had a much-elevated median error rate of ~
10−4 even after error suppression by CleanDeepSeq.

a

b

Fig. 3 Context dependency of C>T/G>A errors in deep sequencing data generated from diluted COLO829 cancer cell line. C>T (left panels) and
G>A (right panels) errors are decomposed into 16 contexts by including one 5′ base and one 3′ base for 1:1000 dilution (a) and 1:5000 dilution
(b), respectively. Contexts showing elevated error rate are marked with an asterisk “*”. See Fig. 2 for legends
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Therefore, our error-profile analysis may help reduce the
incidence of such false-positive calls.
To determine the accuracy of our error model at lower

sequencing depths, we downsampled our NovaSeq + Q5
dataset (generated by StJude) to an actual depth of
40,000X–50,000X (Additional file 2: Figure S11). Even at
these lower sequencing depths, the known mutations are
still clearly separated from background sequencing
errors.

Error rate distribution of cancer-related substitutions and
hotspot substitutions
We asked how the above results may influence the sen-
sitive detection of cancer mutations. We found that

28.2% (Additional file 1: Table S3a) of the somatic SNVs
listed in COSMIC [25] (v82; mostly adult cancers) are
C>T/G>A mutations in high error rate contexts. To ac-
count for potential germline variants present in the
COSMIC database, variants with a population allele frac-
tion > 0.1% (defined by the ExAC database [26]) were re-
moved. We found that 28.3% of COSMIC variants are in
high error rate contexts. Interestingly, if a requirement
of recurrence in ≥ 10 patients is added, only 16.5% of
COSMIC variants are in high error rate contexts. For
pediatric cancers [15], 20.8% of somatic mutations (8%
for neuroblastoma; Additional file 1: Table S3a) are
C>T/G>A mutations in high error rate contexts. These
results collectively indicated that > 70% of the somatic

a

b

c

d

e

f

Fig. 4 Error profile in NovaSeq + Q5 dataset generated by StJude (a, b, c) and HAIB (d, e, f). a, d Error rate (y-axis) in BRAF V600E amplicon (x-axis:
chr7 positions) under direct pileup (top) and CleanDeepSeq (bottom). Also shown are error rates of the 12 change types across two dilutions: b,
e 1:1000 dilution; c, f 1:5000 dilution, see Fig. 2 for legends
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substitutions are in low error rate contexts and that
high-depth sequencing analysis can detect them at low
(0.01 ~ 0.1%) frequency. Similarly, by using the list of
hotspot substitutions defined by Taylor and colleagues
[27], we found that 73% (Additional file 1: Table S3b) of
hotspot substitutions are in low error rate contexts and
high-depth sequencing analysis can detect them at low
(0.01 ~ 0.1%) frequency.

Errors introduced by specimen handling and/or storage
To investigate sample-level errors, which may indicate
specimen handling/storage issues, we analyzed a
hybridization-capture dataset of 47 samples (“Methods”).
By using CleanDeepSeq, we generated a heatmap to
show the sequencing error rate in each sample (col-
umns) stratified by sequence context associated with
each substitution pattern (rows). As shown in Fig. 5a, b,
C>T/G>A errors exhibited a horizontal pattern across
all samples, replicating the context dependency observed
in the COLO829 dataset (Fig. 3; Additional file 2: Figure
S4). By contrast, C>A/G>T errors exhibited a vertical
(i.e., sample-specific) pattern regardless of sequence

context, which may be attributable to sample-specific
8-oxoG stress [1, 17, 18].
We then investigated whether sample-specific DNA

damage (imputed by using C>A/G>T substitution as a
surrogate) could account for other types of sequencing
errors. Indeed, we found that the C>A error rate was
significantly correlated with that of C>G/G>C (linear re-
gression P value = 6 × 10−16) and C>T/G>A (linear re-
gression P value = 10−8) (Fig. 5e), indicating that
sample-specific DNA damage also contributes to an ele-
vated error rate of C>G/G>C and C>T/G>A changes.

Broad applicability of CleanDeepSeq
We analyzed whole-exome sequencing data generated by
the Broad Institute and Baylor College of Medicine Hu-
man Genome Sequencing Center, the two sequencing
centers for the Cancer Genome Atlas (TCGA) project
and the NCI’s Therapeutically Applicable Research To
Generate Effective Treatments (TARGET) project. Given
the limited sequencing depth of whole-exome sequen-
cing (100–200X), it is impossible to calculate
site-specific error rates. Therefore, we focused our ana-
lysis on sample-level error rates (“Methods”). We

a

c

b e

d

Fig. 5 Sample-specific errors in high-depth capture sequencing data. Each column represents a leukemia sample (in total 47 samples) while each
row represents a genomic position that was sequenced in all samples. The genomic positions were assigned to panels a–d by the nucleotide at
corresponding positions, i.e., C at (a), G at (b), A at (c), and T at (d) as heatmaps. In each panel, MAF for all three possible substitution types were
shown in three groups indicated at the top of each panel, sorted by their neighboring DNA context (i.e., 3′ (−) or 5′ (+) flanking bases). Vertical
patterns show the sample-level DNA damage which is apparent in C>A and G>T mutation. e Significant correlation of sample-specific error
(surrogated by C>A error rate) with error types C>T/G>A and C>G/G>C but not for other type (data not shown). The linear regression and r-
squared values are indicated
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analyzed the neuroblastoma whole-exome sequencing
dataset [28] generated by the Broad Institute
(“Methods”) because it is known that library preparation
artifacts were introduced during DNA-shearing of the li-
brary construction process by high-energy sonication,
resulting in the oxidation of guanine bases (8-oxoG). It
was reported previously that 8-oxoG artifacts causing el-
evated C>A changes were present in the Exome_Native
dataset (i.e., no whole-genome amplification) but not in
the Exome_WGA (i.e., library prepared using
whole-genome amplified DNA) dataset [28].
Using standard pileup, the error rate of both Exo-

me_WGA and Exome_Native is ~ 0.1% (log10 scale
of − 3 in the left panel of Fig. 6a, b), consistent with
previous reports [1, 10, 11]. Applying CleanDeepSeq

resulted in a 10-fold reduction of error rate (~
0.01%, log10 scale of − 4 in the right panels of
Fig. 6a, b) in both datasets. Interestingly, the Exo-
me_Native dataset had a slightly higher error rate
than the Exome_WGA dataset did by both standard
pileup and CleanDeepSeq (Fig. 6a, b), which is con-
sistent with the known sample-level damage in the
Exome_Native dataset. The WES data generated by
Baylor College of Medicine Human Genome Sequen-
cing Center [15] were from leukemia samples
(“Methods”), and we also found a 10-fold reduction
in error rate of CleanDeepSeq compared to that of
standard pileup here (Fig. 6c). Together, these results
provided corroborating evidence of the power of
error suppression by CleanDeepSeq.

a

b

c

Fig. 6 Genome-wide average error rate in neuroblastoma datasets (panels a, b) and an AML dataset (panel c). Shown are histogram of genome-
wide average error rate (“Methods”) by standard pileup (left panels) and CleanDeepSeq (right panels). In the neuroblastoma dataset (generated by
Broad Institute, “Methods”), the Exome_Native subset (b) is known to have sample-level damages while the Exome_WGA subset (a) does not
have sample-level damages. Also included are an AML dataset (generated by Baylor College of Medicine) (c). Red vertical lines and numbers
indicate median
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Second-enrichment PCR errors
We next studied the errors introduced by enrichment
PCR (6–18 cycles). For this purpose, we aggregated the
sequencing data of 1663 whole genomes [29]
(“Methods”) that had undergone first-enrichment PCR.
The hybridization-capture sequencing dataset, which
underwent two enrichment PCR rounds, was compared
to WGS dataset with CleanDeepSeq. Both datasets were
sequenced by using Illumina X Ten. We found a statisti-
cally significant linear relationship between
hybridization-capture targeted sequencing data and
WGS data among the 12 error types, and a ~ 5.5- to
6.5-fold increase in errors was observed in capture se-
quencing data (Fig. 7).

Discussion
In the past decade, rapid progress in NGS has dramatic-
ally shifted the paradigm of biomedical research and
NGS is now quickly moving into clinical practices. How-
ever, the general perception of high error rate (> 0.1%) in
conventional NGS data has hindered its application in
detecting low-frequency variants. A comprehensive un-
derstanding of the sources of errors introduced in the
NGS workflow is, therefore, key to further improving se-
quencing accuracy.
Our analyses uncovered several sources of errors. We

found that error rates have substitution-type and se-
quence context dependencies, which reflect fidelity of
DNA polymerases. We also found that C>A/G>T errors
are enriched in a subset of samples, which indicates
sub-optimal handling/storage conditions. Because sam-
ple handling was not documented in the present study,
future studies designed with controlled experiments are
warranted to study the optimal handling/storage condi-
tions required to minimize errors. However, despite the
significant improvements to overall error rate introduced
by removal of LQReads, the A>G/T>C errors remain

high. Further enzymatic optimization or DNA repair
treatments during library construction might resolve
these issues but are out of the scope of this work.
This study was focused on error profiling but not vari-

ant detection, although error suppression will ultimately
improve variant detection. Variant detection can be for-
mulated into three related but distinct study designs. First,
one may have a case-control design, where the sample of
interest is compared against a control sample. Indeed, a
simple combination with the existing deepSNV algorithm
(which assumes case-control design) [30] resulted in sig-
nificant reduction (3- to 6-fold) of false positives by Clean-
DeepSeq as compared to the standard pileup algorithm,
without compromising sensitivity (Additional file 2: Figure
S12). Using the mutation caller MuTect [31], we also
found that use of CleanDeepSeq resulted in 3- to 30-fold
reduction of false positives compared with standard pileup
without compromising sensitivity (Additional file 2: Figure
S13). Second, one may have a cohort design where mul-
tiple samples are sequenced simultaneously and each sam-
ple is compared individually against the remaining
samples (“aggregate control”, see [32]). However, the re-
cent discovery of ubiquitous AML-associated mutations
[33] in peripheral blood from healthy adults pose signifi-
cant challenges in selecting control samples that are truly
absent of low-frequency mutations. Such unrecognized
low-frequency variation may lead to false-negative results
in a design with controls. Third, it is therefore desirable to
perform variant detection in the sample of interest with-
out a control. In fact, the data presented in this work indi-
cate the feasibility of performing single-sample variant
detection, which we are currently researching.

Conclusions
Our results provided important insights on further im-
proving sequencing error rates in future.

a b

Fig. 7 Error rate comparison between hybridization-capture and aggregated WGS datasets. Summary statistics (“Methods”) are calculated with
99th percentile (P = 3 × 10−4; a) and 99.9th percentile (P = 2 × 10−5; b). We also tried 90th percentile but the linear fitting is poor (r2 = 0.47; slope =
4.4; data not shown) due to the fact that many loci have MAF of 0 as described in the “Methods” section

Ma et al. Genome Biology           (2019) 20:50 Page 10 of 15



Methods
Amplicon sequencing of diluted COLO829 cell line
COLO829BL and COLO829 DNA was extracted by
using the DNeasy Blood & Tissue Kit (Qiagen), and the
mixture DNA samples were generated by spiking-in
0.1% and 0.02% of COLO829 into COLO829BL. Primers
for SNV targets (Additional file 1: Table S2d) sized 130
bp to 170 bp were designed by using Primer3. PCR was
performed with the KAPA HiFi HotStart ReadyMix PCR
Kit and NEBNext Q5 Hot Start HiFi PCR Master Mix,
10 μM of each primer, 50 ng of COLO829BL, COLO829,
two replicates of 0.1% mixture, and two replicates of
0.02% mixture DNA for each target by using the follow-
ing PCR conditions: 95 °C for 5 min, 26 cycles of 98 °C
for 20 s, 63 °C for 15 s, 72 °C for 15 s, and 72 °C for 1
min before storage at 4 °C (Kapa HiFi HotStart); 98 °C
for 30 s, 26 cycles of 98 °C for 10 s, 65 °C for 15 s, 72 °C
for 20 s, and 72 °C for 2 min before storage at 4 °C (NEB-
Next Q5). All amplicons were quality-checked on a 2%
agarose E-gel (Invitrogen), then pooled in bins and puri-
fied by Agencourt Ampure XP Beads. A total of 100 ng
of each pooled amplicon was end-repaired,
adapter-ligated, and enriched via 8 cycles of PCR by
using either KAPA HiFi HotStart ReadyMix PCR Kit or
NEBNext Q5 Hot Start HiFi PCR Master Mix. Finally,
amplicon libraries were pooled by specific ratios to en-
able generation of 300,000X coverage for 0.1% spike,
1000,000X coverage for 0.02% spike, 50,000X for
COLO829BL, and 30,000X coverage for COLO829 on
the Illumina HiSeq 2500 Rapid mode and NovaSeq
6000 S1 flow cell paired-end 2 × 101 cycles sequencing.

COLO829 dataset
Melanoma cell line COLO829 lost heterozygosity in 1q
with 4 copies [21] (Additional file 2: Figure S2a), and its
matching normal cell line COLO829BL had a diploid
genome. In 1q, there are 3 groups of SNVs with different
numbers of MAFs (Additional file 2: Figure S2b): 100%
(4 of 4 total alleles); 50% (2 of 4 total alleles); and 25% (1
of 4 total alleles). We took advantage of this fact and se-
lected 16 SNV markers from the 1q region: 6 SNVs with
MAF of 1.0, 7 SNVs with MAF of 0.5, and 3 SNVs with
MAF of 0.25. We also selected 2 SNVs from a diploid
region in chr4 (so we would have 5 SNVs with 1 mutant
allele in each cancer cell). We also selected BRAF
V600E, an oncogenic hotspot mutation detected in this
sample that has a MAF of 0.67 (4 of 6 copies are mu-
tated), totaling 19 SNVs (Additional file 1: Table S2d).
Marker chr1.203055000. G>A failed the Q5 amplicon, so
there are 18 SNVs in the NovaSeq + Q5 dataset.
The expected number of MAFs is calculated as MAF

= a/(1 × 4 + 1000 × 2) ≈ a/2000 for the 1q markers with
1:1000 dilution, MAF = 1 × a/(1 × 4 + 5000 × 2) ≈ a/
10000 for the 1q markers with 1:5000 dilution, where a

(= 1, 2, 4) represents the total number of mutant alleles
in 1 cancer cell for a given SNV. A similar approxima-
tion was used for BRAF V600E (a = 4) and the 2 SNVs
(a = 1) in chr4. The red, blue, and black vertical lines in
Figs. 2, 3, and 4 (and Additional file 2: Figure S5–9, 11)
correspond to a (=1, 2, 4) for corresponding dilution
concentrations, respectively.

Hybridization-capture dataset
Genomic DNA was sheared to ~ 150- to 200-bp average
size by using a Covaris LE220 focused ultrasonicator.
The fragmented DNA was then end-repaired, dA-tailed,
adapter-ligated, and enriched by PCR amplification using
Kapa HTP library preparation kit Illumina 96rxn. De-
signed baits were hybridized with adapter-ligated DNA
libraries for 64 to 72 h. Then, the bait-target hybrids
were captured by streptavidin beads and enriched via
secondary PCR enrichment. The capture libraries were
sequenced by performing paired-end 150 cycles on the
Illumina HiSeq X Ten system at 50,000X. This dataset
has a median of 87,094 (range 31,437–129,934) base
pairs covered at ≥ 15,000X across 47 samples (see de-
tailed sample list in Additional file 1: Table S4).

WGS sequencing
DNA was extracted from stored samples by using either
the QIAamp DNA Blood Mini Kit (QIAGEN cat#51106)
or the DNeasy Blood & Tissue Kit (cat# 69506). After
extraction, the DNA concentration was fluorometrically
measured by using the Quant-iT dsDNA Assay Kit (Life
Technologies cat#Q33130), and DNA integrity was veri-
fied visually by agarose gel electrophoresis (E-Gel, Life
Technologies, cat#G8008-01). Whole-genome sequen-
cing (WGS) was performed at the HudsonAlpha Insti-
tute for Biotechnology Genomic Services Laboratory
(Huntsville, AL, USA) by using Illumina HiSeq X Ten
sequencers. A total of 1663 whole-genome samples from
a previous St. Jude LIFE (SJLIFE) study [29] (see detailed
sample list in Additional file 1: Table S5) were included
in this work.
Whole-genome sequencing data were also analyzed by

using CleanDeepSeq for each sample. To account for
polymorphisms, within each sample, only loci with ≥
20X coverage and > 95% (so that binomial P value of ob-
serving 1 non-reference alleles from 20 reads is 4 × 10−5

and binomial P value of observing 2 non-reference al-
leles from 40 reads is 1.5 × 10−9 given the locus is het-
erozygous) reads being reference allele were merged into
a single-count file. Loci with heterozygous calls (i.e., no
alleles with fraction > 95%) in any subject were excluded
from analysis. We used only loci with ≥ 20,000X col-
lapsed coverage in our error analysis for this dataset.
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Direct pileup
To compare CleanDeepSeq with direct pileup (Fig. 2b),
we implemented the command “lofreq plpsummary -Q 30
-q 30 -m 55 -d100000000” from LoFreq [34], which means
to count bases (both reference and non-reference alleles)
by using a quality cutoff of 30 and include only reads with
mapping quality (MAPQ) > 55 (value 255 also discarded
because it indicates that the mapping quality is not avail-
able (https://samtools.github.io/hts-specs/SAMv1.pdf)).
Consistent with a previous report [35], recalibration [36]
did not significantly change the result of pileup (data not
shown). Direct pileup on NovaSeq resulted in an error
rate ~ 10−4, indicating a significant improvement of the se-
quencer. However, CleanDeepSeq improved (10-fold
fewer errors) error suppression beyond pileup for changes
including A>C/T>G, A>T/T>A, C>A/G>T. However, the
direct pileup by LoFreq generated irregular counts when
the depth exceeded 10 million; therefore, we down-
sampled the raw data to 20% for NovaSeq experiments.

Neuroblastoma whole-exome sequencing dataset with
known sample damage and AML whole-exome
sequencing dataset
To study samples with known DNA damage, we down-
loaded a neuroblastoma whole-exome sequencing data-
set [28] generated by Broad Institute in 2010 and 2012
(using Illumina sequencer GAII or HiSeq 2000; see
“Methods”). This whole-exome sequencing dataset
(76-bp paired-end) included native (Exome_Native) and
whole-genome–amplified DNA (Exome_WGA) samples,
of which the former were known to harbor elevated
levels of C>A/G>T errors (Additional file 2: Figure S2 of
Pugh et al. [28]) due to high-energy sonication at the
DNA-shearing step during library construction. Only
germline samples were analyzed. We counted alleles at
every genomic site with CleanDeepSeq or lofreq as de-
scribed above and utilized the 75-mer mappability track
from UCSC genome browser (see below).
Because we are interested in sample-level DNA dam-

age, we wanted to obtain sample-specific and
site-specific error rates. However, because the sequen-
cing depth is only 100X to 200X, we could not properly
calculate the site-specific error rate for this dataset. We,
therefore, focused on all well-covered sites (≥ 50X and
with a dominant reference allele with fraction > 95%, so
that the binomial P value of observing 1 non-reference
allele from 50 reads is 4 × 10−14 and the binomial P value
of observing two non-reference alleles from 50 reads is
1 × 10−12 given the locus is heterozygous) to calculate
sample-level error rate (defined as total mismatch bases
divided by total mapped bases, see [37]). An AML
whole-exome sequencing dataset [15] (22 germline sam-
ples) generated by Baylor College of Medicine Human
Genome Sequencing Center in 2012 (using Illumina

sequencer HiSeq 2000; see “Methods”) was similarly
anlayzed to further strengthen our conclusions.

Application of deepSNV and MuTect to low-level
substitution detection
To apply deepSNV (version 1.26.0) algorithm [30], we
split our CleanDeepSeq counts of A, C, G, T at each site
into halves—one for the reference strand and the other
for the reverse strand—because deepSNV requires
strand-specific counting. We then supplied the count
data (dilution data as “case” and normal data as “con-
trol”) to the function “deepSNV” in R (version 3.4.4).
Mutations were called with a P value cutoff of 0.05 after
Bonferroni correction.
To apply the MuTect algorithm (version 1.1.4) [31],

we implemented the following command: java -Xmx2g
-jar muTect-1.1.4.jar --analysis_type MuTect --referen-
ce_sequence REFERENCE.fasta --input_file:normal
GERMLINE.bam --input_file:tumor TUMOR.bam --out
CALL_STATS.txt --coverage_file COVERAGE.wig --cos-
mic COSMIC.vcf --dbsnp DBSNP.vcf --downsampling_-
type NONE --force_alleles --tumor_f_pretest 0.000001
--gap_events_threshold 1000 --fraction_contamination
0.00, where GERMLINE.bam is our undiluted normal
cell line and TUMOR.bam is (1) 1:1000, (2) 1:5000 di-
luted cell line, or (3) the undiluted cancer cell line. We
applied MuTect to the NovaSeq + Q5 dataset generated
by StJude. The initial run of MuTect generated irregular
allele counts for the candidate markers that turned out
to be due to the default behavior of MuTect to down-
sample the reads (stated as “The principle of this down-
sampling type is to downsample reads to a given capping
threshold coverage. Its purpose is to get rid of excessive
coverage, because above a certain depth, having add-
itional data is not informative and imposes unreasonable
computational costs.” in MuTect documentation from
https://software.broadinstitute.org/gatk/documentation/
tooldocs/3.8-0/org_broadinstitute_gatk_engine_Com-
mandLineGATK.php). When this behavior is turned off
(by adding the parameter “--downsampling_type
NONE”), we cannot run MuTect—even at 20-Gb mem-
ory request—because of our data’s high depth. Therefore,
we downsampled our bam file to 50,000X depth for each
of the 18 amplicon regions so that we could run the
MuTect algorithm. To test the improvement of MuTect
variant detection accuracy by error suppression using
CleanDeepSeq, we filtered the low-quality reads (as de-
scribed in next section “Error suppression by Clean-
DeepSeq”) and created new bam files (both dilution
dataset and normal dataset) as input for MuTect.

Error suppression by CleanDeepSeq
Because the base quality dropped at read ends for HiSeq
data (Fig. 1b; Additional file 2: Figure S3b, f, j), we
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trimmed the first and last five base pairs of the reads.
This trimming would also clean up potential residual
adapter/primer sequences. The same parameter is used
for other datasets as well. To avoid artifacts attributable
to mapping ambiguity, we used a stringent mapping
quality (MAPQ) cutoff of 55 (value 255 also discarded
because it indicates that the mapping quality is not avail-
able (https://samtools.github.io/hts-specs/SAMv1.pdf)),
which affected 18.2% of reads (16.2% if using a MAPQ
cutoff of 30; Additional file 2: Figure S3c, g, k) in the
HiSeq dataset. Furthermore, because reads with inser-
tion/deletions and/or structural rearrangements may
introduce alignment ambiguity, we only included reads
with substitution mismatches (i.e., the CIGAR string
matches the regular expression /^\d +M$/; affecting ~
1% reads; Additional file 2: Figure S3d, h, l). Reads with
≥ 5% bases of Phred quality score < 20 were also sup-
pressed because they have elevated error rates (Fig. 1c;
Additional file 2: Figure S3d, h, l). To avoid counting an
allele from the same DNA fragment twice, we used the
following procedure for fragments with overlapping read
pairs: (i) if a base pair has only one readout in either for-
ward or reverse read (non-overlapping part), it will only
be counted as 1 if its Phred quality score is ≥ 30; (ii) if a
base pair has two readouts in both forward and reverse
reads (overlapping part), it will be counted as 1 if for-
ward and reverse readouts are concordant and both have
Phred quality score ≥ 30 or if only one readout has
Phred quality score ≥ 30.

Deep sequencing data analysis
For high-depth data, sites that were sufficiently covered
(> 500X) and had a dominant allele (frequency > 95%)
were counted. For error rate analysis (such as in Fig. 2b),
we used 500,000X as the depth cutoff for the COLO829
data; 15,000X for hybridization-capture data; and
20,000X for collapsed WGS data to account for sampling
uncertainty and different designed depths. For context
analysis, the flanking bases were also required to have a
dominant allele with frequency > 95%. The implicit as-
sumption of a 95% threshold is that the error rate rarely
exceeds 5%. Due to the possible presence of true
low-level SNVs (such as mosaic mutations) that are not
recognized, this threshold might lead to slightly
over-estimated background error rates. Therefore, we
consider a 95% threshold to be conservative for our re-
ported error rates (i.e., the true error rates could be even
lower).

Usage of summary statistics
Usually, summary statistics such as median/mean are
used to represent population averages. With sufficiently
high depth, such as in Fig. 2, median is a good summary
statistic for our purpose. However, with reduced depth,

such as in downsampling (Additional file 2: Figure S11),
most genomic sites have MAF 0, rendering mean or me-
dian non-informative. As a result, we used higher per-
centiles, such as 99.9th percentile, to represent the
population characteristics. Because such a statistic is
much less robust (in terms of sampling uncertainty) than
are mean or median, we required a sufficient number of
sample points to use this statistic in this work. Specific-
ally, for the hybridization-capture dataset (Fig. 5), we re-
quired that there be > 20,000 genomic sites for each of
the 12 substitution types for a sample to be included in
the analysis (21 of the 47 hybridization-capture samples
passed this threshold and are included in Fig. 5). This re-
quirement ensures that there are > 20 genomic sites with
error rate above the 99.9th percentile for each of the 12
substitution types. One advantage of using 99.9th per-
centile is that it automatically implies a false-positive
rate of 0.1% (i.e., 99.9% of genomic sites have lower allele
fraction than this statistic). A similar reasoning was used
for the comparison between hybridization-capture data-
set and the whole-genome sequencing dataset (Fig. 7).

Other analysis details
Reads were aligned by using bwa (0.7.12-r1039) with op-
tion “aln.” To avoid artifacts due to paralog mapping, we
included only base pairs in uniquely mappable regions
for 100-mers (http://hgdownload.soe.ucsc.edu/golden-
Path/hg19/database/wgEncodeCrgMapabilityAlign100-
mer.txt.gz for hg19 and http://hgdownload.soe.ucsc.edu/
gbdb/hg38/hoffmanMappability/k100.Umap.MultiTrack-
Mappability.bw for hg38; downloaded March 2018) and
for 75-mers (http://hgdownload.cse.ucsc.edu/golden-
Path/hg19/encodeDCC/wgEncodeMapability/wgEnco-
deCrgMapabilityAlign75mer.bigWig). Only regions with
a mappability score of 1 and length > 300 bp were con-
sidered. Furthermore, the first and last 50 bp of a region
were excluded to account for potential edge effects.

Additional files

Additional file 1: Supplementary Tables S1-S5. Table S1. Datasets used.
Information provided includes data type, provider, analysis type, target re-
gion size, sequencing depth, dilution ratio, and sequencer. Table S2a.
Designed 19 substitution markers in COLO829 experiment (HiSeq+Kapa
Enzyme; StJude dataset). Listed are chromosome, position (hg19), muta-
tion context, ploidy for each mutations. Also listed are the MAF, mutant
allele counts (Mut), total coverage (Tot) for each replicate of each lane
output for Normal, Tumor, and two dilutions (1:1000 and 1:5000). For
ploidy, 4v4 means 4 out of 4 allels are mutated in cancer cells, 2v4 means
2 out of 4 allele are mutated; 1v4 means 1 out of 4 alleles are mutated;
4v6 means 4 out of 6 alleles are mutated; 1v2 means 1 out of 2 alleles
are mutated. The allele counts by CleanLens are based on Phred score
cutoff 38. *: BRAF V600E. Table S2b. Designed 19 substitution markers in
COLO829 experiment (NovaSeq with Kapa enzyme; StJude dataset). Listed
are chromosome, position (hg19), mutation context, ploidy for each mu-
tations. Also listed are the MAF, mutant allele counts (Mut), total coverage
(Tot) for each replicate of each lane output for Normal, Tumor, and two
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dilutions (1:1000 and 1:5000). For ploidy, 4v4 means 4 out of 4 allels are
mutated in cancer cells, 2v4 means 2 out of 4 allele are mutated; 1v4
means 1 out of 4 alleles are mutated; 4v6 means 4 out of 6 alleles are
mutated; 1v2 means 1 out of 2 alleles are mutated. The CleanLens allele
counts based on Phred score cutoff 30. *: BRAF V600E. Table S2c. De-
signed 19 substitution markers in COLO829 experiment (NovaSeq with
Q5 enzyme; StJude dataset). Listed are chromosome, position (hg19), mu-
tation context, ploidy for each mutations. Also listed are the MAF, mutant
allele counts (Mut), total coverage (Tot) for each replicate of each lane
output for Normal, Tumor, and two dilutions (1:1000 and 1:5000). For
ploidy, 4v4 means 4 out of 4 allels are mutated in cancer cells, 2v4 means
2 out of 4 allele are mutated; 1v4 means 1 out of 4 alleles are mutated;
4v6 means 4 out of 6 alleles are mutated; 1v2 means 1 out of 2 alleles
are mutated. The CleanLens allele counts are based on Phred score cutoff
30. *: BRAF V600E. N.D: PCR failure. Table S2d, Primers for the 19 substitu-
tion markers for COLO829 experiment. Table S3a. Mutation counts in
pediatric cancers (non-NBL and NBL) and adult cancers (COSMIC v82) are
listed in columns C,D,E. For COSMIC data, we also excluded markers with
population allele frequency (AF) >=0.1% (from ExAC database with TCGA
samples subtracted), and required mutation recurrence (Rec) to be >=1
(columns F, M, S), >=5 (columns G, N, T), and >=10 (columns H, O, U).
The number of C>T/G>A mutations in high error rate context for each
group are listed in columns J-O, with percentages of high error rate con-
texts summarized in columns P-U. Table S3b. Analysis of sequence con-
text of hotspot substitutions defined by Chang et al. (PMID: 29247016). In
total 947 hotspot substitutions mutated in 5 or more samples (column C)
are included. The gene name (column A), amino acid change (column B),
genomic substitutions (column D) were extracted from the source paper.
The mutational contexts were provided in columns E,F,G, in case multiple
mutations can cause the same amino acid change. C>T/G>A mutations
in high error rate contexts were indicated with orange color. Table S4.
List of 47 hybridization capture samples. Related to Fig. 5 and Fig. 7.
Table S5. List of 1663 whole genome samples. Related to Fig. 7. (XLSX
190 kb)

Additional file 2: Supplementary Figures S1-S13. Figure S1. Comparison
of mutant allele fraction (MAF) in diluted samples (y-axis) and undiluted
cancer cell line (x-axis). Figure S2. Copy-number status of cell line
COLO829 and ploidy of the 19 selected substitutions in this work. Figure
S3. Quality metrics of sequenced datasets. Figure S4. Heatmap of error
profiles across sequencing providers, sequencers, PCR enzymes, replicates,
and dilutions. Figure S5. HiSeq error profile under CleanDeepSeq. Figure
S6. Context dependency of C>T/G>A errors in HiSeq data under Clean-
DeepSeq. Figure S7. NovaSeq+Kapa error profile under CleanDeepSeq.
Figure S8. Context dependency of C>T/G>A errors in NovaSeq+Kapa
dataset under CleanDeepSeq. Figure S9. Context dependency of C>T/
G>A errors in NovaSeq+Q5 dataset under CleanDeepSeq. Figure S10.
False-postive introduced by “forced calling”. Figure S11. Error profiles in
downsampling of NovaSeq + Q5 dataset. Figure S12. Comparison of
standard pileup and CleanDeepSeq by using deepSNV on dilution experi-
ments. Figure S13. Comparison of standard pileup and CleanDeepSeq
by using MuTect on dilution experiments. (DOCX 5524 kb)
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