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Abstract

Background: DNase-seq and ATAC-seq are broadly used methods to assay open chromatin regions genome-wide.
The single nucleotide resolution of DNase-seq has been further exploited to infer transcription factor binding sites
(TFBSs) in regulatory regions through footprinting. Recent studies have demonstrated the sequence bias of DNase I
and its adverse effects on footprinting efficiency. However, footprinting and the impact of sequence bias have not
been extensively studied for ATAC-seq.

Results: Here, we undertake a systematic comparison of the two methods and show that a modification to the
ATAC-seq protocol increases its yield and its agreement with DNase-seq data from the same cell line. We
demonstrate that the two methods have distinct sequence biases and correct for these protocol-specific biases
when performing footprinting. Despite the differences in footprint shapes, the locations of the inferred footprints in
ATAC-seq and DNase-seq are largely concordant. However, the protocol-specific sequence biases in conjunction
with the sequence content of TFBSs impact the discrimination of footprint from the background, which leads to
one method outperforming the other for some TFs. Finally, we address the depth required for reproducible
identification of open chromatin regions and TF footprints.

Conclusions: We demonstrate that the impact of bias correction on footprinting performance is greater for DNase-seq
than for ATAC-seq and that DNase-seq footprinting leads to better performance. It is possible to infer concordant
footprints by using replicates, highlighting the importance of reproducibility assessment. The results presented here
provide an overview of the advantages and limitations of footprinting analyses using ATAC-seq and DNase-seq.
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Background
The discovery and characterization of cis-regulatory
elements (CREs) such as promoters, enhancers, and insula-
tors are instrumental in delineating the mechanisms of
transcriptional gene regulation. These tissue- and develop-
mental stage-specific regulatory elements reside in
nucleosome-free, accessible regions of the genome that are
hypersensitive to nuclease attack [1]. Digestion with the nu-
clease DNase I, coupled to high-throughput sequencing

(DNase-seq), was the first established genomic technique to
probe such open chromatin regions [2, 3] and was widely
applied in research consortia such as ENCODE [4, 5] or
the Roadmap Epigenomics [6]. A more recent technique,
the assay for transposase-accessible chromatin using se-
quencing (ATAC-seq), employs Tn5 transposase enzymes
that preferentially fragment and tag open regions [7]. Both
protocols determine genome-wide chromatin accessibility
and can locate distal and proximal CREs.
Transcription factors (TFs) bound at CREs are major

regulators of gene expression [8]. As protein-bound DNA
is more resistant to cleavage with DNase I, leaving behind
protected stretches of nucleotides or shortly “footprints”

* Correspondence: uwe.ohler@mdc-berlin.de
1Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical
Systems Biology, Berlin, Germany
2Department of Biology, Humboldt University, Berlin, Germany
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Karabacak Calviello et al. Genome Biology           (2019) 20:42 
https://doi.org/10.1186/s13059-019-1654-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1654-y&domain=pdf
http://orcid.org/0000-0002-0881-3116
mailto:uwe.ohler@mdc-berlin.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


[9], DNase-seq potentiates the inference of TF-bound
locations genome-wide (TF footprinting) [10, 11]. A
multitude of TF footprinting methods has been developed
to date [12], which can be grouped under three general
categories: site-centric, segmentation-based, and integra-
tive site-centric methods. Site-centric methods model
footprints specifically for candidate TF binding sites
(TFBSs), using the shape or magnitude of the DNase-seq
signal around them [13–16]. Segmentation-based
methods, on the other hand, scan the DNase-seq signal
for footprint-like signatures (e.g., peak-trough-peak pat-
tern) and subsequently match the identified footprints to
putative TFs [17–21]. Integrative site-centric methods
model bound sites using combinations of diverse features,
such as motif match score, sequence conservation, and
variable length bins of DNase-seq signal around candidate
TFBSs [22–27].
The efforts to assay bound sites genome-wide via TF

footprinting have come under scrutiny by studies demon-
strating that DNase I cleaves the underlying DNA in a
non-uniform manner, where sequence composition dic-
tates the cleavage propensities (also known as sequence
bias) [28, 29]. This necessitates the discrimination of ac-
tual footprints from footprint-like signal profiles originat-
ing solely due to sequence bias [16]. To account for this, a
number of TF footprinting tools explicitly model and in-
corporate the bias background in their models or process-
ing pipelines, by calculating the ratio of observed to
expected DNase cuts for short sequences of fixed length
[12, 15, 20]. 6-mers have been the primary choice, as they
capture enough variation to represent the bias [16], in line
with the finding that the main sequence information con-
tent around a DNase cut site is confined to the flanking
three nucleotides on either side [28]. Open chromatin re-
gions [12, 16, 20] or DNase-seq experiments conducted
on deproteinized genomic DNA [12, 15] have been used
to infer these 6-mer cleavage propensities.
Recent efforts have explored the feasibility of TF foot-

printing with ATAC-seq [24, 25, 30]; however, this is not
yet studied as extensively as for DNase-seq. Furthermore,
like DNase I, Tn5 transposase is reported to have specific
sequence preferences [30, 31], but the effect of this on
ATAC-seq TF footprinting efficiency is not systematically
investigated. It is thus unclear whether the same set of
sites would be identified as footprints using ATAC-seq
and DNase-seq in a comparative setting. Here, we infer
footprints using data obtained from DNase-seq and a
modified ATAC-seq protocol in the same cell line, taking
the enzyme-specific sequence biases into account, and we
show that despite the difference in footprint shapes, the
locations identified as bound are in concordance. We re-
port that TF footprinting efficiency is closely linked to
clear discrimination of the footprint from the background,
which is dependent on the enzyme-specific biases and the

sequence content of the TFBSs, making one method more
preferable than the other for some TFs, with DNase-seq
outperforming ATAC-seq in most cases. Furthermore, we
demonstrate that bias correction has a greater impact on
footprint model performance for DNase-seq, compared to
ATAC-seq. We also address the largely open question on
library depth that is required for identification of open
chromatin regions and footprints, based on the irreprodu-
cible discovery rate (IDR) in conjunction with libraries
sequenced to different depths. Our analysis demonstrates
that careful consideration of the inherent sequence bias,
especially for DNase-seq, and assessment of reproducibil-
ity render TF footprinting feasible, even at moderate se-
quencing depths.

Results
A modified ATAC-seq protocol decreases mtDNA
contamination and improves agreement with DNase-seq
Early ATAC-seq libraries generated with the original
protocol have large numbers of reads mapping to mito-
chondrial DNA (mtDNA) that need to be discarded,
which severely impact the final library depth [7]. For an
ATAC-seq library where we followed this protocol, we
made the same observation in K562 cells, with 75% of the
reads mapping to mtDNA (Fig. 1a, Additional file 1: Table
S1). To decrease the mtDNA contamination, we evaluated
two different approaches: decreasing the time of cell lysis
to 5min in lysis buffer (from the original 10min) and
eliminating the lysis buffer step altogether by proceeding
directly to the transposition reaction. Of these, particu-
larly, the approach where no lysis buffer was used led to a
substantial improvement, with only 18% of the reads map-
ping to mtDNA in this library (Fig. 1a, Additional file 1:
Table S1), in line with previous reports [32]. Avoiding the
detergent lysis may help the mitochondrial membranes to
stay intact, with other forces such as osmotic pressure be-
ing adequate to permeabilize the nuclear membrane.
To adequately quantify the protocol-related differences of

ATAC-seq vs. DNase-seq, we also generated a single-hit
DNase-seq library in K562 cells and compared this along-
side three other publicly available single-hit DNase-seq
datasets (Additional file 1: Table S2) with the ATAC-seq li-
braries. Avoiding the usage of lysis buffer also increased the
read-level agreement between the two experimental ap-
proaches (Fig. 1b, Pearson correlations of read counts in
100 bp bins; Additional file 1: Figure S1A). This effect was
already partially visible in data from the short lysis protocol.
To investigate whether this observation is also reflected at
the region level of open chromatin, we called peaks with
JAMM [33] and identified the set of concordant peaks
using the irreproducible discovery rate (IDR) pipeline for
DNase-seq data where replicates were available (see the
“Methods” section) [34]. Using the peak signal values for
ranking, at the stringent 0.01 IDR threshold, we found
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80,300 JAMM-IDR peaks for DNase-seq. We also called
peaks with JAMM in the ATAC-seq datasets; since repli-
cates were not available for these libraries, the IDR proced-
ure was not applied here. We found 134,761 and 90,973
peaks for the original protocol and the modified protocol
with no lysis buffer usage, respectively. Compared to the
original protocol, the open regions identified with the
modified protocol are more TSS-proximal, with higher GC
content, and, in line with previous reports [32], have a
modestly reduced signal-to-noise ratio (Additional file 1:
Figure S1B). The ATAC-seq peaks found with the original
and modified protocols had 45,340 (Fig. 1c, left) and 37,934
(Fig. 1c, right) overlaps to DNase-seq peaks, respectively.
Using an extended unfiltered set of open regions as back-
ground for Fisher’s exact test, both overlaps were found to
be highly significant (p value < 2.2e−16), with a slightly
higher odds ratio for the modified protocol (13.15 vs.
10.75). This improved agreement at the open chromatin
region level, albeit moderate, provided further support that
avoiding detergent lysis increases the concordance between
ATAC-seq and DNase-seq.

Open chromatin regions are found reliably at moderate
library depths
The library depth of next-generation sequencing proto-
cols that is required for a given downstream application

is not always clear, especially when the regions of inter-
est are not as clearly defined as, for example,
protein-coding genes. To investigate the effect of library
depth on uncovering open chromatin regions, we gener-
ated 11 ATAC-seq libraries with different depths in
HEK293 cells using the protocol with no lysis buffer (4
high-, 3 medium-, and 4 low-depth libraries, Fig. 2a and
Additional file 1: Table S1). The individual libraries were
derived from 2 biological replicates. To obtain the high-
est possible depth representing these 2 samples (>
300,000,000 read pairs each), all technical replicates were
merged and denoted by “combined ATAC-seq repli-
cates.” Alongside the ATAC-seq experiments, we gener-
ated a single-hit DNase-seq library in HEK293 cells and
additionally downloaded and processed two publicly
available single-hit DNase-seq replicates (Additional file 1:
Table S2). We observed strong positive correlations be-
tween all ATAC-seq and DNase-seq libraries at the level
of genome-wide read counts (0.62–0.77 Pearson correla-
tions of read counts in 100 bp bins; Additional file 1:
Figure S2), and JAMM-IDR peaks called for the com-
bined ATAC-seq and DNase-seq replicates showed again
a significant overlap (Additional file 1: Figure S3A).
We then investigated to what extent the individual

ATAC-seq libraries sequenced at different depths could
capture the open chromatin regions uncovered by the

A

C

B

Fig. 1 Generating ATAC-seq libraries without the usage of lysis buffer increases agreement with DNase-seq. a Percentage of all reads that align to
the mitochondrial genome in K562 ATAC-seq libraries generated with the published protocol (10 min lysis), shorter lysis (5 min lysis), or without
using lysis buffer (no lysis buffer). b Agreement of these libraries with all K562 DNase-seq libraries as measured by Pearson correlations of read
counts in 100 bp bins genome-wide. c Overlap of peaks found in K562 DNase-seq data with peaks in ATAC-seq data generated using the
published protocol (left) and peaks in ATAC-seq data generated without using lysis buffer (right)
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combined replicates. To this end, libraries of similar depth
from different biological replicates were matched in a pair-
wise manner to get JAMM-IDR peaks (Additional file 1:
Table S3). This resulted in six total peak sets, correspond-
ing to two of each of high-, medium-, and low-depth li-
brary comparisons. Similar numbers of peaks were found
at high and medium depth, with a slight decrease at low
depth (Fig. 2b, Additional file 1: Figure S3A). Additionally,
these peak sets displayed notable agreement among them-
selves and with the peaks of the combined ATAC-seq
dataset (Fig. 2c, Additional file 1: Figure S3A). These ob-
servations suggested near saturation for the task of defin-
ing open chromatin regions, even though none of the
libraries was at saturation at these depths (Additional file 1:
Figure S4). Moreover, these six IDR peak sets showed 63%
to 72% overlap with the peaks of the DNase-seq data,
which exceeded the 61% observed for the combined
ATAC-seq data (Additional file 1: Figure S3A); even
though a higher number of peaks was found in the com-
bined dataset, IDR analysis of the individual datasets led
to more reproducible subsets of the total pool. In support
of this, the peaks found in the combined ATAC-seq data-
set that did not overlap any of the peaks in the six individ-
ual sets were predominantly low-signal, distal regions
(Additional file 1: Figure S3B). Taken together, replicate li-
braries of low to medium depth of 25–50 million reads
were sufficient for reliable identification of open chroma-
tin regions in human cell lines.

Sequence bias of ATAC-seq deviates from that of DNase-
seq
A multitude of studies has explored the efficacy of tran-
scription factor footprinting with DNase-seq. These studies
have demonstrated that the DNase I enzyme cleaves gen-
omic DNA in a non-random fashion, where it has different
cut propensities for different sequences, and this sequence
bias has adverse effects on the quality of footprinting when
left uncorrected [16]. Our lab has previously published a
site-centric computational footprinting tool where 6-mer
DNase bias has been incorporated into the model to esti-
mate the bias background in a multinomial mixture frame-
work [15]. In order to gain insights into the sequence bias
of ATAC-seq data, we calculated the 6-mer cleavage pro-
pensities of the Tn5 transposase, using available data from
libraries generated by Tn5 transposition on deproteinized
genomic DNA [31] (Additional file 1: Table S2). Compari-
son of the cleavage propensities in libraries generated using
human genomic DNA vs. D. melanogaster genomic DNA
revealed very similar results (Fig. 3a, Pearson correlation
0.94), indicating that the Tn5 transposase has specific se-
quence preferences which are consistent in data from the
two species. The dynamic range of this bias is on the same
order of magnitude as for DNase bias [15]. We next asked
how the sequence preferences of the Tn5 transposase com-
pare to those of DNase I. Using values inferred previously
from a single-hit DNase-seq experiment of deproteinized
K562 cells [15], we observed this correlation to be fairly

A

C

B

Fig. 2 The task of finding open chromatin regions saturates at medium depth. a Number of reads after processing in the 11 HEK293 ATAC-seq
libraries with different library depths. The 2 biological replicates are shown in blue and red, with the shades representing the technical replicates.
b Numbers of reproducible peaks found with the JAMM-IDR strategy at different depths. c The overlaps between 1 set of peaks in b shown for
high vs. medium (left), high vs. low (middle), and medium vs. low sets (right)
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low (Fig. 3b, Pearson correlation 0.30). This indicated that
these enzymes have largely distinct sequence biases.

ATAC-seq and DNase-seq generate different footprint
shapes for the same factor
In order to systematically examine how ATAC-seq com-
pares to the more established DNase-seq method in tran-
scription factor footprinting, we first focused on CCCTC
binding factor (CTCF), a factor with a well-known, high
information content binding site with substantial available
ChIP-seq data including in HEK293 cells (Additional file 1:
Table S4). We scanned the human genome for matches to
the CTCF binding model obtained from the JASPAR data-
base (Additional file 1: Table S5). As aggregate signal
across all candidate CTCF motif matches is expected to
be a mixture of footprint (bound sites) and background
(unbound sites), our method [15] was applied to infer the
bound subset by modeling the shapes of the CTCF foot-
prints in the DNase-seq and combined ATAC-seq repli-
cates. The shape of the aggregate signal at sites that
overlap CTCF ChIP-seq peaks was used to initialize the
footprint model. The background was modeled using
protocol-specific bias values. The resulting footprint and
background profiles revealed marked differences between
ATAC-seq and DNase-seq (Fig. 4a, left and right, respect-
ively). Most notable was a wider region of protection in
the ATAC-seq data, in line with a previous study [31]
which reported that the Tn5 transposase dimer needs
circa 30 nucleotides to bind DNA and that cleavage occurs
in the central 9 nucleotides. Another difference concerned
the background profiles, attributable to the distinct se-
quence preferences of these two enzymes. In short, from
the same set of CTCF motif matches, different footprint

and background models were learned using ATAC-seq
and DNase-seq datasets.

Footprinting using ATAC-seq and DNase-seq uncovers
common bound sites
This observation led to the question whether the same sites
would be identified as bound by a transcription factor when
using ATAC-seq and DNase-seq in the same cell type. Using
the protocol-specific footprint and background models
learned for CTCF, we calculated the footprint scores for all
considered motif matches, as the log odds of footprint vs.
background per site (footprint log-likelihood ratio (FLR), see
the “Methods” section). The FLR is thus derived in a
protocol-specific manner, solely from the single-nucleotide
resolution signal around motif sites, without relying on
additional features, and it accounts for sequence bias, mak-
ing it an ideal metric to compare the footprints from the
two protocols. As a positive FLR indicates a higher probabil-
ity of being bound vs. unbound, we selected the motif
matches that had a positive FLR in both replicates of the
assayed method. We again used IDR to find the reprodu-
cible subset of CTCF footprints among these sites, ranked
by FLR (FLR-IDR, see the “Methods” section). Following this
methodology for the combined ATAC-seq replicates, 12,651
motif sites had positive FLRs in both replicates, of which
8298 were found to be reproducible by FLR-IDR
(Additional file 1: Figure S5A). For the DNase-seq replicates,
of the 13,592 sites with positive FLRs, 8480 were reprodu-
cible. Nearly all of the reproducible footprints of ATAC-seq
and DNase-seq overlapped CTCF ChIP-seq peaks (98% and
96%, respectively; Additional file 1: Figure S5A). Further-
more, these reproducible footprints from the two experi-
mental protocols were also concordant, with 6170 sites

A B

Fig. 3 The sequence bias of the Tn5 transposase is distinct from that of DNase I. a Comparison of Tn5 transposition propensities of all 6-mers
(log10 scale) in two libraries generated using deproteinized genomic DNA from human (YH1) and D. melanogaster. b 6-mer transposition
propensities in the human library compared to cleavage propensities of DNase inferred previously from a single-hit DNase-seq experiment using
deproteinized genomic DNA from K562 cells
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(74%) overlapping (Fig. 4b). This analysis of ATAC-seq and
DNase-seq data thus identified many common sites as
bound, despite the difference in footprint shapes.
We next investigated the individual contributions of bias

modeling and replicates to this increased concordance and

accuracy. The contribution of the replicates comes from
the application of IDR as mentioned above, which creates a
systematic way to find relevant cutoffs for the footprint
score. To elucidate the contribution of bias, we first trained
CTCF footprint models in the combined ATAC-seq and

A

B

C

D

Fig. 4 The number of reproducible footprints scales with library depth. a CTCF footprints inferred from HEK293 ATAC-seq data (left) and DNase-
seq data (right). Vertical lines depict the edges of the motif match. b Overlap between reproducible CTCF footprints in the HEK293 DNase-seq
and combined ATAC-seq replicates, found using the FLR-IDR strategy. c Numbers of reproducible CTCF footprints in HEK293 ATAC-seq datasets at
different depths. d The overlaps between one set of footprints in c shown for high vs. medium (left), high vs. low (middle), and medium vs. low
sets (right). e The ratio of reproducible CTCF footprints (IDR footprints) or all CTCF motif regions with positive footprint scores (all footprints) that
overlap CTCF ChIP-seq peaks, in all six individual sets at different depths (Additional file 1: Table S3). Red dashed line indicates this ratio for all
considered CTCF motif sites
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DNase-seq replicates, as outlined above, but using a uni-
form background, which is equivalent to no bias correction
(see The “Methods” section). We then compared the
sensitivity-specificity trade-off between the bias-corrected
and uncorrected models, for both DNase-seq and
ATAC-seq (Additional file 1: Figure S5B; IDR thresholds
agreed well with observed specificity). Bias correction in-
creased the sensitivity of only DNase-seq, and the specifi-
city was not affected for either method. Moreover,
correcting bias in DNase-seq had a greater impact than cor-
recting bias in ATAC-seq on the CTCF footprint score cor-
relations between the two experimental methods
(Additional file 1: Figure S5C). To investigate this further,
we trained footprint models with and without bias correc-
tion for three additional transcription factors (MAZ, REST,
and YY1) with available ChIP-seq data in HEK293 cells.
We compared the model performances using the area
under the precision-recall curve for both ATAC-seq and
DNase-seq (Additional file 1: Figure S5D). This again re-
vealed a larger impact of bias correction on model perform-
ance for DNase-seq compared to ATAC-seq, including a
rare case in which correction leads to decreased perform-
ance. This observation may result from the factor not leav-
ing a footprint due to a short residence time on chromatin
and thus true bound sites showing signals that resemble
the bias background. In any case, DNase-seq bias correc-
tion had a more pronounced effect on TF footprinting than
ATAC-seq bias correction.

Number of reproducible footprints scales with library
depth
Previous studies that inferred cell type-specific TF binding
site annotations from DNase footprint data typically used
very large datasets (with hundreds of millions of reads per
cell type) [10, 17]. To investigate the feasibility of foot-
printing at lower library depths, we next conducted the
analysis on the 11 individual ATAC-seq libraries. We used
the same setup for pairwise comparisons as for peak call-
ing (Additional file 1: Table S3), this time to find reprodu-
cible CTCF footprints at different library depths. Even
though the numbers of motif matches that had positive
footprint scores were in the same range for all analyzed
pairs, the numbers of reproducible footprints gradually
declined with decreasing depth (Fig. 4c, Additional file 1:
Figure S5A). This indicated that, unlike peak calling, foot-
printing efficiency did not saturate and rather followed
the library complexities at these depths (Additional file 1:
Figure S4). However, the footprints at distinct depths had
substantial overlaps with each other and also constituted
almost perfect subsets of the footprints found in the com-
bined ATAC-seq data (Fig. 4d, Additional file 1: Figure
S5A). Moreover, these reproducible footprint sets consist-
ently showed 99% overlap with CTCF ChIP-seq peaks,
compared to around 80% when considering all motif sites

with positive FLRs (Fig. 4e). Taken together, even though
deeper sequencing is beneficial to footprinting coverage,
the assessment of reproducibility enables finding smaller
but equally reliable sets of footprints at lower depths.

Properties of footprinting apply to larger sets of
transcription factors
To elucidate whether the previous observations would
also apply more generally beyond CTCF, we conducted
the footprinting analysis on other factors. The limited
availability of ChIP-seq data in HEK293 cells motivated an
experimental setup to learn the footprint shapes in K562
cells, where ChIP-seq data is more abundant (Add-
itional file 1: Table S4), and use these models to find foot-
prints in HEK293 cells. To this end, all ATAC-seq data in
K562 cells were merged to get adequate depth (Add-
itional file 1: Table S1), and among the K562 DNase-seq
datasets, the second ENCODE replicate was chosen (Add-
itional file 1: Table S2). As proof of principle, we first con-
firmed that the CTCF footprint shapes were almost
identical to those learned from HEK293 data (Add-
itional file 1: Figure S6A). We then learned footprint
models from K562 data for 19 additional transcription fac-
tors with available ChIP-seq data (Additional file 1: Tables
S4 and S5). For a subset of these factors, namely NRF1,
CREB1, and USF1, the footprint shapes reflected the ex-
pected protection pattern in both ATAC-seq and
DNase-seq data; in line with the previous observations
from CTCF motif regions, the ATAC-seq footprints dis-
played a wider region of protection compared to the
DNase-seq footprints (shown for NRF1 in Additional file 1:
Figure S7A). The footprint scores (FLR) for these three
factors and CTCF were in close correspondence with the
associated ChIP-seq signal values in K562 cells, conferring
further confidence in these footprint models (Add-
itional file 1: Figure S6B-E). Thus, we used these models
to identify bound sites reproducibly with the FLR-IDR
strategy in HEK293 cells. As for CTCF, reproducible foot-
prints were found to be concordant between DNase-seq
and combined ATAC-seq replicates; at the level of individ-
ual HEK293 ATAC-seq datasets, library depth and the
numbers of reproducible footprints showed again a strong
dependency (shown for NRF1 in Additional file 1: Figure
S7B and C, respectively). As the observations could be
replicated for multiple factors, these results likely provide
insights into the general properties of the footprints.

Protocol-specific sequence biases influence footprinting
efficiency
Strong footprints that were concordant in both ATAC-seq
and DNase-seq data were only found for 4 of the 20
assayed factors. For most factors, clear footprints were ob-
served in 1 of the experimental methods, but not the
other. Therefore, we asked whether the distinct sequence
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biases of the 2 methods play a role in the
factor-dependent performance of footprinting. To get a
continuous measure for performance (as opposed to the
discrete visual assessment of footprint shapes), for all TFs
in both experimental settings, we calculated the area
under the receiver operating characteristic curve (AUC),
ranking candidate sites by FLR and considering those that
overlap ChIP-seq peaks to be true binding sites. In order
to assess how the performance is linked to the relationship
between the footprint and background models, the
Pearson correlations between these 2 models (e.g.,
footprint-background model similarities) for each TF were
calculated and compared to the AUCs. The AUCs nega-
tively correlated with the footprint-background model
similarities in both ATAC-seq and DNase-seq datasets
(Fig. 5a, b, correlations of − 0.36 and − 0.6, respectively),
indicating that when a footprint model is clearly distin-
guished from the background, it is more likely to explain
the transcription factor binding accurately. Moreover, the
differences per TF between ATAC-seq and DNase-seq
datasets for these 2 measures (AUCs and
footprint-background model similarities) also had a nega-
tive correlation (− 0.53, Fig. 5c), suggesting that the

experimental protocol which achieves better separation
between the footprint and background components is also
performing better for a given TF. Overall, DNase-seq foot-
printing had a clear advantage over ATAC-seq-derived
footprints (cf. Additional file 1: Figure S8A, which com-
pares the area under the precision-recall curve values).
As the background component is derived directly from

sequence bias and given our previous observation that
DNase-seq bias correction shows a stronger positive ef-
fect compared to ATAC-seq bias correction, we once
again explored the role of bias more explicitly. In par-
ticular, two of three factors for which ATAC-seq outper-
formed DNase-seq, MEF2A, and STAT1 had the lowest
DNase I cleavage propensities (e.g., sequence bias) over
their motif regions, among all assayed factors (Fig. 5d),
whereas the Tn5 transposition propensities for these fac-
tors were average (Additional file 1: Figure S8B). There-
fore, the background models learned from DNase bias
for these factors had footprint-like shapes, impeding the
clear separation between the two components, and thus
explaining the poor performance of DNase-seq (shown
for MEF2A in Additional file 1: Figure S8C). The equiva-
lent scenario was not as clear to observe for ATAC-seq,

A B

C D

Fig. 5 TF footprinting accuracy is linked to clear discrimination of footprint from the background. a, b AUCs vs. footprint-background model
similarities in (a) ATAC-seq data and (b) DNase-seq data. c Difference in AUCs (ATAC-DNase) vs. difference in footprint-background model
similarities (ATAC-DNase). d Average DNase I cleavage propensities over candidate TFBSs for all 20 assayed factors
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possibly due to the difference in the efficiency of bias
modeling (see the “Discussion” section). In summary,
due to the distinct sequence biases of ATAC-seq and
DNase-seq, the sequence content of transcription factor
binding sites can influence footprinting efficiency in a
protocol-specific manner.

Discussion
DNase-seq has been widely used to assay open chroma-
tin regions and TF footprints. The emergence and in-
creasing use of ATAC-seq necessitate a systematic
comparison of the two methods, especially for TF foot-
printing. Here, in a comparative setting, we have shown
that although the two methods have distinct sequence
biases and generate different footprint shapes for the
same TF, the sites they identify as bound are largely in
agreement. However, the sequence content of TFBSs
combined with protocol-specific sequence biases im-
pacts footprinting efficiency for some TFs, leading to lar-
ger differences for these factors and making one method
preferable to the other.
There are opposing views on the library depth re-

quired for TF footprinting. Whereas some studies re-
quire at least 200 million reads [10], others demonstrate
efficient TF footprinting at moderate sequencing depths
(50–60 million reads) [23, 30], in agreement with our re-
sults. These moderate numbers were reported for both
segmentation-based [30] and integrative site-centric [23]
tools, challenging the view that these approaches have
different depth requirements [10]. To get the highest
possible depth, pooling all replicates has been a common
practice in TF footprinting studies. However, our results
indicate that keeping the replicates separate to assess re-
producibility may lead to more accurate footprint pre-
dictions. This is especially relevant for low-depth
libraries, where this approach enables finding reliable
subsets of the total footprint pool.
Although the sequence bias of DNase I is well charac-

terized, there is still no consensus about the benefits of
bias correction for TF footprinting. Whereas some stud-
ies report increased accuracy upon bias correction [12],
others do not make this observation [23]. One explan-
ation for this might be the different approaches to
DNase signal processing and TF footprinting. Methods
that extensively smooth the signal or use features that
diverge from single-nucleotide resolution (e.g., binned
signal) might be less affected by bias. Since our method
has a single-nucleotide resolution, we have used
protocol-specific biases to model the background in our
TF footprinting approach, and we could demonstrate
significant improvements on footprinting when using
bias correction on DNase-seq data. While ATAC-seq
footprinting showed also promising results on par with
DNase-seq in HEK293 data (Additional file 1: Figure

S5D), its performance in K562 data was significantly
lower for almost all factors (Additional file 1: Figure
S8A). Here, ATAC-seq outperformed DNase-seq only
for three factors, two of which had low average DNase I
cleavage propensities over their motif regions that re-
sulted in a footprint-like background profile. The oppos-
ite was not as clear, i.e., for factors where DNase-seq
outperformed ATAC-seq, the average Tn5 cleavage pro-
pensities over the motif regions were not consistently at
the lower end of the spectrum. Furthermore, the range
of average cleavage propensities over all TFs was nar-
rower for Tn5 (Fig. 5d vs. Additional file 1: Figure S8B).
Recent studies have proposed several Tn5 bias correc-

tion methods, and in order to rule out that this observa-
tion resulted from our 6-mer-based approach (see the
“Methods” section for a detailed explanation of our ap-
proach), we used a different bias correction, in which a
17-bp-long gapped k-mer with eight meaningful posi-
tions is used to correct ATAC-seq data [35]. This more
sophisticated bias correction method did not improve
the footprint model performance (Additional file 1: Fig-
ure S8D). Taken together, correcting for Tn5 sequence
bias does either not have a strong impact on ATAC-seq
footprinting or neither of the approaches we used is
comparable in its impact to DNase-seq bias correction.

Conclusions
Our comparative analysis clearly confirms previous re-
ports that DNase cleavage bias might render footprints of
some factors “invisible” and that, in general, performance
to identify footprints can vary significantly across assays
and TFs. While an effective footprinting for all TFs may in
principle be achieved through a combination of assays
with different sequence biases, our results do not suggest
ATAC-seq for this purpose, due to its reduced perform-
ance; although, it is possible to achieve better performance
in deeper datasets as exemplified by our HEK293 data. Fi-
nally, in contrast to previous studies that reported no cor-
relation between ChIP-seq signal values and footprint
scores [20], we have previously observed and now observe
again a strong link between these two measures, implying
that the footprint score we have defined here is a quantita-
tive measure of occupancy. In summary, we expect that
the insights gained from this work will provide experi-
mental design and computational analysis guidelines for
future TF footprinting studies.

Methods
DNase-seq and ATAC-seq experimental procedures and
data preprocessing
DNase-seq and ATAC-seq assays were performed on hu-
man cell lines, K562 and HEK293 cells. K562 and
HEK293 cells were cultured in Iscove’s modified Dulbec-
co’s medium (IMDM) and Dulbecco’s modified Eagle’s
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medium (DMEM), respectively, both complemented
with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin.
DNase-seq experiments were conducted on 50 million

cells as previously described [36], with the minor modifi-
cation of using 5′ phosphorylated oligo 1b. Samples
digested with 12 U, 4 U, and 1.2 U total DNase I were
pooled. Libraries constructed from pooled digests were
sequenced on the Illumina HiSeq2500 platform using
the single-end sequencing mode with 50-bp reads. The
analysis was conducted in line with the official ENCODE
DNase-seq pipeline. Specifically, the reads were trimmed
to the first 20 bases, as only this portion corresponded
to the ends of DNase I-digested fragments, due to the
MmeI cleavage step in the protocol. Trimmed reads
were aligned to the hg19 build of the human genome,
using the Burrows-Wheeler Aligner (BWA) [37], tolerat-
ing up to 2 mismatches. Sequences aligning to more
than 4 locations were discarded. Further processing was
performed to filter out unwanted chromosomes and
problematic regions such as alpha satellites. In order to
remove PCR artifacts, reads that piled up (≥ 10 reads) at
a single base were discarded, if they constituted at least
70% of all reads in the surrounding 30-bp window.
ATAC-seq experiments were performed on 50,000

cells for the K562 samples and 100,000 cells for the
HEK293 samples, following the published protocol [7]
but increasing transposition time from 30min to 1 h for
all samples. In addition, lysis conditions were varied in
different experiments. For the K562 sample denoted
“10 min lysis,” cell lysis was performed via a 10-min cen-
trifugation in lysis buffer, as described in the original
protocol [7]. For the K562 sample denoted “5 min lysis,”
a shorter lysis of 5 min was used. For the K562 sample
denoted “no lysis buffer” and all HEK293 samples, the
centrifugation in lysis buffer step was omitted altogether,
and the cell pellets were taken directly to the transpos-
ition reaction. Libraries were sequenced on the Illumina
HiSeq2000 platform, with 100-bp paired-end reads.
Since fragments as short as 38 bp were expected,
adapter sequences were trimmed from the 3′ end of the
reads. Specifically, matches of any length to the
reverse-complemented Nextera Transposase Adapters
(CTGTCTCTTATACACATCTGACGCTGCCGACGA,
CTGTCTCTTATACACATCTCCGAGCCCACGAGAC)
were removed. Trimmed reads were aligned to the hg19
build of the human genome, using bowtie2 [38] with
parameter -X set to 1500, to allow correct alignment of
paired-end fragments up to 1500 bp. Only the reads that
aligned uniquely to a single location were retained, by
filtering out the multimappers marked with the XS:i flag
in the SAM file. PCR duplicates were removed using
Picard (http://broadinstitute.github.io/picard/). Further
processing was performed to filter out contigs as well as

the Y and mitochondrial chromosomes and retain only
the reads that aligned concordantly as a pair within the
expected fragment length range (38–1500 bp).
Library complexity and saturation were calculated

using the preseq program [39], using the c_curve and
lc_extrap functionalities. Correlations of read counts be-
tween libraries were calculated using the bamCorrelate
bins command of the deepTools suite, with the parame-
ters –corMethod pearson, -bs 100, --fragmentLength 1,
and –doNotExtendPairedEnds.

Peak calling
In order to find open chromatin regions, peak calling
was performed on the processed DNase-seq and
ATAC-seq datasets using JAMM [33], with parameters
-f 1 and -d y. Parameter -f 1 ensured taking only the 5′
ends of the reads into account which corresponded to
the actual cleavage/transposition sites. As duplicates
were already removed prior to peak calling, parameter
-d y was used to keep all processed reads.
Where replicates were available, peaks in agreement

between the two replicates were found using the irrepro-
ducible discovery rate (IDR) pipeline [34]. Specifically,
the “batch-consistency-analysis.r” script of the pipeline
was executed using the “signal.value” parameter, ranking
the peaks of the two replicates by signal intensity for
comparison. The “half.width” and “overlap.ratio” param-
eters were set to − 1 and 0, respectively, where true peak
widths were used without alteration and two peaks were
considered to be part of the same region if there was at
least 1 bp overlap between them. The number of peaks
that were found to be concordant at the stringent 0.01
IDR threshold was noted. Then, JAMM was once again
used, this time to call peaks on the two replicates to-
gether rather than individually, with the -f 1,1 parameter.
In this way, peaks were called where both replicates con-
sistently displayed signal enrichment. This peak set was
further truncated using the number obtained from the
IDR analysis, resulting in the final JAMM-IDR peaks.
For K562 ATAC-seq datasets, where replicates were

not available, reads of the modified dataset with no lysis
buffer were randomly subsetted to match the library
depth of the original protocol with 10 min lysis, and
peaks were called using JAMM as described above, with
the addition of the -e auto parameter for automatic esti-
mation of a minimum fold enrichment. These K562
ATAC-seq peak sets were used to infer signal to noise
ratios by calculating log2(average signal in the peaks/
average signal in the 300-bp upstream and downstream
flanking regions).

Sequence bias of Tn5 transposase
The sequence bias of the Tn5 transposase was calculated
in the form of 6-mers, similar to the previous calculations
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of DNase bias [15]. To this end, libraries generated by
Tn5 transposition on deproteinized genomic DNA (see
Additional file 1: Table S2) were preprocessed in the same
way as ATAC-seq datasets as detailed above. As the 5′
ends of the reads corresponded to the transposition sites,
the sequences of all 6-mers centered on these sites were
retrieved (e.g., transposition between the third and fourth
nucleotides). Occurrences of all these 6-mers in the data
were counted, and the relative frequencies were calculated
for each. Similarly, background genomic frequencies were
calculated by counting all 6-mers present in the mappable
portion of the genome. The frequencies observed in the
data were normalized to the background frequencies to
obtain the final transposition propensities per 6-mer. De-
viations from one indicated increased or decreased pro-
pensities, thus bias.
The Tn5 dimer cleaves the plus and minus strands

with a 9-bp offset, and consequently, most studies ana-
lyzing ATAC-seq datasets employ a correction where the
reads that align to the plus strand are shifted by + 4, and
the reads that align to the minus strand are shifted by −
5 bases, to update the read start sites to represent the
center of this 9-bp core sequence. However, we focus on
the actual 5′ ends of the reads, as these are the cleavage
sites, akin to the DNase I cut sites. Our first reason for
this is illustrated in Additional file 1: Figure S9A,
adapted from reference [40]. Tn5 shows sequence bias
over an extended ~ 20-bp region, centered around the
core 9 bp, where the central nucleotide is marked with a
star, and the read start is at position 0. The box on the
left indicates the 6-mer around the cleavage site for the
given read, and the box on the right indicates the 6-mer
around the cut site on the opposite strand. Therefore,
even though we explicitly correct for the 6-mer around
the cut sites for each read, implicitly, this can be thought
of as accounting for 12 nucleotides within this extended
region with bias. The 6-mer sequences denoted in the 2
boxes are symmetrical, i.e., the sequence in the left box
matches the reverse complement of the sequence in the
right box, which can be visually assessed in Add-
itional file 1: Figure S9A. This is also confirmed when
we derive 6-mer bias values around the cut sites only for
plus strand or minus strand reads, from libraries gener-
ated by Tn5 transposition on deproteinized genomic
DNA (see Additional file 1: Table S2 and Figure S9B).
The plus and minus strand-derived bias values show
very high correlation, which allows us to use a common
set of 6-mer bias values that can be applied to all reads
regardless of their strand. As noted above, the conven-
tional + 4/− 5 bp correction brings the cut site to the
same position in the plus and minus strand reads, right
upstream of the central nucleotide (shown as the line in
the middle of the box in Additional file 1: Figure S9C).
However, the 6-mers around this corrected cut site (the

box in Additional file 1: Figure S9C) are no longer sym-
metrical for the two strands. In this case, one would ei-
ther have to model the sequence bias separately for the
plus and minus strand reads or perform an unconven-
tional + 4/− 4 correction to make sure that the first base
is the central nucleotide for both plus strand and minus
strand reads. While these are also reasonable choices,
we propose our approach as a simple, viable alternative.
The average Tn5 transposition propensity in a candi-

date binding site of a given transcription factor was cal-
culated by retrieving and counting all 6-mers associated
with the site (without flanks). The counts were multi-
plied by the Tn5 transposition propensities of the associ-
ated 6-mers, summed and normalized by the total
number of 6-mers in the site. The same calculation was
applied for DNase, using the previously calculated
DNase cleavage propensities per 6-mer [15].

Scanning the genome for candidate binding sites
The SpeakerScan Toolset [41] was used to scan the hg19
build of the human genome with position weight matrices
(PWMs), to find candidate transcription factor binding
sites (TFBS). PWMs contain expected frequencies for each
nucleotide in a per-base fashion, modeling the binding se-
quence preferences of a given TF. A pseudocount of
0.0005 was added to each frequency in the PWMs, to en-
sure non-zero entries. At each PWM-sized window in the
genome, a TFBS score was calculated, as the log-likelihood
of the underlying sequence matching the PWM vs. a back-
ground model. The background was modeled with a
first-order Markov chain in a 500-bp local window, cen-
tered on the considered position. The top scoring 50,000
sites were taken along for transcription factor footprinting
in this study. To validate the significance of motif matches
for all PWMs, we simulated DNA sequences using the
PWM model (positive set) and a background modeled with
a first-order Markov chain from hypersensitive sites (nega-
tive set) and sampled TFBS scores from these positive and
negative sets. For a range of false-positive rates (FPR, up to
1 × 10−6), we found the corresponding TFBS scores and re-
ported the one closest to the lowest score in each motif set
and the associated FPR as an empirical p value. This dem-
onstrated that all our sets included significant motif
matches, with the lowest empirical p value being 5 × 10−5

(Additional file 1: Table S5).

Identification of transcription factor footprints
Transcription factor footprinting was performed with a
site-centric method from our lab as previously described
[15]. Specifically, candidate TFBSs were considered with 25
bp flanks upstream and downstream (parameter PadLen =
25). Parameter k = 2 was used to model two components,
one for the footprint and one for the background. Both
components were modeled as multinomials along the
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considered window size (TFBS + 50 bp), where each value
corresponded to the cleavage/transposition probabilities at
a given nucleotide. For the footprint component, these
probabilities were found by computing the aggregate
DNase or ATAC-seq signal (from the 5′ ends of the reads)
around the TFBSs that overlap ChIP-seq peaks for that fac-
tor and re-estimating the signal via expectation
maximization. For the background component, the
probabilities were calculated as the signal that would
be expected solely due to the protocol-specific bias
values, given the sequences around the candidate
TFBSs (parameter Background = “Seq”). As we had
previously not observed a distinct difference in per-
formance, the background was kept fixed and not
re-estimated (parameter Fixed = T). Once both com-
ponents were learned, footprint scores were calculated
for all candidate TFBSs, as the log odds of footprint
vs. background (footprint log-likelihood ratio, FLR).
To learn footprint models without bias correction,
our method was applied as described above, but with
a uniform, fixed background model that assumes
equal cleavage probabilities at each nucleotide.
The IDR strategy was applied here as well where repli-

cates were available, to find reproducible footprints. To
this end, candidate TFBSs with positive FLRs in both
replicates were chosen and ranked by FLR. IDR analysis
was performed with the same parameters as explained
for peak calling, where FLR values replaced signal inten-
sities. Again, the number of sites that passed the strin-
gent 0.01 IDR threshold was noted. Finally, TFBSs were
ranked by the average FLR from the two replicates and
truncated according to the IDR result. This led to the re-
producible FLR-IDR footprints.
Footprint model AUCs (both area under the ROC and

precision-recall curves) were calculated by fourfold
cross-validation. Briefly, the data was split into four
parts, and for TFBSs in each part, FLR was calculated
using footprint and background models learned from
the other three parts. TFBSs were ranked by FLR, and
those intersecting ChIP-seq peaks were labeled as the
true positives. The AUCs obtained from the four parts
were averaged to obtain the final value. Similarly, sensi-
tivity and specificity measures were also obtained using
models trained on three out of four parts of the data
and tested on the remaining part.
Correction of Tn5 sequence bias in K562 ATAC-seq

data with the seqOutBias [35] software was carried out
according to the guidelines provided in the vignette.
Specifically, --kmer-mask NXNXXXCXXNNXNNNXXN
for plus strand reads and --kmer-mask
NXXNNNXNNXXCXXXNXN for minus strand reads
were used to correct the signal. The corrected data was
then used to learn footprint models with our method, in
conjunction with a uniform, fixed background model.
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