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Abstract

Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques
aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading
approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity,
target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature
of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare
against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the
Infomap clustering algorithm (https://github.com/cerebis/bin3C).
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Background
The number of microbial organisms which can be readily
investigated using culture-based techniques is relatively
small in proportion to the Earth’s apparent total diversity
[1, 2]. Although concerted efforts have found the indi-
vidual conditions necessary to cultivate a relatively small
number of species in the laboratory [3–5], scaling-up this
discovery process to the remaining majority is daunting, if
not intractable.
Beyond the issue of cultivation, an environmental popu-

lation can possess at once phenotypic microdiversity and
within that group large differences in gene content. With
as little as 40% of genes shared within a species [6], this
accessory genome is thought to contribute significantly
to the dynamics of microbial adaptation in the environ-
ment [7–9]. Phylogenetic marker surveys (16S amplicon
sequencing), while still informative, stand essentially as
a proxy for broader discovery processes of the genomic
landscape, should they exist. The systematic extraction of
entire genomes from an environment will enable a more
thorough determination of the constituent species core
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and accessory gene content (pangenome). The extracted
pangenome and community profile will enable investiga-
tion of the functional basis of species fitness and niche
partitioning within an environment, and further longitu-
dinal experiments will permit studying the dynamics.
Metagenomics offers a direct culture-independent sam-

pling approach as a means to study the unculturable
majority. Recent advances in this field have begun to
make possible the systematic resolution of genomes
from metagenomes, so-called metagenome-assembled
genomes (MAGs) [10]. Tools designed to assess the qual-
ity of retrieved MAGs [11, 12] have brought with them
suggestions for categorical quality rankings (Table 1).
Marking an increasing acceptance, the Genomic Stan-
dards Consortium (GSC) recently introduced standard-
ized reporting criteria (Table 2) for the submission of
MAGs to public archives [13], and as of mid-2018, there
are more than 5200 MAGs registered in the Genomes
Online Database (GOLD) [14]. As retrieval methodologies
improve and new complex environments are studied, the
registration rate of new MAGs is expected to eventually
exceed that of culture-based studies [13].
Most current approaches to the accurate retrieval

of MAGs (also called genome binning or clustering)
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Table 1 A previously proposed standard for reporting the quality
of retrieved MAGs which uses only estimates of completeness
and contamination [11]

Rank Completeness (%) Rank Contamination (%)

Near ≥ 90 Low ≤ 5

Substantial ≥ 70 to < 90 Medium > 5 to ≤ 10

Moderate ≥ 50 to < 70 High > 10 to ≤ 15

Partial < 50 Very high > 15

Completeness and contamination are independently ranked and are intended to
be used in conjunction, e.g., “nearly complete and low contamination.” For
simplicity when counting MAGs, we have used equivalent ranks together, but only
refer to that of completeness, i.e., 90/5, 70/10, and 50/15

depend on longitudinal or transect data series, operat-
ing either directly on WGS sequencing reads (LSA) [15]
or on assembly contigs (CONCOCT, GroopM, metaBAT,
MaxBin2, Cocacola) [16–20]. The need for multiple sam-
ples can, however, pose a barrier both in terms of cost of
sequencing and the logistics of obtaining multiple sam-
ples as, for instance, with clinical studies. As an alter-
native single-sample approach, Hi-C (a high throughput
sequencing technique which captures in vivo DNA-DNA
proximity) can provide significant resolving power from
a single time point when combined with conventional
shotgun sequencing.
The first step of the Hi-C library preparation protocol

is to crosslink proteins bound to DNA in vivo using for-
malin fixation. Next, cells are lysed and the DNA-protein
complexes are digested with a restriction enzyme to cre-
ate free ends in the bound DNA strands. The free ends are
then biotin labelled and filled to make blunt ends. Next
is the important proximity ligation step, where blunt ends

Table 2 A small component of the reporting details for MAGs as
proposed by the Genomic Standards Consortium include ranks
of quality [13]

Rank Assembly Quality Criteria Additionally

Finished Single, validated
contiguous sequence
per replicon without
gaps or ambiguities, with
consensus error rate or
equivalent > Q50

Completeness and
contamination (%)

High-quality draft > 90, < 5 Presence of 23S,
16S, and 5S and≥
18 tRNAs.

Medium-quality draft ≥ 50, < 10

Low-quality draft < 50, < 10

The “finished” rank is left to future advances, while lower ranks are achievable now
by Hi-C-based genome binning methods. The additional criterion of rRNA genes
makes the “high-quality” rank challenging to achieve with current methods

are ligated under dilute conditions. This situation per-
mits ligation to occur preferentially among DNA strands
bound in the same protein complex, that is to say, DNA
fragments which were in close proximity in vivo at the
time of crosslinking. Crosslinking is then reversed, the
DNA is purified, and a biotin pull-down step employed to
enrich for proximity junction containing products. Lastly,
an Illumina-compatible paired-end sequencing library is
constructed. After sequencing, each end of a proxim-
ity ligation containing read-pair is composed of DNA
from two potentially different intra-chromosomal, inter-
chromosomal, or even inter-cellular loci.
As a high-throughput sequencing adaptation of the

original 3C (chromosome conformation capture) proto-
col, Hi-C was originally conceived as a means to deter-
mine, at once, the 3-dimensional structure of the whole
human genome [21]. The richness of information cap-
tured in Hi-C experiments is such that the technique has
subsequently been applied to a wide range of problems
in genomics, such as genome reassembly [22], haplo-
type reconstruction [23, 24], assembly clustering [25], and
centromere prediction [26]. The potential of Hi-C (and
other 3C methods) as a means to cluster or deconvolute
metagenomes into genome bins has been demonstrated
on simulated communities [27–29] and real microbiomes
[30, 31].
Most recently, commercial Hi-C products ranging from

library preparation kits through to analysis services
[31, 32] have been announced. These products aim to
lessen the experimental challenge in library preparation
for non-specialist laboratories while also raising the qual-
ity of data produced. In particular, one recently intro-
duced commercial offering is a proprietary metagenome
genome binning service called ProxiMeta, which was
demonstrated on a real human gut microbiome, yielding
state-of-the-art results [31].
Here, we describe a new open software tool bin3Cwhich

can retrieve MAGs from metagenomes by combining
conventional metagenome shotgun and Hi-C sequenc-
ing data. Using a simulated human fecal microbiome, we
externally validate the binning performance of bin3C in
terms of adjusted mutual information and B3 precision
and recall against a ground truth. Finally, for a real micro-
biome from human feces, we compare the retrieval perfor-
mance of bin3C against that published for the ProxiMeta
service [31].

Method
Simulated community
To test the performance of our tool on the task of
genome binning, we designed a simulated human gut
microbiome from 63 high-quality draft or better bacterial
genomes randomly chosen from the Genome Taxonomy
Database (GTDB) [33]. Candidate genomes were required
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to possess an isolation source of feces while not specifying
a host other than human. To include only higher quality
drafts, the associatedmetadata of eachwas used to impose
the following criteria: contig count ≤ 200, CheckM com-
pleteness > 98%, MIMAG quality rank of “high” or better,
and lastly a total gap length < 500 bp. For these metadata-
based criteria, there were 223 candidate genomes.
In addition to the metadata-based criteria, FastANI

(v1.0) [34] was used to calculate pairwise average
nucleotide identity (ANI) between the 223 candidate
genome sequences. As we desired a diversity of species
and mostly unambiguous ground truth, a maximum pair-
wise ANI of 96% was imposed on the final set of genomes.
This constraint controlled for the over-representation of
some species within the GTDB. Additionally, when two
or more genomes have high sequence identity, the assign-
ment process becomes more difficult and error-prone as
it challenges both the assembler [35] and creates ambi-
guity when assigning assembly contigs back to source
genomes.
The resulting 63 selected genomes had an ANI

range of 74.8 to 95.8% (median 77.1%) and GC con-
tent range of 28.3 to 73.8% (median 44.1%) (Fig. 1 and
Additional file 1: Table S1). A long-tailed community
abundance profile was modeled using a general-
ized Pareto distribution (parameters: shape = 20,
scale = 31, location = 0) (Additional file 2:
Figure S1), where there was approximately a 50:1
reduction in abundance from most to least abundant.

Lastly, before read simulation, genomes in multi-
ple contigs were converted to a closed circular form
by concatenation, thereby simplifying downstream
interpretation.

Read-set generation
To explore how increasing depth of coverage affects bin3’s
ability to correctly retrieve MAGs, Hi-C read-sets were
generated over a range of depths while keeping shot-
gun coverage constant. Hi-C depth was parameterized
simply by the total number of pairs generated, while shot-
gun depth was parameterized by the depth of the most
abundant community member.
From this definition, an initial read-set with high depth

of coverage was produced with 250× shotgun and 200
million Hi-C pairs. The shotgun dataset at this depth
constituted 18.2 M pairs.
Shotgun reads were generated using the metagenomic

shotgun simulator MetaART which wraps the short-read
simulator art_illumina (v2.5.1) [36, 37] (options: -M 100
-S 12345 -l 150 -m 350 -s 20 -z 1).
Hi-C reads were generated in two equal parts

from two different four-cutter restriction enzymes
(NEB names: MluCI and Sau3AI) using sim3C [37]
(options: -e ${enzyme} -m hic -r 12345
-l 150 -insert-sd 20 -insert-mean 350
-insert-min 150 -linear -simple-reads).
Two enzymes were used to mimic the library construc-
tion of the real dataset we also analyzed. Repositories

Fig. 1 Taxonomic distribution at the order rank of 63 selected bacterial genomes used in the simulated community. The number of each order is a
product of the taxonomic distribution of genomes existing in the GTDB, while the constraint that no two genomes be more similar than 96% ANI
restricts the over-representation of deeply sequenced species
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containing Sim3C and MetaART can be found at
https://github.com/cerebis/sim3C and https://github.
com/cerebis/meta-sweeper, respectively.
From the initial read-set, a parameter sweep was pro-

duced by serially downsampling the initial read-set by
factors of 2 using BBTools (v37.25) [38]. The initial
Hi-C read-set was reduced 4 times for a total of 5 dif-
ferent depths or 200M, 100M, 50M, 25M, and 12.5M
pairs (command: reformat.sh sampleseed=12345
samplerate=${d}). In terms of the community
genomes, depth of coverage for the subsampling with the
greatest reduction factor ranged from 3.5× to 171× for
Hi-C.

Ground truth inference
For the task of the whole-community genome bin-
ning, a ground truth was constructed by aligning
scaffolds resulting from the SPAdes assembly to the
“closed” reference genomes using LAST (v941) [39].
From the LAST alignments, overlapping source assign-
ment was determined using a methodology we have
described previously [35] and implemented as the
program alignmentToTruth.py (see Availability
section). An overlapping (soft) ground truth better
reflects the possibility of coassembly of sufficiently
similar regions among reference genomes and the
tendency that these regions cause breakpoints in assem-
bly algorithms, leading to highly connected assembly
fragments which belong equally well to more than
one source.

Performance metrics
To validate genome binning, we employed two extrin-
sic measures: adjusted mutual information (AMI) (sklearn
v0.19.2) and weighted Bcubed

(
B3). AMI is a normal-

ized variant of mutual information which corrects for the
tendency of the number of random chance agreements
between clusters to increase as the number of clusters
increases for a given problem size [40]. Weighted B3 is a
soft extrinsic measure which, analogous to the F-measure,
is the harmonic mean of the B3 formulation of precision
and recall. Here, precision is a measure of cluster homo-
geneity (like with like), while recall is a measure of the
cluster completeness. The B3 measure handles overlap-
ping (soft) clusters and better satisfies the constraints that
an ideal metric should possess, i.e., homogeneity, com-
pleteness, rag-bag, and size vs quantity when compared to
other metrics. While AMI treats all objects under study
as having equal value, weighted B3 allows the value of
objects to vary, and we chose to use contig length as a rep-
resentation of value for the problem of genome binning
[35, 41–43]. Therefore, the weighted B3 results measure
the fraction of the genome binned accurately, not just the
number of contigs.

In employing two measures, we seek to gain confidence
in their agreement while also obtaining the additional
insight afforded by the separate facets B3 precision and
recall.
To assess genome binning in terms of the number of

resolved MAGs inferred by CheckM [11], we have opted
to report results using only three ranks. For simplicity,
the ranks are named for their completeness, but also
employ the equivalently ranked contamination criteria,
i.e., nearly (≥ 90%,≤ 5%), substantially (≥ 70%,≤ 10%),
and moderately (≥ 50%,≤ 15%).

Real microbiome
To demonstrate bin3C on real data and make a direct
comparison to the proprietary Hi-C-based genome bin-
ning service (ProxiMeta), we obtained the publicly avail-
able high-quality combined whole-metagenome shotgun
and Hi-C sequencing dataset used in the previous study
[31]. The dataset derives from the microbiome of a
human gut (BioProject: PRJNA413092, Acc: SRR6131122,
SRR6131123, and SRR6131124).
For this dataset, two separate Hi-C libraries

(SRR6131122, SRR6131124) were created using two
different four-cutter restriction enzymes (MluCI and
Sau3AI). In using two enzymes, the recognition sites were
chosen to be complementary in terms of GC content.
When the libraries were subsequently combined during
the generation of the contact map, site complementarity
provided a higher and more uniform site density over a
wider range of target sequence. We conjecture that for
metagenome deconvolution, site complementarity is par-
ticularly helpful in obtaining a consistent signal from all
community members, while higher site density improves
recovery of smaller assembly fragments.
All read-sets were obtained from an Illumina HiSeq

X Ten at 150 bp. After cleanup (described below), the
shotgun read-set (SRR6131123) consisted of 248.8 million
paired-end reads, while the 2 Hi-C libraries consisted of
43.7million (SRR6131122) and 40.8million (SRR6131124)
paired-end reads.

Initial processing
Read cleanup is occasionally overlooked in the pursuit
of completing the early stages of genomic analysis. This
initial processing step is however essential for optimal
shotgun assembly and particularly for Hi-C read map-
ping where remnants of adapter sequence, PhiX, or other
contaminants can be a significant noise source.
A standard cleaning procedure was applied to all

WGS and Hi-C read-sets using bbduk from the BBTools
suite (v37.25) [38], where each was screened for PhiX
and Illumina adapter remnants by reference and by
kmer (options: k=23 hdist=1 mink=11 ktrim=r
tpe tbo), quality trimmed (options: ftm=5 qtrim=r

https://github.com/cerebis/sim3C
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trimq=10). For Hi-C read-sets, only paired reads
are kept to expedite later stages of analysis. Shotgun
assemblies for both simulated and real read-sets (Table 3)
were produced using SPAdes (v.3.11.1) [44] in metage-
nomic mode with a maximum kmer size of 61 (options:
-meta -k 21,33,55,61).

Hi-C read mapping
As bin3C is not aimed at assembly correction, we opted to
use assembly scaffolds rather than contigs as the target for
genome binning, electing to trust any groupings of contigs
into scaffolds done by SPAdes.
Both simulated and real Hi-C reads were mapped to

their respective scaffolds using BWA MEM (v0.7.17-
r1188) [45]. During mapping with BWA MEM, read pair-
ing and mate-pair rescue functions were disabled and
primary alignments forced to be the alignment with low-
est read coordinate (5′ end) (options: -5SP). This latter
option is a recent introduction to BWA at the request of
the Hi-C bioinformatics community. The resulting BAM
files were subsequently processed using samtools (v1.9)
[46] to remove unmapped reads and supplementary and
secondary alignments (exclude filter: -F 0x904) then
sorted by name and merged.

Contact map generation
The large number of contigs (> 500,000) typically
returned from metagenomic shotgun assemblies for non-
trivial communities is a potential algorithmic scaling
problem. At the same time, biologically important con-
tigs can be on the order of 1000 bp or smaller, challenging
the effective analysis of metagenomic datasets from both
sides.
A Hi-C analysis, when conducted in the presence of

experimental biases, involves the observation of proxim-
ity ligation events, which in turn rely on the occurrence of
restriction sites. The signal we desire to exploit is there-
fore not smoothly and uniformly distributed between and
across all contigs. As a counting experiment, the short-
est contigs can be problematic as they tend to possess a
weaker signal with higher variance; as a result, they can
have a deleterious effect on normalization and clustering
if included. Therefore, bin3C imposes constraints on min-
imum acceptable length (default, 1000 bp) and minimum
acceptable raw signal (default, five non-self observations)

for contig inclusion. Any contig which fails to meet these
criteria is excluded from the clustering analysis.
With this in mind, bin3C constructs a contact map

from the Hi-C read-pairs. As in previous work [27], the
bins pertain to whole contigs and capture global interac-
tions, which work effectively to cluster a metagenome into
genome bins. In doing so, we make the implicit assump-
tion that assembly contigs contain few misassemblies that
would confound or otherwise invalidate the process of
partitioning a metagenome into genome bins.
bin3C can also optionally construct a contact map

binned on windows of genomic extent. These maps are
not used in the analysis per se but can be used to plot
visual representation of the result in the form of a heatmap
(Additional file 2: Figure S2).

Bias removal
The observed interaction counts within raw Hi-C con-
tact maps contain experimental biases, due in part to the
factors such as mappability of reads, enzyme digestion
efficiency, in vivo conformational constraints on accessi-
bility, and restriction site density. In order to apply Hi-C
data to genome binning, a uniform signal over all DNA
molecules would be ideal, free of any bias introduced by
the factors mentioned above. Correcting for these biases
is an important step in our analysis, which is done using
a two-stage process. First, for each enzyme used in library
preparation, the number of enzymatic cut sites are tallied
for each contig. Next, each pairwise raw Hi-C interac-
tion count cij between contigs i and j is divided by the
product of the number of cut sites found for each contig
ni and nj. This first correction is then followed by gen-
eral bistochastic matrix balancing using the Knight-Ruiz
algorithm [47].

Genome binning
After bias removal, the wc-contact map (whole contig) is
transformed to a graph where nodes are contigs and edge
weights are normalized interaction strength between con-
tigs i and j. It has been shown that DNA-DNA interactions
between loci within a single physical cell (intra-cellular
proximity interactions) occur an order of magnitude more
frequently than interactions between cells (inter-cellular)
[27], and in practice, the signal from inter-cellular inter-
actions is on par with experimental noise. The wc-graph

Table 3 Assembly statistics for real and simulated human gut microbiomes

Dataset N50 L50 Contigs
≥ 1 kbp

All contigs Scaffolds ≥ 1 kbp All scaffolds Total extent (bp)

Real human gut 56,282 1277 97,760 670,379 95,521 652,723 719,550,669

Simulated human gut 29,009 1170 24,324 116,696 23,364 41,704 240,133,820
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derived from a microbial metagenome is then of low
density (far from fully connected), being composed of
tightly interacting groups (highly modular) representing
intra-cellular interactions and against a much weaker
background of experimental noise. Graphs with these
characteristics are particularly well suited to unsupervised
cluster analysis, also known as community detection.
Unsupervised clustering of the wc-graph has previously

been demonstrated using Markov clustering [27, 48] and
the Louvain method [29, 49]. In a thorough investiga-
tion using ground truth validation, we previously found
neither method to be sufficiently efficacious in general
practice [35]. Despite the high signal to noise from recent
advances in library preparation methods, accurate and
precise clustering of the wc-graph remains a challenge.
This is because resolving all of the structural detail (all
of the clusters) becomes an increasingly fine-grained task
as a graph grows in size and number of clusters. Clus-
tering algorithms can, in turn, possess a resolution limit
if a scale exists below which they cannot recover a finer
detail. As it happens, modularity-based methods such as
Louvain have been identified as possessing such a limit
[50]. For Hi-C-based microbiome studies, the complex-
ity of the community and the experiment is sufficient to
introduce significant variance within structural features
of the wc-graph. Wide variance in structural features,
such as the size of clusters and the weight of intra-
cluster edges relative to the whole graph, makes a com-
plete reconstruction difficult for algorithms with limited
resolution.
The state of unsupervised clustering algorithms has

however been advancing. Benchmarking standards have
made a thorough extrinsic validation of new methods
commonplace [51], and comparative studies have demon-
strated the capability of available methods [52]. Infomap is
another clustering algorithm, which like Markov cluster-
ing is based upon flow [53, 54]. Rather than considering
the connectivity of groups of nodes versus the whole, flow
models consider the tendency for random walks to persist
in some regions of the graph longer than others. Consid-
ering the dynamics rather than the structure of a graph,
flow models can be less susceptible to resolution limits
as graph size increases [55]. Additionally, the reasonable
time complexity and the ability to accurately resolve clus-
ters without parameter tuning makes Infomap well suited
to a discovery science where unsupervised learning is
required.
We have therefore employed Infomap (v0.19.25) to clus-

ter the wc-graph into genome bins (options: -u -z -i
link-list -N 10). Genome bins greater than a user-
controlled minimum extent (measured in base-pairs) are
subsequently written out as multi-FASTA in descending
cluster size. A per-bin statistics report is generated detail-
ing bin extent, size, GC content, N50, and read depth

statistics. By default, a whole sample contact map plot is
produced for qualitative assessment.
In the following analyses, we have imposed a 50-kbp

minimum extent on genome bins, partly for the sake of
figure clarity and as a practical working limit for prokary-
otic MAG retrieval. That is to say, being less than half the
minimum length of the shortest known bacterial genome
[56], it is unlikely that this threshold would exclude a can-
didate of moderate or better completeness. If a user is in
doubt or has another objective in mind, the constraint can
be removed.

Results
Simulated community analysis
We validated the quality of bin3C solutions as Hi-C depth
of coverage was swept from 12.5 M to 200 M pairs on
an assembly (Fig. 2). A sharp gain in AMI, B3 recall,
and B3 F-score was evident as Hi-C coverage rose from
12.5 M to 100 M pairs, while the gain between 100 M
and 200 M pairs was less pronounced. Accompanying
the upward trend for these first three measures was an
inverse but relatively small change in B3 precision. In
terms of AMI, the highest scoring solution of 0.848 was
at the greatest simulated depth of 200 M pairs. Concomi-
tantly, this solution had B3 precision, recall, and F-scores
of 0.909, 0.839, and 0.873, respectively. For this highest
depth sample, 22,279 contigs passed the bin3C filtering
criteria and represented 95.4% of all assembly contigs
over 1000 bp. There were 62 genome bins with an extent
greater than 50 kbp, with total extent of 229,473,556 bp.
This was 95.6% of the extent of the entire shotgun assem-
bly, which itself was 91.1% of the extent of the set of
reference genomes. The remaining small clusters of less
than 50 kb extent totalled 1,413,596 bp or 0.6% of the
assembly extent (Table 3), while unanalyzed contigs below
1000 bp represented 8,103,486 bp or 3.4%.
As a soft clustering measure, B3 can consider over-

laps both within predicted clusters and the ground
truth. Regions of shared sequence within our simulated
community meant that for 4.4% of assembly contigs,
the assignment in the ground truth was ambiguous,
being shared by two or more source genomes. Mean-
while, bin3C solutions are hard clusters placing con-
tigs in only one genome bin. Even without mistakes,
this leaves a small but unbridgeable gap between the
ground truth and the best possible bin3C solution. Due
to this, when overlap exists in the ground truth, the
maximum achievable B3 precision and recall will be less
than unity. Conversely, AMI is a hard clustering mea-
sure that requires assigning each of these shared contigs
in the ground truth to a single source genome through
a coin-toss process. It remains, however, that when
bin3C selects a bin for such contigs, either source would
be equally valid. For this reason, AMI scores are also
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Fig. 2 Validation of bin3C solutions using extrinsic measures and a ground truth. bin3C was run against five simulated experiments, with increasing
Hi-C depth of coverage while keeping shotgun coverage fixed. With diminishing returns from 100 M to 200 M pairs, the highest depth of coverage
produced the best scoring genome binning solution, with an AMI 0.849 and B3 precision, recall, and F-score of 0.909, 0.839, and 0.873, respectively

unlikely to achieve unity in the presence of overlapping
genomes.
Despite these technicalities, a quantitative assessment

of overall completeness and contamination is robustly
inferred using B3 recall and precision, as they consider
contig assignments for the entirety of the metagenomic
assembly. This is in contrast to marker gene-based mea-
sures of completeness and contamination, where only
those contigs containing marker genes contribute to
the score. The overall completeness of bin3C solu-
tions, as inferred using B3 recall, rose monotonically
from 0.189 to 0.839 as Hi-C depth of coverage was
increased from 12.5 M to 200 M pairs. At the same
time, the overall contamination, as inferred using B3

precision, dropped slightly from 0.977 to 0.909. Thus,
bin3C responded positively to increased depth of Hi-C
coverage while maintaining an overall low degree of
contamination.
We validated our simulation sweep using the marker

gene tool CheckM [11]. CheckM estimated that bin3C
retrieved 33 nearly complete MAGs using 12.5 M Hi-C
pairs, while 39 nearly complete were retrieved using
200 M pairs (Fig. 3). For the deepest run with the most
retrieved MAGs, genome bins deemed nearly complete
had a total extent which ranged from 1.56 to 6.97 Mbp,

shotgun depth of coverage from 3.34× to 161.2×, N50
from 5797 bp to 2.24Mbp, GC content from 28.0 to 73.9%,
and number of contigs from 4 to 787 (Additional file 2:
Figure S3 and Additional file 3: Table S2).
Broadening the count to include MAGs of all three

ranks: moderate, substantial, and nearly (Table 1), 37 were
retrieved at 12.5MHi-C pairs, which increased to 48 when
using 200 M Hi-C pairs. The small increase in the num-
ber of retrieved MAGs for the relatively large increase in
Hi-C depth of coverage may seem perplexing, particularly
in the face of a large change in the extrinsic validation
measures AMI, B3 recall, and F-score. To explain this, we
referred to the cluster reports provided by bin3C, where
for nearly complete MAGs, we found that the average
number of contigs increased from 77 at 12.5 M pairs
to 179 at 200 M pairs while the total number of con-
tigs increased from 2550 to 6968. Thus, although marker
gene-associated contigs are efficiently found at lower Hi-C
depth of coverage, obtaining a more complete repre-
sentation of each MAG can require significantly more
depth.
With respect to the contamination as inferred bymarker

genes, CheckM estimated a low median contamination
rate of 1.08% across all genome bins with completeness
greater than 70%. CheckM, however, also identified 4 bins
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Fig. 3 For the simulated community, CheckM was used to validate MAGs retrieved using bin3C for increasing depth of Hi-C coverage. The red
dashed line indicates the total number of reference genomes used in constructing the simulated community. The step with the highest depth and
consequently highest B3 recall retrieved 39 nearly, 4 substantially, and 5 moderately complete MAGs. Nearly complete MAG retrieval at 100 M pairs
was equal to that of 200 M, with 3 substantially and 5 moderately complete MAGs

where contamination was estimated to be higher than
10% and for which marker gene counting suggested that
2 genomes had merged into a single bin. We interrogated
the ground truth to determine the heritage of these bins
and found that each was a composite of 2 source genomes,
whose pairwise ANI values ranged from 93.1 to 95.8%.
Each pair shared an average of 131 contigs within the
ground truth with an average Jaccard index of 0.19, which
was significant when compared against the community-
wide average Jaccard of 6.5 × 10−4. Thus, a few members
of the simulated community possessed sufficiently simi-
lar or shared sequence to produce coassembled contigs.
Although the coassembled contigs were short, with a
median length of 2011 bp, the degree of overlap within
each pair was enough to produce single clusters for suf-
ficiently deep Hi-C coverage. Reference genomes cor-
responding to 2 of these merged bins fall within the
definition of intraspecies, with pairwise ANI values of
95.80% and 95.85%, respectively. The reference genomes
involved with remaining two bins are close to this thresh-
old, with ANI values of 93.1% and 93.5%. From this, we
would concede that although bin3C is precise, it is not
capable of resolving strains.

Library recommendations
The time, effort, and cost of producing a combined shot-
gun and Hi-C metagenomic dataset should be rewarded
with good results. As bin3C is reliant on both the quality
and quantity of data supplied, we felt it important to high-
light two factors beyond Hi-C depth of coverage which
can influence the results.
Shotgun sequencing data forms the basis on which Hi-C

associations are made, and therefore, the more thoroughly
a community is sampled, the better. To demonstrate how
this affects bin3C, we reduced the shotgun depth of cov-
erage of our simulated community by half (to 125×) and
reassembled the metagenome. Basic assembly statistics
for this half-depth assembly were N50 6289 bp and L50
4353. There were 43,712 contigs longer than 1000 bp
with an extent of 187,388,993 bp, and overall, there were
113,754 contigs with the total extent of 222,522,774 bp.
This contrasts to the full-depth (250×) assembly, which
had N50 30,402 bp and L50 1105, with 23,364 contigs
over 1000 bp with an extent of 232,030,334 bp, and 41,704
total contigs with an extent of 240,133,820 bp. Clearly, the
reduction in shotgun depth has resulted in a more frag-
mented assembly. In particular, the decrease in depth has
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lead to a 45-Mbp drop in total extent for contigs longer
than 1000 bp. This large proportional shift of assembly
extent to fragments smaller than 1000 bp is significant as
we have found that this length is an effective working limit
within bin3C.
We then analyzed the resulting contigs with bin3C over

the same range of Hi-C depth of coverage as before. Com-
parison of the AMI validation scores using the half and full
depth assemblies (Fig. 4) shows that, for the more deeply
sampled community, bin3C’s reconstruction of the com-
munity members greatly improved. CheckM estimation of
completeness and contamination followed a similar trend
(Additional file 2: Figure S4), where the best result at half
depth produced 25 nearly, 4 substantially, and 6 mod-
erately complete MAGs, compared against 39 nearly, 4
substantially, and 5 moderately complete at full depth.
A recent trend in the preparation of metagenomic

Hi-C libraries involves employing two different restric-
tion enzymes during the digestion step [31]. The enzymes
are chosen to have different GC biases at their restric-
tion sites. For a microbial community with a diversity
of species and consequently a wide range of GC con-
tent, the intent of this strategy is more uniform diges-
tion of the extracted DNA, and therefore coverage of
Hi-C reads across the metagenome. With wider and

more uniform coverage, so the logic goes, should come
improved results when performing Hi-C-based genome
binning.
As our work already involved simulating a two-enzyme

library, as used in recent real experiments [31], we elected
to repurpose this data to ascertain what gain was had
in using two enzymes rather than one alone. The two
enzymes used in our simulated libraries are Sau3AI and
MluCI. While the Sau3AI restriction site ^GATC is GC
balanced, the ^AATT restriction site of MluCI is AT-rich.
For our simulated community, source genomes ranged in
GC content from 28.3 to 73.8% and their abundances were
randomly distributed. For Sau3AI, these extremes of GC
content translated to expected cut site frequencies of 1 in
every 338 bp at 28.3% and 1 in every 427 bp at 73.8%. For
the less balanced MluCI, the expected cut site frequen-
cies were instead 1 in every 61 bp at 28.3% and 1 in every
3396 bp at 73.8%. Thus, relative to a naive four-cutter fre-
quency of 1 in every 256 bp, while the predicted density
of sites from Sau3AI is not ideal at either extreme, the site
density ofMluCI will be very high in the lowGC range but
very sparse at the high GC range.
For the simulated community full depth assembly, we

used bin3C to analyze three Hi-C scenarios: two sin-
gle enzyme libraries generated using either Sau3AI or

Fig. 4 Adjusted mutual information (AMI) scores for bin3C solutions at two different shotgun depths of coverage. For our simulated community,
shotgun libraries generated at 125× and 250× coverage demonstrate that although the depth of Hi-C coverage is crucial, so too is the depth of
shotgun sequencing
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MluCI and a two-enzyme library using Sau3AI andMluCI
together. The performance of bin3C was then assessed
against the libraries at equal Hi-C depth of coverage using
our ground truth. In terms of AMI, the performance of
bin3C for the single enzyme libraries was less than that
of the combined Sau3AI+MluCI library (Fig. 5). Although
the gain was small at lower depth, the advantage of a two
enzyme model grew as depth increased, where at 100 M
Hi-C pairs, the AMI scores were MluCI 0.63, Sau3AI 0.71,
and Sau3AI+MluCI 0.78.

Real microbiome analysis
We analyzed the real human gut microbiome (Table 3)
with bin3C using the same parameters as with the
simulated community along with a randomly gener-
ated seed (options: -min-map 60 -min-len 1000
-min-signal 5 -e Sau3AI -e MluCI -seed
9878132). Executed on a 2.6-GHz Intel Xeon E5-2697,
contact map generation required 586 MB of memory and
15m26s of CPU time, while the clustering stage required
11.6 GB of memory and 9m06s of CPU time. Of the
95,521 contigs longer than 1000 bp, 29,653 had sufficient
signal to be included in the clustering. The total extent
of contigs greater than 1000 bp was 517,309,710 bp for
the whole assembly, while those with sufficient Hi-C

observations totalled 339,181,288 bp or 65.6% of all those
in the assembly.
Clustering the contact map into genome bins, bin3C

identified 296 genome bins with extents longer than
50 kbp and 2013 longer than 10 kbp. The 296 clusters
longer than 50 kbp had a total extent of 290,643,239 bp,
representing 40.4% of the total extent of the assembly,
while clusters longer than 10 kbp totalled 324,223,887 bp
in extent or 45.1% of the assembly. For clusters greater
than 50 kb, shotgun depth of coverage ranged from 3.4×
to 498×, N50 ranged from 3119 to 297,079 bp, GC
content from 28.2 to 65.0%, total extent from 50,315
to 5,460,325 bp, and number of contigs from 1 to 495
(Additional file 4: Table S3).
We analyzed these 296 genome bins using CheckM

(Fig. 6) [11]. For the proposed MAG ranking standard
based on only measures of completeness and contami-
nation (Table 1), bin3C retrieved 55 nearly, 29 substan-
tially, and 12 moderately complete MAGs. In terms of
total extent, MAGs ranked as nearly complete ranged
from 1.68 Mbp to 4.97 Mbp, while for the substantially
complete ranged from 1.56 to 5.46 Mbp and moderately
complete ranged from 1.22 to 3.40 Mbp (Additional file 2:
Table S4). In terms of shotgun coverage, MAGs ranked
as nearly complete ranged from 5.9× to 447.5×,

Fig. 5 For a simulated community whose GC content varied between 28.3 to 73.8%, bin3C retrieval performance improved when simulated reads
were generated as if from a library prepared using a two enzyme digestion model (Sau3AI+MluCI), rather than if the library was prepared using
either enzyme in isolation
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Fig. 6 bin3C retrieved MAGs from a real human gut microbiome, ordered by descending estimate of completeness (black circles). Plotted along
with completeness is estimated contamination (gold circles). The y-axis grid lines pertain to thresholds used in quality assessment standards:
completeness of 50%, 70%, and 90% and contamination of 5%, 10%, and 15%. Although there is a sharp falloff in completeness after roughly 75
MAGs, estimated contamination remains consistently low

substantially from 4.3× to 416.4×, and moderately from
3.7× to 83.4×.
Using the more detailed ranking instead from the

recently proposed extension to MIxS (Table 2) [13], the
bin3C solution represented 17 high quality, 78 medium
quality, and 105 low-quality MAGs. For the high-quality
MAGs, shotgun coverage ranged from 10.7× to 447.5×
and extent from 1.86 to 4.10 Mbp (Additional file 2:
Table S5).

Comparison to previous work
The real microbiome we analyzed with bin3C was
first described in a previous study to demonstrate a
metagenomic Hi-C analysis service called ProxiMeta [31].
ProxiMeta is the only other complete solution for Hi-C-
based metagenome deconvolution with which to com-
pare bin3C. As ProxiMeta is a proprietary service rather
than open source software, the comparison was made by
reanalysis of the same dataset as used in their work (Bio-
project: PRJNA413092). As their study included a com-
parison to the conventional metagenomic binner MaxBin
(v2.2.4) [57], which was one of the best performing MAG
retrieval tools evaluated in the first CAMI challenge [58],
we have included those results here as well. It should be
noted that although MaxBin 2 is capable of multi-sample
analysis, all software was run against a single shotgun
sequencing sample. We have compared the CheckM vali-
dation of bin3C results to the CheckM validation of Prox-
iMeta and MaxBin as provided in their supplementary
data [59].

Regarding the simple ranking standard (Table 1), it
was reported that ProxiMeta retrieved 35 nearly, 29
substantially, and 13 moderately complete MAGs, while
MaxBin retrieved 20 nearly, 22 substantially, and 17 mod-
erately complete MAGs. On the same metagenomic Hi-C
dataset, we found that bin3C retrieved 55 nearly, 29 sub-
stantially, and 12 moderately complete MAGs (Fig. 7a).
Against MaxBin, bin3C retrieved fewer moderately com-
plete MAGs but otherwise bettered its performance.
Against ProxiMeta, bin3C had equivalent performance for
the substantially and moderately complete ranks, while
retrieving 20 additional nearly complete genomes, repre-
senting an improvement of 57%.
In terms of the more complex MIMAG standard

(Table 2), it was reported that ProxiMeta retrieved 10
high- and 65 medium-quality MAGs, while MaxBin
retrieved 5 high- and 44 medium-quality MAGs. The
bin3C solution retrieved 17 high- and 78 medium-quality
MAGs, which against ProxiMeta represents 70% improve-
ment in high-qualityMAG retrieval from the same sample
(Fig. 7b).
It was demonstrated previously that ProxiMeta pos-

sessed a higher binning precision than MaxBin and
resulted in a much lower rate of contamination [31].
We have found that the precision of bin3C improves on
the mark set by ProxiMeta. bin3C’s gains, when retriev-
ing MAGs in the highest quality ranks, are mainly due
to the rejection of fewer bins for excessive contamina-
tion. For all genome bins over 1 Mbp in extent, bin3C
had a median contamination rate of 0.8%, while for
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Fig. 7 In comparison with existing conventional and Hi-C-based single-sample metagenome binning tools, bin3C performs well. When compared
by ranking standards, based either on measures of completeness and contamination only (a) [11] or the recent GSC MIMAG reporting standard (b)
[13], bin3C retrieves a higher or equivalent number of MAGs in each category. The apparent stringency of the MIMAG high quality is primarily due to
the requirement that 5S, 16S, and 23S rRNA genes be present

ProxiMeta, median contamination was 3.5% and MaxBin
was 9.5%.

Discussion
We have introduced bin3C, an openly implemented and
generic algorithm which reproducibly and effectively
retrieves MAGs on both simulated and real metagenomic
data.
To demonstrate this, we assessed bin3C’s retrieval per-

formance on a simulated human gut microbiome, by way
of a ground truth and the extrinsic validation measures of
AMI, as well as B3 precision, recall, and F-score (Fig. 2).
bin3C proved to be consistently precise over a wide range
of Hi-C depth of coverage, while recall and the overall
quality of solutions improved substantially as more Hi-C
data was included. Although a high shotgun depth of cov-
erage is not necessary to obtain low contaminationMAGs,
greater depth of shotgun sequencing has a strongly pos-
itive influence on the recall and overall completeness of
MAG retrieval (Fig. 4).
Hi-C MAGs have a characteristically low rate of con-

tamination by foreign genomic content [31]. On a real
human gut microbiome, we have shown that bin3C
achieves a lower estimated rate of contamination than
both the conventional metagenome binner MaxBin [57]
and the recently introduced commercial Hi-C analysis
service ProxiMeta [31]. For all bins over 1 Mbp as deter-
mined by each approach, bin3C’s median contamination

rate was 0.8%, while MaxBin was 9.5% and ProxiMeta
was 3.5%.
This low contamination rate is the primary reason why

bin3C attained the most complete retrieval of MAGs from
the real human gut dataset when compared to MaxBin
and ProxiMeta (Fig. 6). Retrieving 20 more nearly com-
plete MAGs than ProxiMeta, bin3C achieved a gain of
57% on this previous best result (Fig. 7a). For the strin-
gent GSC MIMAG high-quality ranking, bin3C retrieved
17 MAGs from the gut microbiome, a gain of 70% against
the previous best result (Fig. 7b).
For best results, we recommend that Hi-Cmetagenomic

libraries be constructed using a two enzyme digestion
model.

Limitations and future work
The ground truth as determined in our work is imper-
fect and this has an impact on the extrinsic validation
metrics. Notably, when a simulated community pos-
sesses multiple strains of a single species, parts of a
contig can derive from one strain while other parts
of the same contig may be a coassembly of multiple
strains, and this is not accommodated by the ground
truth. The plethora of extrinsic validation measures from
which to choose also have their limitations and differ-
ences [42, 43, 52]. Though we chose measures which
we felt best suited our problem space, these are not in
widespread use. Different measures can have significantly
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different opinions on the agreement between a ground
truth and a given solution. Those with the lowest scor-
ing results are not always the most readily chosen for
publication.
The use of non-trivial simulated microbial communities

makes determining ground truth and measuring accuracy
difficult, and yet, these are a crucial element of the devel-
opment process if the resulting methods are to be robust
in real experimental use. Under such circumstances, we
work from the premise that achieving close to unity on
strong validation measures is unlikely to be possible. In
our work here, bin3C demonstrated a B3 precision vary-
ing between 0.909 and 0.977, while in work pertaining
to metagenome binning with multiple samples, precision
values as high as 0.998 were reported using a different for-
mulation of the measure [18]. In practical terms by using
CheckM as an operational measure of precision, bin3C
achieved a much lower rate of MAG contamination on
real data than has previously been reported.
Though marker gene-based validation with tools such

as CheckM or BUSCO [11, 12] are of great value and
easily applied to our work, as validators, their perception
is limited only to those sequences which contain marker
genes. Ideally, metagenome binning approaches should
aim to gather together all the sequence fragments per-
taining to a given genome and not only those which con-
tained marker genes. The generalizability of an approach
is not assured when the validation measure used in devel-
opment is systematically insensitive to some aspect of
the problem. Therefore, we believe refining the ground
truth determination process, to be independent of com-
munity complexity, is warranted and would be a useful
contribution.
Although bin3C can analyze sequences shorter than

1000 bp, it is our experience that allowing them into
the analysis does not lead to improvements in MAG
retrieval. We believe the weaker signal and higher vari-
ance in the raw observations for Hi-C contacts involving
shorter sequences are to blame. A weakness here is rely-
ing on the final assembly contigs or scaffolds as the subject
of read mapping, where the ends of sequences interrupt
alignment.
As assembly contigs are treated wholly in the genome

binning process, errors due to misassembled contigs
that combine sequence from different strain or species
genome(s) are propagated into the bin3C output. To com-
pensate for this, we have provided an optional helper
tool (split_ref.py) which can be used to uniformly
split longer contigs into smaller pieces of a target length.
Using this approach on our simulated community with
target lengths of 10 kbp and 5 kbp, we saw a marked
improvement in B3 precision and recall. We simultane-
ously observed a detrimental increase in MAG contami-
nation inferred by CheckMwhen these fragments became

small (5 kbp) and little change inMAG completeness, sug-
gesting that deeper investigation may be warranted. In
future work, one might take better advantage of the shot-
gun sequence data to identify potential locations of strain-
or species-misassembly and coassembly to target contig
splitting, or alternatively, apply Hi-C reads to the assembly
graph to deconvolve the graph itself.
Against the simulated community, the performance of

bin3C as indicated by the validation scores AMI and B3

recall, suggests that further gains in retrieval complete-
ness are possible (Fig. 2). In particular, strains of the same
species can fail to be resolved into separate bins. Improv-
ing the resolving power of bin3C or the addition of a post
hoc reconciliation process to separate these merged bins
would be worthwhile.
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