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We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics
data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than
existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple
genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables
alone; gene expression values are typically more prognostic of survival time than other genomics data types; and
gene modules/signatures are at least as prognostic as the collection of individual gene expression data.
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Background

Prediction of disease outcomes, such as individual patient
survival time, is critically important for cancer patients.
Traditional prognostic models that rely solely on clinical
variables, such as age and tumor stage, fail to account for
the molecular heterogeneity of tumors and thus may lead
to suboptimal treatment decisions [1]. To remedy this sit-
uation, many studies have incorporated gene expression
data in survival prediction [2-5].

Large-scale genomics projects such as The Cancer
Genome Atlas (TCGA) have generated detailed molec-
ular data on patients with a variety of cancer types. In
TCGA, six types of “omics” data have been collected on
the same set of patients: DNA copy number variation,
somatic mutation, mRNA expression, microRNA expres-
sion, DNA methylation, and expression of ~200 pro-
teins/phosphoproteins. The availability of multiple data
types has enabled researchers to address a variety of
important questions. For example, patients can be more
precisely classified into molecular subtypes based on
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integrative clustering of multiple genomics data types or
platforms [6-8]. In addition, it is possible to identify genes
that are related to patient survival time by decompos-
ing the expression of each gene into a component that is
explained by the methylation level and a component that
is not [9].

One unsolved issue in cancer genomics is the prognos-
tic value of integrated genomics and clinical data versus
clinical data only. Yuan et al. [10] compared models with
clinical data only versus models with both clinical and
genomics data on various cancer types and concluded
that genomics data provide only a limited gain in survival
prediction accuracy. In their analysis, however, poten-
tial differences among data types were not taken into
account. For breast cancer, for instance, the combination
of genomics and clinical data has been shown to improve
outcome predictions [11, 12]. A major goal of the present
work is to fully explore the predictive power of integrating
clinical and genomics data together.

A second unsolved issue is the prognostic value of
individual gene expression values (~ 25,000) versus a pre-
defined set of gene expression signatures or “modules”
(~500). Gene modules have been developed for repre-
senting distinct cell types (e.g., epithelial, immune, and
endothelial), specific biological processes, or activated
molecular signaling pathways. They have been shown to
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successfully capture signaling pathway activities or cell
type heterogeneity within tumors. We wish to investigate
whether individual gene expression data or existing gene
modules provide more accurate outcome prediction.

A third unsolved issue is the relative importance of
different types of genomics data in outcome prediction.
Different data types are collected at different costs and
also with widely varying feature spaces. Naturally, not all
data types are equally important in outcome prediction.
We aim to determine which data types may be omitted
from analysis without a significant reduction in prediction
accuracy.

An overarching methodological challenge in addressing
the aforementioned issues is the identification of genomic
variables predictive of survival time when the number of
variables is much larger than the sample size. Penalized
regression methods, such as least absolute shrinkage and
selection operator (LASSO) [13] and elastic net [14], are
commonly used to identify important genomic variables.
When variables are highly correlated, elastic net tends to
have better performance in prediction than LASSO [14].
However, both LASSO and elastic net are generic vari-
able selection procedures that do not distinguish different
types of data and thus tend to select more variables from
the data types with larger numbers of variables. Because
different data types capture different biological structures,
both large and small data types may carry important sig-
nals. Methods that treat all variables equally may not
be able to pick out independent signals from small data
types. In addition, LASSO and elastic net impose the same
penalty on all regression parameters, which may be overly
restrictive because the number of variables and the signal
strength vary drastically across data types.

Boosting is an alternative to penalization for model
estimation and prediction in high-dimensional set-
tings. It was originally developed for binary classifica-
tion in machine learning [15, 16]. The idea of boost-
ing is to iteratively reweight the observations, with
larger weights given to observations that are mis-
classified at the previous iteration, and apply simple
classifiers on the reweighted data; their results are
then combined to produce an aggregated classifica-
tion procedure. Boosting was later generalized as a
forward stagewise additive modeling method for sta-
tistical estimation [17, 18], which can be applied to
many problems, including regression analysis for sur-
vival data [19]. Because of its flexibility in model-
ing choices and stability in high-dimensional settings,
boosting has found applications in genomics studies;
see the references in Mayr et al. [20, 21]. As in
the case of LASSO and elastic net, however, exist-
ing boosting methods, such as component-wise boost-
ing [22], do not distinguish variables of different data

types.
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To overcome the limitations of LASSO, elastic net, and
existing boosting methods, we develop a novel method,
termed Integrative Boosting (I-Boost), which combines
elastic net with boosting. In I-Boost, the prediction rule
is constructed iteratively, where at each iteration, the
predictive power of each data type (conditional on the
current prediction rule) is evaluated separately and the
most predictive data type is selected to update the pre-
diction rule using elastic net. Thus, independent signal
from each data type can be incorporated into the pre-
diction rule, and small but predictive data types will
not be dominated by data types with large numbers of
variables. In addition, the penalties on the regression
parameters are learned data-adaptively and separately for
different data types. Herein, we demonstrate the advan-
tages of [-Boost using simulation studies and empirical
data from the TCGA on patients with eight different can-
cer types. More importantly, we use I-Boost to address
the aforementioned three unsolved issues in cancer
genomics.

Results and discussion

Background

Suppose that there are K types of clinical or genomics
predictors, with di components for the kth type (k =
1,...,K). Fork = 1,...,K, let X% denote the d-vector
of predictors of the kth type. Write X = xWw, . Xy,
where A’ denotes the transpose of A for any vector or
matrix A. Let T denote the survival time of interest. We
relate T to X through the proportional hazards model
[23], such that the conditional hazard function of T given
X takes the form of /o (t) exp(B’X), where ho(¢) is an arbi-
trary baseline hazard function, 8 = (8", ..., 8%y, and
BY is a di-vector of regression parameters associated
with X®.

The survival time T is subject to right censoring by C,
such that we observe Y = min(7,C) and A = I(T < C),
where I(-) is the indicator function. For a study with #
patients, the data consist of (¥;, A;,X;) i =1,...,n). The
partial likelihood [24] for 8 is

A
==
i=1 Zj;y,zy,- e’
LASSO and elastic net

Because X is high-dimensional, it is not feasible to esti-
mate 8 by maximizing the partial likelihood. One possible
remedy is to impose sparsity assumptions on 8 and adopt
penalization methods, such as LASSO [13] and elastic net
[14]. LASSO estimates 8 by maximizing the L;-penalized
log-partial likelihood function
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where d = Zle dy, and A is a tuning parameter. Elastic
net generalizes LASSO by including an Ly penalty, such
that the objective function becomes

d d
1
logL(B) —Aqa ) 1Bl +-A-) ) Bt
j=1 j=1

where « €[0, 1] is a tuning parameter that controls the rel-
ative magnitudes of the L; and L, penalties. (Wheno = 1,
elastic net reduces to LASSO.) The implementation of
LASSO and elastic net is described in the “Methods”
section.

For both LASSO and elastic net, the penalty term domi-
nates under large values of A, and the parameter estimates
tend to be small with some values being exactly zero.
Unlike LASSO, elastic net exhibits the grouping effect in
that the regression parameters for a group of highly cor-
related variables tend to be equal, which is desirable in
the context of gene selection [14]. Both LASSO and elas-
tic net impose the same penalization on each regression
parameter and thus do not distinguish different types of
predictors. As a result, these methods may be inefficient
when certain data types are much more predictive than
others.

|-Boost

To account for the differential predictive power of dif-
ferent data types, we propose a boosting algorithm
called I-Boost. Boosting is an iterative optimization
algorithm that minimizes a loss function £{Y,f(X)}
over a class of functions of predictors f(X), where
Y = (Y., VAL A, X = (X1,...,X,), and
£{Y,f (X)} measures the deviation of the prediction f(X)
from the outcome ). At each iteration, we update f(X)
additively by the value b(X;B) up to a scaling factor,
where b is a fixed basis function, and B is a vector of
parameters. Specifically, at the mth iteration, we find
B that minimizes UV f i1 (X) + b(X; B}, possi-
bly under some constraints on 8, where f,,_, is the
estimate of f at the (m — 1)th iteration. Then, we set
S (X)) = f,_1(X) + vb(X; B'™) for some fixed step
length factor v € (0, 1]. We terminate the iterations when
some stopping criterion is satisfied.

In I-Boost, we set the loss function £{),f(X)} to be
the negative log-partial likelihood function and the basis
function to be b(X;B"™) = (XY()/ﬂ(”’), ... ,Xﬁ,k)/ﬂ(m))’,
where Xl(k) is the vector of the kth type of predictors
for the ith patient, and the data type k is selected data-
adaptively. At each iteration, we search over all data types,
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select the one that yields the largest decrease in the loss
function value at the current iteration, and update (a sub-
set of) the regression parameters corresponding to the
selected data type; other parameters are fixed at their cur-
rent estimated values. To handle high-dimensional data,
we impose an elastic net penalty on 8 in the optimiza-
tion step. Effectively, we perform maximum penalized log-
partial likelihood estimation with an offset term f,,_; (X)
using a single data type at each iteration. Unlike existing
boosting methods, such as component-wise boosting, the
basis function in our case is a function of all variables of a
data type instead of a single variable. This choice of basis
function is motivated by the expectations that some data
types are much more predictive than others and that the
inclusion of less predictive data types may reduce the pre-
diction accuracy of the model. By considering each data
type separately, we perform selection on the data-type
level at each iteration.

We propose two versions of I-Boost, namely I-Boost-CV
and I-Boost-Permutation, which use cross-validation and
permutation, respectively, to choose the tuning parame-
ters of elastic net at each iteration. The permutation pro-
cedure randomly permutes the outcome variables in order
to remove association between the predictors and the out-
come, and the tuning parameters are chosen such that
no predictor is selected in half of the permuted data sets.
The procedures are described in detail in the “Methods”
section.

Simulation studies
We conducted simulation studies to evaluate the perfor-
mance of LASSO, elastic net, and the two versions of
I-Boost. We considered three simulation settings, with
different distributions of signals across the data types.
In all three settings, a relatively large proportion of the
signals is contributed by the clinical variables. The dis-
tributions of signals are shown in Fig. 1, and the details
of the simulation settings are provided in the “Methods”
section.

We assessed the performance of the methods by the
quality of prediction and parameter estimation. For pre-
diction, we report the correlation between the esti-

. - (k) .
mated risk score Zle X®’8"" and the true risk score

Zle x 'B(()k), where [Ai'(k) and ,B(()k) are the estimated
and true parameter vectors, respectively. A higher corre-
lation represents a greater degree of agreement between
the predicted and actual outcomes. We call this mea-
sure the risk correlation. For parameter estimation,
we report the mean-squared error (MSE), defined as

K ~ (k) k
YR IBT = BYIR

Figure 1 shows the risk correlation and MSE for elas-
tic net, LASSO, and the two versions of I-Boost based
on 1000 replications; the average number of variables
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Fig. 1 Simulation settings and results. a Prediction accuracy of LASSO, elastic net, I-Boost-CV, and I-Boost-Permutation measured by risk correlation
under three different settings. b The average number of variables selected by the four methods under three different settings. Different types of the
selected variables are represented by different colors. € MSE of the four methods under three different settings. The error is decomposed into errors
of parameters for different data types, as represented by different colors. d Number of signal variables and distribution of signals across different
data types for the three simulation settings. The number of signal variables is zero if the proportion of signals of the data type is 0%. Abbreviations
are as follows: GeneExp represents individual gene expression, Module represents gene module, Clinical represents clinical variable, CNV represents
copy number variant, Mutation represents somatic mutation, miRNA represents microRNA expression, and Protein represents protein expression
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selected for each data type is also shown. I-Boost-
CV always selects the largest number of variables, fol-
lowed by elastic net, LASSO, and I-Boost-Permutation.
I-Boost-CV selects a large number variables, because
it iteratively performs elastic net, and the final model
includes selected variables accumulated over all itera-
tions. By contrast, I-Boost-Permutation, though itera-
tive, performs LASSO (which generally selects fewer
variables than elastic net) with the tuning param-
eter selected by the very conservative permutation
method [25], so that it selects the least number of
variables.

For estimation, the MSE under I-Boost-CV or I-
Boost-Permutation is about 20-40% smaller than that
under LASSO or elastic net in all settings. Decom-
position of the MSE by data types reveals that the
MSE for data types with very weak or no signal
is small for I-Boost. This result shows that even
though I-Boost-CV selects a relatively large num-
ber of variables from these data types, the vari-
ables generally have very small estimated regression
parameters.

For prediction, the two I-Boost methods perform the
best overall. In all settings, I-Boost-CV produces more
accurate prediction than all other methods. In Set-
tings 1 and 2, where most signals are concentrated on
only one or two data types, I-Boost-Permutation pro-
duces more accurate prediction than both elastic net
and LASSO. In Setting 3, I-Boost-Permutation performs
similarly to elastic net, while LASSO performs worse
than [-Boost-Permutation. Between the two versions of I-
Boost, I-Boost-CV tends to yield better prediction than
I-Boost-Permutation, possibly because of the larger num-
ber of variables selected by I-Boost-CV. Thus, if the
main interest is the selection of relevant variables, then
one might consider I-Boost-Permutation for more con-
servative variable selection, even though this method
is somewhat inferior in prediction when compared to
I-Boost-CV.

We implemented LASSO, elastic net, and the two ver-
sions of I-Boost using R-3.2.2 on a 2.93-GHz Xeon Linux
computer. On average, performing LASSO, elastic net,
I-Boost-Permutation, and I-Boost-CV on one simulated
data set (that consists of 500 subjects, 6 data types,
and 1294 predictors) takes about 2 min, 14 min, 3 h,
and 38 h, respectively. I-Boost-CV is computationally
intensive because in each iteration, cross-validation is
conducted on a three-dimensional grid. By contrast, in
each I-Boost-Permutation iteration, the tuning param-
eter « is fixed at 1, no cross-validation is involved
in the selection of A, and LASSO is performed only
once for each data type. Therefore, I-Boost-Permutation
may serve as a computationally efficient alternative to
I-Boost-CV.

Page 5 of 15

Evaluation of LASSO, elastic net, and I-Boost using TCGA
data

We next evaluated the performance of the methods
using three TCGA data sets, namely the lung ade-
nocarcinoma (LUAD) data set, the kidney renal clear
cell cancer (KIRC) data set, and a pan-cancer data set
derived from ~ 1400 patients that represents eight dif-
ferent tumor types considered by Hoadley et al. [26];
see the “Methods” section for a detailed description of
the data sets and the evaluation procedure. For each
data set, we first split the data 30 times into training
and testing sets. We then performed LASSO, elastic net,
and the two versions of I-Boost for various combina-
tions of data types on patients from the training set of
each split. For each combination of data types and each
split, we calculated the risk scores for patients in the
testing set using the estimates from the corresponding
training set, and we used the concordance index (C-
index) [27] to evaluate the prediction accuracy of the risk
scores.

The average C-index values over the splits obtained
from LASSO and elastic net are given in Fig. 2. For the
KIRC and pan-cancer data sets, the prediction tends to
be much better than random (i.e., the C-index values are
much larger than 0.5). For the LUAD data set, which has
a small sample size, some of the models yield relatively
poor prediction (with C-index values smaller than 0.6).
For many models, the predictive performance of elastic
net is either similar or superior to LASSO.

For LASSO and elastic net, the models containing more
data types as predictors do not necessarily perform better
than those with fewer data types. One possible explana-
tion is that the extra data types may contain very little
relevant information on patient survival, such that adding
those data types introduces more noise than signal into
the model. In practice, however, it is challenging to decide
which data types to consider without prior knowledge of
their importance.

Figure 3 shows the average values of the C-index
obtained from elastic net, I-Boost-CV, and I-Boost-
Permutation for different models. For the LUAD, KIRC,
and pan-cancer data sets, both versions of I-Boost pro-
vide better prediction than elastic net in almost all cases.
The difference in prediction accuracy between I-Boost
and elastic net is particularly large when the sample size is
small and the number of predictors is large. The difference
is likely due to the fact that I-Boost involves the selection
of data types, so that the large and non-predictive data
types would not be selected in most iterations, and their
presence would not substantially worsen the prediction
accuracy. For the KIRC and pan-cancer data sets, I-Boost-
CV yields better prediction than I-Boost-Permutation,
whereas for LUAD, there are no clear differences between
the two methods.
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Prognostic value of integrated clinical and genomics data

To assess whether the genomic variables provide extra
predictive power in the presence of the clinical vari-
ables, we computed the net reclassification improvement
(NRI) [28, 29] values between the models with both
clinical and genomic variables (estimated by I-Boost-CV

or I-Boost-Permutation) and the model with clinical vari-
ables only (estimated by maximum partial likelihood esti-
mation). The NRI compares a model of interest with a
baseline model and measures how much a subject’s pre-
dicted risk under the model of interest, relative to that
under the baseline model, aligns with the subject’s survival
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time. For instance, an NRI of 0.2 means that by switch-
ing from the baseline model to the model of interest, the
proportion of high-risk subjects being reassigned a larger
predicted risk is on average larger, by a value of 0.2, than
the proportion of low-risk subjects being so reassigned;
here, high-risk or low-risk subjects refer, respectively, to
those with survival times shorter or longer than a fixed
threshold, which we set to be 3 years throughout the
paper. (See the “Methods” section for a theoretical defini-
tion of the NRI.) The average NRI values over data splits
are shown in Fig. 4.
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variables (estimated by I-Boost-CV or I-Boost-Permutation) and the
model with clinical variables only (estimated by maximum
partial-likelihood estimation) over 30 training and testing data set pairs
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The patterns of the results from I-Boost-CV and I-
Boost-Permutation are similar. For the KIRC and pan-
cancer data sets, the majority of the models that contain
both clinical and genomic variables yield positive NRI,
which implies that they provide better prediction than
the model with clinical variables only. Most NRI values
under I-Boost-CV are close to 0.2; in biomarker studies,
an NRI of 0.2 is considered an intermediate-level improve-
ment [30]. For the LUAD data set, only a few models
that contain both clinical and genomic variables provide
better prediction than the model with clinical variables
only. These results indicate that in certain cancer types,
genomic variables contribute to survival prediction in
the presence of clinical variables, and the magnitude of
the contribution can be large. When the same compar-
isons are made using LASSO or elastic net, however, the
inclusion of genomic variables in the models does not
appreciably improve prediction.

Evaluation of gene expression modules

To compare the performance of gene modules versus indi-
vidual gene expression data, we calculated the NRI values
between models with each type of gene expression data
separately. Specifically, for each combination of data types
other than individual gene expression data and gene mod-
ules, we computed the NRI between the model with those
data types and gene modules (estimated by I-Boost-CV
or I-Boost-Permutation) and that with those data types
and individual gene expression data. The NRI values are
shown in Fig. 5. Under both methods, the use of gene
modules leads to substantially better prediction than the
use of expression data of all individual genes for the LUAD
data set. For the KIRC and pan-cancer data sets, the per-
formance of the two types of gene expression data is
similar, and there is no strong evidence favoring gene
modules or individual gene expression data on the basis
of prediction accuracy. Nevertheless, because gene mod-
ules are smaller in number and much easier to interpret,
we generally recommend the use of gene modules over
individual gene expression data.

Comparison among genomics data types

To evaluate the relative prognostic value of each genomics
data type, we formed a series of nested models as fol-
lows. We began by setting the model with clinical variables
only as the first member of the series of models. At each
later step, we computed the NRI between each model that
contains all currently included data types and an extra
genomics data type and the model included at the pre-
vious step. The model that yielded the largest NRI was
set to be the next member of the series of models. The
process was repeated until all data types were included.
(Individual gene expression data were not considered in
this analysis.) At each step of the process, the data type
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expression data and models containing gene modules under the
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that yielded the largest improvement in predictive power
(over the data types already included) was selected, so that
more predictive data types tend to be included earlier,
and the order in which the data types entered the mod-
els reflects their relative importance. We performed this
procedure for elastic net and the two versions of I-Boost.
For the LUAD, KIRC, and pan-cancer data sets, the NRI
values and their 95% confidence intervals for the series of
models are plotted in Fig. 6, and the data type selected at
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each step is shown. We also plotted the C-index against
the number of variables selected for each model.

Because different methods vary in their abilities to
extract useful information from given data types, the
orders of data types determined by the methods are gen-
erally different. For the LUAD, KIRC, and pan-cancer data
sets, the NRI under I-Boost-CV or I-Boost-Permutation
tends to be positive or around zero with the inclusion of
each new data type. This indicates that I-Boost extracts
useful information from each additional data type and that
its performance tends not to be worsened by the inclusion
of additional variables.

I-Boost-Permutation always selects the smallest number
of variables, followed by elastic net and I-Boost-CV. This
finding is consistent with the conclusions from the simu-
lation studies. Because the C-index obtained by I-Boost-
Permutation is higher in most cases than that obtained
by elastic net, we conclude that I-Boost-Permutation pro-
vides the same or better prediction using fewer variables
than elastic net.

For the LUAD and pan-cancer data sets, gene mod-
ules are the first genomics data type selected under both
versions of I-Boost, and the inclusion of gene modules
leads to considerable improvement in prediction accu-
racy. For the KIRC data set, miRNA expression data are
first selected by I-Boost-CV, while gene modules are first
selected by I-Boost-Permutation. For I-Boost-CV, how-
ever, the model with clinical variables and gene modules
yields an NRI of 0.19, which represents a substantial
improvement over the model with clinical variables only.
The confidence intervals of the NRI include zero due to
the small sample sizes of the testing data sets. Neverthe-
less, the pattern of consistent positive NRI values shown
in Fig. 4 and the fact that the NRI values are averages over
30 data splits suggest that the improvement in prediction
accuracy is robust. For both versions of I-Boost, after the
inclusion of the first genomics data type, the improvement
in prediction accuracy with the inclusion of additional
data types is marginal. We conclude that gene modules
are overall the most predictive genomics data type, and
the remaining genomics data types tend not to provide
extra predictive power beyond clinical variables and gene
modules.

We also evaluated the prognostic value of genomics data
in the absence of clinical data. The average C-index values
for combinations of genomics data types over 30 training
and testing data splits for the LUAD, KIRC, and pan-
cancer data sets are given in Additional file 1: Fig. S1. The
maximum C-index values obtained using genomics data
types alone are 0.64, 0.72, and 0.74 in the LUAD, KIRC,
and pan-cancer data sets, respectively; they are substan-
tially smaller than the corresponding maximum values
obtained using both clinical and genomics data. For the
LUAD data set, miRNA expression data alone yield the
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largest C-index, whereas for the KIRC data set, the combi-
nation of miRNA expression and protein expression data
yield the largest C-index. For the pan-cancer data set, the
C-index values for combinations of genomics data types
with individual gene expression data are almost identical
and are larger than those obtained without individual gene
expression data.

Important predictors for the LUAD, KIRC, and pan-cancer
data sets

To obtain the final models of important predictors, we
performed I-Boost-Permutation on the LUAD, KIRC,
and pan-cancer data sets. The final models are shown
in Tables 1, 2, and 3 for the LUAD, KIRC, and pan-
cancer data sets, respectively. The predictors that are
also selected by LASSO, elastic net, and I-Boost-CV are
marked.

Age and pathological nodal status are negatively asso-
ciated with survival time in the LUAD, KIRC, and pan-
cancer data sets. Age has been reported to be prognostic
for many cancer types [31-33]. In the analysis of the
pan-cancer data set, cancer types were selected, which is
logical, since the survival time is known to depend on
cancer types [26]. Thus, the tissue of origin remains an
important prognostic factor. Among the gene modules,
Glycolysis_signature and MUnknown_24 are negatively
associated with survival time in the LUAD and pan-
cancer data sets; these two modules are correlated with
Hypoxia signatures among a set of 1198 TCGA breast can-
cer patients. Likewise, Pcorr_IGS_Correlation and Acti-
vate.Endothelium, which are negatively associated with
survival time in the pan-cancer data set, are correlated
with proliferation signatures; the latter are known to be
negatively associated with survival time.



Wong et al. Genome Biology (2019) 20:52

Table 1 Analysis results from I-Boost-Permutation for the TCGA
LUAD data set
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Table 2 Analysis results from I-Boost-Permutation for the TCGA
KIRC data set

Predictor Estimate Predictor Estimate
Module_UNC_MPYMT_NEU_Cluster_Median_ —0.2587 Protein_AR* —0.1056
BMC Med Genornics.2011_PMID.21214954 Module_IMMUNE_Bindea_Cell_CD8T cells_Median_ — 0069
Mutation_HMCN1* —0.0498 Immunity.2013_PMID.24138885*
Mutation_FAT3* —0.0363 Module_Mature_LuminaUp_Median_Nat.Med.2009_ —0.0676
Clinical_gender_female_0 —0.0082 PMID.19648928
. ) " Module_UNC_MM_Red2_Median_BMC.Med.Genomics.2011_  —0.0671
mMiRNA_hsa-miR-181c-5p —0.0040 PMID.21214954%
Mutation_AHNAK2* —00031  y1odule_GP7_Estrogen signaling: r=0.97 — 00580
Mutation_LAMAZ* —00001  iRNA_hsa-miR-10b-3p* — 00369
CNV_Beroukhim52.19p12-66* 00217 \todule_UNC_HS_Green1_Median_BMCMed.Genomics.2011_ — 0.0369
Module_UNC_Glycolysis_Signature_Median_ 0.0368 PMID.21214954
BMC Med.2009_PMID.19291283* MIRNA_hsa-miR-192-5p 00291
Module_IMMUNE_Bindea_Cell_Th2 cells_Median_ 0.0547 . « B
Immunity.2013_PMID.24138885* Protein_Src_pY416 00279
mIRNA_hsa-miR-582-3p* 01433 MIRNAhsa-miR-425-3p 00166
Clinical . 01586 Module_UNC_LUMINAL_Cluster_Median_ —0.0159
inical_age : BMCMed.Genomics.2011_PMID.21214954
Clinical_pathologic_N* 0.4700

Note: “Estimate” is the estimate of the log hazard ratio under the Cox proportional
hazards model, where a positive value represents an increase of the hazard. The
predictors are standardized to have unit standard deviation. Gender is coded as
female = 0 and male = 1; pathologic stage T is dichotomized into T1 (0) and T2-T4
(1); pathologic stage N is dichotomized into NO (0) and N1-N3 (1). Predictors that
are also selected by LASSO, elastic net, and I-Boost-CV are marked with an asterisk (*)

In contrast, signatures of CD8 T cells, non-inflamma-
tory breast cancer (nIBC and MM_Red2), and luminal
features (Mature_LuminalUp, GP7_estrogen signaling, HS_
Greenl, HS Green8, LUMINAL Cluster, Duke_ Module06_er,
Pcorr_Dasatinib_L_Correlation, and HS_Greenl8) are
positively associated with survival time in the KIRC or
pan-cancer data sets. The NEU_cluster module is pos-
itively associated with survival time in the LUAD data
set, which is biologically significant because this module
represents epithelial luminal cell differentiation and thus
tracks more differentiated and lower grade lung cancers.
The selected features, many of which are also selected by
other variable selection methods, have significant biolog-
ical implications and demonstrate the robustness of the
I-Boost methodology.

Conclusions

In this paper, we present a novel method, termed I-
Boost, for variable selection and outcome prediction
that is especially powerful when one wishes to simulta-
neously consider multiple genomics and/or proteomics
data types. We used simulation studies and real data
to demonstrate that in the presence of multiple data
types with diverse signal strength, I-Boost produces
better outcome prediction than LASSO and elastic
net. We proposed two versions of I-Boost, namely I-
Boost-CV and I-Boost-Permutation. I-Boost-CV yields

Module_UNC_HS_Green8_Median_BMC.Med.Genomics.2011_ —0.0129
PMID.21214954*

Protein_PRAS40_pT246* —0.0107
Module_UNC_Duke_Module06_er_Median_Mike_ —0.0027
PMID:20335537*

Module_Pcorr_squamoid_PLOS.2012_PMID.22590557 0.0052
Clinical_pathologic_N 0.0060
mIiRNA_hsa-miR-21-5p 0.0068
Module_UNC_MM_p53null.Basal_Median_Genome.Biol.2013_  0.0069
PMID.24220145%

Protein_Caveolin-1 0.0124
miRNA_hsa-miR-21-3p 0.0129
Protein_TIGAR 0.0259
miRNA_hsa-miR-92b-3p* 0.0274
miRNA_hsa-miR-223-3p* 0.0313
miRNA_hsa-miR-130a-3p* 0.0572
miRNA_hsa-miR-222-3p* 0.0583
Protein_IGFBP2* 0.0631
miRNA_hsa-let-7a-3p* 0.0686
Clinical_age 0.1101
Module_UNC_Scorr_Basal_Correlation_JCO.2009_ 0.1370
PMID.19204204*

Clinical_pathologic_T* 0.2470

Note: See Note of Table 1

more accurate prediction than I-Boost-Permutation,
but it generally selects many more variables and is
computationally more intensive. By contrast, I-Boost-
Permutation is computationally efficient and selects much
fewer variables, which may be preferable for follow-up
experiments.
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Table 3 Analysis results from I-Boost-Permutation for the TCGA
pan-cancer data set

Predictor Estimate
Module_Pcorr_Dasatinib_L_Correlation_ —0.1517
Cancer.Res.2007_PMID.17332353*

Module_UNC_MS_CD44_DOWN_ —0.0447
Median_PNAS.2009_PMID.19666588*
Module_UNC_HS_Green18_Median_ —0.0396
BMC.Med.Genomics.2011_PMID.21214954*
Module_UNC_MPYMT_NEU_Cluster_Median_ —0.0351
BMC.Med.Genomics.2011_PMID.21214954*
Module_UNC_MNOtch4_Median_ —0.0290
BMC.Med.Genomics.2011_PMID.21214954*

miRNA_hsa-miR-101-3p* —0.0282
Module_IMMUNE_Bindea_Cell_CD8 T cells_Median_ —0.0224
Immunity.2013_PMID.24138885*

Module_Shipitsin_CD44_B_Median_ —0.0184
Cancer.Cell.2007_PMID.17349583*

Protein_p38_pT180_Y182* —0.0182
CNV_wa.9.p* —00148
Module_Inflammatory_Breast_Cancer_491_nIBC_ —0.0033
CCR.2013_PMID.23396049*

mMiRNA_hsa-miR-34a-5p* 0.0001
Protein_Dvl3 0.0002
Protein_PAI-1 0.0008
Module_UNC_Glycolysis_Signature_Median_ 0.0012
BMC.Med.2009_PMID.19291283

CNV_Basal.13934-86* 0.0084
Module_UNC_ADM_S100AT0_A110NDGR1_Cluster_ 0.0147
Median_BMC.Med.Genomics.2011_PMID.21214954
Module_Pcorr_IGS_Correlation_NJEM.2007_PMID.17229949* 0.0162
Module_Extensive_Residual_Diesase_ER54_Median_ 0.0170
JAMA.2011_PMID.21558518*

Clinical_gender_female_0 0.0300
Module_UNC_Activate. Endothelium_Median_ 0.0317
Clin.Exp.Metastasis.2014_PMID.23975155*
Module_UNC_MUnknown_24_Median_ 0.0444
BMC.Med.Genomics.2011_PMID.21214954*

mMiRNA_hsa-miR-582-3p* 0.0575
Clinical_LUAD 0.0771
Clinical_HNSC 0.0787
Clinical_BLCA 0.0812
Clinical_KIRC 0.0915
Module_UNC_Duke_Module20_stat3_ 0.1088
Median_Mike_PMID:20335537*

Clinical_pathologic_N* 0.1725
Clinical_pathologic_T* 0.1943
Clinical_age* 0.3288

NOTE: For cancer type, BRCA is the reference group. For the interpretations of other
variables and parameters, see Note of Table 1
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Consistent with the current literature, we found that
clinical variables are strong predictors of survival time.
With I-Boost, we were able to build upon the clinical
variables and extract additional useful information from
genomic variables in order to improve the prediction; the
improvement that we obtained with I-Boost was con-
siderably larger than that obtained by either LASSO or
elastic net. We also compared the use of individual gene
expression data versus gene modules and found that the
use of gene modules leads to improvement in predic-
tion accuracy and more interpretable results. When we
considered the selected I-Boost models, clinical variables
(e.g., age, tumor size, and pathological nodal status) were
strong predictors of survival. The I-Boost methods also
selected several gene modules that were previously iden-
tified as prognostic of outcomes, whether positive or
negative.

Our study has limitations. The main limitation is
that the LUAD and KIRC data sets pertain to a rela-
tively small number of patients, with an even smaller
number of observed events. This limitation motivated
us to combine eight solid epithelial tumor types to
form a large pan-cancer data set. The analyses on the
pan-cancer data might not properly account for het-
erogeneity across different cancer types. Another lim-
itation of our study is that the quality of the clinical
data varies across different cancer types; for example,
the follow-up time for some cancer types was quite
short.

In summary, we demonstrated that the performance of
I-Boost is superior to that of elastic net and LASSO and
that the performance of gene modules is superior to that
of the totality of individual genes. The I-Boost method-
ology is applicable to any disease states where multiple
types of genomics and/or proteomics data are avail-
able and thus has potential applications beyond cancer
studies.

Methods

Data description

TCGA provides a large open-access database that includes
clinical and genomics data for patients with 33 cancer
types or subtypes. Herein, we focused on eight can-
cer types or subtypes, namely, LUAD, KIRC, colon ade-
nocarcinoma (COAD), rectal adenocarcinoma (READ),
lung squamous cell carcinoma (LUSC), bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
and head and neck squamous cell carcinoma (HNSC).
For clinical variables, somatic mutation, copy number
variation, mRNA expression, and miRNA expression,
data on 2272 patients were obtained from the Decem-
ber 22, 2012, Pan-Cancer-12 data freeze from the
Sage Bionetworks Repository Synapse [34]; the data
were previously processed and described by Hoadley
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et al. [26]. Protein expression data were downloaded
from Broad GDAC Firehose [35] for a subset of
1779 patients included in the data set of Hoadley
et al. [26].

Clinical variables included gender, age, pathological
stages T and N, and cancer type. In all analyses, COAD
and READ were considered as one cancer type. For nRNA
expression data, we used RNA-seq by Expectation-
Maximization (RSEM) [36] to quantify the transcript
abundances measured by RNA sequencing and used the
log2-transformed up-quantile-normalized RSEM values
of 12,434 genes. The RNA sequencing was performed
at the University of North Carolina at Chapel Hill [37-
39]. Gene level expression data are also available on
the Broad GDAC Firehose [35]. For mutation data, we
used the single nucleotide variant calls, which were
de-duplicated and re-annotated using the Ensembl ver-
sion 69 transcript database. A total of 130 genes with
non-synonymous mutations in more than 10% of the
whole sample were included for the analyses. The com-
bined mutation annotation format file is available from
the Synapse resource. For miRNA expression data, we
used the read count data for 305 normalized expres-
sions, which were compiled into an abundance matrix
for 5p and 3p mature miRBase strands [37]. For reverse-
phase protein arrays, we used the level 3 normalized
data for 136 proteins or phospho-proteins. For copy
number data, SNP6.0 array-based gene-level somatic
copy number alteration data were generated from the
GISTIC analysis [40]. The input data matrix is available
in Synapse at syn1710678. We used the copy number val-
ues for 216 cancer-specific segments, which are frequently
altered in cancer of various types including breast can-
cer, and segments for all chromosome arms (a total of 41
segments) [41, 42].

We defined gene modules as sets of co-expressed genes
that are considered to be functional units in breast cancer.
We built a collection of 497 gene modules. The modules
were constructed on the basis of 73 publications or results
from the Gene Set Enrichment Analysis [43]. A partial
list of the modules appears in Fan et al. [12]. Among the
modules, 461 are median expression values for homoge-
neously expressed genes, 33 are correlations of expression
values with predetermined gene centroids, and 3 are built
from previously published gene expression prognostic
models.

After removing patients with missing data, the total
sample size was 1420, including 202 LUAD patients and
195 KIRC patients. All survival times were censored at
5 years if the patients were still in the study at that time
point. For the pan-cancer data set, the median follow-
up time was 16.8 months, and the censoring rate was
77.6%. For the subset of LUAD patients, the median
follow-up time was 13.9 months, and the censoring rate
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was 71.3%. For the subset of KIRC patients, the median
follow-up time was 28.9 months, and the censoring rate
was 63.6%.

LASSO and elastic net

We implemented LASSO and elastic net using the R-
package “glmnet” [44] and used fivefold cross-validation
to select the tuning parameters. For elastic net, cross-
validation was performed over a two-dimensional grid of
(ar, 1), while for LASSO, @ was set to be 1. For elastic
net, the grid for o was chosen to be (0.05,0.1,0.2, .. .,1.0),
and a grid for A was chosen separately for each «
using the default settings of glmnet. (A minimum value
of 0.05 was considered for o, because o too close
to 0 may result in too many variables being selected;
in particular, no sparsity is imposed if « = 0.) To
make the selection procedure more stable, we repeated
the split and evaluation procedure five times, and
the cross-validation errors were averaged over the five
repetitions.

I-Boost
The I-Boost algorithm is given as follows:

1 Setfp,=0fori=1,...,n andlet
fO - (f(’),l; e ;fb,ﬂ)/'
2 Considerm=1,2,...
(a) Foragivenk,, € {1,...,K}, calculate

B = argmaxg {logL(k’”)(fm_l;ﬂ)
" (Bt ) |

using the coordinate-descent algorithm [44],
where

Q) o

" fi+X'B
e i
Lo i B) =
(f ﬂ) 1_[ f/"‘l’X}(k),ﬂ
i=1 ZithZ Y, €

is the partial likelihood with offset term f and
covariates XX, a,,, and 4,, are tuning

parameters, f = (f1,...,fs)’, and
d 1 dy
PPBia, )= ]a Z 1B + 5(1 —a) Z,sz
j=1 j:1

is the elastic net penalty. The selection of &y,
o, and A, is described below.

(b) Set fimi = fru_1i+ VX BOD fori =1,...,n
withv=0.1andf,, = i, finn)

At the mth iteration, only the regression parameters
corresponding to the &, th data type are updated. We refer
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to the d-vector with value 8 at the positions corre-
sponding to the &, th data type and zero elsewhere as the
current estimate at the mth iteration. The current estimate
at each iteration contributes to the final parameter esti-
mate additively, and the final parameter estimate is simply
the sum of the current estimates obtained from all steps
multiplied by v.

I-Boost-CV and I-Boost-Permutation use cross-validation
and permutation, respectively, to choose (K, @y, An)
at step 2(a). For I-Boost-CV, we adopt fivefold cross-
validation separately at each iteration over a three-
dimensional grid on {1,...,K}x[0.05,1] x (0, )»S,nax)) for
(ks Qs M), Where Aﬁ,‘,“ax) is a value large enough to
shrink the current estimate to zero.

For I-Boost-Permutation, we first perform LASSO sep-
arately for each data type X® (k = 1,...,K) with
tuning parameter )LE,],(), where Ai,’? is selected using the per-
mutation method proposed by Sabourin et al. [25]; the
permutation method is only applicable to LASSO. The
procedure is motivated by the principle that in a null
model, i.e., in the absence of any relevant predictors, the
tuning parameters should be chosen such that no vari-
able is selected. The permutation selection procedure first
generates hypothetical null models by randomly permut-
ing (Yi, Aj, fiu—1,i) B times at each iteration, so that in each
permuted data set, the association between the predic-
tors and the outcome (and the offset term) is removed.
The procedure then finds the smallest A such that no vari-
able is selected for each permuted data set and selects
the median of the B values of A. For the kth data type
(k = 1,...,K), let Agf) be the selected tuning parame-
ter and /35,? be the corresponding LASSO estimate. We
select k,, based on the partial-likelihood value at 8%,
ie, k, = argmaka(k) (fm_l;ﬁgf)), and set «;;; = 1 and
A = AKm),

Empirical studies suggested that a small value of the step
length factor v often improves and almost never wors-
ens the performance of boosting [45]. Therefore, it is
recommended that v is chosen to be as small as possi-
ble while the algorithm remains computationally feasible.
In the settings we have considered, the performance of
[-Boost is not sensitive to v within the range of v €
(0.05,0.5). Therefore, we set v to a moderately small value
of 0.1.

Conventional boosting methods require a stopping cri-
terion to avoid over-fitting. In our experience, however,
because the tuning parameters are selected separately at
each iteration for I-Boost, they eventually lead to shrink-
age of all (current) parameter estimates. Therefore, we
do not adopt a separate procedure to determine the
stopping time of the iteration. We terminate the iter-
ation when f,, remains constant for five consecutive
iterations.
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Simulation studies

In the simulation studies, we considered all data types
except individual gene expression data. For each sim-
ulation data set, we generated the predictors by sam-
pling without replacement whole vectors of predictors
from the TCGA pan-cancer data set. We generated the
survival time from a proportional hazards model with
the baseline hazard function /p(¢) = ¢ and gener-
ated the censoring time from an exponential distribution
with a mean chosen to result in censoring proportion
of about 50%. We set the sample size #n to 500 in all
settings.

The regression parameters were chosen to produce a
different proportion of signals across data types, where
the signal of data type k is defined to be Var(X(k)’ﬁg()),
and the predictors were standardized. The variables with
non-zero regression parameters, hereafter referred to as
signal variables, were chosen to be weakly correlated. We
considered three settings, with the distributions of signals
and number of signal variables shown at the bottom of
Fig. 1. In all settings, the signals of all data types sum to
1.2, and the regression parameters of signal variables of
the same data type are equal; based on simulation studies
not presented, the relative performance of different meth-
ods is very similar under different values of total signal. In
Setting 1, the clinical variables contain much stronger sig-
nals than the other data types. Mutation and copy number
variation data do not contain any signal. In Setting 2, all
signals are concentrated on the clinical variables and gene
modules, and the two data types equally share the signals.
In Setting 3, the clinical variables contain the most signals,
and the remaining signals are evenly distributed across the
other data types.

Because we considered a total of six data types, I-
Boost-CV is computationally demanding. To lessen the
computational burden, we set v = 0.2 instead of the value
0.1 used in real data analysis.

Assessment of prediction

To assess an analysis method, we split the data into 30
training and testing sets with a 3:2 ratio of sample sizes.
We used the R-package “sampling” [46] to perform the
data split, such that the distributions of the clinical vari-
ables in the training and testing sets are approximately
equal. We performed the analysis on the training sets, and
the results were assessed on the corresponding testing sets
using the C-index. For each split of the data, we repeated
this estimation-validation procedure on different com-
binations of data types as predictors. We only consider
combinations of data types that include clinical variables,
because clinical variables are almost always considered in
practice, and one of the main objectives of this paper is
to evaluate the prognostic value of the combination of
genomics and clinical data. The analyses were conducted



Wong et al. Genome Biology (2019) 20:52

on the 30 splits of the data and on the 48 combinations of
data types for the LUAD, KIRC, and pan-cancer data sets.

To quantify the prediction accuracy, we used the C-
index. Let T; be the survival time and X; be a vector of
predictors for the ith subject, and let 8 be a vector of
regression parameters. The risk score is defined as X 8. If
T; and X;B are continuous, then the C-index is defined as
PXB > X;ﬂ | T; < T)). The C-index is the probability
that for a random pair of subjects in which the first subject
has a shorter survival time, the risk score for the first sub-
ject is higher. Thus, C-index measures how well the risk
score aligns with the actual survival time. For each pair
of training and testing sets, we set 8 to be the parameter
estimate obtained from the training set and estimated the
C-index for the testing set using the method of Pencina
and D’Agostino [27]. If no variable was selected, then a
C-index value of 0.5 was assigned.

We used the NRI to compare the prediction accuracy
of a model of interest and a baseline model. Let T be
the survival time, X and X be vectors of predictors for
the model of interest and the baseline model, respectively,
and B and B be the corresponding vectors of regression
parameters. Let g and g be the (estimated) survival proba-
bilities at a fixed time point #y given univariate covariates
X'B and X/B, respectively, where ty is a survival-time
threshold, such that subjects with T < £y are consid-
ered high risk. The NRI is definedas P (g < g | T < o) —
P(q <q|T > ty). Alarge NRI means that by switching
from the baseline model to the model of interest, the
direction of change of the predicted risk aligns with the
actual survival time for a large proportion of subjects. To
compute the NRI between two models using a pair of
training and testing sets, we set (8, B) to be the parame-
ter estimates obtained from the training set and calculated
(g,9) on the testing set. We estimated the NRI and its
confidence interval on the testing set using the method of
Uno et al. [29]. The reported NRI values and confidence
limits are the average values over 30 training and testing
data splits. Note that this NRI is one half the value of the
NRI(> 0) defined in Pencina et al. [28, 30].
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