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Abstract

Recent technical improvements in single-cell RNA sequencing (scRNA-seq) have enabled massively parallel profiling
of transcriptomes, thereby promoting large-scale studies encompassing a wide range of cell types of multicellular
organisms. With this background, we propose CellFishing,jl, a new method for searching atlas-scale datasets for similar
cells and detecting noteworthy genes of query cells with high accuracy and throughput. Using multiple scRNA-seq
datasets, we validate that our method demonstrates comparable accuracy to and is markedly faster than the
state-of-the-art software. Moreover, CellFishing,jl is scalable to more than one million cells, and the throughput of the

search is approximately 1600 cells per second.
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Background

The development of high-throughput single-cell RNA
sequencing (scRNA-seq) technology for the past several
years has enabled massively parallel profiling of transcrip-
tome expressions at the single-cell level. In contrast to
traditional RNA sequencing methods that profile the aver-
age of bulk samples, scRNA-seq has the potential to reveal
heterogeneity within phenotypes of individual cells as it
can distinguish the transcriptome expression of each cell
by attaching a distinct cellular barcode [1, 2]. In addition,
several protocols have been developed that utilize unique
molecular identifiers (UMIs) to more accurately quantify
expression by removing duplicated counts resulting from
the amplification of molecules [3—8]. The advent of library
preparation for multiplexed sequencing with cellular bar-
coding and the refinement of cDNA amplification method
with UMIs lead to a higher throughput and more reliable
quantification of single-cell expression profiles.

These technologies have opened the door to research
that comprehensively sequences and annotates massive
numbers of cells to create a cell atlas for organs or mul-
ticellular organisms. Shekhar et al. [9] sequenced and
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performed unsupervised classification of 25,000 mouse
retinal bipolar cells and identified novel cell types and
marker genes, suggesting that sequencing a large number
of cells is an essential factor for detecting underrepre-
sented cell types. Similarly, Plass et al. [10] sequenced
more than 20,000 planarian cells and rendered a single lin-
eage tree representing continuous differentiation. We also
see collaborative efforts to create a comprehensive cata-
log covering all cells types composing an organism, such
as the Human Cell Atlas [11] and the Tabula Muris [12]
project. This trend of sequencing higher numbers of cells
is expected to continue until a complete list of cell types is
generated.

Emergence of these comprehensive single-cell sequenc-
ing studies shows a pressing demand for software to find
similar cells by comparing their transcriptome expression
patterns. Since discrete cell annotations are not always
available or are even impossible to generate due to con-
tinuous cell state dynamics, software for cell-level search-
ing is useful for comparative analysis. However, finding
similar cells based on their transcriptome expression pro-
files is computationally challenging due to the unprece-
dented numbers of genes and cells. Recently, Kiselev
et al. [13] developed a software package and web service
named scmap to perform an approximate nearest neigh-
bor search of cells using a product quantizer [14]. The
scmap package contains two variations: scmap-cluster and
scmap-cell. Scmap-cluster can be used to search for cell
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clusters that are defined by discrete cluster labels and
hence requires cluster annotations in addition to expres-
sion profiles of reference cells. On the contrary, scmap-
cell can be used to directly find similar cells only from
their expression profiles and is applicable to scRNA-seq
data without requiring cluster annotations for cells. The
authors of scmap-cell claim that creating a search index
is more rapid than employing machine-learning meth-
ods. However, the scalability of scmap-cell is limited and
is not applicable to extremely large data sets. Srivastava
etal. [15] have also developed a web service named CellAt-
lasSearch that searches existing scRNA-seq experiments
using locality-sensitive hashing (LSH) and graphical pro-
cessing units (GPUs) to accelerate the search. In LSH,
expression profiles are hashed into bit vectors, and their
similarities are estimated from the Hamming distance
between bit vectors calculated by LSH [16]. However, it
requires GPUs to extract maximum performance, and its
implementation details are neither openly accessible nor
well-described in their paper.

We are also interested in determining cell state esti-
mation. Although cell type estimation accomplished by
matching query cells with similar cells found in anno-
tated data sets provides important information concern-
ing the query cells, relying on a single similarity score may
result in overlooking significant differences in their gene
expressions. For example, the developmental stages of the
hematopoietic lineage from stem cells to completely dif-
ferentiated cells are often characterized by the expression
level of few marker genes. Additionally, using scRNA-seq,
Park et al. [17] revealed that genes related to Mendelian
disease are differentially expressed in specific cell types.
These facts indicate that mutually similar cells of the same
type but under different conditions can be further distin-
guished by noting differentially expressed genes (DEGs)
between these cells.

In this paper, we present CellFishing.jl [18] (cell finder
via hashing), a novel software package used to find similar
cells from a prebuilt database based on their expression
patterns with high accuracy and throughput. CellFishing.jl
employs LSH, like CellAtlasSearch, to reduce the compu-
tational time and space required for searching; however,
it does not require dedicated accelerators, and its imple-
mentation is freely available as an open-source software
package written in the Julia programming language [19].
It also utilizes an indexing technique of bit vectors to
rapidly narrow down candidates of similar cells. More-
over, a query cell can be compared with its neighboring
cells in the database in order to prioritize noteworthy
genes that are differentially expressed between the query
and its neighbors, facilitating quick DEG analysis with
single-cell resolution. Cell databases once created can be
saved to a disk and quickly loaded for later searches. Here,
we demonstrate the effectiveness and scalability of our
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approach using real scRNA-seq data sets, one of which
includes more than one million cells.

Results

Workflow overview of CellFishing.jl

CellFishing.jl first creates a search database of reference
cells from a matrix of transcriptome expression pro-
files of scRNA-seq experiments, and then searches the
database for cells with an expression pattern similar to
the query cells. The schematic workflow of CellFishing.jl
is illustrated in Fig. 1. When building a database, Cell-
Fishing.jl uses a digital gene expression (DGE) matrix as
an input along with some metadata, if provided. It next
applies preprocessing to the matrix, resulting in a reduced
matrix, and subsequently hashes the column vectors of
this reduced matrix to low-dimensional bit vectors. The
preprocessing phase consists of five steps: feature (gene)
selection, cell-wise normalization, variance stabilization,
feature standardization, and dimensionality reduction.
The information provided by these steps is stored in the
database, and the same five steps are applied to the DGE
matrix of query cells. In the hashing phase, random hyper-
planes are generated from a pseudo-random number gen-
erator, and the column vectors of the reduced matrix are
encoded into bit vectors according to the compartment in
which the vector exists. This technique, termed LSH, is
used to estimate the similarity between two data points
by their hashed representation [16]. The bit vectors are
indexed using multiple associative arrays that can be uti-
lized for subsequent searches [20]. The implementation
is written in the Julia language; the database object can
be saved easily as a file, and the file can be transferred
to other computers, which facilitates quick, comparative
analyses across different scRNA-seq experiments.

Data sets
We selected five data sets as benchmarks from scRNA-
seq experiments, each including at least 10,000 cells, and
one including more than 1.3 million cells, which was the
largest publicly available data set. Cells without a cell type
or cluster annotation were filtered out for evaluation. The
data sets after filtering are summarized in Table 1.
Wagner et al. [21] recently reported that if there is no
biological variation, excessive zero counts within a DGE
matrix (dropouts) have not been observed in data gen-
erated from inDrop [5], Drop-seq [6], and Chromium
[7] protocols. Similarly, Chen et al. [22] conducted a
more thorough investigation and concluded that negative
binomial models are preferred over zero-inflated nega-
tive binomial models for modeling scRNA-seq data with
UMIs. We confirmed a similar observation using our con-
trol data generated from Quartz-Seq2 [8]. Therefore, we
did not take into account the effects of dropout events in
this study.
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Fig. 1 Schematic workflow of CellFishing,jl. CellFishing.jl first builds a database (DB) object that stores data preprocessors, indexed bit vectors, and
cell metadata, if provided. The metadata can store any information including cell names, cell types, and transcript expressions of marker genes.
When building a database, the DGE matrix of reference cells is preprocessed to extract important signals and then hashed into bit vectors by LSH.
The preprocessors and the indexed bit vectors are stored in the database object. M, D, and T on the left side of the figure refer to the number of
genes, number of reduced dimensions, and length of the bit vectors, respectively. N and N” above the two DGE matrices represent the number of
cells within the reference and query data, respectively. While searching the database for similar cells, the prebuilt preprocessors stored in the
database are reused in a similar workflow that is involved in database building up to the hashing phase. The database object can be saved onto a
disk and can be loaded from there

Randomized singular value decomposition (SVD)

SVD is commonly used in scRNA-seq to enhance the
signal-to-noise ratio by reducing the dimensions of the
transcriptome expression matrix. However, computing
the full SVD of an expression matrix or eigendecompo-
sition of its covariance matrix is time consuming and

Table 1 Summary of scRNA-seq data sets

Data set #Cells #Clusters  Protocol Cell types
Baron2016 10,455 14 inDrop Pancreas cells of
[51,52] human and

mouse
Shekhar2016 27,499 19 Drop-seq Retinal bipolar
[9,53] neurons of

mouse
Plass2018 21,612 51 Drop-seq Mature and
(10, 54] progenitor cells

of planarian
TabulaMuris™ 54,967 57 Chromium  Cell atlas of
[12,55] mouse
IM_neurons 1,306,127 60 Chromium  Brain cells of
[56] mouse

 Not including cells sequenced with Smart-Seq2

requires large memory space especially when the matrix
contains a large number of cells. Since researchers are
usually interested in only a few dozen of the top singular vec-
tors, it is common practice to compute only those impor-
tant singular vectors. This technique is called low-rank
matrix approximation, or truncated SVD. Recently, Halko
et al. [23] developed approximated low-rank decomposi-
tion using randomization and were able to demonstrate
its superior performance compared with other low-rank
approximation methods. To determine the effectiveness
of the randomized SVD, in this study, we benchmarked
the performance of three SVD algorithms (full, truncated,
and randomized) for real scRNA-seq data sets and evalu-
ated the relative errors of singular values calculated using
the randomized SVD. Full SVD is implemented using the
svd function of Julia and the truncated SVD is imple-
mented using the svds function of the Arpack.jl package,
which computes the decomposition of a matrix using
implicitly restarted Lanczos iterations; the same algorithm
is used in Seurat [24] and CellRanger [7]. We imple-
mented the randomized SVD as described in [25] and
included the implementation in the CellFishing.jl pack-
age. We then computed the top 50 singular values and the
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corresponding singular vectors for the first four data sets
listed in Table 1 and measured the elapsed time. All mouse
cells (1886 total) of the Baron2016 data set were excluded
because merging expression profiles of human and mouse
is neither trivial nor our focus here. The data sizes of the
four data sets after feature selection were 2190 x 8569,
3270 x 27,499, 3099 x 21,612, and 2363 x 54,967 in
this order. From the benchmarks, we found that the ran-
domized SVD remarkably accelerates the computation
of low-rank approximation for scRNA-seq data without
introducing large errors in the components correspond-
ing to the largest singular values (Fig. 2). It must be noted
that in our application, obtaining exact singular vectors
is not particularly important; rather, computing the sub-
space with high variability spanned by approximated sin-
gular vectors is more important because each data point
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is eventually projected onto random hyperplanes during
hashing. Therefore, evaluating relative errors of singular
values suffices to quantify the precision of randomized
SVD.

Similarity estimation using bit vectors

In LSH, the angular distance between two expression
profiles can be estimated from the Hamming distance
between their hashed bit vectors. Assuming 6 is the angle
between two numerical vectors representing the expres-
sion profiles, the estimator of 6 derived from two bit
vectors p and q is 0 ~ Tdy(p,q), where T is the length
of a bit vector and dg (-, -) is a function that calculates the
Hamming distance between the two bit vectors. This esti-
mator is unbiased but occasionally suffers from its high
variance, which can pose a problem. To counter this issue,

a
algorithm
® full
trunc
. ® rand
40 .
w : e
) ° v
£ .
=
o
[
@
=3 et
o
v 20 A
0 P— ~esssnees  eseesces -
Baron2016-human Shekhar2016 Plass2018 TabulaMuris-chromium
N Baron2016-human
o
5] _,,&*/**—**—«*—r4—u*~.a—oa—v4'r4—~4—~*'**"*
0.0 L e e e I B e S A B e
N Shekhar2016
S 0.2 -
@ W“—W
D 0.0 Lrr—t—r—t—r—t—t—t =
. Plass2018
e
@ 0.1 A4_.4_‘«_e4’**'**"""_t*~"_*‘—’*—'*P**
0 0.0 L+ttt I S e e e o T a a
- TabulaMuris-chromium
o
£ 0.05 A
[
D 0.00 e
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

rank
Fig. 2 Benchmarks of randomized SVD. a Elapsed time of different SVD algorithms. The blue, orange, and green points indicate the elapsed time of
the full, truncated, and randomized SVD, respectively. b Relative errors of the randomized SVD. The error bars denote the standard deviation of ten

trials. The relative error of the ith largest singular value oj is defined as ’1 _é , where 6; is an approximated value of a7. The error bars denote the

g

standard deviation of ten trials. The approximation error for a real matrix A with a low-rank matrix is bounded by a singular value as illustrated in the
following formula: minganken <j 11A — X|| = aj41, where || - || denotes the operator norm of a matrix
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CellFishing.jl employs an orthogonalization technique
that creates more informative hyperplanes from random
hyperplanes before hashing data points by orthogonal-
izing the normal vectors of these random hyperplanes
[26]. We confirmed the variance reduction effect of this
orthogonalization technique by comparing the estimators
with the exact values using randomly sampled expression
profiles, as shown in Fig. 3a. The effect was consistent
for all other data sets as expected (Additional file 1:
Figures 12—14).

As can be seen in Fig. 3a, the estimator of the angu-
lar distance becomes less variable as the length of the
bit vectors increases due to the central limit theorem.
However, using more extended bit vectors requires more
computational time and space. To investigate reasonable
candidates for the length of bit vectors, we compared
the Hamming and cosine distances of 100 random cells
(Fig. 3b). The Shekhar2016 data set shows that only 28%
of random cells could find their true nearest neighbor in
the top ten candidates nominated by 64-bit vectors, while
42%, 72%, and 85% could find their true neighbor by 128-,
256-, and 512-bit vectors, respectively. This result sug-
gests that hashing expression profiles with 64-bit vectors
is insufficient to find neighboring cells.

We next confirmed that the hashed expression pro-
files preserve the original differences among cell types
by visualizing low-dimensional embedding of the data.
Here we used Uniform Manifold Approximation and
Projection (UMAP) [27], because it more explicitly pre-
serves the global structure of the input data than t-
distributed Stochastic Neighbor Embedding (t-SNE). The
two-dimensional embedding of expression profiles of
Shekhar2016 is visualized in Fig. 3c. Comparing the
embedding derived from the cosine distances (upper left)
and the other three embeddings derived from the Ham-
ming distances shows that the hashed expression profiles
preserve the original structure of the cell types denoted
by different colors. However, some cell-type clusters are
more scattered with the 64-bit Hamming distance, which
suggests that using 64-bit vectors is insufficient to dis-
criminate cell types by their subtle expression differences.
We also observed that the batch effects were consider-
ably mitigated by projecting query cells onto the space
spanned by variability derived from the database cells
(Additional file 1: Figures 19-22), which is consistent with
the observation of Li et al. [28].

CellFishing.jl indexes bit vectors in order to accelerate
the cell searching process. The algorithm used in this bit
search progressively expands the search space that is cen-
tered at the query bit vector; thus, using longer bit vectors
is not feasible in practice because the search space rapidly
expands as more bits are used. In our preliminary exper-
iments, index searches using longer than or equal to 512
bits often consumed more time than linear searches for a
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wide range of database sizes due to this expansion of the
search space. As a result, we limited the length of the bit
vectors to 128 or 256 bits in the following experiments. To
further reliably find similar cells with these limited bits,
CellFishing.jl generates mutually independent bit indexes
from a reduced matrix. When searching a database, Cell-
Fishing.jl separately searches these bit indexes within the
database and aggregates the results by ranking candidate
cells by the total Hamming distance from the query. This
requires more time than using a single bit index, but as we
show in the following section, it appreciably reduces the
risk of overlooking potentially neighboring cells.

Self-mapping evaluation

To compare the performance of CellFishing.jl with that
of scmap-cell, we performed fivefold cross-validations by
mapping one fifth of cells randomly sampled from a data
set to the remaining four fifth of cells from the same data
set, and computed the consistency and Cohen’s kappa
score [29] of the neighboring cell’s label. A value of 1 in
the consistency score indicates the perfect agreements of
cluster (cell type) assignments and 0 indicates no agree-
ments, while a value of 1 in Cohen’s kappa score indicates
the perfect agreements and 0 indicates random assign-
ments. We obtained the ten nearest neighbors for each
cell, which is the default parameter of scmap-cell, but only
the nearest neighbor was used to compute the scores. This
evaluation assumes that cells with similar expression pat-
terns belong to the same cell-type cluster, and hence a
query cell and its nearest neighbors ought to have the
same cluster assignment. In CellFishing.jl, we varied only
the number of bits and number of indexes, which control
the trade-off between estimation accuracy and computa-
tional cost; other parameters (i.e., the number of features
and number of dimensions of a reduced matrix) were fixed
to the defaults. In scmap-cell, DGE matrices were normal-
ized and log-transformed using the normalize function
of the scater package [30], and we varied two parameters:
the number of centroids (landmark points calculated by
k-means clustering of cells, used to approximate the simi-
larity between cells) and the number of features, in order
to find parameter sets that achieve better scores.

Figure 4a, b shows the consistency and Cohen’s kappa
scores of CellFishing.jl and scmap-cell with different
parameter sets. The overall scores were high (> 0.94) for
both methods, with the exception of the Plass2018 data
set. With the default parameters (see Fig. 4 for a descrip-
tion), CellFishing.jl consistently outperformed scmap-cell
in both consistency and Cohen’s kappa score for all data
sets. In CellFishing.jl, using multiple independent hashes
significantly improved the scores, suggesting that using
128 or 256 bits is insufficient to reliably estimate the sim-
ilarity between cells. Instead of log transformation, using
the Freeman—Tukey transformation [21, 31] resulted in
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almost similar scores (Additional file 2). In scmap-cell,
increasing the centroids or incorporating more features
did not remarkably improve the scores.

In this evaluation, we also measured the elapsed time
of indexing and querying. The measured values do not
include the cost of reading data from a disk because it
varies depending on the file format and the disk type. In
both indexing and querying, CellFishing.jl was faster than
scmap-cell by a large margin, as shown in Fig. 4c, d. For
example, comparing the median of the elapsed time with

the default parameters in the TabulaMuris data set, Cell-
Fishing.jl was 22 times faster for the indexing time (30.3
vs. 661.9 s) and 118 times faster for the querying time (6.6
vs. 780.6 s).

Since-cell types have highly skewed or long-tail distribu-
tions (Additional file 1: Figures 1-7); the global evaluation
scores used tend to be dominated by large subpopula-
tions and could overlook underrepresented cell types. The
cluster-specific consistency scores for each cluster assign-
ment are visualized in Fig. 5. Here, the parameters were
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fixed to the defaults for both CellFishing.jl and scmap-
cell. From this figure, CellFishing.jl evidently includes
minor cell types, although the scores are relatively unsta-
ble for those cell types. For example, while Baron2016
contains only 18 Schwann cells and seven T cells, CellFish-
ing.jl found these cell types with high consistency (> 0.8).
Also, CellFishing.jl shows comparable or better consis-
tency scores than scmap-cell for the majority of the cell
types.

The consistency scores of Plass2018 are relatively lower
than those of the other data sets. This could be because
Plass2018 contains more progenitor or less-differentiated

cells, and thus it is more difficult to distinguish these cell
types from their expression profiles. As indicated in Fig. 6,
a significant number of neoblasts and progenitors are
assigned to neoblast 1, which is the largest subpopulation
(29.35%) of the data set. These subtypes of neoblasts and
progenitors are almost indistinguishable from the t-SNE
plot (see [10], Figure 1B), which suggests that these cell
types have very slight differences in their expression pro-
files. Still, when comparing CellFishing.jl and scmap-cell,
the former more clearly discriminates these cell types.

To see the effects of selected features, we evaluated the
scores by exchanging features selected by CellFishing.jl
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and scmap-cell. When CellFishing.jl used features selected
by scmap-cell, we could not detect meaningful differences
in the consistency scores except within Plass2018, which
improved the score by around 2.0% when n-features is
2000. Likewise, when scmap-cell used features selected by
CellFishing.jl, we could not detect meaningful differences
except within Shekhar2016, which decreased the score
by around 5.5% when n-min-features is 500. These
results seem to indicate that while scmap-cell selects bet-
ter features, it has limited effects on the performance of
CellFishing.jl.

Evaluation of the search outcome and DEG detection

CellFishing.jl always retrieves the nearest neighboring
cells of a query cell in a Hamming space, and its algo-
rithm does not cease to search until all the nearest cells
are found. Although this is an important feature because
the user does not need to specify any parameters except
the number of neighbors when commencing a search, it
also means that CellFishing.jl may retrieve far distant cells
that are virtually unrelated to the query cell. To evalu-
ate the search outcomes, CellFishing.jl provides a function
estimating the cosine similarity between two cells from
their Hamming distance. Here we evaluated the cosine

similarities of the nearest neighbors either with or without
specific cell types in the database in order to simulate a sit-
uation wherein a cell type does not exist in the database.
We performed fivefold cross-validations in the same man-
ner as in the previous experiment using seven cell types
arbitrarily selected from the minor cell types (compris-
ing approximately 2% or less) of each Shekhar2016 and
TabulaMuris.

The similarity distributions for the first three near-
est neighbors are shown in Fig. 7. In the majority of
the cell types, the cosine similarity remarkably drops
if cells of the query cell type are removed from the
database. Notably, the similarity distribution of amacrine
cells from Shekhar2016 (Fig. 7a) and basal cells from
TabulaMuris (Fig. 7b) after removal hardly overlap with
the distribution before removal. However, the differ-
ences are less evident in some cell types, such as
immature B cells and kidney cells from TabulaMuris,
which is not surprising because these cell types have
similar cells with different labels. For example, 9%,
9%, and 81% of immature B cells were mapped to
early pro-B cells, late pro-B cells, and B cells, respec-
tively, when immature B cells were removed from the
database.
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Once the user identifies cells with high similarity, the
next question will probably be concerning the differ-
ences between the query and its nearest neighbors. To
answer this, CellFishing.jl provides a function to detect
DEGs of the query cell compared to reference cells in the
database. It estimates the average expression of neighbor-
ing cells using their raw UMI counts and then computes
the probability of observing the count of the query or

more extreme values for each gene. Although a Cell-
Fishing.jl database requires additional space to store raw
counts for DEG detection, it efficiently compresses the
raw counts and avoids loading the whole count matrix into
memory, thereby saving disk space and memory. Here we
focus on the performance evaluation of our DEG detec-
tion method, and the cost required for storing raw counts
is presented in a following section.
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For the performance evaluation, we selected immature
B cells of TabulaMuris as an example because they are
very similar to other subtypes of B cells, as can be seen
in Fig. 7b, and the development of B lymphocytes is well
characterized. First, all immature B cells were removed
from the data set and mapped to the remaining cells.
Then, we compared the query cells with their nearest
neighbors, and filtered genes with a probability of being
less than 10~ (0.01%) as significant DEGs for each query
cell (see “Methods” for details). Out of the 113 immature B
cells mapped as queries, 9, 10, and 91 cells were mapped to
early pro-B cells, late pro-B cells, and B cells, respectively,
and the other 3 cells were mapped to separate subtypes of
lymphocytes. We ignored these three cells here because
they represent a relatively minor percentage of the results
(less than 3%), and it is impossible to deduce meaningful
conclusions only from a single sample mapped to a unique
cell type. We summarize the detected DEGs in Table 2; the
result was reasonably robust to the selection of the num-
ber of neighbors being between 5 and 20 (see Additional
file 2); thus, here we show the results when the number of
neighbors is set to 10 (i.e., the default parameter).

Next, we carefully examined these genes to validate
that biologically meaningful results were obtained using
our analysis method. For the nine cells mapped to early
pro-B cells, Vprebl and Dntt are negatively regulated
when compared to immature B cells as shown in Table 2,
which is consistent with the annotation by scientific
experts because these two genes are used to distinguish
immature B cells and early pro-B cells (see [12], Supple-
mentary Information). Although Igll1 was not used as a
marker gene in the annotation [12], it is known to play
a critical role in B-cell development (see UniProt acces-
sion: P20764). For the ten cells mapped to late pro-B cells,
Hmgb?2 is involved in V(D)] recombination (see UniProt
accession: P30681). We detected fewer DEGs from late
pro-B cells in comparison with early pro-B cells and B

Table 2 Top DEGs of immature B cells
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cells with the same threshold, even if the number of cells
for each cell type is considered, which may reflect the
fact that late pro-B cells more closely resemble imma-
ture B cells than the other two cell types. For the 91 cells
mapped to B cells, Cd74 is negatively regulated, and was
used as a marker gene to discriminate immature from
mature B cells. Similarly, H2-Ab1, H2-Eb1, and H2-Aa,
which encode components of the major histocompatibil-
ity complex present on the surface of antigen-presenting
cells, are negatively regulated, suggesting that immature
B cells do not actively express these genes as much as
mature B cells. We also found that S100a8, Beta-s, S100a9,
Fos, and Camp are positively regulated in immature B
cells; although these genes appear to be upregulated in a
tissue-specific manner rather than in a cell type-specific
manner, cytokines encoded by S100a8 and S100a9 were
recently reported to regulate B lymphopoiesis in rabbit
bone marrow [32]. Overall, our method detected reason-
able DEGs in many cases; however, we could not find
evidence implying the relationship between Malatl (a
long intergenic noncoding RNA) and B-cell development,
and therefore, we hypothesize that this is a false positive
due to its high variability regardless of cell type.

Mapping cells across different batches

Researchers are often interested in searching for cells
across different experiments or batches. To verify the
robustness of our method in this situation, we performed
cell mapping from one batch to other batches and evalu-
ated the performance scores. Shekhar2016 consists of two
different batches (1 and 2), which exhibit remarkable dif-
ferences in their expression patterns (see [9], Figure S1H).
We mapped cells from one batch to the other using
CellFishing.jl and scmap-cell, and calculated the consis-
tency and Cohen’s kappa score. Similarly, we selected two
batches (planl and plan2, derived from wild-type samples)
from Plass2018 and mapped cells from one batch to the

Early pro-B cell Late pro-B cell B cell

Negative Positive Negative Positive Negative Positive
Vpreb1 9 Dnajc7 8 Hmgb2 6 Malat1 7 Cd74 41 S100a8 83
Igll 9 Lyé6d 6 Ptma 2 Tmsb4x 4 H2-Abl 19 Beta-s 81
Dntt 8 Malat1 5 H2afz 2 Actb 3 H2-Eb1 15 $100a9 76
Crip1 3 Tmsb10 5 Tubalb 1 Dnajc7 3 Malat1 15 Fos 36
Rps24 1 Cd74 4 Stmnl 1 Tmsb10 3 H2-Aa 15 Camp 30
Ucp2 1 Herpud1 4 HistTh2ao 1 Ly6d 2 Rps28 10 Kif2 25
Total 31 Total 91 Total 13 Total 47 Total 182 Total 752

The number of cells for each gene detected as significantly different from the nearest cell and its neighbors.
The list is truncated for brevity at the top-six DEGs after sorting all detected DEGs by the number of occurrences for each cell type (ties are ordered arbitrarily).
The last row (Total) shows the total number of DEGs including ones omitted from each list.
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remaining batches. This data set exhibits relatively weak
batch effects. The default parameters were used in this
experiment. Figure 8a shows the results of these two data
sets for consistency scores. In both data sets, the consis-
tency scores of CellFishing.jl were close to the mean score
obtained from the self-mapping experiment. Moreover,
their distances from the mean score in CellFishing.jl were
smaller than those in scmap-cell, suggesting that CellFish-
ing.jl is more robust to batch effects. The results of the
Cohen’s kappa scores were consistent with these results
(Additional file 1: Figure 44). We predict that the differ-
ences in scores between batches are due to differences in
cluster sizes. For example, batch 1 of Shekhar2016 con-
tains many more rod bipolar cells than batch 2, while
the latter contains more minor cell types than the for-
mer (Fig. 8b). The discrepancy in cluster sizes across
batches leads to a difference in scores because each clus-
ter has a different consistency score, as observed in the
self-mapping experiment.

Mapping cells across different species

Comparing transcriptome expressions across different
species provides important information on the function of
unknown cell types. Since the Baron2016 data set includes
cells derived from human and mouse, we attempted to
match cells between both species. To match genes from
different species, we downloaded a list of homologous
genes between human and mouse from the Vertebrate
Homology database of Mouse Genome Informatics and
removed non-unique relations from the list. A total of
12,413 one-to-one gene pairs were included. We com-
pared the performance of CellFishing.jl and scmap-cell
with the default parameters. In CellFishing.jl, the fea-
ture statistics were estimated only from the query cells
because they were expected to be considerably different
between species. The consistency scores of CellFishing.jl
and scmap-cell mapping from human to mouse were
0.681 and 0.563, respectively, and from mouse to human
were 0.787 and 0.832, respectively. Cohen’s kappa scores
of CellFishing.jl and scmap-cell mapping from human to
mouse were 0.599 and 0.455, respectively, and from mouse
to human were 0.715 and 0.753, respectively. These results
show that CellFishing.jl and scmap-cell are roughly com-
parable for cell mapping accuracy across different species.

Mapping cells across different protocols

Mapping cells across different sequencing protocols is also
important. To validate the robustness of CellFishing.jl in
this case, we used TabulaMuris, which consists of two
data sets derived from different sequencing platforms, and
mapped 44,807 cells sequenced with Smart-Seq2 [33, 34]
to 54,967 cells with Chromium. The default parame-
ters were used in this experiment. Because cluster labels
are not identical between the two data sets, it is not
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possible to compute the consistency or Cohen’s kappa
score. Thus, the matrices of cluster assignments are visu-
alized in Fig. 9. On the whole, these two matrices show
very similar assignment patterns, although CellFishing.jl
failed to detect a large number of fibroblast cells.

Saving and loading databases

CellFishing.jl is designed to search multiple scRNA-seq
experiments, and the database objects can be serialized
into a disk and later deserialized. For this purpose, Cell-
Fishing.jl provides a pair of functions to save and load a
database object into and from a file. To verify the feasi-
bility of this approach, we measured the elapsed time of
saving and loading a database object with cell names as
metadata, as well as the memory and file size of the object.
The results are summarized in Table 3. The memory and
file size of database objects are reasonably small, even for
current low-end laptop computers. Although the mem-
ory and file sizes become several times larger when raw
UMI counts are stored in the database, the actual memory
usage is usually much smaller because the raw counts are
loaded on request as described in “Methods” The elapsed
time required for saving and loading a database is also
small relative to the time required for querying. From
these results, we predict that CellFishing.jl can be used
to quickly search multiple scRNA-seq experiments by
building and serializing their database objects in advance.

Scalability for large data sets

To check the scalability of our approach for large data
sets, we measured the index time, query time, and the
memory size of a database by changing the number of
cells within the database. In this benchmark, we randomly
sampled 10,000 cells from the 1M_neurons data set as
queries and then randomly sampled N = 213,214, 220
cells from the remaining cells to create a database (213 =
8192 and 22° = 1,048,576, which covers a wide range
of high-throughput scRNA-seq experiments); there are
no overlapping cells between or within the query and
database sets. The number of bit indexes was fixed to
the default (i.e., 4) in all cases. For comparison, we also
benchmarked the performance of the linear search that
scans all hash values in a database instead of using indexes.
The elapsed time does not include the time of loading
expression profiles from a file.

The benchmark results are summarized in Table 4. As
for the index search, the query time is sublinear to the
database size, while the index time and memory size are
roughly linear. For example, when 128-bit vectors are
used, the query time becomes only 2.8 times longer in the
same range, as the database size becomes 128 times larger
from N = 213 to 220, The linearities of the index time
and memory size are expected, because when building a
database all the reference cells need to be scanned and
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stored, though these are not wholly proportional to the
database size because some overhead costs are included
in the measured values (e.g., generating and storing pro-
jection matrices). Also, the memory usage per cell is only
183.3 bytes for 128-bit vectors and 365.9 bytes for 256-bit
vectors when N = 229, which is approximately 22 and 11
times smaller than storing UMI counts of 1000 genes in
32-bit integers, respectively.

The index time remains almost unchanged between the
index and the linear search, suggesting that the compu-
tational cost of creating hash indexes is, in effect, neg-
ligible. In contrast, the gap of the query time between
the two search methods expands as the database becomes
larger, which can be attributed to the searching phase of
bit vectors because the cost of the preprocessing phase
is constant (Fig. 10). In addition, even though indexing
bit vectors requires extra memory, the relative difference
from a database without indexes is approximately equal

to or less than three times, and the absolute memory size
of a database with indexes is small enough for modern
computing environments, including laptops.

We also evaluated the consistency scores and found that
they were slightly improved by incorporating more cells
into a database (when using 128-bit vectors, the consis-
tency scores were 0.775 and 0.830 for N = 213 and N =
220, respectively) (Additional file 1: Figure 51). This result
suggests that building a database with more cells plays
an important role in identifying cell types. The consis-
tency scores did not vary significantly between the index
and linear search as expected, because nearest neighbors
found by the index search have the same Hamming dis-
tances as those found by the linear search. In summary,
indexing bit vectors is effective in reducing the search
time for high-throughput scRNA-seq data and is scalable
for extremely large data sets containing more than one
million cells.
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Data set #bits Raw counts Size [MiB] Time [ms]
Memory File Save Load
Baron2016-human 128 - 3.1 29 2.3 24
+ 109 10.7 6.5 3.1
256 - 54 52 37 53
+ 132 13.0 8.0 36
Shekhar2016 128 - 8.2 78 56 8.3
+ 29.7 293 16.3 6.7
256 - 14.6 14.1 9.1 8.3
+ 36.1 357 20.7 11
Plass2018 128 - 6.7 6.4 4.7 50
+ 17.5 17.2 104 6.2
256 - 12.0 11.6 8.0 9.6
+ 228 224 14.9 9.2
TabulaMuris-chromium 128 - 138 13.0 8.6 125
+ 67.2 66.5 353 16.9
256 - 249 242 13.8 18.0
+ 783 776 424 219
Plus and minus signs in the raw counts column denote with or without raw UMI counts, respectively
The memory size includes the region read as a memory-mapped file
Each value is the median of ten measurements
Table 4 Scalability of CellFishing,jl (1M_neurons)
#bits  Index  Database size N
213.(1.0) 24(2.0) 2" (4.0) 2'6(8.0) 27.(160) 23200 276400  22°(1280)
Index time [s] 128 - 1.4(1.0) 25(1.8) 45(3.3) 8.5(6.2) 164(120) 319(233) 63.3(46.3) 1213
(88.8)
128 + 14(1.0) 25(1.8) 4.7(32) 8.6 (6.0) 165(11.4)  320(221)  64.1(44.3) 125.0
(86.3)
256 - 14(1.0) 2.7(1.9) 48(34) 8.9(6.3) 16.1(114)  323(227)  65.0(457) 1254
(88.2)
256 + 14(1.0) 2.7(1.9) 4.7 (3.3) 9.0 (6.3) 16.8(11.7)  33.7(235)  68.6(47.9) 1322
(92.2)
Query time [s] 128 - 1.8 (1.0) 21(1.2) 29(1.6) 42(24) 70(3.9) 126 (7.0) 237(13.2) 52.9(294)
128 + 2.2(1.0) 22(1.0) 24(1.1) 24(1.0) 29(13) 30(1.3) 4219 6.3 (2.8)
256 = 20(1.0) 26(1.3) 3.8(1.8) 6.1(3.0) 105 (5.2) 19.6 (9.6) 46.7 (22.9) 109.3
(53.7)
256 + 34(1.0) 36(1.1) 39(1.2) 4.6(1.4) 52(1.6) 8.8(2.6) 134 (4.0) 22.1(6.6)
Memory 128 - 1.3(1.0) 1.8(14) 28(22) 4.8(3.7) 8.8 (6.8) 16.8(129)  328(252)  64.7(49.7)
size [MiB]
128 + 3.0(1.0) 48(1.6) 8.3(2.8) 14.8 (5.0) 27.109.) 51.0(17.1)  93.0(31.2) 183.3
(61.6)
256 - 1.9(1.0) 29(1.6) 49(26) 8.9 (4.8) 16.9(9.0) 329(176)  649(34.7) 1288
(68.9)
256 + 5.2(1.0) 8.9(1.7) 15.8 (3.0) 288 (5.5) 53.7(10.3) 101.3 192.9 365.9
(19.3) (36.8) (69.9)

Plus and minus signs in the index column denote the index search and the linear search, respectively
The values enclosed by parentheses are relative to those of N = 23
Each value is the median of five measurements
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time of each phase was measured using the time_ns function and divided by the number of query cells to compute the average time per cell

Discussion

Our LSH-based method is particularly suitable for
middle- or large-scale scRNA-seq data sets because it
circumvents costly brute-force search by using indexes
for low-dimensional bit vectors. We considered relatively
large data sets consisting of at least ten thousand cells, one
of which contains more than one million cells, and con-
firmed our approach outperforms scmap-cell, the state-
of-the-art method for cell searching, in both accuracy
and throughput using real scRNA-seq data sets. Search-
ing across multiple experiments will be feasible because
our method is reasonably robust to batch differences,
and serialized database objects can be loaded quickly. In
this paper, we did not compare our method with CellAt-
lasSearch, mainly because its source code is not freely
available, and its algorithm is not well described in the
original paper, which makes it difficult to compare the
performance fairly. Moreover, CellAtlasSearch requires a
GPU to achieve its maximum performance, but this is not
always available on server machines.

The application of cell searching is not limited to map-
ping cells between different data sets. The task of finding
similar cells within a data set is a subroutine in many anal-
ysis methods, such as data smoothing [21], clustering [35],
community detection [36], and visualization [37]. As we

have demonstrated in the self-mapping experiment, our
LSH-based method can find similar cells within a data
set with high accuracy and throughput; thus, it would be
possible to speed up analysis by utilizing our cell search
method in lieu of the currently available method.

The feature selection used in CellFishing.jl is relatively
simple and rapid. We confirmed that it works well with
our search method; however, we also found that the cri-
terion based on the dropout rate used in scmap-cell
performed slightly better in a data set. This fact sug-
gests that our simple selection method is not necessarily
suitable for all scRNA-seq data sets, and a more careful
feature selection, such as adding marker genes selected by
domain experts or more careful selection methods such
as GiniClust [38], may significantly improve the accuracy
of cell typing. For this purpose, CellFishing.jl provides for
addition and removal of specific features to or from a
feature set.

Handling batch effects is still a persistent problem
in scRNA-seq. We performed cell mapping experiments
across different batches and protocols and confirmed
that the performance of our approach is at least com-
parable to scmap-cell. We consider that the robust-
ness of CellFishing.jl comes from projecting expression
profiles to a space with dataset-specific variability, as
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previously reported by Li et al. [28]. This type of tech-
nique is also discussed in the context of information
retrieval and is termed folding-in [39]. Although sub-
stantial literature exists on the removal of batch effects
in scRNA-seq data [24, 40-42], the existing methods
require merging raw expression profiles of reference and
query cells to obtain their batch-adjusted profiles, and
the computational costs are relatively high; these char-
acteristics are not suitable for our low-memory/high-
throughput search method. In contrast, folding-in is
very affordable because projection matrices can be com-
puted when building a database and reused for any
query.

The DEG detection method introduced in this paper
assumes that the database encompasses enough cells to
retrieve a small group of homogeneous neighbors con-
taining no biological differences, and each UMI count
follows a Poisson distribution. The former can be jus-
tified by considering the high-throughput characteris-
tic of recent scRNA-seq experiments, the feasibility of
which we have demonstrated using the TabulaMuris data
set; the latter is experimentally verified by several works
[8, 43, 44]. However, some highly expressed genes, such
as Malatl, seem to be exceptions to these model assump-
tions, and as a consequence, despite it being unlikely that
Malatl is related to biological differences between cells,
it was falsely detected as a DEG in many cells within
our experiment. We predict that this problem can be
partially mitigated by replacing point estimation of the
mean expression with some interval estimation, such as
Bayesian inference.

In this work, we have focused on unsupervised cell
searching: no cellular information is required except their
transcriptome expression data. This makes our method
even more useful because it is widely applicable to
any scRNA-seq data with no cell annotations. How-
ever, incorporating cell annotations or prior knowledge
of reference cells could remarkably improve our method’s
performance. For example, if cell-type annotations are
available, it would be possible to generate tailored hash
values separating cell types more efficiently by focusing
on their marker genes. Further research is needed in this
direction.

Conclusions

In summary, the new cell search method we propose in
this manuscript outperforms the state-of-the-art method
and is scalable to large data sets containing more than one
million cells. We confirmed that our method considers
very rare cell types and is reasonably robust in response to
differences between batches, species, and protocols. The
low-memory footprint and database serialization facili-
tate comparative analysis between different scRNA-seq
experiments.
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Methods
Preprocessing
In the preprocessing step, biological signals are extracted
from a DGE matrix. When building a database of refer-
ence cells, CellFishing.jl takes a DGE matrix of M rows
and N columns, with the rows being features (genes)
and the columns being cells, along with some metadata
(e.g., cell names). In scRNA-seq analysis, it is common
practice to filter out low-abundance or low-variance fea-
tures because these do not contain enough information
to distinguish differences among cells [45]. In the filtering
step of CellFishing.jl, features that have smaller maximum
count across cells than a specific threshold are excluded.
We found that this criterion is rapid and sometimes more
robust than other gene filtering methods, such as selecting
highly variable genes [46]. The optimal threshold depends
on various factors such as sequencing protocol and depth.
CellFishing.jl uses a somewhat conservative threshold that
retains at least 10% of features by default; however, retain-
ing an excessive amount of features would not be detri-
mental with regard to accuracy because CellFishing.jl uses
the principal components of the data matrix in a later step.
One parameter can change the threshold, and it is possi-
ble to specify a list of features to be retained or excluded
if, for example, some marker genes are known a priori.
The filtered DGE matrix is then normalized so that the
total counts are equal across all the cells, which reduces
the differences in the library size among cells [43]. After
normalization, each count x is transformed by log trans-
formation log(x + 1), which is a common transforma-
tion in scRNA-seq, or FTT 4/x + «/x + 1 [31]. FTT is a
variance-stabilizing transformation assuming the Poisson
noise, which is observed as a technical noise in sScRNA-seq
[21, 43]. Also, the computation of FTT is significantly
faster than that of log transformation. The user can spec-
ify a preferable transformation, and the choice will be
saved in a preprocessor object. In this paper, we used log
transformation if not otherwise specified. After transfor-
mation, the feature counts are standardized so that their
mean and variance are equal to zero and one, respectively.
Finally, the column vectors in the matrix are projected
onto a subspace to reduce the number of dimensions. The
advantages of this projection are threefold: (1) computa-
tional time and working space for preprocessing are saved,
(2) the number of bits required for hash expression pro-
files is reduced, and (3) batch effects between the query
and the database are mitigated. As recently reported [28],
projecting data onto a subspace defined by variability in
reference cells greatly reduces unwanted technical varia-
tion and improves the accuracy of cell-type clustering. A
similar approach is found elsewhere [6]. In CellFishingjl,
a subspace with high variance is calculated by applying
the SVD to the reference data matrix. Since the num-
ber of cells may be extremely large and singular vectors
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corresponding to small singular values are irrelevant, Cell-
Fishing.jl uses a randomized SVD algorithm [23, 25] that
approximately computes singular vectors corresponding
to the top D singular values. The dimension of the sub-
space D is set to 50 by default, but it can be changed
easily by passing a parameter. The net result of the prepro-
cessing phase is a matrix of D rows and N columns. The
information of the preprocessing phase (e.g., gene names
and projection matrices) is stored in the database object,
and the same process is applied to the count vectors of
query cells.

Hashing expression profiles

LSH is a technique used to approximately compute the
similarity between two data points [16], which hashes a
numerical vector x € RP to a bit vector p € {0,1}7
that preserves some similarity or distance between the
original vectors. Hashed values (bits) of LSH collide with
high probability if two original vectors are similar. This is
the fundamental property of hash functions used in LSH,
because by comparing binary hash values of numerical
vectors their similarity can be estimated, which bypasses
the time-consuming distance computation between the
numerical vectors.

In LSH, it is common to use T hash functions to gener-
ate T bits; each hash function returns zero or one for an
input vector, and the results of multiple hash functions for
the vector are bundled into a bit vector of length 7. More
formally, given a similarity function sim(-, -) : R? x RP —
[0,1] that measures some similarity between two data
points, an LSH function 4(-) : R — {0, 1} is defined as a
function that satisfies the following relation:

Prhef[h(x) = h()’)] = Sim(x,)’), (1)

where Pryc #[ h(x) = h(y)] is the probability of hash col-
lision for a hash function %(-) generated from a family
of hash functions F given a pair of points x and y. The
existence of a family of hash functions that satisfies Eq. 1
depends on the similarity function sim(-, -). Similarity, if
it exists, it can be approximated by randomly generating
hash functions from F as follows:

sim(%,y) = Eper [I[hx) = h(y)] ]

T
1 (2)
~ - Z]I[hi(x) =n;(y)],
i=1

where Ej;c 7[ -] is an expectation over F, I[ -] is the indi-
cator function, and {hi(-)}iT=1 is a set of hash functions
sampled from F.

In this work, we used a signed random projection LSH
(SRP-LSH) [16] to hash expression profiles, as it estimates
angular similarity between two numerical vectors, which
is reasonable to measure the similarity between expres-
sion profiles, and is straightforward to implement. Briefly,
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SRP-LSH divides a set of data points in a space into
two disjoint sets by drawing a random hyperplane on the
space, then the data points in a set of the two are hashed
to zeros, with the remaining points hashed to ones. This
procedure is repeated T times to get a bit vector of length
T for each data point. Intuitively, the closer two points
are to each other, the more likely it is that they occur in
the same half-space with respect to a random hyperplane.
Therefore, we can stochastically estimate the similarity of
two points by calculating the Hamming distance of their
bit vectors. In SRP-LSH, the angular similarity function
sim(x,y) = 1 — @, where 0(x,y) refers to the angle
between two vectors x and y, is estimated from Eq. 2. In
this way, we randomly generate T hyperplanes, calculate
their hash values, and bundle their zero or one bits into a
bit vector of length T.

While SRP-LSH dramatically reduces the computational
time and space of the approximate search of neighbor-
ing cells, it suffers from its high variance of the simi-
larity estimator. To alleviate the problem, CellFishing.jl
orthogonalizes the vectors perpendicular to the random
hyperplanes (normal vectors) because it reduces the vari-
ance of the estimator by removing the linear dependency
among hyperplanes without introducing estimation bias
[26]. Specifically, T normal vectors of length D are gen-
erated independently from the standard isotropic Gaus-
sian distribution and then orthogonalized using the QR
decomposition. If T is larger than D, the T vectors are
divided into [T /D7 batches of vectors, each of which con-
tains at most D vectors, and the vectors in a batch are
orthogonalized separately.

Indexing hash values

Although comparing bit vectors is much faster than
comparing numerical vectors, it is still lengthy process
to scan all the bit vectors in a database, especially in
a large database. To reduce the computational cost of
hash searching, CellFishing.jl creates search indexes in
the space of bit vectors. Specifically, CellFishing.jl creates
multi-index hash (MIH) [20] tables to find the nearest
neighbors quickly in the Hamming space Hr := {0,1}7.
Briefly, an MIH divides bit vectors into shorter subvectors
and indexes them separately using multiple associative
arrays (tables); when searching for the nearest neighbors
of a query, it divides the query bit vector in the same
way and picks candidates of neighbors from the tables of
the subvectors. It then computes the full Hamming dis-
tances between the query and the candidates by scanning
the list of the candidates and finally returns the k-nearest
neighbors. The search algorithm progressively expands
the search space in Hr to find all k-nearest neighbors in
the database; hence, the result is equivalent to that of the
brute-force search, disregarding a possible difference in
the order of ties with the same Hamming distance. The



Sato et al. Genome Biology (2019) 20:31

main point here is that dividing and separately indexing
the bit vectors dramatically reduces the search space that
needs to be explored. For example, when attempting to
find all bit vectors within r-bit differences from a query
using a table, the number of buckets of the table we need

to check is )7, ( 7;), where T is the length of the bit

n
vectors and ( X

ing k distinct items from z. This value rapidly increases
even for a small r, which would easily exceed the number
of elements in the table. For instance, the total number
of combinations for 7 = 128 and r = 9 is roughly 20.6
trillion, which is the same order of magnitude as the esti-
mated number of cells in the human body [47]. To avoid
the problem, CellAtlasSearch seems to stop searching at
some cutoff distance from the query bit vector [15], but
choosing a good threshold for each cell is rather difficult.
Instead, by dividing a bit vector of length T  into m sub-
vectors of the same length (we assume T is divisible by
m for brevity), when r < m, it is possible to find at least
one subvector that perfectly matches the corresponding
subvector of the query with the pigeonhole principle. This
partial matching can be used to find candidate bit vec-
tors quickly using a table data structure. Even when there
are no perfect matches in subvectors, the search space
greatly shrinks by the division. Our implementation uses
a direct-address table to index subvectors, and because

) is the number of combinations choos-
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the buckets of the table are fairly sparse (i.e., mostly
vacant), we devised a data structure, illustrated in Fig. 11,
in order to exploit the sparsity and CPU caches. In addi-
tion, we found that inserting a data prefetch instruction
greatly improves the performance of scanning candidates
in buckets, because it reduces cache misses when bit vec-
tors do not fit into the CPU caches. Please refer to [20] and
our source code for details of the algorithm and the data
structure.

The technique of dividing and indexing bit vectors
reduces the cost of the search. However, it is still diffi-
cult in practice using long bit vectors due to expansion of
the search space. To overcome this problem, we use mul-
tiple MIH indexes that are independent of each other. We
refer to the number of MIH indexes as L; thus, the number
of bits stored in a database per cell is TL. The L indexes
separately find their own k-nearest neighbors of a given
query and thus collect kL possibly duplicated neighboring
candidates for each query. These candidates are passed to
the next ranking phase. In our method, the two parame-
ters T and L control the trade-off between accuracy and
computational cost of the search.

Ranking cells

After collecting kL candidates from the L indexes, Cell-
Fishing.jl orders the kL cells to return only the top k cells.
The algorithm computes total Hamming distances from a
query and retains the top k candidates with the smallest

subindex

E’filled offsets

query |

1101

buckets

database

N —— 1101

1101

1101

Fig. 11 Data structure indexing subvectors. Given a subvector of the query bit vector, the subindex calculates the locations of the bit vectors in the
database that contains the subvector in the same position. The subindex consists of three arrays: filled, offsets, and buckets. The filled array is a bit
vector of length 2°, where s is the length of indexed subvectors (in this figure, T = 12 and s = 4), and supports bit counting in a specific range with
a constant time, which is used to calculate the location of the offsets array for a given subvector (highlighted four bits of the query). The offsets and
buckets arrays are jointly used to obtain the locations of the database array at which bit vectors with a given subvector are stored
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Hamming distances. Candidates with identical distances,
if any, are ordered in an arbitrary but deterministic way.

Similarity estimation

CellFishing.jl can retrieve all the k-nearest neighbors of a
query cell without any cut-off distance. This is particularly
important when the query cell and its nearest neighbors in
the database are similar but considerably different due to
various factors (e.g., batch effects). However, it also means
that CellFishing.jl may retrieve unrelated cells with very
low similarity. Using hashed bit vectors, we can estimate
similarities between the query and its neighbors by their
Hamming distances, but the range of this distance varies
depending on the parameters T and L, and thus is there-
fore counter-intuitive. Accordingly, CellFishing.jl provides
a utility function to estimate the cosine similarity between
cells from their Hamming distance. The cosine similarity
is normalized between —1 and 1 and is therefore easier to
interpret than the Hamming distance.

Single-cell DEG detection

CellFishing.jl implements a utility function to detect
DEGs between two cells (e.g., a query cell and its near-
est neighbor in a database), which can be used to evaluate
the search outcome in a post hoc manner. Here we refer
to a query and a reference cells as u# and v, respectively.
The DEG detection function first retrieves the k-nearest
neighbors of v from the database and we collectively refer
to the set of neighbors as V = {vy,vs,..., vt} (note that
v will be included in V as it is also in the same database).
Then the raw counts of vi,vs,..., v, are normalized so
that their cell-wise total counts are equal to the total count
of u. The arithmetic mean of the normalized counts for
gene i, A;, is used as an estimator of the mean parame-
ter of the gene of u. Finally, the probability of observing
a count y; or more extremes for each gene i is calculated
as P(Y < y) = Zkfyi Pois(k | X;) (negative) or P(Y >
yi) = ZkZ)’i Pois(k | A;) (positive), where Pois(- | 1) is the
probability mass function of the Poisson distribution with
mean . This procedure assumes that all the cells in a local
neighborhood, V, are not biologically different from each
other, and therefore, the differences of their normalized
counts are due to randomness. The parameter k controls
the bias-variance tradeoff of this model assumption. In
our method, k is set to ten by default.

The estimator of 1; introduced above can be justified as
follows. Here, we assume that the UMI count of a gene
for u and v follows y, ~ Pois(8,1) and y, ~ Pois(B,A),
where §, and B, denote the capture efficiency of  and v
and X denotes the true gene expression (the concentration
of mRNA) of the two cells; the index i indicating genes is
dropped for brevity. Note that the same expression level
A is shared between u and v, which is the fundamental
assumption for DEG detection. We also assume that the
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ratio of 8, and B, is equal to the ratio of the total counts
(or the library sizes), denoted by n, and #,. Under these
assumptions, we can derive the expectation of y, from the
normalized count of y, as follows:

El—=yw|=E|=y|=""=E[y]=—=—(B/xr
[nvy] [ﬂvy] 5 (] ,31/('3 )

= Bur = E[J’u] .

Therefore, the arithmetic mean of the normalized
counts of nearby cells is an unbiased estimator of the
expectation of y,,.

DEG detection functionality is an optional utility of
CellFishing.jl because it requires additional disk space to
store the raw UMI counts of the database cells. If the
database stores the raw counts, the count matrix is com-
pressed by Blosc (http://blosc.org/), a high performance
compressor optimized for binary data. CellFishing.jl uses
LZAHC (https://1z4.github.io/lz4/) as the backend com-
pressor of Blosc with the maximum compression level
(i.e., level = 9) and shuffling, achieving high compres-
sion ratio and rapid decompression in our preliminary
experiments using actual scRNA-seq data. When loading
a database object with a count matrix from a file, Cell-
Fishing.jl does not directly load the matrix into memory.
Instead, the compressed matrix is mapped to the memory
space as a memory-mapped file using the mmap system
call on a POSIX-compliant platform or its counterpart in
Windows, and essential parts of the matrix are decom-
pressed on request. This has several advantages such as
reducing data loading time, avoiding unnecessary mem-
ory allocation, and sharing the same data among different
processes without duplication.

Implementation

CellFishing.jl is an open-source package written in the
Julia language [19] and is distributed under the MIT
License. Julia is a high-performance dynamic program-
ming language for technical computing, which compiles
the source code at run-time and makes it easier to install
CellFishing.jl, since the user does not need to compile the
source code during installation. The entire code of the
package is written in Julia, as it makes the code simpler
while its performance is closely comparable to other com-
piled programming languages such as C. The installation
can be done using a package manager bundled with Julia.
The source code and the documentation of CellFishing.jl
are hosted on GitHub: https://github.com/bicycle1885/
CellFishing.jl.

The maximum performance of CellFishing.jl is achieved
by exploiting the characteristics of modern processors.
For example, CellFishingjl heavily uses the POPCNT
instruction (to count the number of 1 bits) and the
PREFETCHNTA instruction (to prefetch data into caches
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from memory) introduced by the Streaming SIMD Exten-
sions to compute the Hamming distance between bit
vectors. These instructions are available on most proces-
sors manufactured by Intel or AMD. Since Julia compiles
the source code at run time, suitable instructions for
a processor are automatically selected. Also, the linear
algebra libraries included in Julia, such as OpenBLAS
and LAPACK, contribute to the performance of the pre-
processing and hashing phases. We consider that using
accelerators such as GPUs is not particularly important
in CellFishing.jl because these phases do not represent a
major bottleneck.

Reproducibility

The script files used in this study are included in Addi-
tional file 3. To ensure reproducibility, all experiments
were run using Snakemake [48], a Python-based workflow
management tool for bioinformatics. We used Julia 1.0.1
to run CellFishing.jl 0.3.0 and R 3.5.0 to run scmap 1.2.0.
R and scmap were installed in a Docker image built on top
of Bioconductor’s Docker image (https://hub.docker.com/
r/bioconductor/release_base2/, R3.5.0 Bioc3.7) [49],
with the Dockerfile included in the additional file. All
the plots and tables in this manuscript were generated
in a Jupyter notebook [50], which is also included in
the same additional file. We used Linux machines with
Intel Xeon Gold 6126 CPU (629.4 GiB of memory, hard
disk drive) or Intel Xeon CPU E5-2637 v4 (251.6 GiB
of memory, hard disk drive) to benchmark the run-time
performance. Performance comparisons between Cell-
Fishing.jl and scmap-cell were performed on the same
machine.
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