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Abstract

The Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications
have known or predicted cancer driver roles. These genes were collected from 275 publications, including two
sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905
cancer donors and multiple primary sites. This represents a more than 1.5-fold content increase compared to the
previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and
protein expression, miRNA and protein interactions, and protein function and essentiality. NCG is accessible at
http://ncg.kcl.ac.uk/.
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Background
One of the main goals of cancer genomics is to find the
genes that, upon acquiring somatic alterations, play a
role in driving cancer (cancer genes). To this end, in the
last 10 years, hundreds of cancer sequencing screens
have generated mutational data from thousands of
cancer samples. These include large sequencing efforts
led by international consortia such as the International
Cancer Genome Consortium (ICGC) [1] and The
Cancer Genome Atlas (TCGA) [2]. Cancer genomes
usually acquire thousands of somatic alterations and
several methods have been developed to identify cancer
genes from the pool of all altered genes [3, 4]. These
methods have been applied to specific datasets from in-
dividual cancer types and to pooled datasets from several
cancer types. This is the case for the Pan-Cancer Atlas

project [5] and for the recent analysis of the whole set of
TCGA samples [6], which accompanied the conclusion
of the TCGA sequencing phase [7]. As more and more
studies contribute to our knowledge of cancer genes, it
becomes increasingly challenging for the research com-
munity to maintain an up-to-date overview of cancer
genes and of the cancer types to which they contribute.
The Network of Cancer Genes (NCG) is a project

launched in 2010 with the aim to gather a comprehen-
sive and curated collection of cancer genes from cancer
sequencing screens and to annotate their systems-level
properties [8–11]. These define distinctive properties of
cancer genes compared to other human genes [12] and
include gene duplicability, evolutionary origin, RNA and
protein expression, miRNA and protein interactions, and
protein function and essentiality. NCG is based on the
manual curation of experts who review studies describ-
ing cancer sequencing screens, extract the genes that
were annotated as cancer genes in the original publica-
tions, and collect and analyze the supporting evidence.
Various other databases have been developed to

analyze cancer data. Some of them focus on cancer alter-
ations rather than cancer genes (COSMIC [13], DoCM
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[14], DriverDB [15], the Cancer Genome Interpreter
[16], OncoKB [17], and cBIOPortal [18] among others).
Other databases collect only cancer genes with a strong
indication of involvement in cancer (the Cancer Gene
Census, CGC [19]) and annotate specifically oncogenes
or tumor suppressor genes (ONGene [20], TSGene [21])
or cancer genes in specific cancer types (CoReCG [22]).
NCG differs from all the above resources because it does
not focus on mutations, on particular groups of genes or
cancer types. It instead compiles a comprehensive re-
pository of mutated genes that have been proven or pre-
dicted to be the drivers of cancer. NCG is widely used
by the community. Recent examples of its use include
studies identifying and validating cancer genes [23–25]
and miRNA cancer biomarkers [26]. NCG has also been
used to investigate the effect of long noncoding RNAs
on cancer genes [27] and to find cancer-related tran-
scription factors [28].
Here, we describe the sixth release of NCG, which

contains 2372 cancer genes extracted from 275 publica-
tions consisting of two sources of known cancer genes
and 273 cancer sequencing screens. As well as muta-
tional screens of individual cancer types, the collected
publications now include four adult and two pediatric
pan-cancer studies. In addition to an update of the
systems-level properties of cancer genes already present
in previous releases (gene duplicability, evolutionary ori-
gin, protein function, protein-protein and miRNA-target
interactions, and mRNA expression in healthy tissues
and cancer cell lines), NCG now also annotates the es-
sentiality of cancer genes in human cell lines and their
expression at the protein level in human tissues. More-
over, broader functional annotations of cancer genes in
KEGG [29], Reactome [30], and BioCarta [31] are also
provided.
The expert curation of a large number of cancer

sequencing screens and the annotation of a wide var-
iety of systems-level properties make NCG a compre-
hensive and unique resource for the study of genes
that promote cancer.

Construction and content
The NCG database integrates information about genes
with a known or predicted driver role in cancer. To fa-
cilitate the broad use of NCG, we have developed a
user-friendly, interactive, and open-access web portal for
querying and visualizing the annotation of cancer genes.
User queries are processed interactively to produce re-
sults in a constant time. The front-end is connected to a
database, developed using relational database manage-
ment system principles [32] (Additional file 1: Figure
S1). The web application for the NCG database was de-
veloped using MySQL v.5.6.38 and PHP v.7.0. Raw data
for each of the systems-level properties were acquired

from heterogeneous data sources and processed as de-
scribed below. The entire content of NCG is freely avail-
able and can be downloaded from the database website.

Gene duplicability and evolutionary origin
Protein sequences from RefSeq v.85 [33] were aligned to
the human genome assembly hg38 with BLAT [34].
From the resulting genomic alignments, 19,549 unique
gene loci were identified and genes sharing at least 60%
of the original protein sequence were considered to be
duplicated [35] (Additional file 2: Table S1). Orthologous
genes for 18,486 human genes (including 2348 cancer
genes, Additional file 2: Table S1) in 2032 species were
collected from EggNOG v.4.5.1 [36] and used to trace
the gene evolutionary origin as previously described
[37]. Genes were considered to have a pre-metazoan ori-
gin if their orthologs could be found in prokaryotes, uni-
cellular eukaryotes, or opisthokonts [37].

Gene and protein expression
RNA-Seq data from healthy human tissues for 18,984
human genes (including all 2372 cancer genes, Add-
itional file 2: Table S1) were derived from the
non-redundant union of Protein Atlas v.18 [38] and
GTEx v.7 [39]. Protein Atlas reported the average tran-
scripts per million (TPM) values in 37 tissues, and genes
were considered to be expressed in a tissue if their ex-
pression value was ≥ 1 TPM. GTEx reported the distri-
bution of TPM values for individual genes in 11,688
samples across 30 tissue types. In this case, genes were
considered to be expressed if they had a median expres-
sion value ≥ 1 TPM.
Gene expression data for all 2372 cancer genes in

1561 cancer cell lines were taken from the Cancer Cell
Line Encyclopedia (CCLE, 02/2018) [40], the COSMIC
Cancer Cell Line Project (CLP, v.84) [19], and a Genen-
tech study (GNE, 06/2014) [41] (Additional file 2: Table
S1). Gene expression levels were derived directly from
the original sources, namely reads per kilobase million
(RPKM) values for CCLE and GNE, and microarray
z-scores for CLP. Genes were categorized as expressed if
their expression value was ≥ 1 RPKM in CCLE or GNE
and were annotated as over, under, or normally
expressed in CLP, as determined by COSMIC.
The current release of NCG also includes protein expres-

sion from immunohistochemistry assays of healthy human
tissues as derived from Protein Atlas v.18. Data were avail-
able for 13,001 human proteins including 1799 cancer pro-
teins (Additional file 2: Table S1). Proteins were categorized
as not detected or as having low, medium, or high expres-
sion in 44 tissues on the basis of staining intensity and frac-
tion of stained cells [38]. In Protein Atlas, expression levels
were reported in multiple cell types for each tissue. NCG
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retained the highest reported value as the expression level
for that tissue.

Gene essentiality
Gene essentiality was derived from two databases,
PICKLES (09/2017) [42] and OGEE v.2 [43], both of
which collected data from CRISPR-Cas9 knockout and
shRNA knockdown screens of human cell lines. In
PICKLES, data from primary publications have been
re-analyzed and genes were considered essential in a cell
line if their associated Bayes factor was > 3 [44]. We
therefore used this threshold to define essential genes. In
OGEE, genes were labelled as “essential” or “not essen-
tial” according to their annotation in the original publi-
cations. Consistently, we retained the same annotation.
From the non-redundant union of the two databases, es-
sentiality information was available for a total of 18,833
genes (including all 2372 cancer genes) in 178 cell lines
(Additional file 2: Table S1).

Protein-protein and miRNA-target interactions
Human protein-protein interactions were derived
from four databases (BioGRID v.3.4.157 [45], MIntAct
v.4.2.10 [46], DIP (02/2018) [47], and HPRD v.9 [48]).
Only interactions between human proteins supported
by at least one original publication were considered
[8]. The union of all interactions from the four
sources was used to derive a human protein-protein
interaction network of 16,322 proteins (including
2203 cancer proteins, Additional file 2: Table S1) and
289,368 binary interactions. To control for a possibly
higher number of studies on cancer proteins resulting
in an artificially higher number of interactions, a net-
work of 15,272 proteins and 224,258 interactions was
derived from high-throughput screens reporting more
than 100 interactions [11].
Data on human protein complexes for 8080 human

proteins (including 1414 cancer proteins; Additional
file 2: Table S1) were derived from the non-redundant
union of three primary sources, namely CORUM (07/
2017) [49], HPRD v.9 [48], and Reactome v.63 [30]. Only
human complexes supported by at least one original
publication were considered [11].
Experimentally validated interactions between human

genes and miRNAs were downloaded from miRTarBase
v.7.0 [50] and miRecords v.4.0 [51], resulting in a total of
14,649 genes (including 2034 cancer genes) and 1762
unique miRNAs (Additional file 2: Table S1). To control for
the higher number of single-gene studies focussing on can-
cer genes, a dataset of high-throughput screens testing ≥
250 different miRNAs was also derived (Additional file 2:
Table S1).

Functional annotation
Data on functional categories (pathways) were collected
from Reactome v.63 [30], KEGG v.85.1 [29], and Bio-
Carta (02/2018) [31]. Data for BioCarta were extracted
from the Cancer Genome Anatomy Project [52]. All
levels of Reactome were included, and level 1 and 2
pathways from KEGG were added separately. Overall,
functional annotations were available for 11,344 human
proteins, including 1750 cancer proteins assigned to
2318 pathways in total.

Utility and discussion
Catalogue of known and candidate cancer genes
To include new cancer genes in NCG, we applied a
modified version of our well-established curation pipe-
line [11] (Fig. 1a). We considered two main groups of
cancer genes: known cancer genes whose involvement in
cancer has additional experimental support and candi-
date cancer genes whose somatic alterations have a pre-
dicted cancer driver role but lack further experimental
support.
As sources of known cancer genes, we used 708 genes

from CGC v.84 [19] and 125 genes from a manually cu-
rated list [53]. Of the resulting 711 genes, we further an-
notated 239 as tumor suppressor genes (TSGs) and 239
as oncogenes (OGs). The remaining 233 genes could not
be unambiguously classified because either they had
conflicting annotations in the two original sources (CGC
and [53]) or they were defined as both OGs and TSGs.
Despite these two sources of known cancer genes have
been extensively curated, 49 known cancer genes are in
two lists of possible false positives [6, 54].
Next, we reviewed the literature to search for studies

that (1) described sequencing screens of human cancers
and (2) provided a list of genes considered to be the can-
cer drivers. This led to 273 original papers published be-
tween 2008 and March 2018, 98 of which were
published since the previous release of NCG [11] and 42
of which came from ICGC or TGCA (Additional file 2:
Table S2). Overall, these publications describe the se-
quencing screens of 119 cancer types from 31 primary
anatomical sites as well as six pan-cancer studies (Add-
itional file 2: Table S2). In total, this amounts to samples
from 34,905 cancer donors. Each publication was
reviewed independently by at least two experts and all
studies whose annotation differed between the experts
were further discussed. Additionally, 31 randomly se-
lected studies (11% of the total) were re-annotated
blindly by a third expert to assess consistency. The man-
ual revision of the 273 studies led to 2088 cancer genes,
of which 427 were known cancer genes and the
remaining 1661 were candidate cancer genes (Fig. 1b).
Compared to the previous release, this version of NCG
constitutes a significant increase in the number of
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cancer primary sites (1.3-fold), cancer genes (1.5-fold),
publications (1.6-fold), and analyzed donors (2.6-fold,
Fig. 1c).
Based on literature evidence [6, 54], gene length, and

function [10], 201 candidates were labelled as possible
false-positive predictions. We further investigated the
reasons why 284 known cancer genes were not identified
as drivers in any of the 273 cancer sequencing screens.
We found that these genes predispose to cancer rather
than acquiring somatic alterations, are the chimeric

product of gene fusions, are part of CGC Tier 2 (i.e., genes
with lower support for their involvement in cancer), or
were identified with different methods than sequencing.
Eleven of these 284 genes are possible false positives [6, 54].
The annotation of a large number of studies allowed

us to gain insights into how cancer genes have been
identified in the last 10 years. Of the overall 18 predic-
tion methods (Additional file 2: Table S2), the recur-
rence of a gene alteration within the cohort is the most
widely used across screens (Fig. 1d). In this case, no

Fig. 1 Manual curation of cancer genes in NCG. a Pipeline used for adding cancer genes to NCG. Two sources of known cancer genes [19, 53]
were integrated leading to 711 known cancer genes. In parallel, 273 publications describing cancer sequencing screens were reviewed to extract
2088 cancer genes. The non-redundant union of these two sets led to 2372 cancer genes currently annotated in NCG. b Intersection between
known and candidate cancer genes in NCG. c Comparison of NCG content with the previous version [11]. d Pie chart of the methods used to
identify cancer genes in the 273 publications. The total is greater than 273 because some studies used more than one method (Additional file 2:
Table S2). e Cancer genes as a function of the number of cancer donors per study. The grey inset shows a magnification of the left bottom
corner of the plot. f Number of methods used to identify cancer genes over time. PanSoftware used in one of the pan-cancer studies [6] was
considered as a single method but is in fact a combination of 26 prediction tools
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further threshold of statistical significance or correction
for the genome, gene, and cancer background mutation
rate was applied, thus leading to possible false-positive
predictions. Other frequently used prediction methods
are MutSig [55], MuSiC [56], and ad hoc pipelines devel-
oped in the same publication (referred to as ‘paper-spe-
cific’). Although they apply statistical methods to correct
for the background mutation rate and reduce false posi-
tives, all of these approaches estimate the tendency of a
gene to mutate more than expected within a cohort and
therefore they all depend on sample size. Indeed, we ob-
served an overall positive correlation between the num-
ber of cancer donors and the number of cancer genes
(Fig. 1e). This confirms that the sensitivity of the ap-
proaches currently used to predict cancer genes is higher
for large cohorts of samples. Finally, although the vast
majority of analyzed studies tend to apply only one pre-
diction method, more recent publications have started to
use a combination of two or three methods (Fig. 1f ).

Heterogeneity and specificity of cancer genes
The number of cancer genes and the relative proportion
of known and candidate cancer genes vary greatly across
cancer primary sites (Fig. 2a). More than 75% of cancer
genes in cancers of the prostate, soft tissues, bone, ovary,
cervix, thymus, and retina are known drivers. On the
contrary, more than 75% of driver genes in cancers of
the penis, testis, and vascular system are candidate can-
cer genes (Fig. 2a). This seems to be due to several fac-
tors including the sample size, the number of different
methods that have been applied to identify cancer genes
and the biology of each cancer type. For example, penis,
vascular system, and testis cancers show a high propor-
tion of candidate cancer genes. The corresponding co-
horts have a small sample size and have been analyzed
by one or two prediction methods. However, other can-
cer types showing equally high proportions of candidates
(pancreas, skin, blood) have large sample sizes and were
analyzed by several methods (Fig. 2b). Moreover, al-
though the number of cancer genes is overall positively
correlated with the number of sequenced samples
(Figs. 1e and 2c), there are marked differences across
primary sites. For example, ovary, bone, prostate, thy-
roid, and kidney cancers have substantially fewer cancer
genes compared to cancers with similar numbers of can-
cer donors such as uterine, stomach, skin, and hepato-
biliary cancers (Fig. 2c). This is likely due to variable
levels of genomic instability and heterogeneity across
cancer types of the same primary site. For example, in
seven of the nine mutational screens of skin melanoma,
a cancer type with high genomic instability [57], more
than 50% of cancer genes are study-specific (Fig. 3a).
Similarly, the 24 types of blood cancer are variable in
terms of number of cancer genes, with diffuse large

B-cell lymphoma having many more cancer genes than
other blood cancers with higher numbers of cancer do-
nors (Fig. 3b). In both cases, the use of the same method
(i.e., MutSig in Fig. 3a and MuSiC in Fig. 3b) identified
different cancer genes in different patient cohorts,
highlighting the biological heterogeneity even across do-
nors of the same cancer type.
Cancer genes, and in particular candidates, are highly

cancer-specific (Fig. 3c). Hemicentin 1 (HMCN1) is the
only candidate cancer gene to be significantly mutated
in six primary sites (blood, brain, esophagus, large intes-
tine, liver, and pancreas). A few known cancer genes are
recurrently mutated across several primary sites, includ-
ing TP53 (25), PIK3CA (21), and PTEN (20; Fig. 3c).
These are, however, exceptions, and the large majority of
known and candidate cancer genes (64% of the total) are
found only in one primary site, indicating high hetero-
geneity of cancer driver events. Similar specificity is also
observed in terms of supporting publications. The ma-
jority of cancer genes are publication-specific, again with
few exceptions including TP53 (173), PIK3CA (87) and
KRAS (86, Fig. 3d). Of note, the best-supported candi-
date gene is Titin (TTN, predicted in nine publications),
which is a well-known false positive of recurrence-based
approaches [55]. Interestingly, the scenario is different
when analyzing the number of prediction methods that
support cancer genes reported in at least two screens
(Fig. 3e). In this case, few candidate and known cancer
genes are identified by only one method, while the ma-
jority of them are supported by at least two (candidates)
and three (known cancer genes) approaches. However,
only six candidate cancer genes are supported by six
methods, and TP53 is the only cancer genes to be identi-
fied by 16 of the 18 methods (Fig. 3e).
Finally, the heterogeneity of the cancer driver land-

scape is reflected in the pan-cancer studies. Approxi-
mately 40% of the cancer genes from pan-cancer
analyses were not previously predicted as drivers (Fig. 3f ),
despite the large majority of cancer samples having been
already analyzed in the corresponding cancer-specific
study. This is yet a further confirmation that current
methods depend on the sample size and that a larger co-
hort leads to novel predictions. Only 35 cancer genes
were shared across four pan-cancer re-analyses of adult
tumors (Fig. 3g), suggesting that the prediction of cancer
genes is highly method- and cohort-dependent. This is
further confirmed by the poor overlap between cancer
genes from adult and pediatric pan-cancer studies
(Fig. 3h). In this case, however, it is also likely that differ-
ent biological mechanisms are responsible for adult and
childhood cancers.
Overall, our analysis of the cancer driver landscape

suggests that the high heterogeneity of cancer genes ob-
served across cancer types is due to a combination of
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sample size effect, prediction methods, and true bio-
logical differences across cancers.

Systems-level properties of cancer genes
In addition to collecting cancer genes from the litera-
ture, NCG also annotates the systems-level properties
that distinguish cancer genes from other genes that are
not implicated in cancer (Additional file 2: Table S1).
We therefore compared each of these properties

between cancer genes and the rest of human genes. We
considered seven distinct groups of cancer genes. The
first three were 711 known cancer genes, 1661 candidate
cancer genes, and 2372 total cancer genes. After remov-
ing 201 possible false-positive predictions [6, 54] from
the list of candidate cancer genes, we also identified two
sets of candidate cancer genes with a stronger support.
One was composed of 104 candidate cancer genes found
in at least two independent screens of the same primary

Fig. 2 Distribution of cancer genes across primary sites and cancer donors. a Number of total cancer genes and proportion of known and
candidate cancer genes across the 31 tumor primary sites analyzed in the 267 cancer-specific studies. The number of cancer donors followed by
the number of cancer genes is given in brackets for each primary site. b Proportion of candidate cancer genes over all cancer genes across the
31 tumor primary sites. The dot size is proportional to the donor cohort size. c Total number of cancer genes and cancer donors across the 31
tumor primary sites. The color scale in (b) and (c) indicates the number of screens for each primary site
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site. The other was formed of 711 candidate cancer
genes identified in large cohorts composed of at least
140 donors (top 25% of the sample size distribution
across screens). Finally, we compared the properties
between 239 TSGs and 239 OGs.
As previously reported [35], we confirmed that a sig-

nificantly lower fraction of cancer genes has duplicated
copies in the human genome due to a high proportion

of single-copied TSGs (Fig. 4a). The same trend was
observed in both known and candidate cancer genes and
is significant for the combination of the two gene sets.
Interestingly, candidate cancer genes found in ≥ 2
screens show a high proportion of duplicated cancer
genes (albeit not significant probably due to the small
size of the group, Fig. 3d). This could suggest that
several genes in this group may exert an oncogenic role.

Fig. 3 Recurrence of cancer across primary sites and publications. a Proportion of study-specific cancer genes reported by each of the seven
skin melanoma screens. b Total number of cancer genes and donors across 24 cancer types of the blood. The full list of blood cancer types is
reported in Additional file 2: Table S2. c Number of primary sites in which each known or candidate cancer gene was reported to be a driver.
d Number of publications in which each known or candidate cancer gene was reported to be a driver. e Number of methods used to predict
cancer genes for drivers found in more than one publication. f Intersection of cancer genes in the cancer-specific and pan-cancer studies.
g Venn diagram of cancer genes across the four pan-cancer studies of adult donors. h Intersection of cancer genes in pan-cancer screens of
adult and pediatric donors. In f, g, and h, the number of donors followed by the total number of cancer genes are given in brackets
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Fig. 4 Systems-level properties of cancer genes. a Percentage of genes with ≥ 1 gene duplicate covering ≥ 60% of the protein sequence. b
Proportion of genes originating in pre-metazoan species. c, d Number of human tissues in which genes (c) and proteins (d) are expressed. In
panel c, tissue types were matched between GTEx and Protein Atlas wherever possible, giving 43 unique tissues. In tissues represented in both
datasets, genes were defined as expressed if they had ≥ 1 TPM in both datasets. Only genes present in both sources were compared (Additional
file 2: Table S1). e Percentage of genes essential in ≥ 1 cell line and distribution of cell lines in which each gene is essential. Only genes with
concordant annotation between OGEE and PICKLES were compared (Additional file 2: Table S1). f Percentage of proteins involved in ≥ 1 protein
complex. g Median values of betweenness (centrality), clustering coefficient (clustering), and degree (connectivity) of human proteins in the
protein-protein interaction network. h Median values of betweenness and degree of the target genes in the miRNA-target interaction network.
The clustering coefficient is zero for all nodes, because interactions occur between miRNAs and target genes. Known, candidate, and all cancer
genes were compared to the rest of human genes, while TSGs were compared to OGs. Significance was calculated using a two-sided Fisher test
(a, b, e, f) or Wilcoxon test (c, d, g, h). *p < 0.05, **p < 0.01, ***p < 0.001. Enrichment and depletion of cancer genes in representative functional
categories taken from level 1 of Reactome (i) and level 2 of KEGG (j). Significance was calculated comparing each group of cancer genes to the
rest of human genes using a two-sided Fisher test. False discovery rates were calculated in each gene set separately. Only pathways showing
enrichment or depletion are shown. The full list of pathways is provided in Additional file 2: Table S3
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Cancer genes, and in particular candidate cancer
genes, originated earlier in evolution (Fig. 4b) [37, 58,
59]. Known cancer genes alone do not differ from the
rest due to the fact that OGs are significantly younger
than TSGs (Fig. 4b).
Known cancer genes tend to be ubiquitously expressed

at the mRNA (Fig. 4c) and protein (Fig. 4d) levels, and
TSGs are more widely expressed than OGs. This trend
is less clear when analyzing candidate cancer genes sep-
arately. Candidates with stronger support tend to resem-
ble known cancer genes; however, the overall set of
candidate cancer genes has a narrower tissue expression
pattern at the gene and protein level (Fig. 4c, d).
A similar scenario is observed when analyzing gene

essentiality. A higher fraction of cancer genes and, in
particular of known cancer genes, is essential in at least
one human cell line (Fig. 4e). Moreover, known cancer
genes tend to be essential in a higher fraction of cell
lines. Both measures of gene essentiality are higher in
TSGs as compared to OGs (Fig. 4e). Candidate cancer
genes with stronger support are again similar to known
cancer genes but, when considered together, all candi-
date cancer genes are not significantly enriched in essen-
tial genes (Fig. 4e).
Proteins encoded by cancer genes are more often in-

volved in protein complexes (Fig. 4f ). They are also
more connected (higher degree), central (higher be-
tweenness), and clustered (higher clustering coefficient)
in the protein-protein interaction network (Fig. 4g). We
verified that this trend holds true also when using only
data from high-throughput screens (Additional file 2:
Table S2), thus excluding the possibility that the distinct-
ive network properties of cancer proteins are due to
their better annotation. These trends remain significant
for all sets of cancer genes.
Cancer genes are regulated by a higher number of

miRNAs (higher degree) and occupy more central posi-
tions (higher betweenness) in the miRNA-target inter-
action network (Fig. 4h). As above, these results remain
valid also when only considering the miRNA-target net-
work from high-throughput screens (Additional file 2:
Table S2) and for any group of cancer genes considered.
Cancer genes are consistently enriched in functional

categories such as signal transduction, chromatin
reorganization, and cell cycle and depleted in others,
such as metabolism and transport (Fig. 4i, Additional
file 2: Table S3). Candidate cancer genes generally ex-
hibit weaker enrichment than the other groups, most
notably in DNA repair. Interestingly, however, extracel-
lular matrix reorganization displays a specific enrich-
ment for candidate cancer genes. Some functional
categories are selectively enriched for OGs (e.g. develop-
ment and immune system, Fig. 4j) or TSGs (e.g. DNA
repair and programmed cell death, Fig. 4i). While

annotations from Reactome and KEGG generally give
concordant results, they differ significantly for gene tran-
scription. In this case, Reactome shows a strong enrich-
ment for cancer genes, while it is not significant in
KEGG (Fig. 4i, j).
Overall our analyses confirm that cancer genes are a

distinctive group of human genes. Despite their hetero-
geneity across cancer types and donors, they share com-
mon properties. Candidate cancer genes only share
some of the properties of known cancer genes, such as
an early evolutionary origin (Fig. 4b) and higher central-
ity and connectivity in the protein-protein and
miRNA-target interaction networks (Fig. 4g, h). They do
not differ from the rest of genes for all other properties.
However, the two sets of candidate cancer genes with a
stronger support overall maintain the vast majority of
the distinctive properties of known cancer genes. This
suggests that the current set of candidate cancer genes
likely contains false positives and genes with weak sup-
port that do not resemble the properties of known can-
cer genes. This is further indicated when directly
comparing the properties of known and candidate can-
cer genes (Additional file 2: Table S4). In this case,
known cancer genes are significantly different for most
properties when compared to the whole set of candidate
cancer genes. However, these differences are reduced
when the two sets of candidates with stronger support
are used. Finally, TSGs and OGs constitute two distinct
classes of cancer genes even based on their systems-level
properties (Fig. 4).

Future directions
In the coming years, NCG will continue to collect new
cancer genes and annotate their properties, including
novel properties such as genetic interactions or epigen-
etic features for which large datasets are becoming avail-
able. So far, the cancer genomics community has
focussed mostly on the identification of protein-coding
genes with putative cancer driver activity. With the in-
creasing availability of whole-genome sequencing data
and a rising interest in non-coding alterations [27, 60],
NCG will expand to also collect non-coding cancer
drivers. Another direction for future development will
be the analysis of clinical data, including therapeutic
treatments, to link them to the altered drivers. This will
contribute to the expansion of our knowledge of cancer
driver genes in the context of their clinical relevance.

Conclusions
The present release of NCG describes a substantial ad-
vance in annotations of known and candidate cancer
driver genes as well as an update and expansion of their
systems-level properties. The extensive body of literature
evidence collected in NCG enabled a systematic analysis
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of the methods used to identify cancer genes, highlight-
ing their dependence on the number of cancer donors.
We also confirmed the high heterogeneity of cancer
genes within and across cancer types. The broad set of
systems-level properties collected in NCG shows that
cancer genes form a distinct group, different from the
rest of human genes. For some of these properties, the
differences observed for known cancer genes hold true
also for candidate cancer genes, and TSGs show more
pronounced cancer gene properties than OGs. Interest-
ingly, these properties are shared by all cancer genes,
independently of the cancer type or gene function.
Therefore, focussing on genes with similar character-
istics could be used for the identification and
prioritization of new cancer driver genes [61]. In con-
clusion, the large-scale annotation of the systems-level
properties of cancer genes in NCG is a valuable
source of information not only for the study of
individual genes, but also for the characterization of
cancer genes as a group.
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